On the Feasibility of Automated Built-in Function Modeling for
PHP Symbolic Execution

Penghui Li
Chinese University of Hong Kong
phli@cse.cuhk.edu.hk

Kangjie Lu
University of Minnesota
kjlu@umn.edu

ABSTRACT

Symbolic execution has been widely applied in detecting vulnerabil-
ities in web applications. Modeling language-specific built-in func-
tions is essential for symbolic execution. Since built-in functions
tend to be complicated and are typically implemented in low-level
languages, a common strategy is to manually translate them into the
SMT-LIB language for constraint solving. Such translation requires
an excessive amount of human effort and deep understandings of
the function behaviors. Incorrect translation can invalidate the final
results. This problem aggravates in PHP applications because of
their cross-language nature, i.e., , the built-in functions are written
in C, but the rest code is in PHP.

In this paper, we explore the feasibility of automating the pro-
cess of modeling PHP built-in functions for symbolic execution.
We synthesize C programs by transforming the constraint solving
task in PHP symbolic execution into a C-compliant format and
integrating them with C implementations of the built-in functions.
We apply symbolic execution on the synthesized C program to find
a feasible path, which gives a solution that can be applied to the
original PHP constraints. In this way, we automate the modeling of
built-in functions in PHP applications.

We thoroughly compare our automated method with the state-of-
the-art manual modeling tool. The evaluation results demonstrate
that our automated method is more accurate with a higher func-
tion coverage, and can exploit a similar number of vulnerabilities.
Our empirical analysis also shows that the manual and automated
methods have different strengths, which complement each other in
certain scenarios. Therefore, the best practice is to combine both
of them to optimize the accuracy, correctness, and coverage of
symbolic execution.

CCS CONCEPTS

« Security and privacy — Web application security.

KEYWORDS

PHP; Constraint solving; Symbolic execution

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450002

Wei Meng

Chinese University of Hong Kong
wei@cse.cuhk.edu.hk

Changhua Luo
Chinese University of Hong Kong
chluo@cse.cuhk.edu.hk

ACM Reference Format:

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo. 2021. On the Fea-
sibility of Automated Built-in Function Modeling for PHP Symbolic Ex-
ecution. In Proceedings of the Web Conference 2021 (WWW °21), April 19—
23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3442381.3450002

1 INTRODUCTION

Web applications have been one of the primary channels connecting
service providers and hundreds of millions of end users. Because
of their importance, web applications and their valuable users have
been the primary targets of cyber attacks. A study reported that
64% of companies had experienced web-based attacks [42]. A recent
report in 2018 also showed that among 43 popular web applications,
each web application on average contained 33 vulnerabilities, and
the number of those critical vulnerabilities per web application
grew by three times compared to the year of 2017 [45].

Due to the popularity and critical uses of web applications, the
detection of their vulnerabilities has been an active and important
research topic in the past decades. In particular, symbolic execution
uses multiple symbolized inputs to test certain program properties,
and is proven to be effective in detecting vulnerabilities and testing
their exploitability with the advances in constraint-satisfiability
theory [15]. It has been applied to multiple program analysis tasks in
the OS kernel [17, 39], browsers [10], efc. In web applications, prior
studies have applied symbolic execution to detect SQL injection
(SQLI), cross-site scripting (XSS), remote code execution (RCE)
vulnerabilities [2, 44], etc.

A general challenge in symbolic execution is handling language-
specific built-in functions. Such built-in functions are commonly
used to provide basic operations like string processing, arithmetic,
and bit manipulation, etc. Therefore, a correct understanding of the
function semantics and overall program logic requires the analy-
sis of built-in functions. However, to generate concrete solutions
to determine the reachability and exploitability further requires
precisely modeling their behaviors for constraints solving. As a
common strategy, prior works model a small number of built-in
functions into SMT-LIB language [43] for constraint solving and
ignore the other ones [2, 30]. Such a modeling process is expensive,
as it typically requires an excessive amount of human effort and the
domain knowledge of the function behaviors. Manual models can
also be error-prone, and lead to false results (both false positives
and false negatives) in vulnerability detection and exploitation. For

https://doi.org/10.1145/3442381.3450002
https://doi.org/10.1145/3442381.3450002
https://doi.org/10.1145/3442381.3450002

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

example, incorrect modeling can bring soundness problems that a
true positive case can be classified as a negative [11, 47].

Unlike some languages (e.g., C) whose built-in (library) functions
are written in the same language, PHP, as a dynamic language,
however, implements its built-in function in a static language—C.
Such a cross-language nature poses many challenges for precisely
modeling these built-in functions in symbolic execution. For exam-
ple, some language features (e.g., operators and type systems) are
inconsistent between the two languages. Some operators in one
language might not exist in the other, making it hard to understand
the behaviors of built-in functions using such operators.

In this paper, we aim to explore the feasibility of automatically
modeling built-in functions for PHP symbolic execution. We face
several challenges. First, the cross-language nature renders the
modeling very hard. To the best of our knowledge, there exists no
automated tool for modeling PHP built-in functions yet. Second, it
is hard to achieve a high coverage of the built-in functions. There are
a large number of built-in functions in a programming language,
with different function definitions. An automated method shall
be able to support many of these built-in functions. Third, it is
difficult to achieve an acceptable correctness. A built-in function
can be designed for several tasks. Under different arguments, the
behaviors and results can be different. Inaccurate modeling can
lead to invalid execution results.

We propose a cross-language program synthesis method to au-
tomate the built-in function modeling. We make use of the C imple-
mentations of PHP built-in functions to understand their behaviors.
In particular, we first convert the constraint solving task in PHP
symbolic execution into a C program and integrate the C imple-
mentations of built-in functions. We then employ a C symbolic
execution engine to solve the task. We propose a type inference al-
gorithm and a syntax mapping method to overcome the challenges
posed by the language feature inconsistency in the cross-language
integration. Because the synthesized C program retains the seman-
tics of the original PHP constraint solving task, the solutions of the
C symbolic execution can be applied to the PHP symbolic execution.
We thus achieve the goal of automatically modeling PHP built-in
functions.

We implement our methodology into XSym and plan to release
the source code. We successfully apply it to automatically model
287 PHP built-in functions. We demonstrate that the models can
accurately represent the internal semantics of the built-in functions
and achieve similar performance as the ones modeled by experts.
With the help of XSym, we can exploit 141 vulnerabilities in the
evaluation dataset. Compared with XSym, a state-of-the-art manual
modeling tool can exploit 133 vulnerabilities using the same con-
straints collected in PHP symbolic execution. XSym further exploits
13 vulnerabilities that cannot be exploited by the manual modeling
tool. Our manual verification shows that the manual modeling tool
produces wrong results for 27 cases, while XSym has only two. This
suggests that manual modeling can be error-prone and can cause
soundness bugs.

We further thoroughly characterize our automated modeling
and the manual modeling for PHP built-in functions. Compared
with manual methods that are modeled on demand and specialized,
our automated method achieves a higher coverage and correctness.
It can be easily applied to most of the in-scope built-in functions

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo

and achieve a high accuracy. We find that our automated method
can even be used as a means for verifying the correctness of man-
ual methods. We further show that the manual methods and our
automated method complement each other as they have different
strengths.

In summary, we make the following contributions in this work.

¢ A new cross-language function model. We explore the
feasibility of automated modeling of the PHP built-in func-
tions for PHP symbolic execution. We propose a cross-
language program synthesis method for PHP applications.
To this end, we propose multiple new techniques such as
type inference and cross-language syntax mapping.

e An extensive evaluation. We demonstrate that our auto-
mated method can achieve a high function coverage and cor-
rectness. It is also practical in exploiting vulnerabilities—we
can exploit 141 vulnerabilities in 26 real-world applications,
with fewer false-positive reports and false-negative reports.

e A thorough characterization. We summarize the char-
acteristics of manual and automated models. We provide
insightful suggestions to guide future modeling of built-in
functions.

2 BACKGROUND
2.1 PHP Symbolic Execution

Symbolic execution is a useful program analysis technique that
helps determine the inputs to guide control and data flows. It runs a
program with symbolized inputs to check whether certain program
properties can be satisfied or violated and has been used in PHP
program analysis for various tasks, such as bug detection and test
generation [4, 6].

PHP programs are interpreted by a framework—the Zend engine
[49]—into Zend bytecode at run time. The Facebook HHVM [36]
is a virtual machine that could convert PHP code into its HipHop
bytecode through a just-in-time compiler and had stopped support-
ing PHP since version 4 [28]. To the best of our knowledge, there is
no existing tool that can directly perform symbolic execution above
the PHP Zend bytecode or HHVM bytecode. Existing symbolic exe-
cution frameworks operating on LLVM IR [10, 12-14, 39] cannot
be used for PHP, either, because there exists no tool that can fully
compile PHP into LLVM IR. Therefore, previous works design their
own customized intermediate languages for their PHP symbolic
execution. For example, Torpedo [35] and UChecker [30] build their
own control flow graphs (CFGs) above the abstract syntax trees
(ASTs) generated from PHP-Parser [34]; Navex [2] uses PHP code
property graphs in PHP Joern [5] that are initially designed for C
programs [48].

During PHP symbolic execution, path constraints, which stand
for the conditions of input values that lead to specific locations, are
collected to help determine the feasibility of particular execution
paths or bugs. By solving path constraints with satisfiability modulo
theory (SMT) solvers, a decision can be given to know if a path can
be taken or a bug can be triggered. However, SMT solvers cannot
directly interpret and understand a class of functions—the unin-
terpreted functions (e.g., PHP built-in functions). These functions

On the Feasibility of Automated Built-in Function Modeling for PHP Symbolic Execution

commonly appear in constraint formulas. The semantics of solver-
uninterpreted functions, directly stop a solver from producing a
correct solution for any constraint formula that contains them.

Similar to other programming languages, PHP has a large num-
ber of built-in (internal) functions. All PHP built-in functions are
solver-uninterpreted and thus are not supported directly by the
solver. This poses a serious problem for symbolically executing PHP
programs and generating tests/exploits. As explained above, the
commonly used solver-uninterpreted PHP built-in functions stop
us from exploring more paths and finding bugs. Previous works on
modeling the solver-uninterpreted functions can be divided into
two classes: 1) manually modeling functions based on their defini-
tions and descriptions [2]; 2) concretely executing a function with
selective inputs or runtime values [26]. The first method requires
to check and understand specific functions, and then "translates"”
the functions to a solver-understandable definition. This requires
an excessive amount of human effort and domain knowledge. Be-
cause of that, this method can only be applied to a limited number
of solver-uninterpreted functions. The second method can create
imprecise models of built-in functions by collecting multiple input-
output pairs. However, it does not scale as it can cover only very few
concrete inputs. Therefore, an automated and accurate approach to
modeling the PHP built-in functions is necessary.

2.2 Satisfiability Modulo Theories

Satisfiability is the basic and ubiquitous problem of determining if
a formula expressing a constraint has a model or a solution [22].
Many problems can be described in terms of satisfiability, including
puzzles, program verification, exploit generation, etc. It is also a
key component in symbolic execution.

SMT solvers check the satisfiability of first-order logic formu-
las from various theories [9, 22, 47] such as booleans, bit-vectors,
strings, etc. The SMT-LIB language is the current standard input
language for SMT solvers [43]. It supports basic arithmetic and
logic operations and is now adopted by the majority of SMT solvers
[8]. The SMT solvers can output three decisions for input formu-
las: 1) SAT if satisfiable, 2) UNSAT if unsatisfiable under any cir-
cumstances, and 3) UNKNOWN if they are not able to decide its
satisfiability. For the formulas receiving a satisfiable decision, the
SMT solvers can provide models (solutions) that satisfy the input
formulas with concrete value for each defined variable

To facilitate specifying constraints into SMT-LIB language com-
patible formulas, SMT solvers provide several necessary built-in
functions. However, the number of such SMT built-in functions
is limited and their functionalities are restricted. For example, Z3
provides only around 40 built-in functions; some advanced func-
tionalities (e.g., string splitting) are not directly supported with
its built-in functions. The analysts thus may have to implement
such advanced features on their own. For example, Navex [2] and
Chainsaw [1] make use of the SMT built-in functions to model PHP
built-in functions for constraints solving.

3 UNDERSTANDING MANUAL MODELING

We study the PHP built-in function supports of Navex, a state-
of-the-art PHP code analysis tool that is equipped with manual
built-in function models [2], to understand how manual models are

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

constructed. We try to summarize and generalize some common
practices in them. We do not study the second class of the solutions
mentioned in §2.1, because, to the best of our knowledge, manually
modeling PHP built-in functions is the dominant solution to date.

Constraint relaxation. Navex models only 35 PHP built-in func-
tions. For compatibility reasons, it chooses to ignore those unsup-
ported built-in functions and thus relaxes the entire constraints to
a certain extent. This is a common trade-off design practice that
enables the tool to study more cases, but, consequently, can bring
side-effects such as wrong satisfiable decisions and wrong solutions.
For instance, if the function f() in constraint formula f($x) == 1 is
unsupported, Navex regards the term f($x) as unconstrained, re-
sulting in $x as unconstrained as well. The SMT solver will give a
sample solution for the unconstrained variable $x, e.g., 0.

Functionality simplification. A built-in function can be de-
signed to perform multiple tasks. However, supporting all the be-
haviors of a built-in function in SMT-LIB language is non-trivial.
Manual modeling might choose to perform functionality simplifi-
cation to cover only a part of the entire functionality of a built-in
function. Such a design might potentially cause wrong results, but
can also bring the benefits of reducing the complexity of constraints
as only part of the function is considered.

4 PROBLEM STATEMENT
4.1 Research Problem and Research Goals

Symbolic execution requires understanding the behaviors of built-
in functions for constraint solving. As introduced earlier, built-in
functions are common in PHP applications but are hard to model.
The current program analysis tools normally ignore such built-in
functions or support only a small number of them through manual
modeling. Manual methods usually take an excessive amount of
human effort and require a deep understanding of the function
behaviors to accurately model them. They can also be error-prone.

In this work, we first aim to explore the feasibility of automating
the modeling of built-in functions for PHP symbolic execution.
Second, we hope to systematically evaluate the automated models
and compare with the state-of-the-art tools, in terms of function
coverage, accuracy, and applications. Third, we aim to summarize
the lessons we learn in our exploration of an automated method and
provide some insightful suggestions to shed some light on future
research.

4.2 Research Challenges

We face several challenges to automatically model built-in func-
tions for PHP symbolic execution. First, modeling built-in functions
requires understanding the behaviors of them. To automate such
a process, we need to find a way to understand the behaviors of
built-in functions without human efforts, which is technically diffi-
cult. To the best of our knowledge, this problem has not been well
studied yet, as there currently exists no such a tool. Besides, due
to the large number of built-in functions, it is hard to achieve a
high coverage. Prior manual works thus choose to only model those
most frequently used ones and ignore the rest. Furthermore, it is
also hard to achieve a high correctness. Each built-in function may
contain diverse functionalities, under different input arguments,

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

PHP Synthesized
Symbolic pp | constraints | Cross-language | program(3)
execution —_— Integration | ="

Symbolic
execution &y

@ &

PHP
source code

Figure 1: The overall methodology.

Built-in func Satisfiability
source code results

different features can be thus enabled or disabled. To achieve a
high correctness, the models need to thoroughly support the entire
functionality of the built-in functions.

5 METHODOLOGY
5.1 Overview

We explore the feasibility of automated built-in function (written in
C) modeling for PHP symbolic execution with a high coverage and
correctness. As the implementations of PHP built-in functions are
available in the PHP interpreter, we can perform symbolic execution
on them to understand their behaviors and automate the modeling.
However, PHP and C, are two inherently different languages with
different language features. It is hard to seamlessly integrate two
languages and the two symbolic execution engines for them. Due to
the complexity and dynamic nature of PHP, translating the whole
PHP language system to another static language is hard or even
infeasible [28]. Thus we cannot simply convert the whole PHP
application into a C program and employ C symbolic execution.
The low-level C implementations of all built-in functions can hardly
be converted into a high-level language, PHP, either.

Therefore, we propose to convert only the results of PHP sym-
bolic execution (e.g., constraints) into a C program that equally
describes the task in the C symbolic execution. Unlike the whole
language system translation, the constraint solving task can be
transformed because it contains only a subset of the whole PHP dy-
namic language features. We then integrate the C program with the
implementations of PHP built-in functions. We call the integrated
result a synthesized program. Afterward, we leverage C symbolic
execution on the synthesized C program for constraint solving.
Because the synthesized C program retains the original constraint
solving task, the solutions generated by the C symbolic execution
thus can equally be applied to the original PHP constraints. Relying
on the C symbolic execution, we can achieve the automated built-in
function modeling.

For the example in Listing 1, to exploit the XSS vulnerability in
line 8, instead of converting all the 10 lines of the PHP program,
we need to convert only the task of finding a possible solution

for the control flow constraint, e.g., strtolower('phpbb_' . $_GETL
'uname']) == 'phpbb_root' && $_GET['passwd'] == 'mypassword’ and the
data flow constraint,e.g., $_GET['ann'] == "alert('xxs')" collected in

PHP symbolic execution. As an example, the synthesized C pro-
gram is illustrated in Listing 2. Apart from the variable declarations
in line 5-7, line 8-9 describe the control flow and data flow in the
PHP constraints, where the PHP operators are replaced with the
corresponding functions. The C symbolic execution can be directed

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo

1 <?php

2 $user = 'phpbb_"' $_GET['uname'];

3 $password = $_GET['passwd'];

4 $announcement = $_GET['ann'];

5

6 if(strtolower($user) == 'phpbb_root"') {

7 if($password == 'mypassword') {

8 echo $announcement; // XSS

9 3

10 3}

Listing 1: An XSS vulnerability for demonstration.

1 // include built-in function

2 #include "php-built-in.h"

3

4 int syn_pro() {

5 php_string _GET_uname; // to symbolize

6 php_string _GET_passwd; //to symbolize

7 php_string _GET_ann; //to symbolize

8 if(php_is_equal(strtolower (php_concat("phpbb_",
_GET_uname)), "phpbb_root") && php_is_equal(
_GET_passwd, "mypasswd")) { //control flow

9 if(php_is_equal (_GET_ann, "aleart('XSS')")) {
// data flow

10 assert(Q); // synthesized error

11 3}

12 3}

13 3}

Listing 2: The synthesized program for code in Listing 1.

to the C implementations to analyze and model these PHP built-
in functions. We also synthesize an assertion in line 10 so that
when the C symbolic execution attempts to find the assertion er-
ror, the conditions in line 8-9 are satisfiable, and a set of concrete
value assignments to the symbolic variables (e.g., _GET_uname) can
be provided. The solutions are then applicable to the original PHP
constraints and PHP applications.

There are several technical challenges. First, the language in-
consistency between PHP and C makes the constraint solving task
conversion difficult. PHP is a weakly-typed programming language
that can initialize and use variables with assignments, while C, a
statically-typed language, requires variable declarations before use.
Such type information is thus missing in the PHP code and the con-
straints. Besides, the constraint solving task contains many PHP
operators (e.g., the concatenation in line 8 of Listing 1) that are
not defined in C. Second, PHP built-in functions are implemented
inside the PHP interpreter and interact with other modules through
complex PHP internal APIs. Identifying such APIs and extracting
only the built-in functions are challenging. Third, synthesizing a C
program to guarantee the PHP constraint solving task is accurately
preserved is hard.

We overcome these challenges with a cross-language program
synthesis method. The workflow of the overall methodology is
presented in Figure 1. To the best of our knowledge, there does not
exist a well maintained open-source symbolic execution framework
for PHP applications. Also as stated in §2.1, many prior works design
their own symbolic execution on their custom intermediate formats.
Thus we first design a PHP symbolic execution framework in §5.2.
We propose a type inference algorithm to infer the variable types,
and a light-weight syntax mapping method to handle other PHP

On the Feasibility of Automated Built-in Function Modeling for PHP Symbolic Execution

language features (e.g., operators and built-in functions) in §5.3.
We seamlessly convert the constraint solving task and synthesize C
programs in §5.4. Last, we construct symbolic inputs and leverage a
C symbolic execution engine for the synthesized C program in §5.5.
The results of the C symbolic execution can be applied to solve the
constraint solving task in the original PHP programs.

5.2 PHP Symbolic Execution

As stated earlier, there is no open-source framework or standard
intermediate format for PHP symbolic execution. We thus take
a similar approach as common practices [2, 35] to perform sym-
bolic execution over our custom CFGs constructed from ASTs. Our
symbolic execution creates symbolic variables for the inputs, and
walks through the CFGs for constraint collections. Next, we briefly
describe the key techniques in our symbolic execution.

5.2.1 Memory Space Management. Symbolic execution simulates
the real execution with symbolic inputs. In our design, we treat
all values that are not concrete as symbolic variables. We design
dedicated data structures to manage the symbolic variables and
the operations above them (e.g., logical operations). The whole
memory space of both symbolic variables and concrete values are
managed in a global array, Memory, which maintains pairs of keys
and the corresponding values. The keys are viewed as addresses of
variables. We organize a dictionary, Keydict, to store the mappings
from PHP variables to keys in Memory. For assignment statements in
the ASTs that initialize new variables, we first create a mapping of
the variable name (left side value) and an unused key in Keydict. We
then store the variable value (right side value) to the corresponding
location in Memory pointed by the key. Variable value fetches are
conducted in a similar but reverse direction. However, we cannot
support the cases when the variable name cannot be interpreted
given the information provided in Memory, e.g., $$x = 1; where $xisa
symbolic variable already, thus $sx cannot be determined statically.
It is a general challenge of PHP analysis [19], thus we currently do
not handle it.

5.2.2 Constraint Collection. The CFGs we construct contain
mainly two types of nodes: conditional nodes (e.g., if statements),
and non-conditional nodes (e.g., assignment statements). Condi-
tional nodes usually include the boolean conditions as the prerequi-
sites to execute the statements in the following branches (e.g., the
statements in the body of an if branch). We collect the conditions
in the conditional statements, and interpret them as parts of the
path constraints by applying the symbolic values stored in Memory
to all variables in them. In non-conditional nodes, we update the
Keydict and Memory accordingly. The control flow constraints in the
conditional statements determine the reachability of a particular
location. Data flow constraints, which usually integrate the relevant
variables with some attack payloads, can be also collected to deter-
mine the exploitability when required. Once reaching interesting
code locations (e.g., concerned bugs), relevant path constraints
are outputted. For example, to study the exploitability of an XSS
vulnerability in a simple echo statement echo $x, the value of $x in
Memory is collected for crafting attack input to launch the attacks
[2, 35].

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

The output constraints describe the paths to specific program
locations. The PHP user-defined functions have been analyzed and
expanded before integrating into the constraints, therefore, the con-
straints we collect in PHP symbolic execution can be represented
in Equation 1.

Term t:=c|v| f(t)

Formula F :=true| false | t; op tz | F; op Fy (W)
The simplest formula is a term (¢), which can be either a constant
value (c), a symbolic variable (v), or a PHP built-in function call
(f(¢)). A formula can be further extended by performing a logical
or arithmetic operation with another formula to generate a new for-
mula. The formula system belongs to the standard first-order theory
of equality with uninterpreted functions [40], which is applicable
for the state-of-the-art solvers, e.g., Z3 [21].

5.2.3 Path Forking. Conditional nodes always lead to different
branches and paths. Thus we need to perform path forking. To
collect constraints in different paths, we always break into the
branches without considering the satisfiability of conditions at that
moment. For path forking, we simply create a duplicate memory
space (Memory) for the path to be executed next. The memory space
is then garbage-collected after finishing exploring that path. The
loops statements are only unrolled once and treated as if state-
ments, which removes many paths that shall appear in dynamic
symbolic execution tools. Such a path forking strategy is simple;
some advanced methods can be applied to optimize the forking
process [7].

Summary. Our symbolic execution is generic and can be applied
to several tasks. We currently do not consider tackling other in-
herent challenges of symbolic execution (e.g., path explosion) as
they are orthogonal to our work in modeling built-in functions.
In the example of Listing 1, it forks at the two if statements
and explores three paths in total. It reasons about the sources
of the values in the conditions, and replaces the variables in the
conditions with the values in Memory. Therefore, the control flow
constraint (strtolower(’phpbb,' . $_GET['uname']) == 'phpbb_root' &&
$_GET['passwd'] == 'mypassword') is collected. For the data flow, the
critical variable $announcement in the echo statement is combined
with additional attack payloads to constitute the final data flow
constraint, e.g., ($_GET['ann'] == "alert('XXs')").

5.3 Cross-Language Integration

The PHP symbolic execution outputs the PHP constraints that are
collected for certain analysis tasks. The constraints inherit some
PHP language features that are not present in C. In particular, there
are two issues we need to tackle: 1) lack of type information, and
2) syntax inconsistency. First, PHP is a dynamically typed program-
ming language, where variables are initialized by assignment state-
ments. However, C, a typical static programming language, requires
all the variables and functions to be clearly declared before use. To
synthesize a C program, we have to infer the variable types and
declare them explicitly in the C code. Second, PHP and C are two
completely different languages that define different operators and
built-in functions. The operators in one language might not exist
in another language. For example, PHP has the equality operator

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

(i.e., ==) that compares only the values (but not types) of operands,
which C does not naturally support.

We propose a type inference algorithm to fill the lack of type in-
formation, and a light-weight syntax mapping method to overcome
the syntax inconsistency. With these techniques, we then synthesize
a C program that equally represents the PHP constraints.

5.3.1 Type Inference. We perform type inference in the constraints
to accurately determine variable types. Our algorithm is based
on the fact that, although PHP variables can change their types
through the execution, in a specific path, the variable types are
determined by the execution context. The constraints we collect
from PHP symbolic execution just describe such a context that
limits the types of variables. Our type inference algorithm starts
by collecting an initial set of types based on the operators and
function signatures. Then, it employs an iterative algorithm to infer
the types of remaining variables.

Initial type inference based on operations. The overall con-
straints represent the execution context of the variables, thus limit
the legitimate types of variables. Locally, the operator behaves as
the context of its operands. Thus the types of one operand can
often be inferred based on the other operand or the correspond-
ing operators. Besides, the function signatures describe the types
of arguments and return values of their call sites. From the ob-
servation, we first decide operand types based on operators, and
the types of argument and return values at call sites based on the
function definitions. Certain operand types are only applicable to
specific operators. For example, the addition operator (+) requires
the operands to be numbers. Therefore, we identify its operands as
of numeric type in the constraints. Similarly, the result of a concate-
nation operation (.) needs to be a string in PHP. Any variables that
we cannot obtain their types from the first step are not restricted
within the local operator context.

Second, after the first step, we consider the comparative opera-
tors such as ==. We perform an overestimation that the operands
are of the same type if allowed. This is sensible because: 1) these
operands are free of the local context, and adding additional type
information for variables with undetermined types (in the first step)
does not invalidate the correctness of the syntax; and 2) a compari-
son usually targets variables of the same type in most of the uses.
Therefore, we target a list of comparative operators and identify
the types of their operands accordingly.

We apply the two-step procedure to each operation. We put the
operand variables whose types are already inferred in the first step
into a list, L. For those operators satisfied in the second step, we
put the operand variables into a corresponding individual type set,
which we will join through the following steps.

Iterative type propagation. We perform an iterative type infer-
ence by propagating the variables with known types in L to the
remaining unknown variables in the type sets. Since the variables in
one type set have the same type, we can infer the types of all other
variables in the set if the type of one variable is already known.
Therefore, for each variable with inferred type in L, we pop it from
the list and propagate its type to other variables in the type sets that
contain this variable. We also add the new variables which we just
identify the types into the list L. We repeat this process till the list
L is empty. In case there are any variables whose types cannot be

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo

inferred, we set a default type of string as it is the most commonly
used type in PHP programs, and continue the propagation process.

Using the control flow constraint in Listing 1 as an illustra-
tion example, in the constraint (strtolower('phpbb_' . $_GET['uname'

== 'phpbb_root' & $_GET['passwd'] == 'mypassword'), because of the
concatenation operator, $_GET['uname'] is inferred as in string type.
Also from the function definition of strtolower(), its return value
is inferred in string type as well. Because of the usage of equal-
ity operator (==) in $_GET['passwd'] == 'mypassword', we obtain that
$_GET['passwd'] and string 'mypassword’ need to take the same type
in the constraints, so we put them in a type set ($_GET['passwd'],
"mypassword'). Accordingly, the type of $_GET['passwd'] is inferred as
string finally.

5.3.2 Syntax Mapping. We perform a light-weight syntax mapping
to map the PHP operators in PHP constraints into their C imple-
mentations in the PHP interpreter. We consider the PHP operators,
PHP type systems, and PHP built-in functions that appear in our
constraint formula system (Equation 1).

PHP defines over 100 operators, including many advanced oper-
ators for facilitating server-side scripting. For example, a three-way
operator spaceship (i.e., <=>) in PHP can perform greater than, less
than, and equal comparisons between two operands. However, only
fewer than 40 operators are defined in C. Thus we cannot simply
map an operator in PHP to the one in C or vice versa. To address
the first inconsistency, we alternatively choose to map all PHP
operators into their original C implementations.

The PHP interpreter provides macro definitions for each specific
operator and implements corresponding operator handlers. We
add wrappers to allow calling these functions from external C
programs. For example, the equality operator (i.e., ==) is defined with
a macro IS_EQUAL. Thus we define a wrapper function php_is_equal(
argl, arg2) that takes two arguments. Similar rule also applies to
concatenation operation (php_concat(arg1, arg2)), and all other PHP
operators. Because there are explicit macros and signatures for
these functions, we can make it fully automated and scale to all
PHP operators.

Besides the operators, we also do a similar type definition map-
ping, i.e., one PHP type can be directed to its original definition.
We investigate the code parser of PHP interpreter and study how
the initialized variables are represented in their C source code. We
find that there is a general prototype data structure, pval, that is
the overall carrier for most types of variable values. The different
specifications of the fields in the pval can carry different types of
variable values. For example, by specifying the type field to Is_STRING,
we can use strvalue and len fields for strings. We thus wrap them
into C language structures and allow directly declaring variable
explicitly with these types, e.g., we define a type wrapper php_string
over pval to allow declaring a PHP string type variable in C.

To include PHP built-in function into the analysis scope, we need
to clean the implementations of built-in functions from complex
inner APIs inside the PHP interpreter. Some functions use explicit
ways to pass the arguments in their C implementations, e.g., struct

pvalx is_int(struct pval), which can be easily handled. However,
some functions do not accept arguments directly. Instead, they are
provided with only the address of a hash table, which stores the real
PHP arguments. For example, the PHP built-in function strtolower()

On the Feasibility of Automated Built-in Function Modeling for PHP Symbolic Execution

has the function signature of strtolower (INTERNAL_FUNCTION_PARAMETERS
). The macro of INTERNAL_FUNCTION_PARAMETERS takes a pointer of hash
tables to pass argument values. The special argument-fetching
design requires the complex computation for obtaining and parsing
the arguments in the hash table in built-in functions. To tackle this,
we use another approach by allocating memory on the heap or the
stack and passing the address as the hash table address for them.
This is feasible because there are internal type-conversion functions
in the PHP interpreter that can be leveraged to transform the data in
memory into the anticipated argument types. Therefore, we apply
such type-conversion functions to the allocated memory to convert
the type to the anticipated type. With this, we can analyze the
stand-alone behaviors of these PHP built-in functions.

5.4 Synthesizing C Programs

We synthesize a C program that equally represents the semantics of
the PHP constraints and directly executes the C implementations
of those PHP built-in functions. There are mainly three steps to
synthesize a C program for our purpose.

First, we need to declare variable types before use. Based on the
type inference step, we obtain the exact types of PHP variables in
the PHP constraints. Since we already map the PHP type systems
into their implementations and add wrappers for them, we can
explicitly declare the necessary variables. For the synthesized C
program (syn_pro()) in Listing 2, line 5-7 declares three variables as
php_string. Note that an array element in the superglobal $_ceT of
PHP is transformed as a simple variable, e.g., $_GET['uname'] turns to
be _GET_uname. Second, we replace all the PHP operators with their
wrappers above their C implementations by putting the operands
as the arguments of the wrapper functions, e.g., php_concat() and
php_is_equal(). Last, we construct the overall logic and finalize the
C program synthesis, i.e, we include the C implementations of
PHP built-in functions (line 2), represent the control flow and data
flow constraints into the conditions of if statements (line 8-9), and
synthesize an error that can be triggered when the conditions are
met (line 10).

The type inference and type system mapping guarantee the cor-
rectness of basic C syntax. With the operator and built-in function
mapping, the if statements in the synthesized C program can retain
their functionalities as in PHP constraints. Once the synthesized
error is triggered, the conditions in the if statements are definitely
satisfied. In other words, the synthesized C program can equally
represent the corresponding PHP constraints.

5.5 Symbolic Execution on Synthesized
Programs

We perform symbolic execution on the synthesized C program. In
this work, we use KLEE [13], a state-of-the-art and popular dy-
namic symbolic execution engine for LLVM IR. We first compile
the synthesized C program together with the C implementations of
PHP built-in functions into LLVM IR. We use the primitives of KLEE
(e.g., klee_make_symbolic()) to declare variables as symbolic inputs,
e.g., _GET_uname, that are to be solved. After that, we can symboli-
cally execute the synthesized C program and invoke PHP built-in
functions from their C implementations. The symbolic execution on
the synthesized C program can determine the satisfiability of PHP

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

constraints by searching a path to reach the error we synthesize
in the code. Taking advantage of the searching heuristic inside the
symbolic execution, we turn the PHP constraint solving problem
into a path searching problem. Thus we can automate the process
of built-in function modeling for PHP symbolic execution.

Similar to directly using SMT solvers on constraints with manual
models, the C symbolic execution is capable of giving a solution to
the synthesized C program if it can find a satisfiable path to reach
the error; an unsatisfiable decision will be given if the condition
can never be satisfied; otherwise, the symbolic execution will keep
running until it reaches the timeout. Because the synthesized C
program are equally transformed from PHP constraints, the solu-
tions can be naturally applied to the original PHP constraints and
PHP programs.

6 IMPLEMENTATION

We implement the aforementioned methodology into XSym and
plan to release our prototype implementation. In particular, we
implemented our PHP symbolic execution engine on top of the
PHP-Parser [34] with about 7K LoC in PHP. We use the PHP-Parser
to parse PHP source code into ASTs, and then construct control-flow
graphs. To synthesize the C program, we automated the wrapper
constructions with 2K LoC in Python and modified the PHP in-
terpreter (v3.0.18) with 1.2K LoC in C. We modified KLEE [13] for
analyzing the synthesized program with about 500 LoC in C++.

We integrate the synthesized program with the C implementa-
tions in PHP interpreter v3.0.18. We did not select the latest version
of the PHP interpreter because KLEE is not able to well support
the intrinsic functions in recent versions of PHP interpreters. In
particular, the PHP interpreter had been re-engineered significantly.
The compiled LLVM IR code of the latest versions includes a lot
of architecture-dependent intrinsic functions that KLEE does not
support. We do notice that the newer versions have introduced
some but not many new functions. However, we observe that the
basic definitions of most PHP operators, types, and built-in func-
tions remain the same across PHP version updates. Therefore, we
believe targeting a relatively older version of PHP is reasonable.
Our methodology shall work for the newer versions of PHP as long
as KLEE includes support for those intrinsic functions. Neverthe-
less, as we will demonstrate next, working on this version of PHP
already allows us to achieve a good performance.

7 EVALUATION

In this section, we evaluate XSyM in three aspects: 1) coverage, 2)
correctness, and 3) application. First, one major goal of XSym is to au-
tomatically model PHP built-in functions. We measure how many
built-in functions can be supported with our approach. Second,
the correctness of the built-in function models is a key factor for
ensuring the effectiveness of applications using them. We inves-
tigate how accurate our models are. Third, we study if XSym can
help develop better symbolic execution applications, e.g., exploit
generation.

We first apply XSym to model PHP built-in functions, and evalu-
ate the function coverage in §7.2 and the correctness in §7.3. Next,

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

in §7.4, we demonstrate the efficacy of XSym in exploiting real-
world applications. Last, we characterize manual and automated
methods in §7.5.

7.1 Experimental Setup

We specified XSym to use Z3 SMT solver, and configured a 10-GB
maximum memory usage and a 5-hour timeout. We conduct all
the experiments on a server running Debian Stretch (Linux Kernel
4.9.0) with 96 GB RAM, and four 2.1 GHz Intel Xeon E5-2695 CPUs.
We systematically compare XSym with the state-of-the-art PHP
symbolic execution tool—Navex [2]. Though Navex had been open-
sourced, unfortunately, the source code (for bug detection and
constraint collection) is incomplete and no longer maintained. Our
attempts failed to reach the authors. For a fair comparison, we could
only use its constraint solving component—which is independent
and includes their function models—for solving the same PHP con-
straints collected by XSym. We evaluate the tools on the dataset
used in [2]. It includes 1) popular and complex PHP applications
such as Joomla, HotCRP, and WordPress, and 2) the same appli-
cations tested by other state-of-the-art tools in exploit generation
(e.g., Chainsaw [1]) and vulnerability analysis (e.g., RIPS [19]).

7.2 Coverage

7.2.1 In-scope Built-in Functions. XSYMm requires the source code
of a program, and cannot model a function if not all its code is avail-
able. A common scenario is that a built-in function relies on some
external modules of which the code is unavailable. For example,
function imap_check() checks information from a mailbox, and relies
on the external mail service. The version of PHP we use includes a
total of 923 built-in functions, of which 603 rely on external mod-
ules. So we finally select 320 built-in functions for evaluation. We
emphasize that, as shown in [20], this set has covered more than
90% of the most popular functions.

7.2.2 Coverage for Built-in Functions. XSym achieves a high cov-
erage. The evaluation results show XSym is able to automatically
model 287 functions. In contrast, Navex modeled only 35 built-
in functions in their released source code. XSym fails to support
the rest functions for the following reasons: 1) implementation
issues, and 2) implicit dependency issues. First, our current im-
plementation of XSym has some limitations inherited from KLEE.
For example, KLEE does not support float point numbers and as-
sembly code that are used in some built-in functions, such as the
ones for mathematical calculations (e.g., sin()). Second, some func-
tions have implicit dependencies with other functions, and require
others to be called first (not internally called). For instance, func-
tion get_magic_quotes_gpc() gets the current configuration setting
of magic_quotes_gpc in global variables which must be provided by
an earlier function call. Since these prerequisite functions are not
internally called, XSym currently cannot identify such implicit de-
pendency. 4 cases not supported by XSym fall in this category.

7.3 Correctness

7.3.1 Evaluation Method. We evaluate the correctness of each indi-
vidual built-in function. We separately synthesize PHP constraints
and C program for each built-in function and then checking whether
XSyM can produce correct solutions for that function to evaluate

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo

// include built-in function
#include "php-built-in.h"

1
2
3
4 int syn_pro() {

5 php_string sol; //symbolic return value

6 if(php_is_equal(strtolower ("TESTCASE"), sol)) {
7 assert(@); // synthesized error

8 }

9 3

Listing 3: A synthesized C program for evaluating the correctness.

Table 1: Statistics of function accuracy.

Func. Types #Func # Tests # Passed Proportion

String 47 296 254 85.81%
Arithmetic 21 98 82 83.67%
Others 20 120 63 65.00%

its correctness. In detail, for each built-in function f(t), we put the
PHP constraint formula (f($t) == $ret) into the condition of an if
statement, and similarly synthesize an error in the if body. To eval-
uate the PHP constrain formula (strtolower("TESTCASE") == $sol), we
synthesize the C program in Listing 3. We try to symbolize either
the arguments (st) or the return variable (sret), and query KLEE to
solve. In the example, the $sol is to be symbolized and to be solved.
KLEE might generate solutions for the symbolized variables in the
constraints. A test would pass if the solution is correct; or fail, if
KLEE is not able to give a solution or the solution is incorrect.

A constraint formula can have multiple solutions. This is because
different arguments can result in the same return value for some
functions, e.g., the formula (strlen(sstr) == 1) can have many pos-
sible values for sstr. We separately execute the function concretely
with the KLEE provided solutions and compare the concrete return
values.

To pave the ground truth of the correctness, we leverage the test
suite shipped with the PHP interpreter, which includes the expected
return values for executing built-in functions with the provided
concrete arguments.

7.3.2 Results. The evaluation results are shown in Table 1. Since
string-related and arithmetical functions are the most prevalent
in PHP, we divided these 287 functions into three classes: string-
related functions, arithmetical functions, and the others. We observe
that XSym has a reasonably high accuracy. It passed 85.81% of
the tests for string-related functions and 83.67% of the tests for
arithmetical functions. It also passed 65.00% of tests in the others
category. The results suggest that our automatic approach can
correctly model the behavior of many built-in functions.

XSym did not pass certain tests for the following reason. Sym-
bolic execution cannot cover all paths for complex functions be-
cause of path explosion. Therefore, we cannot pass some test cases
if the provided inputs traverse the paths not explored in symbolic
execution. This is the inherent limitation of symbolic execution;
however, this can be mitigated through dynamic state merging [32].
Comparing with the state-of-the-art. We also evaluate the cor-
rectness of manual models using the same method described above.
Among 25 out of 35 PHP built-in functions that Navex manually
supports, XSyM outperformed Navex by passing 48 more test cases.

For the rest functions, they are not directly compared because of
the nature of functions and the different versions of PHP the two

On the Feasibility of Automated Built-in Function Modeling for PHP Symbolic Execution

tools modeled. In detail, four functions produce non-deterministic
results. Thus, it is impossible to verify the correctness. Further, six
functions were added to PHP since v5.4, which are not included in
the version of PHP for which we automatically modeled.

Summary. We have two findings in the correctness evaluation.
First, to a certain extent, modeling PHP built-in functions is a pro-
cess of translating their behavior defined in one language to another
language that is understandable by the solver. We find that some
functions cannot be easily supported even by experts, because of
the language feature inconsistency. Second, our analysis demon-
strates the automated modeling of built-in functions can be much
more accurate, compared to the manual modeling.

7.4 Vulnerability Detection

To understand how our automated models help security applica-
tions, we apply XSym for the detection of SQL injection and cross-
site scripting vulnerabilities, which are the dominant types of severe
threats to server-side applications. We first perform a standard static
taint analysis to identify the vulnerabilities, then use XSym with
Z3 to validate and exploit the vulnerabilities. We also ask Navex to
solve the same set of constraints for comparison. The SMT solver
may directly output an UNKNOWN decision for a constraint. We
also set the output as UNKNOWN if the tool is unable to produce
a decision within the time limit. Note that we do not investigate
vulnerabilities depending on client-side code and the multiple-step
nature of web applications, as they have been thoroughly studied
in Navex [2] and are orthogonal to our work.

7.4.1 Overall Results. The evaluation results are shown in Table 2.
We use the subscripts X and N to denote the results of XSym and
Navex, respectively. Sinks, Sol, Rep, and TP in the column headings
mean the number of tainted sinks, solvable sinks (including both
satisfiable and unsatisfiable), reported bugs by a tool and manually
confirmed true-positive bugs, respectively. We also show the false
positives in the parenthesis. As presented in the column Sinks,
the taint analysis marked 172 SQLi and 139 XSS cases in 18 out
of 26 applications. The results of the constraint solving for each
tool are shown in the columns Sol and Rep in Table 2. A case is
solvable if the SMT solver can give either a SAT or an UNSAT
decision within the time limit; otherwise, it is unsolvable. XSym
solved 110 out of the 172 SQLi cases, and 95 out of the 139 XSS
cases; and Navex solved 120 SQLi cases and 105 XSS cases. In our
experiment, Navex triggered some syntax errors that violated SMT-
LIB language specifications while analyzing 15 cases and reported
them as unsolvable cases.

A case is considered as a positive by a tool if its constraint
receives a SAT solution. In summary, XSym identified 81/62 positive
SQLi/XSS cases, and Navex reported 84/72 positive SQLi/XSS cases.
Navex solved more constraints and reported more positive cases,
which result from its overestimation and oversimplification of the
constraint formulas (see §3). However, as we demonstrate next,
Navex has a quite high number of false positives.

To evaluate the correctness of the constraint solving results, we
manually analyzed all the vulnerable cases found in taint analysis
and tested the solutions given by each tool. We present the true
positive cases in the columns TP, and denote the false-positive cases
in parentheses of columns Rep in Table 2. Both tools have false

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

1(17/29) 1(13/42)
7 TS \D\(s/za)
| F(9/9) B(0/4) ~\C(10/10) 6(2/11)
E(2/2) N
\ N VS
\ \ [\
\ \\ L)
-~ \
/N \ A(5/128) \ </
(x (3/6)/' N \ /l L (19/40)
\\/ \\~_// Sinks
Soly Soly Repy Repy !_ _TP_ ~l

Figure 2: Distribution of vulnerability detection results. The alpha-
bets (A-L) denote different situations. The numbers in parenthesis
denote (number of cases including built-in functions supported by
only XSym/ total number of cases).

positives (FP) and false negatives (FN): XSym has 1/1 FP SQLi/XSS
case, while Navex has 11/12 FP SQLi/XSS cases; XSym has 7/6 FN
SQLi/XSS cases, while Navex has 14/8 FN SQLi/XSS cases.

7.4.2 Analysis. To clearly understand the capability of each tool,
we depict the distribution of results in Figure 2. We highlight the
number of constraints including built-in functions supported by
only XSyMm as the first number in each parenthesis. Overall, 99
(31.83%) out of 311 sinks, and 66 (24.53%) out of 265 solvable con-
straints include such XSym-only built-in functions. This demon-
strates the support for more built-in functions is well needed. We
next study different situations in detail.

Solvable and unsolvable cases. The majority of cases (A - D) are
solvable by both XSym and Navex. However, some cases (e.g., eight
in D, 13 in J) contain XSym-only built-in functions. Navex could
“solve” such cases because it ignores those functions that it does not
support by treating them as free symbols for compatibility reasons.

There exist many cases that are solvable by only one tool (e.g.,
Navex could not solve cases in E, F, and I but XSym could), and
even ones that neither tools can solve (e.g., the six in K). On the
one hand, XSym, as a general symbolic execution tool, suffers from
path explosion problem as it turns the constraint solving problem
into a path search problem. Thus, it cannot generate a solution
within the time limit if one constraint is very complex. On the other
hand, Navex cannot solve some complex cases as well, because
the SMT solvers intrinsically suffer from also the excessively high
computation complexity [23].

True positives (TP) and true negatives (TN). 128 cases in A were
provided with a SAT solution by both tools. However, two solutions
given by Navex were incorrect, and thus the corresponding two vul-
nerabilities were not really exploitable using the incorrect solutions.
This is caused by the functionality simplification in Navex. Nine TP
cases in F included XSym-only functions and were solvable by only
XSyM. Seven TP cases in H did not contain XSym-only functions but
were solvable only by Navex. We find that these seven constraints
involved complex multiple-layer calls of built-in functions. Navex’s
functionality simplification could reduce the complexity to some
extent. In contrast, XSym aimed to cover all the functionalities, and
particularly suffered from the complexity problem.

XSym and Navex reported the same TNs in D, but also different
ones in I, and J, respectively. Especially, XSym determined 10 TNs

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo

Table 2: Statistics of vulnerability detection for SQLi and XSS. Sinks, Sol, Rep, and TP denote the number of tainted sinks, solvable sinks
(including satisfiable and unsatisfiable), reported bugs by a tool, and true-positive bugs, respectively. The subscripts X and N denote the
results of XSym and Navex. The numbers in parenthesis mean false positives.

App Files LoC SQL XSS
Sinks Solyxy Solyy Repx Repn TP Sinks Solxy Solyy Repx Repn TP

myBloggie (2.1.4) 56 9,090 25 12 12 7 7 7 2 2 2 1 1 2
WebChess (0.9) 29 5,219 13 6 8 4 7 (4) 5 16 11 12 8 9 8
WordPress (4.7.4) 699 181,257 0 0 0 0 0 0 0 0 0 0 0 0
HotCRP (2.1) 145 57,717 0 0 0 0 0 0 0 0 0 0 0 0
SchoolMate (1.5.4) 63 15,375 50 33 36 25 29(4) 28 11 8 9 6 8 (2) 7
HotCRP (2.6.0) 43 14,870 0 0 0 0 0 0 4 4 4 2 3(1) 2
Zen-Cart (1.5.5) 1,010 109,896 0 0 0 0 0 0 0 0 0 0 0 0
Geccbblite (0.1) 11 323 4 3 3 3 2 3 0 0 0 0 0 0
OpenConf (6.71) 134 21,108 0 0 0 0 0 0 0 0 0 0 0 0
osCommerce (2.3.3) 541 49,378 1 1 1 1 0 1 47 28 33 18 21(2) 21
osCommerce (2.3.4) 684 63,631 0 0 0 0 0 0 5 3 3 2 2 2
Drupal (8.3.2) 8,626 585,094 0 0 0 0 0 0 0 0 0 0 0 0
WeBid (0.5.4) 300 65,302 43 38 39 29(1) 26(2) 30 13 10 8 4 4 5
Gallery (3.0.9) 510 39,218 0 0 0 0 0 0 0 0 0 0 0 0
Scarf Beta 19 978 0 0 0 0 0 0 3 2 2 2 2 2
DNScript 60 1,322 2 1 2 1 1 1 1 1 1 1 1 1
Joomla (3.7.0) 2,764 302,701 0 0 0 0 0 0 0 0 0 0 0 0
FAQForge (1.3.2) 17 1,676 17 5 3 3 4 4 7 4 4 3 3 3
LimeSurvey (3.1.1) 3,217 965,164 0 0 0 0 0 0 0 0 0 0 0 0
Collabtive (3.1) 836 172,564 0 0 0 0 0 0 0 0 0 0 0 0
Eve (1.0) 8 905 5 2 3 2 2 2 2 2 2 2 2 2
Elgg (2.3.5) 3,201 215,870 0 0 0 0 0 0 0 0 0 0 0 0
CPG (1.5.46) 359 305,245 3 2 3 2 2 2 11 7 9 5 5(1) 6
MediaWiki (1.30.0) 3,680 537,913 0 0 0 0 0 0 1 0 1 0 0 0
PHPBB (3.0.11) 74 29,164 4 3 3 3 3(1) 3 16 13 16 8 (1) 11(6) 7
PHPBB (3.0.23) 387 158,756 5 4 4 1 1 1 0 0 0 0 0 0
Total 27473 3,909,736 172 110 120 81(1) 84(11) 87 139 95 105 62(1) 72(12) 68

in C, which were wrongly classified as positives by Navex. All these #bugs

10 cases included XSym-only functions, which XSym was able to 220 - : .

correctly model their functionalities and accordingly generated the ,’ et

correct UNSAT decisions. In contrast, Navex incorrectly relaxed the 150! 3 < |

constraint for compatibility and generated incorrect SAT decisions. -

False positives (FP). XSym had two FPs in E. We found in our 1008 5* 1

analysis that these two constraints included calls of uninterpreted 5 A

user-defined functions, of which the PHP source code was not [see ESYm |

. . . . ave:
available. Accordingly, XSym had to replace them with free symbols 0 4 ‘ ‘ ‘ ‘ : vex (t rlnnlqﬁ)
0 50 100 150 200 250 300

for generating solutions, which were wrong. This is a well-known
challenge in PHP program analysis [2, 5], but not a limitation of
our automated modeling approach. Navex had 23 FPs. The reasons
for the 12 FPs in A and € have been discussed above. The other 11
FPs in G were also caused by its constraint relaxation. The results
suggest that Navex could have generated more accurate results if
more built-in functions were supported.

False negatives (FN). As explained earlier, XSym had six FNs in K
and seven FNs in H that it could not solve. Similarly, Navex had 15
FNs inK and F that it could not solve. Particularly, four cases in B that
Navex solved were FNs, because of the functionality simplification in
its models. For example, Navex only modeled a subset of the entire
functionalities of certain built-in functions, while the satisfiable
functionalities were not included. Therefore, the underlining SMT
solver was unable to satisfy the whole constraints. On the contrary,
XSym was able to generate the correct exploits because of its correct
and complete modeling of these functions.

10

Figure 3: Number of solved bugs over time for XSym and Navex

Summary. XSyMm and Navex can solve the majority of reported
cases, and exploit most true positive cases. Compared with Navex,
XSym has a lower false-positive rate and a lower false-negative
rate. Navex, because of its constraint relaxation and functionality
simplification, produces wrong decisions or solutions for 27 cases,
while XSym has only two.

7.4.3 Performance. As we already specified the maximum memory
usage to 10 GB for both tools, here we only measure the time usage
in them. Specifically, for all solvable cases, we present the numbers
of solved cases over time in Figure 3. From the figure, we observe
that, more than half of the cases were solved in the first 100 minutes,
and no more cases were solved after 210 minutes. This suggests
that the timeout of 5 hours is sufficient to evaluate both tools in
our settings. As a comparison, XSym has a relatively longer time

On the Feasibility of Automated Built-in Function Modeling for PHP Symbolic Execution

requirement than Navex. Again, higher efficiency with Navex is a
result of its manual over-approximation, which however sacrifices
accuracy.

7.5 Characterizing Manual and Automated
Modeling Methods

A manual method is usually modeled on demand and specialized.
It focuses on a relatively small set of built-in functions that are
usually required for certain analysis tasks. Due to the unaffordable
manual effort and complex logic, manual modeling typically cannot
cover all built-in functions or provide accurate results. That said,
we found that a manual method can specialize the features to meet
their needs like functionality simplification. However, this can bring
side-effects, for example, the wrong solutions. It also makes use of
the SMT-LIB built-in functions to assist their implementations. By
contrast, our automated method is with a high coverage, correctness,
and completeness. Our automated method can scale to a large num-
ber of built-in functions and manage an acceptable accuracy. Our
automated method considers the entire function semantics, and is
more complete. However, compared with the manual models using
functionality simplification, it results in higher analysis complexity.
Therefore, only the shadow (paths) functionalities can be explored
and modeled.

We further find that manual and automated methods can comple-
ment each other. For those frequently-invoked built-in functions,
manual methods can be leveraged to specialize them with the best
efforts for the analysis tasks. For other relatively less used built-in
functions, our automated model can scale to support them with
basic functionalities. We suggest to further combine them together.

Our automated modeling can be used as a possible means to
verify the correctness of manual methods. As discussed earlier,
our automated method has a high accuracy and high true positive
reports, and it can solve most of the cases that the manual method
can solve. Therefore, it can be a feasible way to help verify the
decisions and solutions given by the manual methods.

8 DISCUSSION

Built-in functions dependent on external modules. Our au-
tomated method requires all the code to be available. Built-in func-
tions that rely on external modules such as operating systems and
database systems can not be directly supported when the code of
the external modules are not in our analysis scope. We can also try
to solve this problem by including the code of external modules in
our analysis scope. For example, S2E [18] adopts the whole-system
symbolic execution to cover all involved modules. However, poten-
tial challenges in whole-system symbolic execution include that it
has to analyze binary code (when the source code is not available)
and that it may not scale well. We believe that the approach of
XSyM is generic, and supporting external modules is an orthogonal
topic.

Combining automated and manual methods. Our methodol-
ogy uses a C symbolic execution tool (i.e., KLEE) to analyze the
synthesized C program. To integrate the manual modeling into our
automated modeling, we may have to redirect the function calls
to such manually modeled functions to their manual models, and
seamlessly integrate the manual models into the execution context

11

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

in the C symbolic execution. As a result, this might require some
enhancement on the underlying C symbolic execution tool. We
leave it as our future work.

9 RELATED WORK

Symbolic execution. Symbolic execution has been widely used
for web security. SAFELI [24] performs symbolic execution on the
instrumented bytecode of Java-based web applications for SQLi
scanning. Kudzu [41], a JavaScript symbolic execution framework,
was proposed to study the client-side vulnerabilities. Differently,
XSym targets server-side PHP applications. Apollo [3] and Navex [2]
use concolic execution for test generation. They either instrument
the Zend engine or use xdebug to get runtime information for
constraint solving. Compared with XSym, they rely on analysts to
translate PHP built-in functions into the SMT-LIB language, which
is found to be error-prone.

Program synthesis. Program synthesis as the task of generating
programs from user intent, has been widely used for studying se-
curity problems [27]. Singularity [46] transforms the complexity
testing problem to optimal program synthesis to identify perfor-
mance bugs. Aspire [16] synthesizes application specifications from
input-output examples to meet user intent and to guarantee the
security. Many fuzzing works [29, 33, 37] use the language syntax
to synthesize code fragments as test cases. However, XSym applies
a program synthesis method to construct automated models for
PHP built-in functions.

The modeling of built-in functions. Analyzing built-in func-
tions is also common in static analysis. Pixy [31] configures 29,
and RIPS [19] classifies and analyzes over 900 built-in functions in
static analysis for taint propagation and sanitization. In symbolic
execution and test generation, SMART [25] proposes a summary
to describe the behaviors of a function, but it only targets C ap-
plications instead of PHP applications that involve cross-language
features. DART [38] isolates library functions from the whole con-
straints and concretely executes these library functions to mitigate
the built-in function problem for Java programs. Godefroid records
concrete input-output pairs for uninterpreted built-in functions
and reuses them in constraint solving [26]. However, they can only
cover a very few function situations. Tools like Chainsaw [1], Navex
[2], and UChecker [30] that manually model built-in functions are
shown to be error-prone. In comparison, XSym employs symbolic
execution on C implementations of PHP built-in functions to auto-
matically model their behaviors.

10 CONCLUSION

Modeling built-in function for symbolic execution is important. In
this paper, we explored the feasibility of automatically modeling
PHP built-in functions for PHP symbolic execution. We proposed a
cross-language program synthesis method that transforms relevant
constraints collected in PHP symbolic execution into a C-compliant
program and integrates with the C implementations of PHP built-in
functions. We then leveraged a C symbolic execution tool to analyze
the synthesized program, which achieved the goal of automating
built-in function modeling. Our evaluation shows that the auto-
mated method is scalable and accurate. With it, we successfully
exploited 141 vulnerabilities in 26 real-world web applications.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

ACKNOWLEDGMENT

The work was partly supported by a grant from the Research Grants
Council of the Hong Kong SAR, China (CUHK 14210219). Kangjie
Lu was supported in part by the NSF awards CNS-1815621 and CNS-
1931208. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the RGC of HK or the NSF.

REFERENCES

(1]

[2

—

=

[10]

[11

[12]

[13

[14]

[15]

=
&

[17]

(18

[19]

[20

[21]

Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. 2016.
Chainsaw: Chained automated workflow-based exploit generation. In Proceedings
of the 23rd ACM Conference on Computer and Communications Security (CCS).
Vienna, Austria.

Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In Proceedings of the 27th USENIX Security Symposium (Security). Baltimore, MD.
Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D Ernst. 2008. Finding bugs in dynamic web applications. In Proceedings
of the 17th International Symposium on Software Testing and Analysis (ISSTA).
Seattle, WA.

Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM (2014).

Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yam-
aguchi. 2017. Efficient and flexible discovery of php application vulnerabilities. In
Proceedings of the 2nd IEEE Symposium on Security and Privacy (Oakland). Paris,
France.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. (2018).

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR) (2018).

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability modulo
theories (Edinburgh, England).

Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories. In Handbook
of Model Checking. Springer.

Fraser Brown, Deian Stefan, and Dawson Engler. 2019. Sys: a static/symbolic tool
for finding good bugs in good (browser) code. In Proceedings of the 29th USENIX
Security Symposium (Security). Boston, MA.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,
Alessandro Santuari, and Roberto Sebastiani. 2006. To Ackermann-ize or Not
to Ackermann-ize? On Efficiently Handling Uninterpreted Function Symbols in
SMT. In International Conference on Logic for Programming Artificial Intelligence
and Reasoning. Springer.

Frank Busse, Martin Nowack, and Cristian Cadar. 2020. Running symbolic
execution forever. In Proceedings of the 29th International Symposium on Software
Testing and Analysis (ISSTA). Los Angeles, US.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). San Diego, CA.

Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. 2008. EXE: automatically generating inputs of death. ACM Transactions
on Information and System Security (2008).

Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM (2013).

Kevin Chen, Warren He, Devdatta Akhawe, Vijay D’Silva, Prateek Mittal, and
Dawn Song. 2015. ASPIRE: Iterative Specification Synthesis for Security. In
15th USENIX Workshop on Hot Topics in Operating Systems (HotOS) (HotOS XV).
Kartause Ittingen, Switzerland.

Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. 2009.
Selective symbolic execution. In Proceedings of the 5th Workshop on Hot Topics in
System Dependability (HotDep).

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for in-Vivo Multi-Path Analysis of Software Systems. (March 2011).
Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features
for Precise Static Code Analysis.. In Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

Dams. 2018. Top 100 PHP functions. https://www.exakat.io/top-100-php-
functions/.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis

12

[22

[23

[24]

™
2

[26

[27

[28

[29

@
&,

[37

[38

[39

[40]

N
fury

"~
&

[47

[48

[49

Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo

of Systems. Budapest, Hungary.

Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. 2007. A tutorial
on satisfiability modulo theories. In International Conference on Computer Aided
Verification. Berlin, Germany.

Martin Fréanzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-
bert. 2006. Efficient solving of large non-linear arithmetic constraint systems
with complex boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation (2006).

Xiang Fu and Kai Qian. 2008. SAFELI: SQL injection scanner using symbolic
execution. In Proceedings of the 2008 workshop on Testing, analysis, and verification
of web services and applications.

Patrice Godefroid. 2007. Compositional dynamic test generation. In Proceedings
of the 34th ACM Symposium on Principles of Programming Languages (POPL). Nice,
France.

Patrice Godefroid. 2011. Higher-order test generation. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). San Jose, CA.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages (2017).

HHVM. 2018. Ending PHP Support, and The Future Of Hack. https://hhvm.com/
blog/2018/09/12/end- of-php- support-future-of-hack.html.

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code frag-
ments. In Proceedings of the 21st USENIX Security Symposium (Security). Bellevue,
WA.

Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. 2019. UChecker: Automatically
detecting php-based unrestricted file upload vulnerabilities. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2010. Static analysis
for detecting taint-style vulnerabilities in web applications. Journal of Computer
Security (2010).

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. Acm Sigplan Notices (2012).

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:
Automatic generation of syntax valid ¢ programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence.

Nikic. 2020. A PHP parser written in PHP. https://github.com/nikic/PHP-Parser.
Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Detecting and exploiting second
order denial-of-service vulnerabilities in web applications. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS). Denver,
Colorado.

Guilherme Ottoni. 2018. HHVM JIT: A Profile-guided, Region-based Compiler
for PHP and Hack. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). Philadelphia, PA.
Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.

Corina S Pasareanu, Neha Rungta, and Willem Visser. 2011. Symbolic execution
with mixed concrete-symbolic solving. In Proceedings of the 20th International
Symposium on Software Testing and Analysis (ISSTA). Toronto, Canada.

David A Ramos and Dawson Engler. 2015. Under-constrained symbolic execution:
Correctness checking for real code. In Proceedings of the 24th USENIX Security
Symposium (Security). Washington, DC.

G Robinson and Lawrence Wos. 1983. Paramodulation and theorem-proving in
first-order theories with equality. In Automation of Reasoning. Springer.
Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A symbolic execution framework for javascript. In Pro-
ceedings of the 31th IEEE Symposium on Security and Privacy (Oakland). Oakland,
CA.

AAG IT Services. 2019. How often do Cyber Attacks occur?
it.com/how-often-do- cyber-attacks-occur/.

SMT-LIB. 2020. SMT-LIB. http://smtlib.cs.uiowa.edu/.

Sooel Son and Vitaly Shmatikov. 2011. SAFERPHP: Finding semantic vulnerabili-
ties in PHP applications. In Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security.

Positive Technologies. 2019. Web application vulnerabilities: statistics for
2018. https://www.ptsecurity.com/ww-en/analytics/web-application-
vulnerabilities-statistics-2019/.

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. 2018. Singularity:
Pattern fuzzing for worst case complexity. In Proceedings of the 26th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). Lake Buena Vista, FL.

Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT
solvers via semantic fusion.. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). London, UK.
Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceedings of the
35th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.

Zend and Perforce. 2021. Zend Framework. https://framework.zend.com/.

https://aag-

https://www.exakat.io/top-100-php-functions/
https://www.exakat.io/top-100-php-functions/
https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://hhvm.com/blog/2018/09/12/end-of-php-support-future-of-hack.html
https://github.com/nikic/PHP-Parser
https://aag-it.com/how-often-do-cyber-attacks-occur/
https://aag-it.com/how-often-do-cyber-attacks-occur/
http://smtlib.cs.uiowa.edu/
https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/
https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/
https://framework.zend.com/

	Abstract
	1 Introduction
	2 Background
	2.1 PHP Symbolic Execution
	2.2 Satisfiability Modulo Theories

	3 Understanding Manual Modeling
	4 Problem Statement
	4.1 Research Problem and Research Goals
	4.2 Research Challenges

	5 Methodology
	5.1 Overview
	5.2 PHP Symbolic Execution
	5.3 Cross-Language Integration
	5.4 Synthesizing C Programs
	5.5 Symbolic Execution on Synthesized Programs

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Coverage
	7.3 Correctness
	7.4 Vulnerability Detection
	7.5 Characterizing Manual and Automated Modeling Methods

	8 Discussion
	9 Related Work
	10 Conclusion
	References

