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ABSTRACT 
This study leverages frame-wise speaker counting to switch between 
speech enhancement and speaker separation for continuous speaker 
separation. The proposed approach counts the number of speakers at 
each frame. If there is no speaker overlap, a speech enhancement 
model is used to suppress noise and reverberation. Otherwise, a 
speaker separation model based on permutation invariant training is 
utilized to separate multiple speakers in noisy-reverberant condi-
tions. We stitch the results from the enhancement and separation 
models based on their predictions in a small augmented window of 
frames surrounding an overlapped segment. Assuming a fixed array 
geometry between training and testing, we use multi-microphone 
complex spectral mapping for enhancement and separation, where 
deep neural networks are trained to predict the real and imaginary 
(RI) components of direct sound from stacked reverberant-noisy RI 
components of multiple microphones. Experimental results on the 
LibriCSS dataset demonstrate the effectiveness of our approach. 

 
Index Terms—Complex spectral mapping, continuous speaker 

separation, microphone array processing, deep learning. 

1. INTRODUCTION 
Considerable progress has been made towards solving the talker-in-
dependent speaker separation problem, since deep clustering (DC) 
[1] and permutation invariant training (PIT) [2] were proposed to 
address the label permutation problem. To further improve separa-
tion, subsequent studies leverage microphone array processing [3]–
[6], magnitude- and complex-domain phase estimation [7], [8], 
time-domain processing [9], and extra information such as speaker 
embeddings [10] and visual cues [11]. On wsj0-2mix and 3mix [1], 
a popular benchmark dataset containing monaural anechoic two- 
and three-speaker mixtures, current state-of-the-art approaches pro-
duce separation results that sound almost indistinguishable from 
clean speech, and the performance improvement measured by scale-
invariant signal-to-distortion ratio is more than 20 dB over no pro-
cessing [12]. 

The success on the wsj0-2mix and 3mix datasets however partly 
benefits from several strong assumptions. They may prevent the suc-
cessful applications of many algorithms performing well on wsj0-
2mix and similar datasets to realistic human conversations, where 
speaker overlap naturally happens. First, realistic recordings inevi-
tably contain environmental noises and room reverberation. One 
should keep an eye on the robustness during algorithmic design. 
Second, the number of speakers is unknown beforehand and has to 
be estimated in order to do DC or PIT. In meeting scenarios, the 
number of speakers can vary from two to more than ten. Third, fully-

overlapped speech as simulated in wsj0-2mix seldomly happens in 
natural conversations, and the overlap ratios among speakers can 
vary dramatically [4]. Most of the time, only one speaker talks. 
There could be short pauses or long silence between consecutive ut-
terances. Sometimes another speaker interrupts. So, two-speaker 
overlap is common, but the case where more than two speakers talk-
ing at the same time rarely happens. Fourth, many studies assume 
offline-processing scenarios, where each utterance has been accu-
rately segmented. In a streaming system, however, speech signals 
come as a continuous stream. How to modify the algorithms for 
online processing is an important problem to study. 

In this context, a block-online approach is proposed in [13]–[15] 
to address continuous speaker separation, where speech signals from 
an unknown number of speakers, degraded by environmental noise, 
room reverberation and  a wide range of speaker overlap, arrive as a 
continuous stream. These studies assume that in each fixed-length 
short processing block, typically 2.4-second long, there are at most 
two speakers talking, so that a two-speaker separation model based 
on for example utterance-wise PIT (uPIT) can be applied in each 
block for separation. Consecutive blocks are designed to be over-
lapped, and the overlapped regions is used for stitching the separa-
tion results in consecutive blocks [16]. 

Although working well most of the time when turn taking does 
not happen frequently [15], this overlapped-block approach makes 
a strong assumption that each processing block can only have two 
speakers at most. In addition, the length of the processing block can-
not be long, because there could be more than two speakers in a 
longer block. However, using a small processing blocks limits the 
amount of contextual information a model can exploit. One can in-
deed train a say three- or four-speaker PIT model for block-online 
processing. However, it is unclear yet whether such a model would 
perform well when speakers are not fully overlapped and when the 
model is applied to process blocks with zero, one or two speakers.  

Our study tackles continuous speaker separation from the angle 
of frame-wise speaker counting. Instead of assuming that there are 
at most two speakers in each short processing block, we assume that 
there are up to two speakers at each frame. We perform frame-wise 
three-class classification (i.e. zero, one or two speakers) for speaker 
counting. Our system includes a speech enhancement module as 
well as a speaker separation module. At run time, if the speaker 
counting module figures out that there is no speaker overlap, the en-
hancement module is picked for enhancement and if speaker overlap 
is happening, the speaker separation module is applied for separa-
tion. For one-speaker segments, although a multi-speaker model 
could put the speaker in one output and set the others to silence, we 
believe that a speech enhancement model should produce better re-
sults, as it only needs to enhance speech from noise and reverbera-
tion and does not have to learn to separate multiple speakers. We 
stitch the results from the enhancement and separation modules 
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based on a small augmented window surrounding the overlapped 
frames, where both modules need to make predictions in this com-
mon region. This way, we can potentially use a larger context win-
dow for our models and get rid of the two-speaker assumption in the 
block-online approaches. As an initial step towards online or low-
latency continuous speaker separation, this study only deals with of-
fline processing.  

The rest of this paper presents the physical model and proposed 
algorithms in Sections 2 and 3, experimental setup and evaluation 
results in Sections 4 and 5, and conclusions in Section 6. 

2. PHYSICAL MODELS AND OBJECTIVES 

Given a 𝑃-channel conversational signal recorded in a noisy-rever-
berant environment with 𝐶 speakers and assuming that there are at 
maximum two speakers at any time frame, our study aims at sepa-
rating the mixture into two anechoic streams, each with no speaker 
overlap. Note that the total number of speakers 𝐶 is assumed un-
known and the signal could last minutes or tens of minutes. See Fig-
ure 1 for an illustration.  

We assume a uniform circular array geometry, and that the same 
array is used in training and testing. In [15], it is shown that a 
separation model trained on a simulated array generalizes well to a 
real array with matched geometry. 

3. PROPOSED ALGORITHMS 
Our system contains three models, one for frame-wise speaker 
counting, one for speech enhancement, and one for speaker separa-
tion. If the speaker counting module finds that there is speaker over-
lap, the speaker separation module is applied for separation, and oth-
erwise, the speech enhancement model is used to remove noise and 
reverberation. All of them use the same input features, and share an 
encoder-decoder network architecture (see Figure 3). 

3.1. Speech Enhancement 

Our enhancement network predicts the summation of the direct-path 
signals at the two streams, producing an estimate of the only speaker 
in one-speaker frames and the summation of the two speakers in 
overlapped frames. It is a multi-microphone input and single-micro-
phone output (MISO) network [15] trained to predict the real and 
imaginary (RI) components of target speech at a reference micro-
phone based on the mixture RI components at all the microphones 
and the mixture magnitude at the reference microphone. This 

network exhibits strong performance in tasks such as multi-micro-
phone speech dereverberation [17] and speaker separation [15]. 

Following [18], [19], [15], the loss function is defined on the pre-
dicted RI components and their resulting magnitude 
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where 𝑆!(𝑐) denotes the stream of the direct-path signal of speaker 
𝑐 at a reference microphone 𝑞, 𝑅'! and 𝐼7! are the predicted RI com-
ponents produced by a linear activation in the output layer, Real(∙) 
and Imag(∙)  respectively extract the real and imaginary compo-
nents, |∙| computes magnitude, and ‖∙‖) computes the L1 norm. 

Note that this network is only trained to extract speech from noise 
and reverberation, and does not separate multiple speakers.  

3.2.  Speaker Separation 

When speaker overlap is detected, we apply a MISO based network 
for speaker separation. The model is trained using uPIT [2] on two-
talker mixtures. The loss function is 
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where Ψ denote the set of all the permutations of two sources and 
𝜓! is a permutation at a reference microphone 𝑞, and 𝑅'! and 𝐼7! are 
the predicted RI components.  

3.3. Speaker Counting 

As each frame is assumed to have at most two speakers, we perform 
three-class classification (i.e. zero, one and two speakers) for frame-
wise speaker counting using a Softmax layer. The objective function 
is averaged cross-entropy loss weighted by the summation of mix-
ture magnitude. On our own simulated two-talker reverberant mix-
tures, the accuracy of speaker counting is around 97%, which is suf-
ficiently accurate. 

3.4.  Offline Continuous Speaker Separation 

We then use the counting results to switch between speech enhance-
ment and speaker separation for continuous speaker separation. 
Based on the frame-wise counting results, we can find segments 
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Figure 2. Illustration of frame stitching for CSS at run time. 

Figure 1. Task illustration. 
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with zero, one or two speakers. For segments with zero or one 
speaker, we use the enhancement network output by putting the pre-
dicted speech at one stream and set the other to empty. For segments 
with two speakers, we first augment the detected overlapped seg-
ment with at most 𝐾 (set to 100 in this study) frames on each side, 
then perform two-speaker separation on the augmented segment, 
and finally stitch the enhancement output with the separation output 
(i.e. sequential grouping) on each side based on their predicted mag-
nitudes at the augmented frames. The augmented frames can also 
provide contextual information for the separation network to pro-
duce better separation, especially when the overlapped region is 
short. See Figure 2 for an illustration.  

Note that we need to ensure that the augmented frames do not 
contain a third speaker. Suppose that the overlap is from frame 𝑡2 to 
𝑡3 (see Figure 2), 𝑘2 is selected as the largest integer that is less than 
or equal to 𝐾 and such that each of the frames from 𝑡245"  to 𝑡24) 
only contains one detected speaker. The rationale is that if each 
frame in [𝑡245" , 𝑡24)]  only has one speaker and [𝑡2 , 𝑡3]  contains 
speaker overlap, then [𝑡245" , 𝑡24)] should belong to one of the two 
overlapped speakers, as we assume that there are two speakers at 
most in each frame. 𝑘3 is selected in a similar way for the right side. 

4. EXPERIMENTAL SETUP 
We test our proposed algorithms on LibriCSS [13], a recently pro-
posed dataset designed for continuous speaker separation. It has ten 
hours of conversational speech recorded by playing LibriSpeech sig-
nals through loud speakers in reverberant rooms. The task is to per-
form conversational speech recognition with room reverberation and 
various ratios of speaker overlap. There are ten one-hour sessions, 
each including six ten-minute mini-sessions with different speaker 
overlap ratios ranging from 0% to 40%, including 0S (no overlap 
with short inter-utterance silence between 0.1 and 0.5 seconds), 0L 
(no overlap with long inter-utterance silence between 2.9 and 3.0 
seconds), and 10%, 20%, 30% and 40% overlaps. The recording de-
vice has seven microphones, with six of them uniformed placed on 
a circle with a 4.25 cm radius and one at the circle center. The dis-
tance from loud speakers to the array center ranges from 33 cm to 
409 cm. There are two kinds of evaluations, utterance-wise and con-
tinuous-input evaluations. In the utterance-wise task, each utterance 
has been pre-segmented using ground-truth information. Frontend 
processing is expected to produce two streams. Both streams are 
scored and the lower word error rate (WER) is considered as the 
final WER. In the continuous-input task, each mini-session is seg-
mented into 60- to 120-second long segments, each including 8 to 
10 utterances from at most eight speakers. The task is to recognize 
all the utterances in each segment. Frontend processing for this task 
is expected to output a number of streams, each free of speaker over-
lap. The ASR backend scores all the streams and combines the de-
coding results to compute the final WER.  

LibriCSS only contains testing data. We need to simulate our own 
training and validation data for separation. Our training data consists 
of 76,750 (~129 hours) seven-channel two-speaker mixtures with 
moderate room reverberation and weak air conditioning noise. 
Among all the frames, 12% have no speaker, 55% one speaker and 
33% two speakers. The dry clean source signals are sampled from 
the train-clean-{100,360} set of LibriSpeech. Assuming the array 
geometry of the LibriCSS recording device, we use an RIR genera-
tor [20] to simulate seven-microphone RIRs. The reverberation time 
is sampled from the range [0.2,0.6] s. The average distance between 
speaker and array center is sampled from the range [0.75,2.5] m. The 
two speakers are constrained to be at least 10° apart and their relative 

energy level is sampled from [−5,5] dB. For each reverberant two-
talker mixture, we draw an air conditioning noise from the REVERB 
corpus [21]. The SNR between each anechoic two-speaker mixture 
and noise is sampled from [5,25] dB. The labels used for training the 
speaker counting model is obtained by first applying a pre-trained 

Figure 3. Network architecture of MISO for predicting RI components of 𝑆! 
from multi-channel inputs 𝒀 and #𝑌!#. The tensor shape after each encoder-
decoder block is in the format: featureMaps×timeSteps×frequencyChan-
nels. Each one of Conv2D, Deconv2D, Conv2D+ELU+IN and De-
conv2D+ELU+IN blocks is specified in the format: kernelSizeTime×kernel-
SizeFreq, (stridesTime, stridesFreq), (paddingsTime, paddingsFreq), fea-
tureMaps. Each DenseBlock (𝑔", 𝑔#)  contains five Conv2D+ELU+IN 
blocks with growth rate 𝑔" for the first four layers and 𝑔# for the last layer. 
The tensor shape after each TCN block is in the format: fea-
tureMaps×timeSteps. Each IN+ELU+Conv1D block is specified in the for-
mat: kernelSizeTime, stridesTime, paddingsTime, dilationTime, fea-
tureMaps. 
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DNN based voice activity detection (VAD) model [22] to the ane-
choic signal of each stream and then combine the two VAD results.  

Figure 3 illustrates the network architecture of our enhancement 
and separation models. It is a temporal convolutional network 
(TCN) sandwiched by a U-Net and includes an encoder for down-
sampling and a decoder for up-sampling along frequency. DenseNet 
blocks are inserted at multiple frequency scales in the encoder and 
decoder. The rationale of this network design is that U-Net can 
maintain local fine-grained structure via its skip connections and ex-
ploit contextual information along frequency through down- and up-
sampling, TCN can model long-range information via its dilated 
convolutions along time, and DenseNet blocks encourage feature re-
use and improve discriminability. We use exponential linear units 
(ELU) in the activation layers and instance normalization (IN) in the 
normalization layers. Similar architectures exhibit strong perfor-
mance in a number of tasks including speaker separation [8], [15], 
speech dereverberation [18] and speech enhancement [19]. The RI 
components of multiple microphones are stacked as features maps 
in the network input and output. We also include the mixture mag-
nitude at the reference microphone as the input features, as it leads 

to more robust speaker separation and counting in realistic condi-
tions [15]. Each network contains around 6.9 million parameters. 
The network atchitecture of speaker counting is similar to Figure 3, 
but without the decoder. The Softmax layer is added on top of TCN.  

For offline processing, we normalize the sample variance of each 
multi-channel recording to unit variance before any processing. This 
normalization can deal with random gains in inputs, and is reported 
to be important for mapping-based approaches [18], [19]. The frame 
length is 32 ms and frame shift is 8 ms. The square root of Hann 
window is used as the analysis window. The sampling rate is 16 kHz. 
A 512-point discrete Fourier transform is applied to extract 257-di-
mensional complex spectra. Global mean-variance normalization is 
applied to all the input features. 

Our study focuses on separation. We use the default ASR 
backend provided in LibriCSS for recognition to facilitate compari-
son with or by other studies. We perform signal resynthesis before 
extracting features for recognition.  

5. EVALUATION RESULTS 
Table I and Table II respectively report WER on the seven- and one-
microphone continuous-input task of LibriCSS. As a block-online 
baseline, we use our two-speaker separation network trained based 
on multi-microphone complex spectral mapping for block-online 
processing, where the block size is 2.424 second, the block shift is 
1.2 second, and the overlapped frames between consecutive blocks 
are used for block stitching. Our block-online system shows clearly 
better performance over the block-online systems in [13], [14]. For 
example, 15.6% vs. 22.0% and 19.6% in the 40% overlap condition 
in the seven-microphone case. However, in one-speaker conditions 
such as 0S and 0L, we find that this system cannot assign the target 
speaker to one stream and set the other to silence, i.e. there is some 
energy leakage from the higher-energy stream to the weaker one, 
resulting in degradation in WER performance. By using a speaker 
counting module to switch between enhancement and separation, 
and therefore avoiding producing two separation outputs in one-
speaker segments, the proposed approach obtains clear 
improvement, especially in the 0S and 0L conditions. 

Table III and Table IV report the WER on the seven- and one-
microphone utterance-wise task of LibriCSS. Compared with the 
two-speaker model applied in a block-online manner, the proposed 
approach obtains clear improvements in the 0S and 0L conditions, 
which align with the findings in Table I and Table II, and compara-
ble results on the overlap conditions. Both of them show overall bet-
ter performance than [13] and [14]. 

6. CONCLUSION 
We have proposed to use a speaker counting module to switch be-
tween speech enhancement and speaker separation for offline con-
tinuous speech separation. Evaluation results on the LibriCSS da-
taset indicate the effectiveness of our proposed approach. Future re-
search shall deal with the case where there can be more than two 
speakers at any given frames and modify the proposed algorithms 
for online real-time processing.   
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Table I 
WER (%) on LibriCSS (Continuous-Input Evaluation, 7ch). 

Approaches Type Overlap Ratio (%) 
0S 0L 10 20 30 40 

Unprocessed - 15.4 11.5 21.7 27.0 34.3 40.5 
Two-Speaker Separation Block-Online 10.0 12.1 10.1 11.9 14.0 15.6 
Proposed Offline 8.0 8.5 8.7 10.1 12.3 14.7 
Chen et al. [13] Block-Online 11.9 9.7 13.4 15.1 19.7 22.0 
Chen et al. [14] Block-Online 11.0 8.7 12.6 13.5 17.6 19.6 

 
Table II 

WER (%) on LibriCSS (Continuous-Input Evaluation, 1ch). 

Approaches Type Overlap Ratio (%) 
0S 0L 10 20 30 40 

Unprocessed - 15.4 11.5 21.7 27.0 34.3 40.5 
Two-Speaker Separation Block-Online 12.5 17.4 13.4 16.4 20.8 23.7 
Proposed Offline 9.2 8.2 11.5 15.1 19.2 22.4 
Chen et al. [13] Block-Online 17.6 16.3 20.9 26.1 32.6 36.1 
Chen et al. [14] Block-Online 13.3 11.7 16.3 20.7 25.6 29.3 

 
Table III 

WER (%) on LibriCSS (Utterance-Wise Evaluation, 7ch). 

Approaches Type Overlap Ratio (%) 
0S 0L 10 20 30 40 

Unprocessed - 11.8 11.7 18.8 27.2 35.6 43.3 
Two-Speaker Separation Block-Online 6.8 7.1 7.9 10.2 11.6 13.8 
Proposed Offline 5.7 5.9 7.6 10.2 12.5 16.1 
Chen et al. [13] Offline 8.3 8.4 11.6 16.0 18.4 21.6 
Chen et al. [14] Offline 7.2 7.5 9.6 11.3 13.7 15.1 
Oracle direct sound - 4.9 5.1 - - - - 

 
Table IV 

WER (%) on LibriCSS (Utterance-Wise Evaluation, 1ch). 

Approaches Type Overlap Ratio (%) 
0S 0L 10 20 30 40 

Unprocessed - 11.8 11.7 18.8 27.2 35.6 43.3 
Two-Speaker Separation Block-Online 9.5 8.9 11.9 15.9 20.6 23.9 
Proposed Offline 7.4 6.8 10.6 15.8 20.9 26.2 
Chen et al. [13] Offline 12.7 12.1 17.6 23.2 30.5 35.6 
Chen et al. [14] Offline 12.9 12.2 15.1 20.1 24.3 27.6 
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