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Abstract

For a spectrally positive strictly stable process with index in (1, 2), we obtain (i) the sub-probability
density of its first exit time from an interval by hitting the interval’s lower end before jumping over its
upper end, and (ii) the joint distribution of the time, undershoot, and jump of the process when it makes
the first exit the other way around. The density of the exit time is expressed in terms of the roots of a
Mittag-Leffler function. Some theoretical applications of the results are given.
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The so-called exit problems, which concern the event that a stochastic process gets out of a
set for the first time, occupy a prominent place in the study of Lévy processes. For spectrally
one-sided Lévy processes, years of intensive research have revealed many remarkable facts
about the first exit from a bounded interval [2,10,14]. An essential tool for the investigation is
the scale function. Since the function can be analytically extended to the entire C ([14], Lemma
8.3), it is amenable to treatments by complex analysis. By combining the scale function and
residual calculus, this paper obtains series expressions of the distribution of the first exit of a
spectrally positive strictly stable process with index in (1, 2).

Let X be a real-valued Lévy process. It is called stable if for each # > 0, there is a constant
C(t) such that X, ~ t'/* X, + C(¢), and strictly stable if C(¢) = 0 ([22], p. 69). On the other
hand, X is called spectrally one-sided if all its jumps have the same sign, and depending on the
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sign, it is further called spectrally positive or negative ([14], p. 58). It is well-known that X is
spectrally positive and strictly stable with index o € (1, 2) if and only if In E(e~9%1) = Cq* for
all ¢ > 0, where C > 0 is a constant (cf. [14], p. 89). Henceforth, without loss of generality,
assume

Ee ) =e’, ¢20, ae(l,2). v

Given b, ¢ > 0, there are only two ways for X to exit from [—b, c], either by making a
continuous downward passage of —b or by making an upward jump across ¢ ([14], p. 232).
These two possibilities will be referred to as the first exit at the lower end and the first exit
at the upper end, respectively. Their probabilities and the related scale functions have become
well-known [2,14]. However, not much is known about the probability density functions (p.d.f.)
involved.

In [8], the distribution of X’s first upward passage of a fixed level is obtained. It turns out
that the method used there can be extended to the first exit from [—b, c¢]. Section 3 considers the
first exit at the lower end. It will be shown that the (sub-)p.d.f. of the exit time has an expression
in terms of the residuals of a meromorphic function at the roots of a Mittag-Leffler function,
and as a result, is of the form ) c pc(t)es’, where the sum runs over the roots and for each root
S, pc(t) is a polynomial in # whose coefficients are determined by ¢ and several Mittag-Leffler
functions. For all but a finite number of ¢, p.(f) is a constant. The result is an extension of a
known result on the first exit of a standard Brownian motion. It also highlights the importance
of precise knowledge on the roots of Mittag-Leffler functions [20], which unfortunately is still
in short supply. The section also obtains the asymptotic of the p.d.f. near time O based on an
alternative expression. Section 4 derives the joint (sub-)p.d.f. of the time of the first exit by X
at the upper end and its undershoot and jump at that moment. It will be shown that conditional
on the undershoot, the exit time and jump are independent. This allows the joint distribution to
be factorized into the marginal p.d.f. of the undershoot, and the marginal conditional p.d.f.’s of
the exit time and jump given the undershoot. The marginal conditional p.d.f. of the exit time
again can be written in the form ) p(r)e¢’. This is in contrast to the power series expression
of the time of the first upward passage of ¢ [1,8,19,23], even though the latter can be regarded
as the limit of the first exit from [—b, c] as b — oo. This section also obtains an asymptotic
of the p.d.f. near zero.

Basically, the reason that X’s first exit time has a residual-based expression for its p.d.f.
is two-fold. First, the Laplace transform of the p.d.f. can be analytically extended to a
meromorphic function, specifically, a rational function of scale functions. Second, by contour
integral, the inversion of the Fourier transform of the p.d.f. is reduced to the sum of the
residuals of the meromorphic function at its poles, which happen to be the roots of a Mittag-
Leffler function. This rather generic explanation suggests that the same analysis may be carried
out for other fluctuation identities, such as those related to a reflected process, provided the
corresponding scale functions are available (cf. [14], Chapter 8). On the other hand, as precise
knowledge on the roots of Mittag-Leffler functions is scarce, the residual-based expressions
may be harder to use in practice than direct numerical methods such as Fourier transform.
Nevertheless, as will be seen in Section 5, they can be applied to provide some rather detailed
information about X.

2. Notation and preliminaries

Let u(x) and v(x) be functions of x, both of which as well as x may be complex-valued. As
X — Xg, by u(x) =< v(x) it means u(x) = O(v(x)) and v(x) = O(u(x)), i.e., for some constant
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C > 0 and all x in a neighborhood of xy, |u(x)| < C|v(x)| and |v(x)| < C|u(x)|. On the other
hand, by u(x) ~ v(x) it means u(x)/v(x) — 1. For elements of complex analysis, see [21].

2.1. Integral transforms

For f € L'(R), denote its Laplace transform and Fourier transform, respectively, by

Fo) = / T fd, FO) = fl—iy), yeR.

The domain of fis {z e C: [le®f(t)|dr < oo}. Similarly, for a finite measure u on R,
denote its Laplace transform and Fourier transform, respectively, by

) = / eTud) and RO) = F(—iy), yeR.

The domain of &t is {z € C: [ |e™¥| u(dr) < oo}.
Let D C C be an open set and zp € D. If g is an analytic function in D \ {zo} and has zg
as a pole, possibly removable, then the residual of g at zg is

2mi

where y is any counterclockwise simple closed contour in D \ {zo} ([21], p. 224).

1
Res(g(z), z0) = =— f g(z)dz,
Y

2.2. Some properties of the Mittag—Leffler function

The Mittag-Leffler function with parameters a > 0 and b € C is the entire function

& n
<
Eas® =2 Ty 2€C
n=0

A classical review of the function is in [11]; also see Section 10.46 of [18] and references

therein. There are some papers on the computation of the Mittag-Leffler function [13,24],

however, little seems to have been done on the computation of its roots. As we will heavily

rely on [20], for convenience, some of its key results are collected below. By Theorem 1.2.1
in [20], for a € (0,2), b € C, and m € N, as |z| — o0,

m

Eop(2) =a 'z exp(z! /) = )

n=I

—n

Z

—m—1
T —am + O, @)

where the principle value arg z is assumed, i.e., if z = |z|e? # 0, then 6 is assumed to be in
(—m, m]. The implicit coefficient in O(-) is uniform for arg z. Indeed, for a € (0, 4/3], this is
immediate from Theorems 1.4.1-1.4.2 in [20]. For a € (4/3, 2), by Theorem 1.5.1 in [20],

m —n

E z :a—l Zl/anJ'nn/a l—hex Z1/(16271111/(1 _ + R, (z
0.b(2) >« )" expl ) Z—F(b_an) n(2)
n:|larg z4+2nn|<3mwa/4 n=1
with sup ., [z R, (z)] < oo, again yielding the uniformity. Since Re(z'*) = |z|*

cos(arg z/a), by (2) and the continuity of E, ;, there is a constant C > 0 such that
|Eap(2)] < min(C, [z]"7779) if |argz| € [a/2, min(a, Dr]. 3)
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From [20], p. 333,

GZE(;,b(Z) + 0= DE;,(2) = Eqp-1(2). (@)
The paper will mostly focus on a = b =« € (1,2). By (2), as |z] — oo,
— Daz 2
Eyo(z) = lg1/e ! 1oy ( 02173, 5
w(D=a"z exp(z’%) To—a) + 0(lz| ™) 5
Denote %, , = {z € C: E,;(z) = 0}. From Theorems 2.1.1 and 4.2.1, and Chapter 6 in [20],
Zow Clz :|argz] > am/2}, 6)

E, (z) has at least one real root, all real roots are negative, and all roots with large enough
modulus are simple and can be enumerated as ¢y, such that
1/a . . o —1)
Gy, = X2min — (o + 1) In(+£27in) + In W + O(nn/n) asn — oo, @)
— o

where the principal branch of the logarithmic function is used, i.e., Inz = In|z| +1iargz.
2.3. First exit, passage, or hitting time

Recall that X is assumed to be a Lévy process satisfying (1). The first exit time from a
Borel set A by X is defined to be inf{r > 0: X; ¢ A}. For ¢ > 0 and x € R, denote

T,=inf{t >0: X, >c}, tr,=inf{t >0: X, =x}.

The definitions follow [14] and are somewhat different from those in [2], which take the infima
over ¢ > 0. However, for X considered here, they specify the same random times. Both 7, and
7, have p.d.f’s [1,2,19,23]. The distribution of 7, is classical for x < 0 ([2], Theorem VIIL.1)
and is known for x > 0 [23]. Almost surely, 7. < 7. < oo and X7, > ¢ > Xr._ [23], and
given b > 0, t_, = inf{r > 0 : X, < —b}, so the first exit time from [—b, c] is min(t_;, T;)
([10], Theorem 5.17). When 7_; < T, (resp. t—p > T.), X is said to exit at the lower (resp.

upper) end.
We will heavily rely on the scale function W@ of —X given by
WDx) = 2§ Eqa(qx), ¢ 20, ®)

where x; = max(x, 0) ([14], p. 250). For the scale function in general, see [2,10,14]. One
important fact is that given x > 0, W@(x) as a function of g > 0 can be analytically extended
to the entire C to become W@ (x) = Y72 ZFW** D (x), where W*" is the n-fold convolution
of the scale function W = W©. For —X, W*"(x) = x"*~ 1.

3. Distribution of first exit time at lower end
Given ¢ > 0 and x < ¢, denote
k(@) =P{r, edt, T, > 1, }/dt.

Since t, has a p.d.f., k. .(¢) is well-defined, and since its integral over ¢ is P{7, > 7,} < 1, it
is actually a sub-p.d.f. Given b > 0, let d = b 4 c. It is well-known that

WD) ! Eyalc®q)
W@ (d) — d*! Eqo(d*q)

([14], Theorem 8.1). The main result of this section is the following.

kopolq) = )
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Proposition 1. Given b, ¢ > 0, let d = b + c. Then for t > 0,

ol Eyo(c%2) I ! t
k_ c t) = R e 22 zt, i = 5. 3 Verg—a i ) 10
b, ( ) de—1 Z es (Ea’a(daz)e da) d2e—1 w d (da) ( )

§Efga,ot

where for s € [0, 1),
Yi()= > Res(Hy(2)e*',c). >0, (11)
s€Zua
is a p.d.f. concentrated on [0, 00) and
Eo4(s2)
Eo(2)’

Furthermore, ¥y € C®(R) such that for all n > 1, y™(t) - 0 ast | 0 or t — oc.

Hi(z) = e C. (12)

Remark. Since P{t_, < T.} = (c/d)"“1 ([2], Theorem VIL.8), by (10), conditional on X
exiting from [—b, c] at —b, the scaled exit time d*t_;, has p.d.f. ¥, with s = (c/d)*.

The main feature of Proposition 1 is that it expresses the p.d.f. of the first exit time in
terms of the roots of the Mittag-Leffler function E, ,(z). As noted earlier, this results from
residual calculus for (9). However, since currently there is little precise knowledge on the
roots of E, 4(z), the contour involved in the calculation has to be chosen carefully. For each
term in the sum (11), if ¢ € %, , has multiplicity n, then in a neighborhood of ¢, H(z) =
g(2)(z—¢)™", where g(z) is analytic. As a result, Res(H(z)e*, ¢) = (g(z)e”)(”)|z:§/(n - =

Z;é cr(o)t"1kest . Moreover, from Section 2.2, if |¢| is large enough, then ¢ is a simple
root, giving
Eqo(sg)es!

E ()

Proposition 1 extends a result for Brownian motions. If @ = 2, then by E[e 7%'] = et ,
g > 0, X, = By with B, a standard Brownian motion. By E;,(z) = sinh(\/2)//Z,
25, = {—K*n* k € N} and Ej},(z) = [cosh(\/2) — E22(2)]/(22). Since Ej,(—k*n?) =
(—1)*=1/(2k*7?), each root of E;,(z) is simple. Note that Proposition 1 does not cover o = 2.
Nevertheless, by 7. = 7. and the above display with s = (c/d)?, a formal application yields

P{t_, €dt, 7. > 15} 27 — it . [kmc k22t
< Zﬁ;(_l) k sin el

Res(H,(z)e”, ¢) =

The series is different from the one in the classical book [5] (p. 212, 3.0.6). However, it can
be proved rigorously using a heat equation method ([17], section 7.4); see for example [7].

3.1. Basic properties of scaled first exit time at lower end

This subsection proves the smoothness of 1, asserted at the end of Proposition 1. As a
by-product, some properties of H,(z) in (12) are obtained.

Given s € (0, 1), by (10) and s'~V* = P{t,1a_; < T,1/a}, ¥,(t) is the density of the (proper)
probability measure

Mg(dt) = ]P’{'Csl/a_l e dr | Tlja g < Tvl/(x}, t > O,
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and by (9) H,(q) is the Laplace transform of wu;, i.e., for ¢ > 0,

Eqa(sq)
Eoo(q)
Eq. (13) still holds if ¢ is changed to z with Re(z) > 0. By |iis(z)] < us(Re(z)) < 1,
|Ey.(52)| < |Eq.o(2)]. Then given || < /2, |E,o(rel?)| is increasing in r > 0, in particular,
if Re(z) > 0, then |E, 4(2)| > Euo(0) = 1/I'(@).

Fix s € (0, 1). For y € R,

Rs(q) = Hy(q) = 13)

~ . Eq.o(—isy)
Is(y) = Hy(—iy) = ————. (14)
Ea,a(_ly)
Since |e(_i-")l/a|1= eIV with ¢ = cos(a‘lyir/Z) > 0, by (5), as |y| — 00, |Eq.o(—iy)| ~
a |y /e e and so (7 (y)] ~ sl 6V DY A a result, [ [72,(y)]]y|" dy < oo for

all n > 0, so uy has a p.d.f. in C*°(R) with vanishing derivative of any order at oo ([22],
Proposition 28.1). By (9), the p.d.f. is exactly v, in Proposition 1. Since v is supported on
[0, 00), wf.”)(x) — 0 as x — 04. ¢, cannot be analytically extended to a neighborhood of 0,
for otherwise it would be constant 0. On the other hand, from (13), u, has finite moment of any
order with its nth moment equal to (—1)" Hs(")(O) and by Fourier inversion ([22], Proposition
2.5(xii))

I o 1 M ;
Vi) = f ()™ dy = - lim / e dy. (15)

From (14) and the Continuity Theorem of characteristic functions (cf. [6], Theorem 8.28),
as s — 04, uy weakly converges to a probability distribution o with

o(y) = Ho(—iy) = yeR

F(a)Ea,a(_iy) '
Similar to u, with s € (0, 1), uo has a p.d.f. ¥y € C*(—o00, 0o) with support on [0, c0) such
that all its derivatives w(()")(x) vanish as x — 0+ or x — oo.

3.2. Contour integration

In view of last subsection, to prove Proposition 1, it only remains to show (11).

Proof of Eq. (11). Fix s € [0, 1). Define function
00) = ——.
| sin(@ /)|
Since o« > 1, o(#) is bounded on [—m, —7 /2] U [7/2, ]. Put 09 = o(r/2). For R > 0, let
Cr be the contour that travels along the curve

{[Ro@)]%"” : m/2 < 10| < 7} (16)

starting from its top point i(Rop)® and ending at its bottom point —i(Rop)*; Cg is smooth
except at its intersection with (—oo,0), and its length is proportional to R*. Fix 8 €
(w/2,am/2). Let Cry = CrpN{z € C: /2 < |argz] < B} and Crr = CrN{z € C:
B < |argz| < m}. Fig. | shows the shapes of Cg, Cg i, and Cg, as well as the relative scale
of Cr with different @ € (1, 2).
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iB
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\ reif
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\ N
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/ ///
/ e
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C
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R2 ,
/
CRr,1
re=ip ’

Fig. 1. Cg, Cg.1, and Cg> according to different o € (1, 2). Left: « = 1.4. 8 is any fixed value in (7/2, am/2).
Middle: « = 1.8. Right: Cr defined by (16) with the same R but different «.

For z = re'’, where § = argz, |exp(z'/%)| = exp{r'/*cos(@/a)}. If z € Cg, then
0/a| < B/o < m/2, and so cos(8/a) > A := cos(B/a) > 0. As a result, for z € Cg ,
lexp(z!/*)| = exp(i]z|"/). (17)
Then by (5), as R — oo, if s € (0, 1),
Eg.a(s2) (s2)"/* Texp((s2)"/*)
H,(z) = —22"% — (1 4+ 0(1
() Eool2) (1 +o(1)) 2T exp(z /o)

= (14 o(1)s"* "exp{(s"/* — Dz'/*}, z e Cpy,

where the o(1) term converges to 0 uniformly for z € Cg;, and if s =0,

1
Hy(z) = ———— = O(Dz'" "V exp{—z"*}, ze€Cry,
() @ Ean(®) (1) pf } R.1
where the implicit coefficient in O(1) is uniform for z € Cg ;. Since |z| > R%, from (17),
sup |Hy(2)| = O(exp{—i(l —s"/*)R/2)). (18)
ZECRJ

We also need a bound for H(z) = E44(52)/Eq.a(2) on Cg 2. However, since E, o(z) has
infinitely many roots in {z € C: B < |argz| < 7}, R cannot be an arbitrary large number. To
select R appropriately, we need the following.

Lemma 2. Let R, =2nn, n=1,2,.... Then given any A € R\ {0},
lim inf |z lexp(z!/*)— Al > 0. (19)

n—o00 2€CRy 2

Proof. For z = [Ro(9)]%e" € Cpr with 6 = argz,

Zl/a+l exp(zl/a) — [RO_(Q)]I-HJ(ei(l/OH-l)O exp{Ro,(e)eiH/a}
— [Ro,(e)]l+oteR(7(0)COS(@/a)ei[(l/Dt+|)9+RG(0) sin(6/a)]

— [Ro_(e)]lJraeRa(O) cos(G/zx)ei[(l/a+1)6+Rsign(6)].
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Put a(f, R) = [Ro(0)]'T*eRo@ cos@/®) Then for z € Cg, 2, by R, = 2mn, zV/* T exp(z!/*) =
a(®, R,)eV/e+9 1If there were z, = [Ro(0,)]%!" € Cg, » such that 2/ expzy/®) — A,

then taking modulus, a(8,, R,) = [R,0(6,)]' T@efnoO@ncosGu/v) _ 14| > 0. By |R,0(6,)] —
00, it follows that cos(6, /o) — 0, as any sequence n with R,0(6,,) cos(8,/a) — 0o (resp. —o0)
has a(6,, R,) — oo (resp. 0). Because |0, |/« € (w/(2«x), 7w /«], this implies 6, /o = k,7/2+€,
with k, = £1 and ¢, — 0. But then

Z’11/01+1 eXp(z,ll/a) = a(b,, Rn)ei(l/wH)Qn — |A|ei(1+a)kn7r/2 +o(l) A A,
a contradiction. [
Continuing the proof of Eq. (11), let A = a*(a — 1)/I'(2 — ). By (5),
Eao(@) = a” 272 [/ exp(z/*) — AT+ O(1z| ™).

Then by Lemma 2, there is € > 0, such that for all large n and z € Cg, 2, |Eq.o(2)] > elz| ™2
Let my = SUP /2<j0)<r o(0). Then by |z| < (moR,)%,

|Eqo(2)] > emg ™R, (20)

On the other hand, since all the coefficients in the power series expansion of E,, ,(z) are positive
and s € [0, 1), |Eqo(52)| < Eqo(|2]) < Eqo(mgRy). Then again by (5),

|Eq.a(s2)| = O(R, ™ exp(mgRy)).
Combining with the lower bound, this implies

sup |Hy(z)] = O(RT*em™fny n — o0, (21)
ZECRn,Q
Let Dy be the domain bounded by Cg and {iy : |y| < (Rop)*}. Lett > 0. If CxNZ, o = 0,
then by (14) and residual theorem,

1 (Rop)® . . 1 i(Rog)*
— Hs(y)e™ dy = — Hi(z)e™ dz
27T —(Rap)* 27'[1 —i(Rog)¥
1
= Z Res(H,(z)e*, ¢) — — Hy(z)e™ dz. (22)
ceDRNZq 2ri Jey

Consider the contour integral along Cg. For z = rel? € Cg with 0 = argz, by 7/2 < |6| < 7,
le¥| = "% < 1. Then by (18),

H(z)e® dz
Cr.1

< Length(Cg.y) x O(e 1Ry

_ 0(1)Rae—)\(1—sl/°‘)R/2.
On the other hand, if z € Cg, then by 8 < |#| < 7 and r > R?, |¢¥| < e PoR* where

shyp = —cos 8 > 0. Then by (21),

H,(z)e™ dz

CRry .2

< Length(Cg, 2) X O(erlJraemoRrboRgz)

— O(I)R;+2aengn 7b0Rﬁt. (23)
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By o > 1, combining the above two bounds yields
Hy(z)e dz — 0.
Cry
Then by the Fourier inversion (15) and (22),
Yo()=lim )" Res(H,(2)e”,5), t>0.
n—o00o
gEDRnﬂffa,a

To complete the proof of (11), it only remains to show that the series on the r.h.s. of (11)
converges absolutely. It suffices to show that for a large enough M > 0,

> [Res(H,(x)e™, )| < oo,
Is|>M

as the number of roots ¢ with |¢| < M is finite. By Section 2.2, fix M > O so that all ¢ € Z,
with |¢| > M are simple and can be enumerated as ¢y, < n*, n € N. For each such ¢,

i E, ,(sz)e¥ E, ,(s¢)es!
ReS(HS(Z)ed, g) =Res< Ot,Ot( ) , ) — 0(,0!( g)

Ey(2) E;, .($)
Put r = || and 8 = arg ¢. To bound the r.h.s., by Ey4(s) = 0 and (5),
-2
—1 _1ja—1 Vay _ ale — Dg o3

a g exp(s ) To-o r=).

On the other hand, by (2),
2 _ 1)5‘_2
Eyo — =1 2/ 1/ oo 0(r=2).
a-1(6) =a  ¢7" exp(s )+—F(2_a) +00™)

As a result, there is ¢ > 0, such that |E, ,_1(c)| > cr'/*72, so by (4),

|E}, ()] = |Eqa1()/ (@) = (c/ayr/o>. (24)
Next, by (3) and (6), sup,-g . |Eaq(s)| < oo and |es'| = €% < ¢!, where 1 =
—cos(am/2) > 0. Putting all the bounds together, there is a constant C > 0, such that

|Eq.a(s5)e [ EL, o (s)| < Cri1/ee, (25)

Taking the sum of (25) over ¢y, then yields the desired absolute convergence. [J
3.3. Alternative expression, asymptotic at time zero, and approximation

Following a general heuristic applicable to Lévy processes (cf. [17], p. 217), one can get
an expression of k_; . analogous to one for a standard Brownian motion ([5], p. 212, 3.0.6).
Denote by f; the p.d.f. of 7, and let d = b + c. Then

kpe=fo—fexfatfoxfaxfa—fexfa*faxfat---
=Y forx@— for o)k (fak fa)™, (26)

n=0

where § is the Dirac measure at 0 and p** := § for any p.d.f. p. Indeed, by k_, .(t) =
fop(@t) —Pl{r_p e dt, T, < t_p}/dt = f_p(t) — P{r_, € dt, 7. < 7_p}/dt and strong Markov
property,

k_po(t) = fop(t) = (ke,—p * f_a)(D), 27)
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where we have defined k, .(f) = P{r, € dt, ©. > t,}/dr for all x, ¢ € R. Likewise,
kc,_b(t) = fo(t)—(k_p,c * fg)(t). Plug the identity into (27) to get k_p, . = o+ ¢ *k_p ., Where
= fop=Jex f-a = fpr@— fox o) and gy = fux fa. Then kp. = e Pox@i" 41y
for each N € N, where N = (p] *k_p ., and (26) follows if rN(t) — 0 as N — o0. Indeed,
glven g > 0,by fa@f-al@) < 1. *n(q) = [fa@ f-al@k_p.(q) — 0, s0 [y ry(s)ds <
€17y (g) — 0. Since ¢; is bounded, then ry(t) = ¢ * ry_1(f) < supg; x fo rv_1(s)ds — 0.
Based on (26), it is quite easy to get that as ¢ | O,

k_pe(t) ~ f-p(0), (28)

in particular, by Eq. (14.35) in [22], Ink_j, () ~ —Cb%/@=D¢=1/@=D '\yhere C > 0 is constant.

First, by (27), 0 < fop(t) — k—p,o(t) = (ke,—p * fop-c)(1) < (fe * f—a)(t) = (u * f_)(¢), where
u= f.x f_.is a p.d.f. and we have used k. _, < f. and f_; = f_p * f_.. Next,

(s fop)(t) = / u(s) fp(t — ) ds < sup f_p(s) x / ) ds = o(1)sup f-y(s). 140,

S<t

Since f_;, is unimodal ([22], p. 416), for 0 < t < 1, sup,., f—s(s) = f_p(¢), implying (28).

An issue that may arise concerns approximation. In practice, the series expression (10) of
k_p..(t) has to be approximated by a sum over ¢ € %, , with |¢| less than a certain cut-off,
and hkew1se if Fourier inversion is used to evaluate k_j, L(t) it has to be approximated by an
integral of k_ b.o(iy)e" over y with |y| less than a certain cut-off. How do the errors of these
two approximations compare? For brevity, consider the ones for v,(¢) with fixed s € [0, 1) and
t > 0. From (22), it is seen that to make a fair comparison, the cut-offs in the approximations
should be of the same order. Then as a first step, it is reasonable to compare

i 1 .
ru= Y |Res(Hy(x)e”.c)| and Ty =—— |Hy(iy)| dy.
27 Jiyi>m
[sI>M

Corollary 3. Fix s €[0,1) and t > 0. Given any 0 € (1/2, 1), as M — oo,

ry = O(Mzt_l‘g_w‘Mf)7 v =01 — s)—le—G(l—s))\OMl/“)’
where ). = — cos(am/2), Ly = cos(rr/(2w)), and the implicit coefficients in the O(-) terms only

depend on «.

Remark. The main difference between the bounds is in the power of M in the exponents in
the O(-) terms. Since o > 1, as M — oo, the bound on rj, vanishes much faster. However,
while it is free of s, for ¢ close to 0, it is small only when M is large. In contrast, the bound
on 7y is free of 7, however, for s close to 1, it is small only when M is large. Meanwhile, the
approximation based on residuals requires the calculation of many ¢, so it may actually have
much higher computational complexity than the Fourier inversion.

Proof of Corollary 3. The bound on ry results from a minor refinement of the last part of
the proof of Proposition 1. For M >> 1, all the roots ¢ € 25, with |¢| > M are simple and
can be enumerated as ¢4, = (2win)*[1 + o(1)]. Then by (25), letting 8’ = 6'/2,

oo

ry = 0(1) Z nSa—le—G’kOnn)o‘t — 0(1) u3a—le—0’)\u“l du
Qrny*=0'M ©"ml/e
)
— 0(1) yze—e Ayt — O(Mzt—le—ﬁ)»Mt).

o'M
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. . . vy l/a
On the other hand, since Re((iy)"/*) = Ay!/®, by (5), Hy(iy) = O(e~(1=9n*li+o]) go

o 1/a
Ty = O(l)/ e V=% gy

M

[e¢]

= 0(1) ud*lg*@(lfs))»ou du = 0((1 _ S),lefg(lis))LOMl/a).
M/

Throughout, the implicit coefficients in the O(-) terms only depend on . [J

4. Distribution of first exit at upper end

The main result of this section is Theorem 4. It provides a factorization of the joint sub-p.d.f.
of the time 7, undershoot X7, _, and jump Ay, = X7, — X7._ when X makes its first exit from
[—b, c] by jumping across c. For x € [—b, c] and ¢ > 0, define

Le—p,c(t) = P{X, € dx, X, € [=D, c]Vs < t}/dx,
L_p(t) =P{X; € [—b,c]Vs <t}.
While the functions can be defined for any process that has a p.d.f. at any time point, in the

case of a spectrally one-sided strictly stable process, they have explicit representations.
To start with, letting d = b + ¢, it is known that for g > 0 ([14], Theorem 8.7),

~ WD )WD (b + x) y
— _w@
lx,—b,c(q) - W(q)(d) w (x+)
Ca_l(b +x)a_1 Eqyo(c*q)Ey a((b+x)DZQ) 1
— s B Lo Eyo ooy 29
dot—l Eoz,ot(daq) x+ s ('x+CI) ( )

Theorem 4. Fix b > 0 and ¢ > 0. Let d = b + c. Then for x € R,

1{x € (=b, )} |sin(an)| [c"‘l(b + x)* ! a_l]
. Jo —x{ dx,

(30)

PIT. < 7p, X7.- € dx} = (c —x)* T

and for x € (—b, ¢), conditional on {T, < t_p} N {Xr1._ = x}, Ar. and T, are independent,
such that Ar, has the Pareto p.d.f. w(u) = a(c — X)u"""1u > c — x} and T, has p.d.f

oa—1 b a—1 -1
p(t) = (@) [C(d—ﬁx) - xi—‘} 0 (31)

with

(32)

a—1 a—1 o o
lx,fb,c(t) _ C(b—"f‘x) Z Res (EC{,D((C Z)Ea,a((b +X) Z)ezt i) )

do—1 Z Ea,a(daZ) ’ do

Finally, given t > 0, the mapping x v I, _p .(t) can be analytically extended to C\ (—oo, —b].

Corollary 5. Under the same setting as above,

E,. d)2)E, .« o
L—b,c(t) — (C/d)a71 Z ReS( s ((C/ ) Z) N +1(Z)ezt/d , g) , (33)
Ey4(2)
§€Q€a,o{
while for z with Re(z) > 0
~ dc* VEy o(c%2)Eq qq1(d”
Tyue) = 2 Ladl@Oleant @D ap (o, (34)

Eqo(d*z)
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In practice I, _; (t) and L_; () can be evaluated by Fourier inversion, and similar to
k_p (), the issue of approximation error due to finite cut-off may arise either for the Fourier
inversion or for the residual-based expressions (32)—(33). Bounds on the approximation errors
can be obtained similarly as in Corollary 3. For brevity, we omit a detailed discussion on this.

4.1. Factorization and conditional independence
The factorization in Theorem 4 follows from the next result.

Lemma 6. Denote by 11(du) the Lévy measure of X. Then given b,c > 0, for t > 0 and
x €R,
P{T, < t_p, T, € dt, XTC— € dx, ATC € du}
=1{x > —b,u>c—x>0}dt P{X; € dx, X, € [-b, c]Vs <t} II(du). (35)

Proof. The proof follows the one on p. 76 of [2]. As noted earlier, P{X7, > ¢} = 1. If
T. < t_p, then for all s < X7,, X; € [-b, c] and so X7, > —b. Therefore, almost surely, for
any bounded function r(z, x, u) > 0,

r(Te, Xq,—, A)UT, < 7_p}
=D rt, X, ADHA > c— X, >0, X;_ = —b, X, € [~b,c]Vs <1}.
t

The sum is well-defined as it runs over the set of ¢#’s where X has a jump, which is countable.
The rest of the proof then applies the compensation formula to get the expectation of the sum
as an integral of r(¢, x, u) with respect to the measure on the r.h.s. of (35). Since the argument
has become standard, it is omitted for brevity. [

Proof of Theorem 4, part one. The Lévy measure of X is 1{x > 0} x~*~!dx/I'(—a). By
Lemma 6,

P{T. < t_p, T, €dt, X7 € dx, Ay, € du}
H{u > c—x}alae — 1)du

=1l{c>x>—b}l_,p (t)dtdx T3 — ot (36)
Letting ¢ = 0 in (29) gives
oo » 1 ca—l(b+x)a—l
L po(t)dt =1, _p(0) = —xa . 37
/0 e dr =T,y (0) F(a)[ " x+} (37)

Then by (36), for x € (—b, ¢),
P(T, < 7, X7 € dx} = dx /oolx _;,C(t)dt/oo ola—1) du
‘ o e—x T2 — ) uo+!
_ [c“l(b + x)*! B x“1:| (@ —1) dx .
de—1 T M) 2 —a)(c —x)*
By Lemma 6, P{Xr._ € (=b, ¢)} = 1. Then (30) follows. Next, given x € (=b, c¢), by (36),

1{u >c—x}du
ue+l ’

P{T, edt, Ar, edu | T, < 1p, X7, =x} = Cl_,p(t)dt X
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for some constant C = C(x). It follows that conditional on 7, < t_; and X7._ = x, T, and Ay,
are independent, with A7, following a Pareto distribution and 7, having a p.d.f. in proportion
to [_x p.c(t). By normalizing [_, , .(¢) by (37), (32) follows. The main step of the proof is to
derive the expression of Iy _p (¢) for given x € (—b, ¢), which will be dealt with in the next
subsection. [

4.2. Contour integration

Define
hyo(t) =P{X, edx, Xy <cVs <t}/dx. (38)

In [8], Ay () plays a critical role in deriving the distribution of the triple (7., X7.—, Xr,),
known as Gerber—Shiu distribution ([14], Chapter 10).

Lemma 7. Fix b > 0 and ¢ > 0.

(a) Given x € (=b,c), Iy _p,c(t) = hyo(t) — (k_pc * Bppx p+c)(t), where all the functions
involved are treated as functions of t.
(b) Given t, the mapping x +— I, _p .(t) is continuous on (—b, c).

Proof. (a) Let r(x) > 0 be a function with support in [—b, c]. Then for any ¢ > 0,

E[r(X)1{X, € [-b, c]Vs < t}] :/ r(x)ly —pc(t)dx.
b

On the other hand, the L.h.s. can be decomposed as the difference of two expectations
Elr(X)OH{X; <cVs <t} —E[r(X)ltp < ¢, Xy <cVs <1}].

The first expectation is equal to f_cb r(x)h, .(¢) dx. By the strong Markov property of X, the
second expectation is equal to

c t
/ / r(x)P{X, edx, t_, € du, X; <cVs <t}
x=—b Ju=0

c t
:/ / r(x)P{X, edx+b, X, <b+cVs <t—ullP{t_, edu, X; <cVs <u}
x=—b Ju=0

_ / ) [ / Byt = Wk o(a) du] dx.
b 0

Comparing the integrals and by r(x) > 0 being arbitrary, the claimed identity follows.

(b) Given b,c > 0, from [8], the mapping (x, ) — hy () is continuous on (—o0, ¢) X
[0, 00), while from Section 3, the mapping ¢ — k_;.(¢) is continuous on [0, 00). Then
given ¢t > 0, by dominated convergence, the mapping x > (k_pc * hpiypic)(t) =
fot k_p.c(S)hpix p+c(t — s)ds is continuous on (—oo, c). By (a), the proof is complete. Note
that I, _p .(t) is only defined for x € (—b, c), but the proof implies that it can be continuously
extended to x < —b. [0

Proof of Theorem 4, part two. Fix b, ¢ > 0. For x € (—b, ¢), put

b +0)* ! Ega(c*2)Eaa((b +X)%2)

Fi(z) =
@ do1 Eqo(d®z)
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First, suppose x # 0. From 97), lx,—b.c(L) is an integrable function of ¢. Therefore, to show
(32), it suffices to show that I, _p (y) = Iy, _p..(—1y) is an integrable function of y and that
1 ioo
o | @ —xf Eau(i)le dz = ) Res(Fu(a)e™, g/d”).
—ioo ce€Zua

Lets =c¢/d,v=(b+x)/d, and w = x/d = s +v — 1. By the same contour integral argument

in the proof of Proposition 1, if we make change of variables 7 = d“z and ¢’ = ¢/d* and let
G(2) = Go(2) — w™ ' Eg.a(wi2),

where Gy(z) = (sv)"“lEa,a(s"‘z)Ea,a(v"‘z)/Ea,a(z), then it boils down to showing that

| iGanay <o (39)

o]

and given any ¢ > 0,
/ G(2)e'dz - 0, n — oo, (40)
Cry,

where the contour Cg and the numbers R, are defined in the proof of Proposition 1.

Fix B8 € (w/2,an/2). Then A := cos(B/a) > 0. Put 2 = {z : |argz| € [%/2, B]}. For
z € 12, Re(z"/%) = |z|"/* cos(argz/a) > |z|'/%A. Then by (5), given ¢ > 0, for z € {2, as
lz| = oo,

T Eyo(c®z) = a7 2 Pexplez /)1 + ro(2)], (41)

where r.(z) = O(z~'7V “e’”l/u) = o(1), with the implicit coefficient in O(-) being uniform
for argz. By (4l) and s +v — 1 = w,

Go(z) = o '2"/* exp(wz!/*) 1 + [r5(2) + ro(2) = @I +o(D)]}
= o2 exp(wz /)1 + O (g1 Ve Mtz ), 42)
If w <0, then G(z) = Go(z). Letting z =iy with y € R in (42), (39) follows. If w > 0, then
applying (41) to ¢ = w4y = w combined with (42) and 0 < w < min(s, v) yields
G(2) = 0. (43)

Letting z = iy with y € R in (43), (39) again follows. To show (40) for w # 0, as in the proof
of Proposition 1, let Cg; = Cr N {2 and Crr = Cg \ Cg,1. By (42) and (43),

O(R'~@e" Ry if w <0,
sup |G(2)| = Y .
ZECR,I O(R ) if w > 0

Meanwhile, |e¥'| < 1 for z € Cg,; and Length(Cg ;) = O(R%). Then as R — oo,

O(Re™ Ry if 0
f Gaje dz = | QR Tw =0,
Cr.1 O(R™®) if w > 0.

Therefore, if w # 0, then fch G(z)e? dz — 0 as n — 00. On the other hand, following the
derivation of (21), for some niy > 0,
Ea,a(saZ)Ea,a(vaZ)

o Eva(2)

z2€CR, 2

< sup [He(2)| sup |Eqqo(v*2)|

2€CR, 2 z2€CR, 2

— O(Rr]l+0(em0Rn) . O(R:l—aemoRn) — O(erle2m0R"),
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and, since wy < 1, |wi_1Ea,a(wiz)| < E,.(z]) = O(R!~®¢™0Rn) Meanwhile, from the
derivation of (23), for some by > 0, |e¥| < e bR for 7 € Cgy. Thenby o > 1 and ¢ > 0,

/ G(z)e™ dz = O(R¥Fe¥moRfn=boRity 0 n - o0.
CRry 2

The desired convergence in (40) then follows and hence (32) is proved in the case x # 0.

It only remains to show that for given ¢t > 0, R(x) := degma Res(F,(z)e”, ¢/d¥) has an
analytic extension to D := C\ (—oo, —b]. Once this is done, since by Lemma 7, x +> I _p .(¢)
is continuous at 0 and since it was just shown that the two functions are equal on (—b, c) \ {0},
they must be equal at O and can be analytically extended to D, finishing the proof.

For each ¢ € Z, 4, by change of variable in the contour integral representation of residual
and dominated convergence,

EC( o « ELX o b “
w(x) := Res (€D Eaol(b +X) Z)eZ’, =
Eqyo(d*z) a-
_d* i (G40 [ Eaals*D2"
2mi e I'(na + a) ve Eao(@)
where s = ¢/d, t' =1t/d®, and y. C C\ Z,. is a counterclockwise circle that encloses ¢ but
no other root in Z;, . It is then not hard to see that w. has an analytic extension from (—b, c)

to D. All ¢ € %,, with large enough modulus are simple roots of E, ,(z) and have |arg ¢|
arbitrarily close but strictly greater than s /2. For each such ¢ and each z € D,

Eq (s ¢)es”
d*E ,(5)
where v = (b+z)/d. By (25), for a constant C > 0, Ea,a(s"‘g)eg’,/d"‘E;,a(g) = 0(1)e Csl.

On the other hand, by (5), there is a constant C’ > 0 such that

dz, (44)

we(z) = X Eqqa(v*¢),

|Eaa(*6)| < Eaal((lv] + D¥Is]) = O()exp{C’(Jv] + DIg|"*}. (45)
Together, these two bounds imply that for all ¢ € 2, 4,
lwe(2)] = 0(1)e*CI§\+C’(Ib+z|/d+1)\§I1/“ (46)

and hence ) cez,, lWe(2)| converges uniformly in any compact subset of D. As a result,
Rx) =[c*'(b + k)“’l/d""l] Z§6Eaa wc(x) can be extended to a continuous function R(z)
on D, and by dominated convergence, the integral of R(z) along any simple closed contour in
D is 0. Then by Morera’s theorem ([21], p. 208), R(z) is analytic in D. [

Proof of Corollary 5. Define w (x) by (44). From (46), for all ¢ € Z, and x € [—b, c],
lwe(x)| = 0(1)€’C/|5‘+2C|§‘]/a. Then by dominated convergence and Fubini’s theorem,

Lot = [ o ndi= 3 / [+ 0 e g () d
—b b

c€Eqq "

! /” Eqo(c*2)Eqqo((b + x)*2)
= (b +x)*! f ' ' e dz | dx
de-! Z b ( d=%yc Eya(d*z7)

s€Zua

Ca—l % [/d | Eaa(CaZ)
V' Ega(Y92) dX} ————e"dz
a1 Z d—2y. LJO Ey4(d¥z)

s€Zua
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By using the series expression of E,, and integration term-by-term,

d
/ Y Eqo(y*2)dy = d*Eq q41(d“2). 47
0
Then

! E, .(c*72)
Loc) = X § dBran@d 50 &z
T 2 Ji, Eopo(d?)

yielding (33) by a simple change of variable. Finally, by Fubini’s theorem, for z with Re(z) > 0,
L_;.(2)= f_cb ly._p.c(z) dx. Then by plugging in (29) and applying (47), (34) follows. [

4.3. Asymptotic near time zero
Denote by g, the p.d.f. of X; and by f, the p.d.f. of z,.
Proposition 8. Given b >0, ¢ > 0, and x € (=b,c), ast | 0, [, _p o(t) ~ g:(x).

Proof. It is clear that /; _j .(#) < g;(x). On the other hand,
&(x) =1l ) <P{X, edx, 1 < t}/dx + P{X, € dx, T, < t}/dx.

By the continuity of X’s downward movement and time reversal, P{X, € dx, T, < ¢t} =
P{X, e dx, 1. <t} =P{X, € dx, 7_(—x) < t}. Then

gi(-x) - lx,fb,c(t) < ]P{Xt S dx, Tp < t}/dx + ]P{Xt € dx’ t*(cfx) < t}/dx

Since both b and ¢ — x are greater than (—x),, it suffices to show that for any 6 > (—x),,
Jj@) =P{X; e dx, 79 < t}/dx = 0o(g;(x)) as ¢t | 0. Given y, as ¢ | 0,

l_'/"‘gl(t_'/“‘y) = t‘l/‘)‘(t_l/"‘y)_"‘_1 =<t ify>0,
g(y)=117"%81(0) < 1~/ if y =0,
tfy(@)/1yl if y <0,
(cf. [2], Corollary VIL.3). Since 8 + x > 0, by strong Markov property and g,(0 + x) = O(¢),
j@) = fot f-o(t —5)gs(0 +x)ds = 0(t?) sup,, f-e(s). Since f_g is unimodal ([22], p. 416),
j@) = O?) f_e(t). By Eq. (14.35) in [22], In f_g(t) ~ —CH*/ @~ Dt=1/@=D where C > 0
is a constant. If x > 0, then by ¢t = O(g;(x)), f-o(t) = o(g;/(x)). If x < 0, as |x|] < 6,
f-o(@) = o(f—11/(t)) = o(f(1)). In either case, j(?) = o(g,(x)). O

5. Applications

From Section 2.2, if —p is the largest real root of E, ,(z), then o > 0. It is known that —p is
a simple root of E, (z) and as t — oo, P{X; € [-b, c]Vs <t} ~ Ce 9% for some C > 0,
where d = b+ c. This directly follows from Theorem 2 of [4], which considers the exponential
decay of a general spectrally negative Lévy process killed at the exit from a bounded interval.
As applications of the results in last sections, several refined results on o and the spectrum of
the seminar group of X killed at the exit from [—b, c] will be obtained.

From [4], any ¢ € %, , has Re(¢) < —o. By combining Theorem 2 of [4] and Theorem 4
of the paper, this can be strengthened as follows.

Proposition 9. For any ¢ € E,, \ {—0}, Re(s) < —o.
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The following corollary refines the results in [3,4] on the tail behavior of the first exit time.

Corollary 10. Fix b,c > 0 and let d = b + c. Then as t — oo,

P{be € dt, T_p < Tc}/dt ~ Ke—gz/d“’
P(T. € di, -y > T.}/dt ~ [0Equn(—0) — ke /™,

where k = (c“_l/dzo‘_l)Ea.a(—CaQ/da)/Efx,a(_Q)'

From the second asymptotic in Corollary 10, oE, 4+1(—0) > 1. The strict inequality is
likely to be true, however, it is unclear how to prove it by the approach of the paper.

According to (13), Hy(z) = Eu44(52)/E4.«(z) is the Laplace transform of a probability
distribution. Since E,4(z) # 0 if Re(z) > —o, o is the radius of convergence of the power
series expansion of Hg(z) around 0. A refined characterization of g along this line is as follows.

Corollary 11.  As k — 0o, H\"(0) ~ (=)o *'k!/[[(&)E,, ,(—0)]. In particular; ¢ is the
limit of both —kH*"(0)/HY0) and (k/e)| L ©) ",

Consider the distribution of X given that it has stayed in an interval for a long time. In this
context, it is convenient and without loss of generality to let the interval be (0, 1). Denote

A, = {X, € [0, 1]Vs < t}.

Since much of the discussion can be done for a general spectrally positive Lévy process, we
will often denote the scale function by W (x) instead of x*~'E, ,(x%z), and use [W@(x)],
[(WO@)]”, ..., [W@(x)]P to denote derivatives in z with x being fixed.

Corollary 12. Fix any xq € (0, 1). Let Y® be the process of X conditional on Ag and X, = xo.
Then as B — oo, Y2 converges in finite dimensional distribution to a Markov process Y with

PlYoyedy [ Yy =x} WO —y) Z Res W - x)W(Z)(y)e(erg)z
dy WOl — x) W) o)

sEflb,a

Theorem 3.1 of [15] furnishes the resolvent density of the transition kernel for a general
spectrally one-sided Lévy process. It also obtains the p.d.f. of the corresponding stationary
distribution as W@ (x)W(1 —x)/[WE@(1)], which also easily follows from Corollary 12
in the case of X.

Finally, consider the semigroup of X killed at the exit from (0, 1). Denote by P* the law of
X when Xy = x and E* the expectation under P*. By (32) and (33),

P{X, € dy, A}

dy :rt,g(xay) = Z at,g(-xvy)f

§Ega,ot
where given ¢ > 0, x and y, the series is absolutely convergent and for ¢ > 0,
W(Z)(l _ x)W(Z)(y)ez’
wW®@(1) ’ '

The semigroup associated with X killed at the exit from [0, 1] is (Z;);>0, where

Z f(x) = E'[f(XOl{A}]

ac(x,y) = ReS<
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for t > 0 and Zy f(x) = f(x). Furthermore, for ¢ € E,, and ¢ > 0, define operator

1
Zoof(x) = /0 a1, (s ) F ) dy.

Denote by Cy the Banach space {f € C([0,1]) : f(0) = f(1) = 0} equipped with the
sup-norm. From [4,9], when acting on Cy, Z; has the Feller property, i.e., for any f € Cy,
Z:f € Coand Z; f — f ast — 0. Meanwhile, Z; has the strong Feller property, i.e., for any
Borel bounded function f on [0, 1] and 7 > 0, the restriction of Z; f on (0, 1) is continuous.
Denote by d(¢) the multiplicity of ¢ as a root of E, . The structure of Z, and its spectrum are
as follows. For symmetric Lévy processes, similar spectral results have long been known [12].

Proposition 13. For each t > 0, the following are true.

(a) Zi, Zi o, ¢ € Z4q are all compact maps of L'([0, 1]) — Co with Zlg\ﬁM Zic = Z,
under the operator norm as M — o0o. Moreover, for s > 0 and n € Zy o, Zs o2, =
1{77 - g} Zs+t,§~

(b) Given ¢ € %, define functions

i) =W =)D =1 —x)*TEJ((1 - x)75) (48)

for j =1,...,d(g). Then Z, . maps L([0, 1)) into Vo = span(gi ¢, ..., &i(c),c) and
Zg V. is dense in L*([0, 1]).

(c) Let c € Zyoand j=1,...,d(g). Then (Z; — eg’)kgj,g =0ifand only if k > j.

(d) Fora € (€', ¢ € Z, 4} and j > 1, the null space of (Z, —a)’ on L*([0, 1]) is spanned
by {gic : e =a,1 <i <min(j,d(¢))}

(e) The spectrum of Z; acting on L*([0, 1]) is {0}U{eS’, ¢ € Z.,}, with O the only element
that is not an eigenvalue.

5.1. Proof of Proposition 9 and its corollaries

To start with, if ¢ € 2, with d(¢) = k, then in its neighborhood, W@(1) = E, 4(z) =
(z — ¢)*g(z), where g is analytic with g(¢) # 0. As a result,

WO = x)WO(y)e L TwO1 = )W yest 14
a;¢(x,y) = Res 2 =
(z—9)g() (k—1)! 8(s)
k—1
=2 WO — W (e, 49)
j=0
where ¢; = cj(c) are constants. Then given t > 0, a; (x,y) is a linear combination of

functions [W&(1 — x)]P[WEOWMI?D, 0 < j, I < d(c), so a;.c € C([0,1] x [0, 1]). By
[WEOMID = 0 for j < d(5), a;c(0,y) = 0. Since [W(1 — x)]¥) is a weighted sum of
W*(1 —x) over n > 1 and W*'(0) =0, a, (1, y) = 0 as well.

Lemma 14. For each t > 0, sup, yc1o 1y 17:(x, y) — Zlg\sM a;(x,y)| - 0as M — oo. As
a result, r, € C([0, 1] x [0, 1]) with r,(0,y) = r,(1,y) = 0.

Proof. Denote ||f|l = sup, ycjo1) [f(x, WI. Then |Irr — 3 ypancll < 32 op lacll I
lc| > 1, then d(¢) = 1, so from (49), a, (x,y) = WO — x)WS(y)es’ /[WS(1)]'. Then
from the derivation of (25), [la; (|| = 0(|g|3§_1/°‘eRe(§)’). By (7), the sum of the bounds is finite.
Then the uniform convergence follows. [
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We also need an elementary result. Let S be a finite set of real numbers and for each s € S,
let ¢; € C be a constant. Suppose F(t) := Y _scse” — 0 as t — oo. Then ! fot |F|> = 0.
However, it is always true that t=! [J |[F|* — ", |¢,|*. Thus ¢, = 0.

Proof of Proposition 9. The goal is to show S = {¢ € 2, , : Re(¢) = —p} only contains —p.
By (6), S C {z: |argz| > am/2}. Then |S| < co. Given a Borel set B C [0, 1], as t — o0

PX{XI € Ba Al} ~ Ce*Qt’ (50)
where C > 0 is a constant ([4], Theorem 4). On the other hand, by Lemma 14, the Lh.s. equals

Z /a,g(x y)dyNZ/azg(x y)dy.

c€«Zua I$=N

Assume max.csd(s) =k > 1 and let Sy = {¢ € S : d(¢) = k}. Then from (49), for ¢ € S,

WO —x)
f ay,(x, y)ydy = e | 17— / W) dy + pe@) |
B Eou(s) B

while for ¢ € S\ So, fB a;,c dy = e p.(t), where each p () is a polynomial of 7 of degree
at most k — 2. Since each ¢ € S has Re(¢) = —p, by comparing with (50), it follows that

w1 —
Z (c+o)t (lf) x)/ W(g)(y)dy—>0

S€Sy

Since ¢+ o is a pure imaginary number, from the elementary fact mentioned prior to the proof,
w1 — x)/ W (y)dy =0
B

for each ¢ e Sy. Since B is arbitrary and W()(y) is continuous in y, then W& (1—x)W&)(y) =
0, and so E, (1 — x)*¢)Eyo(y*s) = 0 for all x,y € (0, 1). Since E, ,(z) is analytic, this
implies E, (z) = 0, which is impossible. The contradiction implies that all ¢ € S are simple.
Then with exactly the same argument,

Z (§+Q)IW (l_x)/ W(g)(y)dy C— 0,
ceS

which implies that S = {—p}. O

Proof of Corollary 10. The first asymptotic result is a direct consequence of Propositions 1
and 9, the second one follows by combining the first one with P{7, € dt, 1, > T.}/dt =
=L, (t) = P{r_ €dt, 7, < T.}/dt and Corollary 5. [J

Proof of Corollary 11. By Proposition 1, Hy(q) = [I'(@)E4.«(q)]~" is the Laplace transform
of Yo(t) = Y .4,  Res(Hy(z)e”, ). Thus H®©) = [°(=0fyo(r)dr. For each ¢ €
%o \ {—0}, by Re(¢c) < —o. Jo° t*Res(Hy(2)e™, ¢)dt = o(klo™*"") as k — oo. Fix
M > 0, such that all ¢ with |¢| > M can be enumerated as ¢y, =< n* and by (24),
have [~ t*Res(Ho(z)e?, ¢)dt = O(/E, (¢)) [ t*es'dt = O(k!|g[**"/*). Then by
dominated convergence, for k > 2, fooo(—t)k Yo(t)dt = Xy + 35 + I, where Y} is the sum
of fooo(—t)kRes(Ho(z)eZ’, ¢)dr over ¢ # —p with |¢|] < M, X, is the one over ¢ with
lg| > M, and I = fooo(—t)kRes(Ho(z)eZ’, —o)dt. Since there are only a finite number of
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¢ with |¢| < M, from the above discussion, )| = o(k!Q’k’l). On the other hand, 3, =
OUKD Yy omeyn” *72*71 = o(kle™"). Finally, I = [(—'[I'(@)E] (—0)] 'e? dt,
yielding the claim. O

Proof of Corollary 12. Given 0 =1 <t <--- <t, < oco. If B > t,, then by the Markov
property of X, for xg, xq,...,x, € (0, 1),

Po(yf edxy,.... Y} edx,} =POUX, edxy,.... X, €dx, | Ag}

n
= | |IP —HX dx; — P (Ap—y,)
i i € i )C,',,A_i_ X —— 27
i { ti 1 1 t,_1} ]PXO( B)
- ; L—x 1—x, (.AB_,)
Ly yimxy g d=x;_ (G — tio1) X PR A Ly
1_[ T l( 1) L—xo,l—xo(AB)

i=1

Combining Corollary 5 and Proposition 9, as B — oo

WEO(1 — x,,)el™
WE(1 — xg)

n
B B
POYS e drr, ..., Y2 € drl = [ [ lyonior—mioit—x (6 — i) X

i=I

s

yielding that Y3 converges to a Markov process Y with transition kernel

P{Y;+, €edy | ¥y = x} W1 — y)eo!
= ly—x,—x,l—x(t) X =
dy wWEo(1 — x)

in the sense of finite dimensional distribution. By Theorem 4, the proof is complete. [

5.2. Proof of Proposition 13

Lemma 15. Fix zg € C. Then for z € C\ {z0}, j € N, x > 0, and integer j > 0,

/1 W(Zo)(x _ y)[W(Z)(y)](j) dy = i |:W(Z)(X) - W(Zo)(X)i| )
0 dz/

Z— 20

Proof. Since W®(x) = Z/?io KW k+D(x), by dominated covergence,

ok 0kl _ k]
W(ZO) * W(Z)(x) — Z Zzgzk—n W*(n+]) * W*(k_”+')(x) — Z 0 W*(k+2)(x).
k=0 n=0 = 072z

The r.h.s. is exactly (W@ (x) — W) (x))/(z — zo). Differentiating the equality j times in z then
yields the proof. [

Lemma 16. Fix x > 0andt > 0. Let n, ¢ € 244 If d(c) =k, then for 0 < j <k,
1 J .
/ a6, PIWEA =V dy =1n =5} ) (j )t*‘[W@a — )|V es",
0 s=0

Proof. From the definition of a, . and Fubini’s theorem, the integral is equal to

@) _ 7t 1 .
L f WA = 0e? (/ WOMNWE (1 — y)](’)dy> dz,
0

2ni f,  wWO)
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where y € C\ %, is a counterclockwise simple contour enclosing 1 but no other roots in
Z .« Then by Lemma 15, the integral is equal to

L WO —we & TWOH-WoWm]
i), WO dw —w e
Since
& [WO) — W) —i:j ¢ o - maﬂ'* !
dw/ z—w o s ) dws zZ—w

s=0
j!W(Z)(l) J j![W(w)(l)](s)

= (z — w)j+1 ~ sl(z — w)j-i—l—s >

and j < d(¢) = k, when evaluated at w = ¢, with W& (1) = [W(1)]® =0fors =0,..., j,
the derivative on the Lh.s. is equal to jI!W®(1)/(z — ¢)/*!. Therefore, the integral is equal to

W<~>(1 — x)e! ,
— — €)1 — sr1()
2my§ pvEs dz =1{n = g} [W™(1 — x)e]V,

hence the claim. [

Proof of Proposition 9. (a) For r > 0, the kernel of Z; is r,(x, y). Then the first half of
part (a) is a direct consequence of Lemma 14 and [16], Theorem 22.3. Given s > 0 and
n € Z4q, the kernel of Z; . Z, , is fol as, (x, u)a; n(u, y)du. If n # ¢, then by expressing
a; n(u, y) by (49) and applying Lemma 16, it is seen Z; . Z; , = 0. To show Z; . Z, . = Z;4, ,

let v, y’ € C\ %, be two counterclockwise simple contours that enclose ¢ but no other roots
in %, 4, with y disjoint from and enclosed by y’. Then by Fubini’s theorem and Lemma 15,

1
/ as,c(x, w)a; (u, y)du
0

1 W1 — x )W) 1 , /
- U= OWZO | [ @ uy w1 — uydu | edz b et dz’
exig 1, |, - woowam L

1 WO — WO [ 1 1 , e
= — % ‘(ﬁ - — e’*dz ¢ e'*dz.
Q@ri)z J, |/, z—7 WE(1) W)

Given 7' € y’, since it is outside of the region enclosed by y, W@(1 —x)e**/(z —7') is analytic
in the region. This combined with Fubini’s theorem yields that the integral is equal to

@1 — @) (2) (2)
1 f w1 - x)Wk (y)ez/tdz/ S dz = L WA — x)W(y) (s+t)zd
(2mi) / 2

@ = WD) 7, W)

which is a;.,(x, y), as claimed.
(b) Denote Rh(x) = h(l — x) and (f, h) = /01 f]’_l for f,h e L*([0, 1]). From (49),
arc(x,y) = Z k=<d(c) Cjk8j.c(X)Rgk c(y) with cjx = cji(g, 7). Then Z; -h = Zj,kfd(g)
,k<gk§,Rh)g,§ € V.. If (gjc,h) = 0 for all ¢ and j < d(¢), then for all + > O,
Z; .Rh =0, so for all f e Cy, (f, Z,th) = 0. Since ¢ € 2, , if and only if ¢ € 2, , and
arc(x,y)=a, (1 —y, 1 —x)=a¢(x,y),
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fZ,th / |:/ fa —=x)a; (x, y)dx]h(l—y)dy

:A [/(; f(l—x)at,g(l_y,l_x)dx] h(l—y)dy: (Zt,§f9h>

As aresult, (Z, . f,h) = 0 for all ¢ and ¢ > 0. Then by (a), (Z, f, 1) = 0. Let t — 0. By the
Feller property of Z, and dominated convergence, {f, i_z) = 0. Since Cy is dense in L2([0, 1]),
then 2 = 0.
(c) First, consider (Z, . — eS")*g; . instead of (Z, — es")'g; .. By Lemma 16, for j =
., d(S),

1
Zc8j.c(x) = f ar,(x, MWL — y)1v—
0

J .
— Z ( )tj X W(;)(l x)](sfl)egt — Z <]. - 1>tjse§fgs,g(x)_
— S

Jj—s — \J
If j=1,then Z; g1 = eS'g1.c, 50 (Z; o —eS))g1,c = 0. Clearly, g1, #0.If j > 1, then
j-2

. Jj—=1\ ..
(Zic —eNgjc = — Dtes'gj1c + Z (J - S>tj ¢t

s=1

By induction, (Z, . —es")/ 'g; . = (j—DWtes") g , giving (Z; . —eS")*g; . = 0 if and only
if k > j. Now, from (b), V_ is invariant under Z; . — e<’. Meanwhile, by Lemma 16 and (a),
Zn#s Z,nVe = {0}. Then (Z, — egz)kgqu =(Zc— e’ + Zn¢§ Zt,n)kgj,g =(Zc— egt)kgj,g-
This then leads to the proof.

(d) Suppose 0 # f € L%([0, 1]) is in the null space of (Z; —a)’. For each ¢ € %, ,, by (a)
and induction on j, (Z;c —a)/ Zo . f = Zo.(Z: —a)’ f =0, so Z . f is in the null space of
(Z;c — a)’. By (b), Zo,.f € V.. Since V. is finite dimensional, Z, . restricted on V. can be
regarded as a matrix with e<” being its only eigenvalue. As a result, if e$* # a, then Zy . f =0,
$0Zicf =ZicZocf =0.Put W=>Y,o_ Z .. Then (W —a) f =(Z, —a) f = 0. By
expanding (W —a)’ f and applying (a), it is seen that f is a linear combination of Zf‘y JEVe,
l<k<j,e"=a. Asaresult, f € ) ,_, V.. Then by considering the restriction of Z, on
the finite dimensional space ) _,.,_, V., the proof follows from standard matrix algebra.

(e) By (a), Z, is compact mapping L'([0,1]) — Cy. Since the identity maps of Cy —
L?([0, 1]) and L?([0, 1]) — L'([0, 1]) are continuous, Z, is compact mapping L>([0, 1]) —
L2([0, 1]). Then by Riesz’s spectral theorem ([16], p. 238), O is in the spectrum of Z; and
every nonzero element in the spectrum is an eigenvalue of Z;. From (c), it therefore suffices
to show that if 7 € L?([0,1]) and Z,i = ah for some a & {eS', ¢ € Zow)s then h = 0.
Indeed, for any ¢, Z; (Zo,ch) = Z,Zo,ch = Zo,. Z:h = aZy ch. Since Zy  h € V. and from
(d), es" is the only eigenvalue of Z, . when acting on V, then Zy .h = 0. Then for any 7 > 0,
Z,ch =2, .Zyh =0. The proof of (b) already shows that in this case 7 = 0. [
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