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Abstract

For a spectrally positive strictly stable process with index in (1, 2), we obtain (i) the sub-probability
density of its first exit time from an interval by hitting the interval’s lower end before jumping over its
upper end, and (ii) the joint distribution of the time, undershoot, and jump of the process when it makes
the first exit the other way around. The density of the exit time is expressed in terms of the roots of a
Mittag-Leffler function. Some theoretical applications of the results are given.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The so-called exit problems, which concern the event that a stochastic process gets out of a
set for the first time, occupy a prominent place in the study of Lévy processes. For spectrally
one-sided Lévy processes, years of intensive research have revealed many remarkable facts
about the first exit from a bounded interval [2,10,14]. An essential tool for the investigation is
the scale function. Since the function can be analytically extended to the entire C ([14], Lemma
8.3), it is amenable to treatments by complex analysis. By combining the scale function and
residual calculus, this paper obtains series expressions of the distribution of the first exit of a
spectrally positive strictly stable process with index in (1, 2).

Let X be a real-valued Lévy process. It is called stable if for each t > 0, there is a constant
C(t) such that X t ∼ t1/αX1 + C(t), and strictly stable if C(t) ≡ 0 ([22], p. 69). On the other
hand, X is called spectrally one-sided if all its jumps have the same sign, and depending on the

E-mail address: zhiyi.chi@uconn.edu.

https://doi.org/10.1016/j.spa.2019.11.006
0304-4149/ c⃝ 2019 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2019.11.006
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2019.11.006&domain=pdf
mailto:zhiyi.chi@uconn.edu
https://doi.org/10.1016/j.spa.2019.11.006


3968 Z. Chi / Stochastic Processes and their Applications 130 (2020) 3967–3989

sign, it is further called spectrally positive or negative ([14], p. 58). It is well-known that X is
spectrally positive and strictly stable with index α ∈ (1, 2) if and only if lnE(e−q X1 ) = Cqα for
all q ≥ 0, where C > 0 is a constant (cf. [14], p. 89). Henceforth, without loss of generality,
assume

E(e−q X t ) = eqα t , q ≥ 0, α ∈ (1, 2). (1)

Given b, c > 0, there are only two ways for X to exit from [−b, c], either by making a
continuous downward passage of −b or by making an upward jump across c ([14], p. 232).
These two possibilities will be referred to as the first exit at the lower end and the first exit
at the upper end, respectively. Their probabilities and the related scale functions have become
well-known [2,14]. However, not much is known about the probability density functions (p.d.f.)
involved.

In [8], the distribution of X ’s first upward passage of a fixed level is obtained. It turns out
that the method used there can be extended to the first exit from [−b, c]. Section 3 considers the
first exit at the lower end. It will be shown that the (sub-)p.d.f. of the exit time has an expression
in terms of the residuals of a meromorphic function at the roots of a Mittag-Leffler function,
and as a result, is of the form

∑
ς pς (t)eς t , where the sum runs over the roots and for each root

ς , pς (t) is a polynomial in t whose coefficients are determined by ς and several Mittag-Leffler
functions. For all but a finite number of ς , pς (t) is a constant. The result is an extension of a
known result on the first exit of a standard Brownian motion. It also highlights the importance
of precise knowledge on the roots of Mittag-Leffler functions [20], which unfortunately is still
in short supply. The section also obtains the asymptotic of the p.d.f. near time 0 based on an
alternative expression. Section 4 derives the joint (sub-)p.d.f. of the time of the first exit by X
at the upper end and its undershoot and jump at that moment. It will be shown that conditional
on the undershoot, the exit time and jump are independent. This allows the joint distribution to
be factorized into the marginal p.d.f. of the undershoot, and the marginal conditional p.d.f.’s of
the exit time and jump given the undershoot. The marginal conditional p.d.f. of the exit time
again can be written in the form

∑
pς (t)eς t . This is in contrast to the power series expression

of the time of the first upward passage of c [1,8,19,23], even though the latter can be regarded
as the limit of the first exit from [−b, c] as b → ∞. This section also obtains an asymptotic
of the p.d.f. near zero.

Basically, the reason that X ’s first exit time has a residual-based expression for its p.d.f.
is two-fold. First, the Laplace transform of the p.d.f. can be analytically extended to a
meromorphic function, specifically, a rational function of scale functions. Second, by contour
integral, the inversion of the Fourier transform of the p.d.f. is reduced to the sum of the
residuals of the meromorphic function at its poles, which happen to be the roots of a Mittag-
Leffler function. This rather generic explanation suggests that the same analysis may be carried
out for other fluctuation identities, such as those related to a reflected process, provided the
corresponding scale functions are available (cf. [14], Chapter 8). On the other hand, as precise
knowledge on the roots of Mittag-Leffler functions is scarce, the residual-based expressions
may be harder to use in practice than direct numerical methods such as Fourier transform.
Nevertheless, as will be seen in Section 5, they can be applied to provide some rather detailed
information about X .

2. Notation and preliminaries

Let u(x) and v(x) be functions of x , both of which as well as x may be complex-valued. As
x → x0, by u(x) ≍ v(x) it means u(x) = O(v(x)) and v(x) = O(u(x)), i.e., for some constant
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C > 0 and all x in a neighborhood of x0, |u(x)| ≤ C |v(x)| and |v(x)| ≤ C |u(x)|. On the other
hand, by u(x) ∼ v(x) it means u(x)/v(x) → 1. For elements of complex analysis, see [21].

2.1. Integral transforms

For f ∈ L1(R), denote its Laplace transform and Fourier transform, respectively, by

f̃ (z) =

∫
e−zt f (t) dt, f̂ (y) = f̃ (−iy), y ∈ R.

The domain of f̃ is {z ∈ C :
∫

|e−zt f (t)| dt < ∞}. Similarly, for a finite measure µ on R,
denote its Laplace transform and Fourier transform, respectively, by

µ̃(z) =

∫
e−ztµ(dt) and µ̂(y) = µ̃(−iy), y ∈ R.

The domain of µ̃ is {z ∈ C :
∫

|e−zt
|µ(dt) < ∞}.

Let D ⊂ C be an open set and z0 ∈ D. If g is an analytic function in D \ {z0} and has z0

as a pole, possibly removable, then the residual of g at z0 is

Res(g(z), z0) =
1

2π i

∮
γ

g(z) dz,

where γ is any counterclockwise simple closed contour in D \ {z0} ([21], p. 224).

2.2. Some properties of the Mittag–Leffler function

The Mittag-Leffler function with parameters a > 0 and b ∈ C is the entire function

Ea,b(z) =

∞∑
n=0

zn

Γ (an + b)
, z ∈ C.

A classical review of the function is in [11]; also see Section 10.46 of [18] and references
therein. There are some papers on the computation of the Mittag-Leffler function [13,24],
however, little seems to have been done on the computation of its roots. As we will heavily
rely on [20], for convenience, some of its key results are collected below. By Theorem 1.2.1
in [20], for a ∈ (0, 2), b ∈ C, and m ∈ N, as |z| → ∞,

Ea,b(z) = a−1z(1−b)/a exp(z1/a) −

m∑
n=1

z−n

Γ (b − an)
+ O(|z|−m−1), (2)

where the principle value arg z is assumed, i.e., if z = |z|eiθ
̸= 0, then θ is assumed to be in

(−π, π]. The implicit coefficient in O(·) is uniform for arg z. Indeed, for a ∈ (0, 4/3], this is
immediate from Theorems 1.4.1–1.4.2 in [20]. For a ∈ (4/3, 2), by Theorem 1.5.1 in [20],

Ea,b(z) = a−1
∑

n:| arg z+2πn|≤3πa/4

(z1/ae2π in/a)1−b exp(z1/ae2π in/a) −

m∑
n=1

z−n

Γ (b − an)
+ Rm(z)

with sup|z|≥2 |zm+1 Rm(z)| < ∞, again yielding the uniformity. Since Re(z1/a) = |z|α

cos(arg z/a), by (2) and the continuity of Ea,b, there is a constant C > 0 such that

|Ea,b(z)| ≤ min(C, |z|(1−b)/a) if | arg z| ∈ [aπ/2,min(a, 1)π ]. (3)
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From [20], p. 333,

azE ′

a,b(z) + (b − 1)Ea,b(z) = Ea,b−1(z). (4)

The paper will mostly focus on a = b = α ∈ (1, 2). By (2), as |z| → ∞,

Eα,α(z) = α−1z1/α−1 exp(z1/α) −
(α − 1)αz−2

Γ (2 − α)
+ O(|z|−3). (5)

Denote Za,b = {z ∈ C : Ea,b(z) = 0}. From Theorems 2.1.1 and 4.2.1, and Chapter 6 in [20],

Zα,α ⊂ {z : | arg z| > απ/2}, (6)

Eα,α(z) has at least one real root, all real roots are negative, and all roots with large enough
modulus are simple and can be enumerated as ς±n such that

ς
1/α
±n = ±2π in − (α + 1) ln(±2π in) + ln

α2(α − 1)
Γ (2 − α)

+ O(ln n/n) as n → ∞, (7)

where the principal branch of the logarithmic function is used, i.e., ln z = ln |z| + i arg z.

2.3. First exit, passage, or hitting time

Recall that X is assumed to be a Lévy process satisfying (1). The first exit time from a
Borel set A by X is defined to be inf{t > 0 : X t ̸∈ A}. For c > 0 and x ∈ R, denote

Tc = inf{t > 0 : X t > c}, τx = inf{t > 0 : X t = x}.

The definitions follow [14] and are somewhat different from those in [2], which take the infima
over t ≥ 0. However, for X considered here, they specify the same random times. Both Tc and
τx have p.d.f.’s [1,2,19,23]. The distribution of τx is classical for x < 0 ([2], Theorem VII.1)
and is known for x > 0 [23]. Almost surely, Tc < τc < ∞ and XTc > c > XTc− [23], and
given b > 0, τ−b = inf{t > 0 : X t < −b}, so the first exit time from [−b, c] is min(τ−b, Tc)
([10], Theorem 5.17). When τ−b < Tc (resp. τ−b > Tc), X is said to exit at the lower (resp.
upper) end.

We will heavily rely on the scale function W (q) of −X given by

W (q)(x) = xα−1
+

Eα,α(qxα
+

), q ≥ 0, (8)

where x+ = max(x, 0) ([14], p. 250). For the scale function in general, see [2,10,14]. One
important fact is that given x > 0, W (q)(x) as a function of q > 0 can be analytically extended
to the entire C to become W (z)(x) =

∑
∞

k=0 zk W ∗(k+1)(x), where W ∗n is the n-fold convolution
of the scale function W = W (0). For −X , W ∗n(x) = xnα−1.

3. Distribution of first exit time at lower end

Given c > 0 and x < c, denote

kx,c(t) = P{τx ∈ dt, Tc > τx }/dt.

Since τx has a p.d.f., kx,c(t) is well-defined, and since its integral over t is P{Tc > τx } < 1, it
is actually a sub-p.d.f. Given b > 0, let d = b + c. It is well-known that

k̃−b,c(q) =
W (q)(c)
W (q)(d)

=
cα−1

dα−1

Eα,α(cαq)
Eα,α(dαq)

(9)

([14], Theorem 8.1). The main result of this section is the following.
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Proposition 1. Given b, c > 0, let d = b + c. Then for t > 0,

k−b,c(t) =
cα−1

dα−1

∑
ς∈Zα,α

Res
(

Eα,α(cαz)
Eα,α(dαz)

ezt ,
ς

dα

)
=

cα−1

d2α−1ψcαd−α

(
t

dα

)
, (10)

where for s ∈ [0, 1),

ψs(t) =

∑
ς∈Zα,α

Res(Hs(z)ezt , ς), t > 0, (11)

is a p.d.f. concentrated on [0,∞) and

Hs(z) =
Eα,α(sz)
Eα,α(z)

, z ∈ C. (12)

Furthermore, ψs ∈ C∞(R) such that for all n ≥ 1, ψ (n)
s (t) → 0 as t ↓ 0 or t → ∞.

Remark. Since P{τ−b < Tc} = (c/d)α−1 ([2], Theorem VII.8), by (10), conditional on X
exiting from [−b, c] at −b, the scaled exit time dατ−b has p.d.f. ψs with s = (c/d)α .

The main feature of Proposition 1 is that it expresses the p.d.f. of the first exit time in
terms of the roots of the Mittag-Leffler function Eα,α(z). As noted earlier, this results from
residual calculus for (9). However, since currently there is little precise knowledge on the
roots of Eα,α(z), the contour involved in the calculation has to be chosen carefully. For each
term in the sum (11), if ς ∈ Zα,α has multiplicity n, then in a neighborhood of ς , Hs(z) =

g(z)(z−ς )−n , where g(z) is analytic. As a result, Res(Hs(z)ezt , ς) = (g(z)ezt )(n)
|z=ς/(n−1)! =∑n−1

k=0 ck(ς )tn−1−keς t . Moreover, from Section 2.2, if |ς | is large enough, then ς is a simple
root, giving

Res(Hs(z)ezt , ς) =
Eα,α(sς )eς t

E ′
α,α(ς )

.

Proposition 1 extends a result for Brownian motions. If α = 2, then by E[e−q X t ] = eq2t ,
q > 0, X t = B2t with Bt a standard Brownian motion. By E2,2(z) = sinh(

√
z)/

√
z,

Z2,2 = {−k2π2, k ∈ N} and E ′

2,2(z) = [cosh(
√

z) − E2,2(z)]/(2z). Since E ′

2,2(−k2π2) =

(−1)k−1/(2k2π2), each root of E2,2(z) is simple. Note that Proposition 1 does not cover α = 2.
Nevertheless, by Tc = τc and the above display with s = (c/d)2, a formal application yields

P{τ−b ∈ dt, τc > τ−b}

dt
=

2π
d2

∞∑
k=1

(−1)k−1k sin
(

kπc
d

)
exp

{
−

k2π2t
d2

}
.

The series is different from the one in the classical book [5] (p. 212, 3.0.6). However, it can
be proved rigorously using a heat equation method ([17], section 7.4); see for example [7].

3.1. Basic properties of scaled first exit time at lower end

This subsection proves the smoothness of ψs asserted at the end of Proposition 1. As a
by-product, some properties of Hs(z) in (12) are obtained.

Given s ∈ (0, 1), by (10) and s1−1/α
= P{τs1/α−1 < Ts1/α }, ψs(t) is the density of the (proper)

probability measure

µs(dt) = P{τs1/α−1 ∈ dt | τs1/α−1 < Ts1/α }, t > 0,
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and by (9) Hs(q) is the Laplace transform of µs , i.e., for q ≥ 0,

µ̃s(q) = Hs(q) =
Eα,α(sq)
Eα,α(q)

. (13)

Eq. (13) still holds if q is changed to z with Re(z) ≥ 0. By |µ̃s(z)| ≤ µ̃s(Re(z)) ≤ 1,
|Eα,α(sz)| ≤ |Eα,α(z)|. Then given |θ | ≤ π/2, |Eα,α(reiθ )| is increasing in r ≥ 0, in particular,
if Re(z) ≥ 0, then |Eα,α(z)| ≥ Eα,α(0) = 1/Γ (α).

Fix s ∈ (0, 1). For y ∈ R,

µ̂s(y) = Hs(−iy) =
Eα,α(−isy)
Eα,α(−iy)

. (14)

Since |e(−iy)1/α
| = eκ|y|

1/α
with κ = cos(α−1π/2) > 0, by (5), as |y| → ∞, |Eα,α(−iy)| ∼

α−1
|y|

1/α−1eκ|y|
1/α

and so |µ̂s(y)| ∼ s1/α−1eκ(s1/α
−1)|y|

1/α
. As a result,

∫
|µ̂s(y)||y|

n dy < ∞ for
all n ≥ 0, so µs has a p.d.f. in C∞(R) with vanishing derivative of any order at ±∞ ([22],
Proposition 28.1). By (9), the p.d.f. is exactly ψs in Proposition 1. Since ψs is supported on
[0,∞), ψ (n)

s (x) → 0 as x → 0+. ψs cannot be analytically extended to a neighborhood of 0,
for otherwise it would be constant 0. On the other hand, from (13), µs has finite moment of any
order with its nth moment equal to (−1)n H (n)

s (0) and by Fourier inversion ([22], Proposition
2.5(xii))

ψs(t) =
1

2π

∫
∞

−∞

µ̂s(y)e−iyt dy =
1

2π
lim

M→∞

∫ M

−M
µ̂s(y)e−iyt dy. (15)

From (14) and the Continuity Theorem of characteristic functions (cf. [6], Theorem 8.28),
as s → 0+, µs weakly converges to a probability distribution µ0 with

µ̂0(y) = H0(−iy) =
1

Γ (α)Eα,α(−iy)
, y ∈ R.

Similar to µs with s ∈ (0, 1), µ0 has a p.d.f. ψ0 ∈ C∞(−∞,∞) with support on [0,∞) such
that all its derivatives ψ (n)

0 (x) vanish as x → 0+ or x → ∞.

3.2. Contour integration

In view of last subsection, to prove Proposition 1, it only remains to show (11).

Proof of Eq. (11). Fix s ∈ [0, 1). Define function

σ (θ ) =
1

| sin(θ/α)|
.

Since α > 1, σ (θ ) is bounded on [−π,−π/2] ∪ [π/2, π]. Put σ0 = σ (π/2). For R > 0, let
CR be the contour that travels along the curve

{[Rσ (θ )]αeiθ
: π/2 ≤ |θ | ≤ π} (16)

starting from its top point i(Rσ0)α and ending at its bottom point −i(Rσ0)α; CR is smooth
except at its intersection with (−∞, 0), and its length is proportional to Rα . Fix β ∈

(π/2, απ/2). Let CR,1 = CR ∩ {z ∈ C : π/2 ≤ | arg z| ≤ β} and CR,2 = CR ∩ {z ∈ C :

β ≤ | arg z| ≤ π}. Fig. 1 shows the shapes of CR , CR,1, and CR,2 as well as the relative scale
of CR with different α ∈ (1, 2).
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Fig. 1. CR , CR,1, and CR,2 according to different α ∈ (1, 2). Left: α = 1.4. β is any fixed value in (π/2, απ/2).
Middle: α = 1.8. Right: CR defined by (16) with the same R but different α.

For z = reiθ , where θ = arg z, | exp(z1/α)| = exp{r1/α cos(θ/α)}. If z ∈ CR,1, then
|θ/α| ≤ β/α < π/2, and so cos(θ/α) ≥ λ := cos(β/α) > 0. As a result, for z ∈ CR,1,

| exp(z1/α)| ≥ exp(λ|z|1/α). (17)

Then by (5), as R → ∞, if s ∈ (0, 1),

Hs(z) =
Eα,α(sz)
Eα,α(z)

= (1 + o(1))
(sz)1/α−1 exp((sz)1/α)

z1/α−1 exp(z1/α)
= (1 + o(1))s1/α−1 exp{(s1/α

− 1)z1/α
}, z ∈ CR,1,

where the o(1) term converges to 0 uniformly for z ∈ CR,1, and if s = 0,

Hs(z) =
1

Γ (α)Eα,α(z)
= O(1)z1−1/α exp{−z1/α

}, z ∈ CR,1,

where the implicit coefficient in O(1) is uniform for z ∈ CR,1. Since |z| ≥ Rα , from (17),

sup
z∈CR,1

|Hs(z)| = O(exp{−λ(1 − s1/α)R/2}). (18)

We also need a bound for Hs(z) = Eα,α(sz)/Eα,α(z) on CR,2. However, since Eα,α(z) has
infinitely many roots in {z ∈ C : β ≤ | arg z| ≤ π}, R cannot be an arbitrary large number. To
select R appropriately, we need the following.

Lemma 2. Let Rn = 2πn, n = 1, 2, . . .. Then given any A ∈ R \ {0},

lim
n→∞

inf
z∈CRn ,2

|z1/α+1 exp(z1/α) − A| > 0. (19)

Proof. For z = [Rσ (θ )]αeiθ
∈ CR,2 with θ = arg z,

z1/α+1 exp(z1/α) = [Rσ (θ )]1+αei(1/α+1)θ exp{Rσ (θ )eiθ/α
}

= [Rσ (θ )]1+αeRσ (θ ) cos(θ/α)ei[(1/α+1)θ+Rσ (θ ) sin(θ/α)]

= [Rσ (θ )]1+αeRσ (θ ) cos(θ/α)ei[(1/α+1)θ+Rsign(θ )].
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Put a(θ, R) = [Rσ (θ )]1+αeRσ (θ ) cos(θ/α). Then for z ∈ CRn ,2, by Rn = 2πn, z1/α+1 exp(z1/α) =

a(θ, Rn)ei(1/α+1)θ . If there were zn = [Rσ (θn)]αeiθn ∈ CRn ,2 such that z1/α+1
n exp(z1/α

n ) → A,
then taking modulus, a(θn, Rn) = [Rnσ (θn)]1+αeRnσ (θn ) cos(θn/α)

→ |A| > 0. By |Rnσ (θn)| →

∞, it follows that cos(θn/α) → 0, as any sequence n with Rnσ (θn) cos(θn/α) → ∞ (resp. −∞)
has a(θn, Rn) → ∞ (resp. 0). Because |θn|/α ∈ (π/(2α), π/α], this implies θn/α = knπ/2+ϵn

with kn = ±1 and ϵn → 0. But then

z1/α+1
n exp(z1/α

n ) = a(θn, Rn)ei(1/α+1)θn = |A|ei(1+α)knπ/2 + o(1) ̸→ A,

a contradiction. □

Continuing the proof of Eq. (11), let A = α2(α − 1)/Γ (2 − α). By (5),

Eα,α(z) = α−1z−2[z1/α+1 exp(z1/α) − A] + O(|z|−3).

Then by Lemma 2, there is ϵ > 0, such that for all large n and z ∈ CRn ,2, |Eα,α(z)| ≥ ϵ|z|−2.
Let m0 = supπ/2≤|θ |≤π σ (θ ). Then by |z| ≤ (m0 Rn)α ,

|Eα,α(z)| ≥ ϵm−2α
0 R−2α

n . (20)

On the other hand, since all the coefficients in the power series expansion of Eα,α(z) are positive
and s ∈ [0, 1), |Eα,α(sz)| ≤ Eα,α(|z|) ≤ Eα,α(mα

0 Rαn ). Then again by (5),

|Eα,α(sz)| = O(R1−α
n exp(m0 Rn)).

Combining with the lower bound, this implies

sup
z∈CRn ,2

|Hs(z)| = O(R1+α
n em0 Rn ), n → ∞. (21)

Let DR be the domain bounded by CR and {iy : |y| ≤ (Rσ0)α}. Let t > 0. If CR ∩Zα,α = ∅,
then by (14) and residual theorem,

1
2π

∫ (Rσ0)α

−(Rσ0)α
µ̂s(y)e−iyt dy =

1
2π i

∫ i(Rσ0)α

−i(Rσ0)α
Hs(z)ezt dz

=

∑
ς∈DR∩Zα,α

Res(Hs(z)ezt , ς) −
1

2π i

∫
CR

Hs(z)ezt dz. (22)

Consider the contour integral along CR . For z = reiθ
∈ CR with θ = arg z, by π/2 ≤ |θ | ≤ π ,

|ezt
| = er t cos θ

≤ 1. Then by (18),⏐⏐⏐⏐⏐
∫

CR,1

Hs(z)ezt dz

⏐⏐⏐⏐⏐ ≤ Length(CR,1) × O(e−λ(1−s1/α )R)

= O(1)Rαe−λ(1−s1/α )R/2.

On the other hand, if z ∈ CR,2, then by β ≤ |θ | ≤ π and r ≥ Rα , |ezt
| ≤ e−b0 Rα t , where

sb0 = − cosβ > 0. Then by (21),⏐⏐⏐⏐⏐
∫

CRn ,2

Hs(z)ezt dz

⏐⏐⏐⏐⏐ ≤ Length(CRn ,2) × O(R1+α
n em0 Rn−b0 Rαn t )

= O(1)R1+2α
n em0 Rn−b0 Rαn t . (23)
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By α > 1, combining the above two bounds yields∫
CRn

Hs(z)ezt dz → 0.

Then by the Fourier inversion (15) and (22),

ψs(t) = lim
n→∞

∑
ς∈DRn ∩Zα,α

Res(Hs(z)ezt , ς), t > 0.

To complete the proof of (11), it only remains to show that the series on the r.h.s. of (11)
converges absolutely. It suffices to show that for a large enough M > 0,∑

|ς |>M

|Res(Hs(z)ezt , ς)| < ∞,

as the number of roots ς with |ς | ≤ M is finite. By Section 2.2, fix M > 0 so that all ς ∈ Zα,α

with |ς | > M are simple and can be enumerated as ς±n ≍ nα , n ∈ N. For each such ς ,

Res(Hs(z)ezt , ς) = Res
(

Eα,α(sz)ezt

Eα,α(z)
, ς

)
=

Eα,α(sς )eς t

E ′
α,α(ς )

.

Put r = |ς | and θ = arg ς . To bound the r.h.s., by Eα,α(ς ) = 0 and (5),

α−1ς1/α−1 exp(ς1/α) =
α(α − 1)ς−2

Γ (2 − α)
+ O(r−3).

On the other hand, by (2),

Eα,α−1(ς ) = α−1ς2/α−1 exp(ς1/α) +
α(α2

− 1)ς−2

Γ (2 − α)
+ O(r−3).

As a result, there is c > 0, such that |Eα,α−1(ς )| ≥ cr1/α−2, so by (4),

|E ′

α,α(ς )| = |Eα,α−1(ς )/(ας )| ≥ (c/α)r1/α−3. (24)

Next, by (3) and (6), sups≥0,ς |Eα,α(sς )| < ∞ and |eς t
| = er t cos θ

≤ e−λr t , where λ =

− cos(απ/2) > 0. Putting all the bounds together, there is a constant C > 0, such that⏐⏐Eα,α(sς )eς t/E ′

α,α(ς )
⏐⏐ ≤ Cr3−1/αe−λr t . (25)

Taking the sum of (25) over ς±n then yields the desired absolute convergence. □

3.3. Alternative expression, asymptotic at time zero, and approximation

Following a general heuristic applicable to Lévy processes (cf. [17], p. 217), one can get
an expression of k−b,c analogous to one for a standard Brownian motion ([5], p. 212, 3.0.6).
Denote by fx the p.d.f. of τx and let d = b + c. Then

k−b,c = f−b − fc ∗ f−d + f−b ∗ fd ∗ f−d − fc ∗ f−d ∗ fd ∗ f−d + · · ·

=

∞∑
n=0

f−b ∗ (δ − fc ∗ f−c) ∗ ( fd ∗ f−d )∗n, (26)

where δ is the Dirac measure at 0 and p∗0
:= δ for any p.d.f. p. Indeed, by k−b,c(t) =

f−b(t) − P{τ−b ∈ dt, Tc < τ−b}/dt = f−b(t) − P{τ−b ∈ dt, τc < τ−b}/dt and strong Markov
property,

k−b,c(t) = f−b(t) − (kc,−b ∗ f−d )(t), (27)
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where we have defined kx,c(t) = P{τx ∈ dt, τc > τx }/dt for all x , c ∈ R. Likewise,
kc,−b(t) = fc(t)− (k−b,c ∗ fd )(t). Plug the identity into (27) to get k−b,c = ϕ0 +ϕ1 ∗k−b,c, where
ϕ0 = f−b − fc ∗ f−d = f−b ∗ (δ− fc ∗ f−c) and ϕ1 = fd ∗ f−d . Then k−b,c =

∑N−1
n=0 ϕ0 ∗ϕ∗n

1 +rN
for each N ∈ N, where rN = ϕ∗N

1 ∗ k−b,c, and (26) follows if rN (t) → 0 as N → ∞. Indeed,
given q > 0, by f̃d (q) f̃−d (q) < 1, r̃N (q) = [ f̃d (q) f̃−d (q)]N k̃−b,c(q) → 0, so

∫ t
0 rN (s) ds ≤

eqt r̃N (q) → 0. Since ϕ1 is bounded, then rN (t) = ϕ1 ∗ rN−1(t) ≤ supϕ1 ×
∫ t

0 rN−1(s) ds → 0.
Based on (26), it is quite easy to get that as t ↓ 0,

k−b,c(t) ∼ f−b(t), (28)

in particular, by Eq. (14.35) in [22], ln k−b,c(t) ∼ −Cbα/(α−1)t−1/(α−1), where C > 0 is constant.
First, by (27), 0 < f−b(t) − k−b,c(t) = (kc,−b ∗ f−b−c)(t) < ( fc ∗ f−d )(t) = (u ∗ f−b)(t), where
u = fc ∗ f−c is a p.d.f. and we have used kc,−b < fc and f−d = f−b ∗ f−c. Next,

(u ∗ f−b)(t) =

∫ t

0
u(s) f−b(t − s) ds ≤ sup

s≤t
f−b(s)×

∫ t

0
u(s) ds = o(1) sup

s≤t
f−b(s), t ↓ 0.

Since f−b is unimodal ([22], p. 416), for 0 < t ≪ 1, sups≤t f−b(s) = f−b(t), implying (28).
An issue that may arise concerns approximation. In practice, the series expression (10) of

k−b,c(t) has to be approximated by a sum over ς ∈ Zα,α with |ς | less than a certain cut-off,
and likewise, if Fourier inversion is used to evaluate k−b,c(t), it has to be approximated by an
integral of k̃−b,c(iy)eiyt over y with |y| less than a certain cut-off. How do the errors of these
two approximations compare? For brevity, consider the ones for ψs(t) with fixed s ∈ [0, 1) and
t > 0. From (22), it is seen that to make a fair comparison, the cut-offs in the approximations
should be of the same order. Then as a first step, it is reasonable to compare

rM =

∑
|ς |>M

|Res(Hs(z)ezt , ς)| and r̂M =
1

2π

∫
|y|>M

|Hs(iy)| dy.

Corollary 3. Fix s ∈ [0, 1) and t > 0. Given any θ ∈ (1/2, 1), as M → ∞,

rM = O(M2t−1e−θλMt ), r̂M = O((1 − s)−1e−θ (1−s)λ0 M1/α
),

where λ = − cos(απ/2), λ0 = cos(π/(2α)), and the implicit coefficients in the O(·) terms only
depend on α.

Remark. The main difference between the bounds is in the power of M in the exponents in
the O(·) terms. Since α > 1, as M → ∞, the bound on rM vanishes much faster. However,
while it is free of s, for t close to 0, it is small only when M is large. In contrast, the bound
on r̂M is free of t , however, for s close to 1, it is small only when M is large. Meanwhile, the
approximation based on residuals requires the calculation of many ς , so it may actually have
much higher computational complexity than the Fourier inversion.

Proof of Corollary 3. The bound on rM results from a minor refinement of the last part of
the proof of Proposition 1. For M ≫ 1, all the roots ς ∈ Zα,α with |ς | > M are simple and
can be enumerated as ς±n = (2π in)α[1 + o(1)]. Then by (25), letting θ ′

= θ1/2,

rM = O(1)
∑

(2πn)α>θ ′ M

n3α−1e−θ ′λ(2πn)α t
= O(1)

∫
∞

(θ ′ M)1/α
u3α−1e−θ ′λuα t du

= O(1)
∫

∞

θ ′ M
y2e−θ ′λyt dy = O(M2t−1e−θλMt ).
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On the other hand, since Re((iy)1/α) = λ0 y1/α , by (5), Hs(iy) = O(e−(1−s)(iy)1/α [1+o(1)]), so

r̂M = O(1)
∫

∞

M
e−θ (1−s)λ0 y1/α

dy

= O(1)
∫

∞

M1/α
uα−1e−θ (1−s)λ0u du = O((1 − s)−1e−θ (1−s)λ0 M1/α

).

Throughout, the implicit coefficients in the O(·) terms only depend on α. □

4. Distribution of first exit at upper end

The main result of this section is Theorem 4. It provides a factorization of the joint sub-p.d.f.
of the time Tc, undershoot XTc−, and jump ∆Tc = XTc − XTc− when X makes its first exit from
[−b, c] by jumping across c. For x ∈ [−b, c] and t > 0, define

lx,−b,c(t) = P{X t ∈ dx, Xs ∈ [−b, c] ∀s ≤ t}/dx,
L−b,c(t) = P{Xs ∈ [−b, c] ∀s ≤ t}.

While the functions can be defined for any process that has a p.d.f. at any time point, in the
case of a spectrally one-sided strictly stable process, they have explicit representations.

To start with, letting d = b + c, it is known that for q ≥ 0 ([14], Theorem 8.7),

l̃x,−b,c(q) =
W (q)(c)W (q)(b + x)

W (q)(d)
− W (q)(x+)

=
cα−1(b + x)α−1

dα−1

Eα,α(cαq)Eα,α((b + x)αq)
Eα,α(dαq)

− xα−1
+

Eα,α(xα
+

q). (29)

Theorem 4. Fix b > 0 and c > 0. Let d = b + c. Then for x ∈ R,

P{Tc < τ−b, XTc− ∈ dx} =
1{x ∈ (−b, c)}

(c − x)α
·
| sin(απ )|

π

[
cα−1(b + x)α−1

dα−1 − xα−1
+

]
dx,

(30)

and for x ∈ (−b, c), conditional on {Tc < τ−b} ∩ {XTc− = x}, ∆Tc and Tc are independent,
such that ∆Tc has the Pareto p.d.f. π (u) = α(c − x)αu−α−11{u > c − x} and Tc has p.d.f.

p(t) = Γ (α)
[

cα−1(b + x)α−1

dα−1 − xα−1
+

]−1

lx,−b,c(t) (31)

with

lx,−b,c(t) =
cα−1(b + x)α−1

dα−1

∑
ς∈Zα,α

Res
(

Eα,α(cαz)Eα,α((b + x)αz)
Eα,α(dαz)

ezt ,
ς

dα

)
. (32)

Finally, given t > 0, the mapping x ↦→ lx,−b,c(t) can be analytically extended to C\(−∞,−b].

Corollary 5. Under the same setting as above,

L−b,c(t) = (c/d)α−1
∑

ς∈Zα,α

Res
(

Eα,α((c/d)αz)Eα,α+1(z)
Eα,α(z)

ezt/dα , ς

)
, (33)

while for z with Re(z) ≥ 0

L̃−b,c(z) =
dcα−1 Eα,α(cαz)Eα,α+1(dαz)

Eα,α(dαz)
− cαEα,α+1(cαz). (34)
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In practice lx,−b,c(t) and L−b,c(t) can be evaluated by Fourier inversion, and similar to
k−b,c(t), the issue of approximation error due to finite cut-off may arise either for the Fourier
inversion or for the residual-based expressions (32)–(33). Bounds on the approximation errors
can be obtained similarly as in Corollary 3. For brevity, we omit a detailed discussion on this.

4.1. Factorization and conditional independence

The factorization in Theorem 4 follows from the next result.

Lemma 6. Denote by Π (du) the Lévy measure of X. Then given b, c > 0, for t > 0 and
x ∈ R,

P{Tc < τ−b, Tc ∈ dt, XTc− ∈ dx, ∆Tc ∈ du}

= 1{x > −b, u > c − x > 0} dt P{X t ∈ dx, Xs ∈ [−b, c] ∀s ≤ t}Π (du). (35)

Proof. The proof follows the one on p. 76 of [2]. As noted earlier, P{XTc > c} = 1. If
Tc < τ−b, then for all s < XTc , Xs ∈ [−b, c] and so XTc− ≥ −b. Therefore, almost surely, for
any bounded function r (t, x, u) ≥ 0,

r (Tc, XTc−,∆Tc )1{Tc < τ−b}

=

∑
t

r (t, X t−, ∆t )1{∆t > c − X t− > 0, X t− ≥ −b, Xs ∈ [−b, c] ∀s < t} .

The sum is well-defined as it runs over the set of t’s where X has a jump, which is countable.
The rest of the proof then applies the compensation formula to get the expectation of the sum
as an integral of r (t, x, u) with respect to the measure on the r.h.s. of (35). Since the argument
has become standard, it is omitted for brevity. □

Proof of Theorem 4, part one. The Lévy measure of X is 1{x > 0} x−α−1dx/Γ (−α). By
Lemma 6,

P{Tc < τ−b, Tc ∈ dt, XTc− ∈ dx, ∆Tc ∈ du}

= 1{c > x > −b} l−x,b,c(t) dt dx
1{u > c − x}α(α − 1)du

Γ (2 − α)uα+1 . (36)

Letting q = 0 in (29) gives∫
∞

0
lx,−b,c(t) dt = l̃x,−b,c(0) =

1
Γ (α)

[
cα−1(b + x)α−1

dα−1 − xα−1
+

]
. (37)

Then by (36), for x ∈ (−b, c),

P{Tc < τ−b, XTc− ∈ dx} = dx
∫

∞

0
lx,−b,c(t) dt

∫
∞

c−x

α(α − 1)
Γ (2 − α)

du
uα+1

=

[
cα−1(b + x)α−1

dα−1 − xα−1
+

]
(α − 1)

Γ (α)Γ (2 − α)
dx

(c − x)α
.

By Lemma 6, P{XTc− ∈ (−b, c)} = 1. Then (30) follows. Next, given x ∈ (−b, c), by (36),

P{Tc ∈ dt, ∆Tc ∈ du | Tc < τ−b, XTc− = x} = Cl−x,b,c(t) dt ×
1{u > c − x} du

uα+1 ,
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for some constant C = C(x). It follows that conditional on Tc < τ−b and XTc− = x , Tc and ∆Tc

are independent, with ∆Tc following a Pareto distribution and Tc having a p.d.f. in proportion
to l−x,b,c(t). By normalizing l−x,b,c(t) by (37), (32) follows. The main step of the proof is to
derive the expression of lx,−b,c(t) for given x ∈ (−b, c), which will be dealt with in the next
subsection. □

4.2. Contour integration

Define

hx,c(t) = P{X t ∈ dx, Xs ≤ c ∀s ≤ t}/dx . (38)

In [8], hx,c(t) plays a critical role in deriving the distribution of the triple (Tc, XTc−, XTc ),
known as Gerber–Shiu distribution ([14], Chapter 10).

Lemma 7. Fix b > 0 and c > 0.

(a) Given x ∈ (−b, c), lx,−b,c(t) = hx,c(t) − (k−b,c ∗ hb+x,b+c)(t), where all the functions
involved are treated as functions of t .

(b) Given t, the mapping x ↦→ lx,−b,c(t) is continuous on (−b, c).

Proof. (a) Let r (x) ≥ 0 be a function with support in [−b, c]. Then for any t > 0,

E[r (X t )1{Xs ∈ [−b, c] ∀s ≤ t}] =

∫ c

−b
r (x)lx,−b,c(t) dx .

On the other hand, the l.h.s. can be decomposed as the difference of two expectations

E[r (X t )1{Xs ≤ c ∀s ≤ t}] − E[r (X t )1{τ−b ≤ t, Xs ≤ c ∀s ≤ t}].

The first expectation is equal to
∫ c
−b r (x)hx,c(t) dx . By the strong Markov property of X , the

second expectation is equal to∫ c

x=−b

∫ t

u=0
r (x)P{X t ∈ dx, τ−b ∈ du, Xs ≤ c ∀s ≤ t}

=

∫ c

x=−b

∫ t

u=0
r (x)P{X t ∈ dx + b, Xs ≤ b + c ∀s ≤ t − u}P{τ−b ∈ du, Xs ≤ c ∀s ≤ u}

=

∫ c

−b
r (x)

[∫ t

0
hx+b,b+c(t − u)k−b,c(u) du

]
dx .

Comparing the integrals and by r (x) ≥ 0 being arbitrary, the claimed identity follows.
(b) Given b, c > 0, from [8], the mapping (x, t) ↦→ hx,c(t) is continuous on (−∞, c) ×

[0,∞), while from Section 3, the mapping t ↦→ k−b,c(t) is continuous on [0,∞). Then
given t > 0, by dominated convergence, the mapping x ↦→ (k−b,c ∗ hb+x,b+c)(t) =∫ t

0 k−b,c(s)hb+x,b+c(t − s) ds is continuous on (−∞, c). By (a), the proof is complete. Note
that lx,−b,c(t) is only defined for x ∈ (−b, c), but the proof implies that it can be continuously
extended to x ≤ −b. □

Proof of Theorem 4, part two. Fix b, c > 0. For x ∈ (−b, c), put

Fx (z) =
cα−1(b + x)α−1

dα−1

Eα,α(cαz)Eα,α((b + x)αz)
Eα,α(dαz)

.
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First, suppose x ̸= 0. From (37), lx,−b,c(t) is an integrable function of t . Therefore, to show
(32), it suffices to show that l̂x,−b,c(y) = l̃x,−b,c(−iy) is an integrable function of y and that

1
2π i

∫ i∞

−i∞
[Fx (z) − xα−1

+
Eα,α(xα

+
z)]ezt dz =

∑
ς∈Zα,α

Res(Fx (z)ezt , ς/dα).

Let s = c/d, v = (b + x)/d , and w = x/d = s +v−1. By the same contour integral argument
in the proof of Proposition 1, if we make change of variables z′

= dαz and t ′
= t/dα and let

G(z) = G0(z) − wα−1
+

Eα,α(wα
+

z),

where G0(z) = (sv)α−1 Eα,α(sαz)Eα,α(vαz)/Eα,α(z), then it boils down to showing that∫
∞

−∞

|G(iy)| dy < ∞ (39)

and given any t > 0,∫
CRn

G(z)ezt dz → 0, n → ∞, (40)

where the contour CR and the numbers Rn are defined in the proof of Proposition 1.
Fix β ∈ (π/2, απ/2). Then λ := cos(β/α) > 0. Put Ω = {z : | arg z| ∈ [π/2, β]}. For

z ∈ Ω , Re(z1/α) = |z|1/α cos(arg z/α) ≥ |z|1/αλ. Then by (5), given c > 0, for z ∈ Ω , as
|z| → ∞,

cα−1 Eα,α(cαz) = α−1z1/α−1 exp(cz1/α)[1 + rc(z)], (41)

where rc(z) = O(z−1−1/αe−cz1/α
) = o(1), with the implicit coefficient in O(·) being uniform

for arg z. By (41) and s + v − 1 = w,

G0(z) = α−1z1/α−1 exp(wz1/α){1 + [rs(z) + rv(z) − r1(z)][1 + o(1)]}

= α−1z1/α−1 exp(wz1/α)[1 + O(z−1−1/αe− min(s,v)z1/α
)]. (42)

If w < 0, then G(z) = G0(z). Letting z = iy with y ∈ R in (42), (39) follows. If w > 0, then
applying (41) to c = w+ = w combined with (42) and 0 < w < min(s, v) yields

G(z) = O(z−2). (43)

Letting z = iy with y ∈ R in (43), (39) again follows. To show (40) for w ̸= 0, as in the proof
of Proposition 1, let CR,1 = CR ∩ Ω and CR,2 = CR \ CR,1. By (42) and (43),

sup
z∈CR,1

|G(z)| =

{
O(R1−αewλR) if w < 0,
O(R−2α) if w > 0.

Meanwhile, |ezt
| ≤ 1 for z ∈ CR,1 and Length(CR,1) = O(Rα). Then as R → ∞,∫

CR,1

G(z)ezt dz =

{
O(RewλR) if w < 0,
O(R−α) if w > 0.

Therefore, if w ̸= 0, then
∫

CR,1
G(z)ezt dz → 0 as n → ∞. On the other hand, following the

derivation of (21), for some m0 > 0,

sup
z∈CRn ,2

⏐⏐⏐⏐ Eα,α(sαz)Eα,α(vαz)
Eα,α(z)

⏐⏐⏐⏐ ≤ sup
z∈CRn ,2

|Hsα (z)| sup
z∈CRn ,2

|Eα,α(vαz)|

= O(R1+α
n em0 Rn ) · O(R1−α

n em0 Rn ) = O(R2
ne2m0 Rn ),
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and, since w+ < 1, |wα−1
+ Eα,α(wα

+
z)| ≤ Eα,α(|z|) = O(R1−α

n em0 Rn ). Meanwhile, from the
derivation of (23), for some b0 > 0, |ezt

| ≤ e−b0 Rα t for z ∈ CR,2. Then by α > 1 and t > 0,∫
CRn ,2

G(z)ezt dz = O(R2+α
n e2m0 Rn−b0 Rαn t ) → 0, n → ∞.

The desired convergence in (40) then follows and hence (32) is proved in the case x ̸= 0.
It only remains to show that for given t > 0, R(x) :=

∑
ς∈Zα,α

Res(Fx (z)ezt , ς/dα) has an
analytic extension to D := C\(−∞,−b]. Once this is done, since by Lemma 7, x ↦→ lx,−b,c(t)
is continuous at 0 and since it was just shown that the two functions are equal on (−b, c)\ {0},
they must be equal at 0 and can be analytically extended to D, finishing the proof.

For each ς ∈ Zα,α , by change of variable in the contour integral representation of residual
and dominated convergence,

wς (x) := Res
(

Eα,α(cαz)Eα,α((b + x)αz)
Eα,α(dαz)

ezt ,
ς

dα

)
=

d−α

2π i

∞∑
n=0

((b + x)/d)nα

Γ (nα + α)

∮
γς

Eα,α(sαz)zn

Eα,α(z)
ezt ′ dz, (44)

where s = c/d, t ′
= t/dα , and γς ⊂ C \ Zα,α is a counterclockwise circle that encloses ς but

no other root in Zα,α . It is then not hard to see that wς has an analytic extension from (−b, c)
to D. All ς ∈ Zα,α with large enough modulus are simple roots of Eα,α(z) and have | arg ς |

arbitrarily close but strictly greater than απ/2. For each such ς and each z ∈ D,

wς (z) =
Eα,α(sας )eς t ′

dαE ′
α,α(ς )

× Eα,α(vας ),

where v = (b + z)/d. By (25), for a constant C > 0,
⏐⏐⏐Eα,α(sας )eς t ′/dαE ′

α,α(ς )
⏐⏐⏐ = O(1)e−C |ς |.

On the other hand, by (5), there is a constant C ′ > 0 such that

|Eα,α(vας )| ≤ Eα,α((|v| + 1)α|ς |) = O(1) exp{C ′(|v| + 1)|ς |
1/α

}. (45)

Together, these two bounds imply that for all ς ∈ Zα,α ,

|wς (z)| = O(1)e−C |ς |+C ′(|b+z|/d+1)|ς |
1/α

(46)

and hence
∑

ς∈Zα,α
|wς (z)| converges uniformly in any compact subset of D. As a result,

R(x) = [cα−1(b + x)α−1/dα−1]
∑

ς∈Eα,α wς (x) can be extended to a continuous function R(z)
on D, and by dominated convergence, the integral of R(z) along any simple closed contour in
D is 0. Then by Morera’s theorem ([21], p. 208), R(z) is analytic in D. □

Proof of Corollary 5. Define wς (x) by (44). From (46), for all ς ∈ Zα,α and x ∈ [−b, c],
|wς (x)| = O(1)e−c′

|ς |+2C |ς |
1/α

. Then by dominated convergence and Fubini’s theorem,

L−b,c(t) =

∫ c

−b
lx,−b,c(t) dx =

∑
ς∈Eα,α

∫ c

−b
[cα−1(b + x)α−1/dα−1]wς (x) dx

=
cα−1

dα−1

∑
ς∈Zα,α

∫ c

−b
(b + x)α−1

(∮
d−αγς

Eα,α(cαz)Eα,α((b + x)αz)
Eα,α(dαz)

ezt dz

)
dx

=
cα−1

dα−1

∑
ς∈Zα,α

∮
d−αγς

[∫ d

0
yα−1 Eα,α(yαz) dx

]
Eα,α(cαz)
Eα,α(dαz)

ezt dz.
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By using the series expression of Eα,α and integration term-by-term,∫ d

0
yα−1 Eα,α(yαz) dy = dαEα,α+1(dαz). (47)

Then

L−b,c(t) =
cα−1

dα−1

∑
ς∈Zα,α

∮
d−αγς

dαEα,α+1(dαz)
Eα,α(cαz)
Eα,α(dαz)

ezt dz,

yielding (33) by a simple change of variable. Finally, by Fubini’s theorem, for z with Re(z) ≥ 0,
L̃−b,c(z) =

∫ c
−b l̃x,−b,c(z) dx . Then by plugging in (29) and applying (47), (34) follows. □

4.3. Asymptotic near time zero

Denote by gt the p.d.f. of X t and by fx the p.d.f. of τx .

Proposition 8. Given b > 0, c > 0, and x ∈ (−b, c), as t ↓ 0, lx,−b,c(t) ∼ gt (x).

Proof. It is clear that lx,−b,c(t) < gt (x). On the other hand,

gt (x) − lx,−b,c(t) ≤ P{X t ∈ dx, τ−b < t}/dx + P{X t ∈ dx, Tc < t}/dx .

By the continuity of X ’s downward movement and time reversal, P{X t ∈ dx, Tc < t} =

P{X t ∈ dx, τc < t} = P{X t ∈ dx, τ−(c−x) < t}. Then

gt (x) − lx,−b,c(t) ≤ P{X t ∈ dx, τ−b < t}/dx + P{X t ∈ dx, τ−(c−x) < t}/dx .

Since both b and c − x are greater than (−x)+, it suffices to show that for any θ > (−x)+,
j(t) := P{X t ∈ dx, τ−θ < t}/dx = o(gt (x)) as t ↓ 0. Given y, as t ↓ 0,

gt (y) =

⎧⎪⎨⎪⎩
t−1/αg1(t−1/α y) ≍ t−1/α(t−1/α y)−α−1

≍ t if y > 0,
t−1/αg1(0) ≍ t−1/α if y = 0,
t fy(t)/|y| if y < 0,

(cf. [2], Corollary VII.3). Since θ + x > 0, by strong Markov property and gt (θ + x) = O(t),
j(t) =

∫ t
0 f−θ (t − s)gs(θ + x) ds = O(t2) sups≤t f−θ (s). Since f−θ is unimodal ([22], p. 416),

j(t) = O(t2) f−θ (t). By Eq. (14.35) in [22], ln f−θ (t) ∼ −Cθα/(α−1)t−1/(α−1), where C > 0
is a constant. If x ≥ 0, then by t = O(gt (x)), f−θ (t) = o(gt (x)). If x < 0, as |x | < θ ,
f−θ (t) = o( f−|x |(t)) = o( fx (t)). In either case, j(t) = o(gt (x)). □

5. Applications

From Section 2.2, if −ϱ is the largest real root of Eα,α(z), then ϱ > 0. It is known that −ϱ is
a simple root of Eα,α(z) and as t → ∞, P{Xs ∈ [−b, c] ∀s ≤ t} ∼ Ce−ϱt/dα for some C > 0,
where d = b+c. This directly follows from Theorem 2 of [4], which considers the exponential
decay of a general spectrally negative Lévy process killed at the exit from a bounded interval.
As applications of the results in last sections, several refined results on ϱ and the spectrum of
the seminar group of X killed at the exit from [−b, c] will be obtained.

From [4], any ς ∈ Zα,α has Re(ς ) ≤ −ϱ. By combining Theorem 2 of [4] and Theorem 4
of the paper, this can be strengthened as follows.

Proposition 9. For any ς ∈ Eα,α \ {−ϱ}, Re(ς ) < −ϱ.
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The following corollary refines the results in [3,4] on the tail behavior of the first exit time.

Corollary 10. Fix b, c > 0 and let d = b + c. Then as t → ∞,

P{τ−b ∈ dt, τ−b < Tc}/dt ∼ κe−ϱt/dα ,

P{Tc ∈ dt, τ−b > Tc}/dt ∼ [ϱEα,α+1(−ϱ) − 1]κe−ϱt/dα ,

where κ = (cα−1/d2α−1)Eα,α(−cαϱ/dα)/E ′
α,α(−ϱ).

From the second asymptotic in Corollary 10, ϱEα,α+1(−ϱ) ≥ 1. The strict inequality is
likely to be true, however, it is unclear how to prove it by the approach of the paper.

According to (13), Hs(z) = Eα,α(sz)/Eα,α(z) is the Laplace transform of a probability
distribution. Since Eα,α(z) ̸= 0 if Re(z) > −ϱ, ϱ is the radius of convergence of the power
series expansion of Hs(z) around 0. A refined characterization of ϱ along this line is as follows.

Corollary 11. As k → ∞, H (k)
0 (0) ∼ (−1)kϱ−k−1k!/[Γ (α)E ′

α,α(−ϱ)]. In particular, ϱ is the

limit of both −k H (k−1)
0 (0)/H (k)

0 (0) and (k/e)|H (k)
0 (0)|

−1/k
.

Consider the distribution of X given that it has stayed in an interval for a long time. In this
context, it is convenient and without loss of generality to let the interval be (0, 1). Denote

At = {Xs ∈ [0, 1] ∀s ≤ t}.

Since much of the discussion can be done for a general spectrally positive Lévy process, we
will often denote the scale function by W (z)(x) instead of xα−1 Eα,α(xαz), and use [W (z)(x)]′,
[W (z)(x)]′′, . . . , [W (z)(x)](k) to denote derivatives in z with x being fixed.

Corollary 12. Fix any x0 ∈ (0, 1). Let Y B be the process of X conditional on AB and X0 = x0.
Then as B → ∞, Y B converges in finite dimensional distribution to a Markov process Y with

P{Ys+t ∈ dy | Ys = x}

dy
=

W (−ϱ)(1 − y)
W (−ϱ)(1 − x)

∑
ς∈Zα,α

Res
(

W (z)(1 − x)W (z)(y)
W (z)(1)

e(z+ϱ)t , ς

)
.

Theorem 3.1 of [15] furnishes the resolvent density of the transition kernel for a general
spectrally one-sided Lévy process. It also obtains the p.d.f. of the corresponding stationary
distribution as W (−ϱ)(x)W (−ϱ)(1− x)/[W (−ϱ)(1)]′, which also easily follows from Corollary 12
in the case of X .

Finally, consider the semigroup of X killed at the exit from (0, 1). Denote by Px the law of
X when X0 = x and Ex the expectation under Px . By (32) and (33),

Px
{X t ∈ dy, At }

dy
= rt,ς (x, y) :=

∑
ς∈Zα,α

at,ς (x, y),

where given t > 0, x and y, the series is absolutely convergent and for t ≥ 0,

at,ς (x, y) = Res
(

W (z)(1 − x)W (z)(y)ezt

W (z)(1)
, ς

)
.

The semigroup associated with X killed at the exit from [0, 1] is (Z t )t≥0, where

Z t f (x) = Ex [ f (X t )1{At }]
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for t > 0 and Z0 f (x) = f (x). Furthermore, for ς ∈ Eα,α and t ≥ 0, define operator

Z t,ς f (x) =

∫ 1

0
at,ς (x, y) f (y) dy.

Denote by C0 the Banach space { f ∈ C([0, 1]) : f (0) = f (1) = 0} equipped with the
sup-norm. From [4,9], when acting on C0, Z t has the Feller property, i.e., for any f ∈ C0,
Z t f ∈ C0 and Z t f → f as t → 0. Meanwhile, Z t has the strong Feller property, i.e., for any
Borel bounded function f on [0, 1] and t > 0, the restriction of Z t f on (0, 1) is continuous.
Denote by d(ς ) the multiplicity of ς as a root of Eα,α . The structure of Z t and its spectrum are
as follows. For symmetric Lévy processes, similar spectral results have long been known [12].

Proposition 13. For each t > 0, the following are true.

(a) Z t , Z t,ς , ς ∈ Zα,α are all compact maps of L1([0, 1]) → C0 with
∑

|ς |≤M Z t,ς → Z t
under the operator norm as M → ∞. Moreover, for s ≥ 0 and η ∈ Zα,α , Zs,ς Z t,η =

1{η = ς} Zs+t,ς .
(b) Given ς ∈ Zα,α , define functions

g j,ς (x) = [W (ς )(1 − x)]( j−1)
= (1 − x) jα−1 E ( j−1)

α,α ((1 − x)ας ) (48)

for j = 1, . . . , d(ς ). Then Z t,ς maps L2([0, 1]) into Vς = span(g1,ς , . . . , gd(ς ),ς ) and∑
ς Vς is dense in L2([0, 1]).

(c) Let ς ∈ Zα,α and j = 1, . . . , d(ς ). Then (Z t − eς t )k g j,ς = 0 if and only if k ≥ j .
(d) For a ∈ {etς , ς ∈ Zα,α} and j ≥ 1, the null space of (Z t − a) j on L2([0, 1]) is spanned

by {gi,ς : eς t
= a, 1 ≤ i ≤ min( j, d(ς ))}.

(e) The spectrum of Z t acting on L2([0, 1]) is {0}∪{eς t , ς ∈ Zα,α}, with 0 the only element
that is not an eigenvalue.

5.1. Proof of Proposition 9 and its corollaries

To start with, if ς ∈ Zα,α with d(ς ) = k, then in its neighborhood, W (z)(1) = Eα,α(z) =

(z − ς )k g(z), where g is analytic with g(ς ) ̸= 0. As a result,

at,ς (x, y) = Res
(

W (z)(1 − x)W (z)(y)ezt

(z − ς )k g(z)
, ς

)
=

1
(k − 1)!

[
W (ς )(1 − x)W (ς )(y)eς t

g(ς )

](k−1)

=

k−1∑
j=0

c j [W (ς )(1 − x)W (ς )(y)eς t ]( j), (49)

where c j = c j (ς ) are constants. Then given t > 0, at,ς (x, y) is a linear combination of
functions [W (ς )(1 − x)]( j)[W (ς )(y)](l), 0 ≤ j, l < d(ς ), so at,ς ∈ C([0, 1] × [0, 1]). By
[W (ς )(1)]( j)

= 0 for j < d(ς ), at,ς (0, y) = 0. Since [W (ς )(1 − x)]( j) is a weighted sum of
W ∗n(1 − x) over n ≥ 1 and W ∗n(0) = 0, at,ς (1, y) = 0 as well.

Lemma 14. For each t > 0, supx,y∈[0,1] |rt (x, y) −
∑

|ς |≤M at,ς (x, y)| → 0 as M → ∞. As
a result, rt ∈ C([0, 1] × [0, 1]) with rt (0, y) = rt (1, y) = 0.

Proof. Denote ∥ f ∥ = supx,y∈[0,1] | f (x, y)|. Then ∥rt −
∑

|ς |≤M at,ς∥ ≤
∑

|ς |>M ∥at,ς∥. If
|ς | ≫ 1, then d(ς ) = 1, so from (49), at,ς (x, y) = W (ς )(1 − x)W (ς )(y)eς t/[W (ς )(1)]′. Then
from the derivation of (25), ∥at,ς∥ = O(|ς |

3−1/αeRe(ς )t ). By (7), the sum of the bounds is finite.
Then the uniform convergence follows. □
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We also need an elementary result. Let S be a finite set of real numbers and for each s ∈ S,
let cs ∈ C be a constant. Suppose F(t) :=

∑
s∈S cseist

→ 0 as t → ∞. Then t−1
∫ t

0 |F |
2

→ 0.
However, it is always true that t−1

∫ t
0 |F |

2
→
∑

s |cs |
2. Thus cs = 0.

Proof of Proposition 9. The goal is to show S = {ς ∈ Zα,α : Re(ς ) = −ϱ} only contains −ϱ.
By (6), S ⊂ {z : | arg z| > απ/2}. Then |S| < ∞. Given a Borel set B ⊂ [0, 1], as t → ∞

Px
{X t ∈ B,At } ∼ Ce−ϱt , (50)

where C > 0 is a constant ([4], Theorem 4). On the other hand, by Lemma 14, the l.h.s. equals∑
ς∈Zα,α

∫
B

at,ς (x, y) dy ∼

∑
ς∈S

∫
B

at,ς (x, y) dy.

Assume maxς∈S d(ς ) = k > 1 and let S0 = {ς ∈ S : d(ς ) = k}. Then from (49), for ς ∈ S0,∫
B

at,ς (x, y) dy = eς t

[
tk−1 W (ς )(1 − x)

E (k)
α,α(ς )

∫
B

W (ς )(y) dy + pς (t)

]
,

while for ς ∈ S \ S0,
∫

B at,ς dy = eς t pς (t), where each pς (t) is a polynomial of t of degree
at most k − 2. Since each ς ∈ S has Re(ς ) = −ϱ, by comparing with (50), it follows that∑

ς∈S0

e(ς+ϱ)t W (ς )(1 − x)

E (k)
α,α(ς )

∫
B

W (ς )(y) dy → 0.

Since ς+ϱ is a pure imaginary number, from the elementary fact mentioned prior to the proof,

W (ς )(1 − x)
∫

B
W (ς )(y) dy = 0

for each ς ∈ S0. Since B is arbitrary and W (ς )(y) is continuous in y, then W (ς )(1−x)W (ς )(y) ≡

0, and so Eα,α((1 − x)ας )Eα,α(yας ) = 0 for all x, y ∈ (0, 1). Since Eα,α(z) is analytic, this
implies Eα,α(z) ≡ 0, which is impossible. The contradiction implies that all ς ∈ S are simple.
Then with exactly the same argument,∑

ς∈S

e(ς+ϱ)t W (ς )(1 − x)
E ′
α,α(ς )

∫
B

W (ς )(y) dy − C → 0,

which implies that S = {−ϱ}. □

Proof of Corollary 10. The first asymptotic result is a direct consequence of Propositions 1
and 9, the second one follows by combining the first one with P{Tc ∈ dt, τ−b > Tc}/dt =

−L ′

−b,c(t) − P{τ−b ∈ dt, τ−b < Tc}/dt and Corollary 5. □

Proof of Corollary 11. By Proposition 1, H0(q) = [Γ (α)Eα,α(q)]−1 is the Laplace transform
of ψ0(t) =

∑
ς∈Zα,α

Res(H0(z)ezt , ς). Thus H (k)(0) =
∫

∞

0 (−t)kψ0(t) dt . For each ς ∈

Zα,α \ {−ϱ}, by Re(ς ) < −ϱ,
∫

∞

0 tkRes(H0(z)ezt , ς) dt = o(k!ϱ−k−1) as k → ∞. Fix
M > 0, such that all ς with |ς | > M can be enumerated as ς±n ≍ nα and by (24),
have

∫
∞

0 tkRes(H0(z)ezt , ς) dt = O(1/E ′
α,α(ς ))

∫
∞

0 tkeς t dt = O(k!|ς |
2−k−1/α). Then by

dominated convergence, for k > 2,
∫

∞

0 (−t)kψ0(t) dt = Σ1 + Σ2 + I , where Σ1 is the sum
of
∫

∞

0 (−t)kRes(H0(z)ezt , ς) dt over ς ̸= −ϱ with |ς | ≤ M , Σ2 is the one over ς with
|ς | > M , and I =

∫
∞

0 (−t)kRes(H0(z)ezt ,−ϱ) dt . Since there are only a finite number of
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ς with |ς | ≤ M , from the above discussion, Σ1 = o(k!ϱ−k−1). On the other hand, Σ2 =

O(k!)
∑

M=O(nα ) n−(k−2)α−1
= o(k!ϱ−k−1). Finally, I =

∫
∞

0 (−t)k[Γ (α)E ′
α,α(−ϱ)]−1e−ϱt dt ,

yielding the claim. □

Proof of Corollary 12. Given 0 = t0 < t1 < · · · < tn < ∞. If B > tn , then by the Markov
property of X , for x0, x1, . . . , xn ∈ (0, 1),

Px0{Y B
t1

∈ dx1, . . . , Y B
tn ∈ dxn} = Px0{X t1 ∈ dx1, . . . , X tn ∈ dxn | AB}

=

n∏
i=1

Pxi−1{X ti ∈ dxi − xi−1,Ati −ti−1} ×
Pxn (AB−tn )
Px0 (AB)

=

n∏
i=1

lxi −xi−1,−xi−1,1−xi−1 (ti − ti−1) ×
L−xn ,1−xn (AB−tn )

L−x0,1−x0 (AB)
.

Combining Corollary 5 and Proposition 9, as B → ∞

Px0{Y B
t1

∈ dx1, . . . , Y B
tn ∈ dxn} →

n∏
i=1

lxi −xi−1,−xi−1,1−xi−1 (ti − ti−1) ×
W (−ϱ)(1 − xn)eϱtn

W (−ϱ)(1 − x0)
,

yielding that Y B converges to a Markov process Y with transition kernel

P{Ys+t ∈ dy | Ys = x}

dy
= ly−x,−x,1−x (t) ×

W (−ϱ)(1 − y)eϱt

W (−ϱ)(1 − x)

in the sense of finite dimensional distribution. By Theorem 4, the proof is complete. □

5.2. Proof of Proposition 13

Lemma 15. Fix z0 ∈ C. Then for z ∈ C \ {z0}, j ∈ N, x > 0, and integer j ≥ 0,∫ 1

0
W (z0)(x − y)[W (z)(y)]( j) dy =

d j

dz j

[
W (z)(x) − W (z0)(x)

z − z0

]
.

Proof. Since W (z)(x) =
∑

∞

k=0 zk W ∗(k+1)(x), by dominated covergence,

W (z0)
∗ W (z)(x) =

∞∑
k=0

k∑
n=0

zn
0 zk−n W ∗(n+1)

∗ W ∗(k−n+1)(x) =

∞∑
k=0

zk+1
0 − zk+1

z0 − z
W ∗(k+2)(x).

The r.h.s. is exactly (W (z)(x)− W (z0)(x))/(z − z0). Differentiating the equality j times in z then
yields the proof. □

Lemma 16. Fix x ≥ 0 and t ≥ 0. Let η, ς ∈ Zα,α . If d(ς ) = k, then for 0 ≤ j < k,∫ 1

0
at,η(x, y)[W (ς )(1 − y)]( j) dy = 1{η = ς}

j∑
s=0

(
j
s

)
t s[W (ς )(1 − x)]( j−s)eς t .

Proof. From the definition of at,ς and Fubini’s theorem, the integral is equal to

1
2π i

∮
γ

W (z)(1 − x)ezt

W (z)(1)

(∫ 1

0
W (z)(y)[W (ς )(1 − y)]( j) dy

)
dz,
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where γ ∈ C \ Zα,α is a counterclockwise simple contour enclosing η but no other roots in
Zα,α . Then by Lemma 15, the integral is equal to

1
2π i

∮
γ

W (z)(1 − x)ezt

W (z)(1)
d j

dw j

[
W (z)(1) − W (w)(1)

z − w

]
w=ς

dz.

Since

d j

dw j

[
W (z)(1) − W (w)(1)

z − w

]
=

j∑
s=0

(
j
s

)
ds

dws
[W (z)(1) − W (w)(1)]

d j−s

dw j−s

(
1

z − w

)

=
j !W (z)(1)

(z − w) j+1 −

j∑
s=0

j ![W (w)(1)](s)

s!(z − w) j+1−s
,

and j < d(ς ) = k, when evaluated at w = ς , with W (ς )(1) = [W (ς )(1)](s)
= 0 for s = 0, . . . , j ,

the derivative on the l.h.s. is equal to j !W (z)(1)/(z − ς ) j+1. Therefore, the integral is equal to

j !
2π i

∮
γ

W (z)(1 − x)ezt

(z − ς ) j+1 dz = 1{η = ς} [W (ς )(1 − x)eς t ]( j),

hence the claim. □

Proof of Proposition 9. (a) For t > 0, the kernel of Z t is rt (x, y). Then the first half of
part (a) is a direct consequence of Lemma 14 and [16], Theorem 22.3. Given s ≥ 0 and
η ∈ Zα,α , the kernel of Zs,ς Z t,η is

∫ 1
0 as,ς (x, u)at,η(u, y) du. If η ̸= ς , then by expressing

at,η(u, y) by (49) and applying Lemma 16, it is seen Zs,ς Z t,η = 0. To show Zs,ς Z t,ς = Zs+t,ς ,
let γ, γ ′

∈ C\Zα,α be two counterclockwise simple contours that enclose ς but no other roots
in Zα,α , with γ disjoint from and enclosed by γ ′. Then by Fubini’s theorem and Lemma 15,∫ 1

0
as,ς (x, u)at,ς (u, y) du

=
1

(2π i)2

∮
γ ′

{∮
γ

W (z)(1 − x)W (z′)(y)
W (z)(1)W (z′)(1)

[∫ 1

0
W (z)(u)W (z′)(1 − u) du

]
ezsdz

}
ez′t dz′

=
1

(2π i)2

∮
γ ′

{∮
γ

W (z)(1 − x)W (z′)(y)
z − z′

[
1

W (z′)(1)
−

1
W (z)(1)

]
eszdz

}
et z′

dz′.

Given z′
∈ γ ′, since it is outside of the region enclosed by γ , W (z)(1− x)esz/(z − z′) is analytic

in the region. This combined with Fubini’s theorem yields that the integral is equal to

1
(2π i)2

∮
γ

[∮
γ ′

W (z)(1 − x)W (z′)(y)
(z′ − z)W (z)(1)

ez′t dz′

]
ezsdz =

1
2π i

∮
γ

W (z)(1 − x)W (z)(y)
W (z)(1)

e(s+t)zdz,

which is as+t (x, y), as claimed.
(b) Denote Rh(x) = h(1 − x) and ⟨ f, h⟩ =

∫ 1
0 f h̄ for f, h ∈ L2([0, 1]). From (49),

at,ς (x, y) =
∑

j,k≤d(ς ) c jk g j,ς (x)Rgk,ς (y) with c jk = c jk(ς, t). Then Z t,ςh =
∑

j,k≤d(ς )
c jk⟨gk,ς , Rh̄⟩g j,ς ∈ Vς . If ⟨g j,ς , h⟩ = 0 for all ς and j ≤ d(ς ), then for all t > 0,
Z t,ς Rh̄ = 0, so for all f ∈ C0, ⟨ f, Z t,ς Rh̄⟩ = 0. Since ς ∈ Zα,α if and only if ς̄ ∈ Zα,α and
at,ς (x, y) = at,ς (1 − y, 1 − x) = at,ς̄ (x, y),
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⟨ f, Z t,ς Rh̄⟩ =

∫ 1

0

[∫ 1

0
f (1 − x)at,ς (x, y) dx

]
h(1 − y) dy

=

∫ 1

0

[∫ 1

0
f (1 − x)at,ς̄ (1 − y, 1 − x) dx

]
h(1 − y) dy = ⟨Z t,ς̄ f, h̄⟩.

As a result, ⟨Z t,ς f, h̄⟩ = 0 for all ς and t > 0. Then by (a), ⟨Z t f, h̄⟩ = 0. Let t → 0. By the
Feller property of Z t and dominated convergence, ⟨ f, h̄⟩ = 0. Since C0 is dense in L2([0, 1]),
then h = 0.

(c) First, consider (Z t,ς − eς t )k g j,ς instead of (Z t − eς t )k g j,ς . By Lemma 16, for j =

1, . . . , d(ς ),

Z t,ςg j,ς (x) =

∫ 1

0
at,ς (x, y)[W (ς )(1 − y)]( j−1)

=

j∑
s=1

(
j − 1
j − s

)
t j−s[W (ς )(1 − x)](s−1)eς t

=

j∑
s=1

(
j − 1
j − s

)
t j−seς t gs,ς (x).

If j = 1, then Z t,ςg1,ς = eς t g1,ς , so (Z t,ς − eς t )g1,ς = 0. Clearly, g1,ς ̸= 0. If j > 1, then

(Z t,ς − eς t )g j,ς = ( j − 1)teς t g j−1,ς +

j−2∑
s=1

(
j − 1
j − s

)
t j−seς t gs,ς .

By induction, (Z t,ς−eς t ) j−1g j,ς = ( j−1)!(teς t ) j−1g1,ς , giving (Z t,ς−eς t )k g j,ς = 0 if and only
if k ≥ j . Now, from (b), Vς is invariant under Z t,ς − eς t . Meanwhile, by Lemma 16 and (a),∑

η ̸=ς Z t,ηVς = {0}. Then (Z t − eς t )k g j,ς = (Z t,ς − eς t
+
∑

η ̸=ς Z t,η)k g j,ς = (Z t,ς − eς t )k g j,ς .
This then leads to the proof.

(d) Suppose 0 ̸= f ∈ L2([0, 1]) is in the null space of (Z t − a) j . For each ς ∈ Zα,α , by (a)
and induction on j , (Z t,ς − a) j Z0,ς f = Z0,ς (Z t − a) j f = 0, so Z0,ς f is in the null space of
(Z t,ς − a) j . By (b), Z0,ς f ∈ Vς . Since Vς is finite dimensional, Z t,ς restricted on Vς can be
regarded as a matrix with eς t being its only eigenvalue. As a result, if eς t

̸= a, then Z0,ς f = 0,
so Z t,ς f = Z t,ς Z0,ς f = 0. Put W =

∑
eς t =a Z t,ς . Then (W − a) j f = (Z t − a) j f = 0. By

expanding (W −a) j f and applying (a), it is seen that f is a linear combination of Z k
t,ς f ∈ Vς ,

1 ≤ k ≤ j , eς t
= a. As a result, f ∈

∑
eς t =a Vς . Then by considering the restriction of Z t on

the finite dimensional space
∑

eς t =a Vς , the proof follows from standard matrix algebra.
(e) By (a), Z t is compact mapping L1([0, 1]) → C0. Since the identity maps of C0 →

L2([0, 1]) and L2([0, 1]) → L1([0, 1]) are continuous, Z t is compact mapping L2([0, 1]) →

L2([0, 1]). Then by Riesz’s spectral theorem ([16], p. 238), 0 is in the spectrum of Z t and
every nonzero element in the spectrum is an eigenvalue of Z t . From (c), it therefore suffices
to show that if h ∈ L2([0, 1]) and Z t h = ah for some a ̸∈ {eς t , ς ∈ Zα,α}, then h = 0.
Indeed, for any ς , Z t,ς (Z0,ςh) = Z t Z0,ςh = Z0,ς Z t h = aZ0,ςh. Since Z0,ςh ∈ Vς and from
(d), eς t is the only eigenvalue of Z t,ς when acting on Vς , then Z0,ςh = 0. Then for any t > 0,
Z t,ςh = Z t,ς Z0,ςh = 0. The proof of (b) already shows that in this case h = 0. □
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