

Single-Phase Mixed Molybdenum-Niobium Carbides: Synthesis, Characterization and Multifunctional Catalytic Behavior in Toluene Conversion

Ali Mehdad, Rolf E. Jentoft,[§] and Friederike C. Jentoft^{§,*}

School of Chemical, Biological & Materials Engineering
University of Oklahoma, Norman, OK 73019, USA

[§]present address: Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, MA 01003-9303,

* Author to whom correspondence should be addressed: Email fcjentoft@umass.edu

Abstract

Single phase mixed molybdenum-niobium carbides were synthesized to establish structure–activity relationships. Precursors for carburization were obtained by hydrothermal synthesis or, to achieve high molybdenum content (metal fraction $x_{Mo}=0.86$), by flash-freezing of salt solutions and subsequent freeze-drying. Thermogravimetric and evolved gas analysis during carburization showed that bimetallic precursors were more easily reduced than monometallic ones; and as the niobium content increased, the removal of oxygen shifted to higher temperatures and from H_2O to CO formation (from H_2 or CH_4 , respectively), and the final carburization temperature rose from 650 to 950 °C. Carbides crystallized in cubic $NbC/MoC(cF8)$ structure for $x_{Nb} \geq 0.38$ and hexagonal $Mo_2C(hP3)$ structure for $x_{Nb} \leq 0.14$. After passivation, mixed metal carbides could be reduced at lower temperatures than Mo_2C . With increasing molybdenum content of the carbides, CO uptake per gram increased, and turnover frequencies for hydrogenation of toluene to methylcyclohexane increased from 0 to 3.1 s^{-1} (at a temperature of 250 °C, 21 bar pressure, and $H_2/toluene = 36$). At 400 °C, mixed carbides with $x_{Nb} \geq 0.38$ were more selective toward acid-catalyzed products and less selective toward hydrogenolysis products than carbides with lower niobium content.

Keywords: Transition Metal Carbides, Solid Solutions, Thermal Analysis, X-ray Diffraction, Ring Contraction, Ethylcyclopentane, Methylcyclohexane, Dealkylation

32 **1 Introduction**

33 Transition metal carbides exhibit catalytic behavior reminiscent of that of noble metals while
34 being less expensive and more tolerant toward some poisons [1-4]. Carbides of molybdenum or
35 tungsten have shown promise as catalysts for, among other reactions, hydrocarbon transformations
36 [1,2], hydrotreating [5], hydrodeoxygenation of biomass-derived molecules [6,7], and electrode
37 reactions in fuel cells [8]. To optimize the catalytic behavior and to expand the applications of
38 carbides, it is desirable to be able to tune their properties. A strategy offering potential to control
39 the properties of a particular transition metal carbide is the partial substitution of anions or cations
40 in the carbide bulk or near the surface.

41 With respect to anion substitution, oxide is the most widely tested species, followed by nitride
42 [9]. The effect of introducing oxygen to carbides has been investigated by several groups
43 emphasizing different aspects, with experimental work including both surface modification [10-
44 12] and the synthesis of bulk oxycarbides [13-15]. DFT calculations [16] show that oxygen adsorbs
45 strongly on the surface of molybdenum carbide, consistent with the pyrophoric nature of Mo_2C
46 with a clean surface. Tungsten carbide is also oxophilic [10,17]. The presence of oxygen on the
47 surface generally reduces the surface affinity for carbon [16] and the catalytic behavior moves
48 away from that of a typical noble metal [18]; for example, hydrogenolysis is suppressed [10,12].
49 In addition, the presence of oxygen may result in acid sites, thus creating a bi-functional catalyst
50 [11,12]. One problem with this type of catalyst is that oxygen may be removed in H_2 -containing
51 atmosphere; this reduction occurs at 300 °C for Mo_2C and 400 °C for W_2C at atmospheric H_2
52 pressure [17]. The stability of the catalyst under reaction conditions for many of the
53 transformations listed above is thus not necessarily a given.

54 Regarding cation substitution, a variety of attempts have been made to synthesize mixed metal
55 carbides, and their catalytic behavior typically differs from that of the two respective monometallic
56 carbides. Examples include mixed molybdenum-tungsten carbides, which Leclercq et al. [19]
57 found to be enriched in molybdenum on the surface and to exhibit complex behavior in
58 cyclohexane dehydrogenation, and butane isomerization and hydrogenolysis. Oyama and co-
59 workers reported bulk mixed molybdenum–niobium carbides to have promising performance in
60 the hydrodesulfurization (HDS) of dibenzothiophene [20] and alumina-supported molybdenum-
61 niobium carbides to be better catalysts for HDS than $\text{Mo}_2\text{C}/\text{Al}_2\text{O}_3$ and to have higher HDS and

62 hydrodenitrogenation (HDN) activities per active site compared to commercial sulfided Ni-
63 Mo/Al₂O₃ [21]. Green and co-workers published a series of papers [22-27] on combining tungsten
64 or molybdenum with cobalt or nickel to give bimetallic carbides, which were mainly tested for
65 hydrotreating but also for methane partial oxidation.

66 Anion and cation substitution have also been combined. Principally, synergy appears possible
67 if, for example, a second cation of higher oxophilicity assists in retaining oxygen on the surface at
68 high temperatures. For example, vanadium reportedly delays the reduction process during
69 carburization of molybdenum oxide to molybdenum carbide [28]. In another report, mixed
70 molybdenum-niobium oxycarbides showed better HDS and HDN activity compared to the
71 monometallic compounds [29].

72 Synthesis of bimetallic carbides is generally a challenge. Metallurgical methods are excluded
73 because they do not lead to high-surface-area materials. Like monometallic carbides, bimetallic
74 carbides have also been made by temperature-programmed carburization of suitable precursor
75 materials. Precursors have been generated in various ways, by physically mixing the individual
76 oxides [20], by fusing the oxides in a high-temperature reaction [29,30], or by combining nitrates
77 and oxides [23]. Attempts have been reported to obtain oxide solid solutions via calcination of
78 precipitates [28,31] or reduction of calcined co-precipitates under mild conditions [32]. A variation
79 of the oxide path is to first form a nitride and then a carbide. Sulfides have been used as precursors
80 in carburizations to produce mixed molybdenum–tungsten carbides [33]. In sum, there are few
81 reports of phase-pure materials over a wide range of compositions [32].

82 The goal of this paper is to develop methods for the synthesis of single phase mixed metal
83 carbides over a range compositions such that structure–activity relationships can be established.
84 To have an observable effect, molybdenum is combined with the more oxophilic niobium. The
85 pure carbides obtained by temperature-programmed reduction, Mo₂C(*hP3*) and NbC(*cF8*), have
86 different stoichiometries and structures. In hydrotreating and butane conversion, Mo₂C is more
87 active than NbC [34,35]. A secondary effect of cation substitution is the change in affinity to
88 oxygen, which can make oxycarbides stable under a wider range of conditions; and niobium
89 reportedly should be prone to retain oxygen [29] and introduce acid sites. Hydrothermal synthesis
90 [36] or flash-freezing followed by freeze-drying [37,38] are used to produce precursors with
91 intimately mixed metals, which are subsequently carburized. Toluene is employed as the reactant,

92 and the selectivity toward ring hydrogenation and hydrogenolysis is used to assess the metallic
93 properties, while the selectivity toward ring contraction and isomerization is used to assess the
94 acidic properties.

95 **2 Experimental section**

96 **2.1 Carbide synthesis**

97 *2.1.1 Synthesis of precursors*

98 Hydrothermal synthesis was one of two methods to obtain molybdenum-niobium precursors
99 with intimately mixed metal ions. The procedure described by Murayama et al. [36] was followed
100 with some modifications. Ammonium heptamolybdate (AHM) (ACS reagent, 81-83% MoO₃,
101 Sigma Aldrich) was dissolved in 0.5 M oxalic acid (anhydrous, purity>99%, Sigma-Aldrich), and
102 ammonium niobate (V) oxalate hydrate (ANOH) (99.99%, Aldrich) was dissolved in water. The
103 amount of salt in each solution was adjusted to give a total salt load of 4 g in 100 ml of the mixed
104 solution while varying the metal ratios. Salt solutions were combined and mixed by stirring for 15
105 min. The following niobium mole fractions x_{Nb} (considering only the metals, i.e. $x_{Nb} =$
106 $n_{Nb}/(n_{Mo}+n_{Nb})$) were prepared: 1.0 (ANOH-HT), 0.5, 0.33, 0.2, 0.14, 0.05 and 0 (AHM-HT). The
107 clear solution was transferred to the 250 ml Teflon liner of a stainless-steel autoclave. The
108 autoclave was heated to a temperature of 175 °C for 3 days under static conditions. After 3 days,
109 the suspension was centrifuged to separate any solids from the mother liquor. The solid was
110 washed three times with water, and then dried over night at 80 °C in an oven.

111 To obtain stoichiometries that were not accessible by hydrothermal synthesis, mixed metal
112 precursors were produced by flash-freezing and freeze-drying. Appropriate amounts of ammonium
113 heptamolybdate and ammonium niobate oxalate hydrate were dissolved separately in water and
114 mixed together to obtain various metal ratios with a final total metal concentration of 0.1 M. The
115 solution was added dropwise to liquid N₂. Globules of the frozen solution were recovered, and
116 freeze-dried at a pressure of 110 μ torr in an ATR FD3.0 freeze drier.

117 *2.1.2 Equipment for thermal treatments and gases*

118 A Netzsch STA 449 F1 thermogravimetric analyzer (TGA) was connected to a mass
119 spectrometer (QMS 403 C Aëlos) via a stainless-steel capillary. Temperature-programmed
120 reaction runs with empty crucibles were used to correct for sample holder buoyancy and gas

121 viscosity artifacts. MS signals were generally normalized to initial sample mass. Methane (UHP,
122 Airgas) was used as received; other gases were further purified prior to use. Air (zero grade,
123 Airgas) and H₂ (ultra-high purity, Airgas) were passed through a moisture trap (Agilent, MT400-
124 2), and argon (ultra-high purity, Airgas) was passed through dual moisture and oxygen trap (Z-
125 Pure Dual Purifier). All flow rates are given at STP, all percentages by volume.

126 *2.1.3 Calcination of freeze-dried samples*

127 Freeze-dried samples (AHM-FD, ANOH-FD and a mixed metal sample with $x_{Nb} = 0.13$) were
128 calcined in the TG apparatus in 80% air in argon at a total flow rate of 50 ml/min. The temperature
129 was increased from 40 to 600 °C with a temperature ramp of 5 °C/min, and was held at the final
130 temperature for 30 min.

131 *2.1.4 Carburization and passivation*

132 Precursors were carburized in the TG-MS apparatus, and mass-charge ratios of 2 to 78 were
133 scanned during the treatments. The carburization gas was obtained by mixing 20 ml/min of
134 methane, 70 ml/min of H₂ and 10 ml/min of argon. The synthesis of all metal carbides was carried
135 out at atmospheric pressure by heating from 40 to 450 °C at 5 °C/min and from 450 °C to the final
136 temperature at 2 °C/min. Samples were held at the final temperature until no weight change was
137 observed by TG and formation of CO was terminated. All metal carbides were cooled down to
138 room temperature under argon flow. Before exposure of the carbides to the ambient, they were
139 passivated isothermally at 40 °C with air diluted in argon. The concentration of O₂ was increased
140 from 0.1% (10 h) to 1% (9 h) and 16% (2 h) in argon [17], with the total flow rate between 60 and
141 402 ml/min.

142 **2.2 Characterization of carbides**

143 The bulk structure of the samples was characterized by powder X-ray diffraction (XRD) using
144 a Bruker D8 instrument operating with Cu K α radiation. The samples were measured in reflection
145 geometry after mixing with nickel metal powder (Matheson Coleman & Bell, 200 mesh), which
146 served as a reference. Diffractograms were collected by scanning in steps of 0.05 in 2 θ over the
147 angular range of 20-90°. The lattice parameters of each product were obtained by fitting the
148 diffractograms using Powdercell software. The carbon content of the samples was measured by
149 combustion analysis in a CE-440 Elemental Analyzer. The molybdenum and niobium
150 concentrations were determined using energy-dispersive X-ray spectroscopy (EDS) on a JEOL

151 JSM-840A scanning electron microscope at an operating voltage of 15 kV and a Kevex X-ray
152 analyzer and IXRF software with digital imaging capability. Surface areas of passivated materials
153 were determined by the BET method using a Micromeritics ASAP 2010 and N₂ at -196 °C. Pore
154 size distributions were determined from N₂ desorption isotherms by applying the BJH method.
155 Before measuring the surface area, the samples were degassed at 350 °C for 4 h. The number of
156 metal sites was measured by CO chemisorption using a Micromeritics ASAP 2020. Prior to CO
157 chemisorption, samples were reduced in H₂ at 350 °C for 1 h and degassed for 1 h at the same
158 temperature, then they were cooled to 35 °C and a first CO adsorption isotherm was recorded.
159 Subsequently, weakly adsorbed CO was removed by evacuation, and a second CO adsorption
160 isotherm was acquired. The difference between the first and the second isotherm was plotted and
161 extrapolated to zero pressure to calculate the amount of CO chemisorbed.

162 **2.3 Temperature-programmed reduction (TPR)**

163 The TPR experiments were carried out in the TG-MS apparatus described in Section 2.1.2 on
164 about 11 mg of passivated sample immediately following passivation. The total flow rate was 100
165 ml/min of a mixture of 80% H₂ in argon. The temperature was set to 40 °C for 10 minutes and then
166 increased from 40 to 700 °C with a temperature ramp of 10 °C/min. Gas phase products were
167 monitored by online MS, scanning m/z between 2 and 78.

168 **2.4 Catalytic tests: vapor phase toluene conversion**

169 The carbide samples were tested at temperatures of 250 °C and 400 °C in the vapor phase
170 conversion of toluene at elevated H₂ pressure. The flow reactor was a 0.18 inch inner diameter
171 stainless steel tube with Swagelok® connections equipped with an Eldex liquid feed pump. The
172 reactor was loaded with varying amounts of passivated carbides that were mixed with 200 to 300
173 mg SiC (Aldrich, 200-450 mesh) to avoid channeling and local heating. The reactor was placed
174 into a 2 ft long electrical furnace, and the temperature was controlled using a thermocouple inside
175 the reactor at the bottom of the catalyst bed. All samples were reduced at atmospheric pressure in
176 a H₂ flow of 150 ml/min at a temperature of 300 °C for 1 h before the catalytic reaction. After
177 reduction, the reactor was cooled to 250 °C, and the back-pressure valve was set to achieve an
178 absolute pressure of 21 bar. Then, the feed of 0.01 ml/min of liquid toluene (99.5%, Mallinckrodt
179 Chemicals) and 75 ml/min STP H₂ (Ultra high purity, Airgas) was introduced to the reactor and
180 the effluent stream was analyzed every 30 min. After 2.5 h of operation at 250 °C, the reactor was
181 heated to 400 °C and was held at this temperature for 24 h, during which time the effluent stream

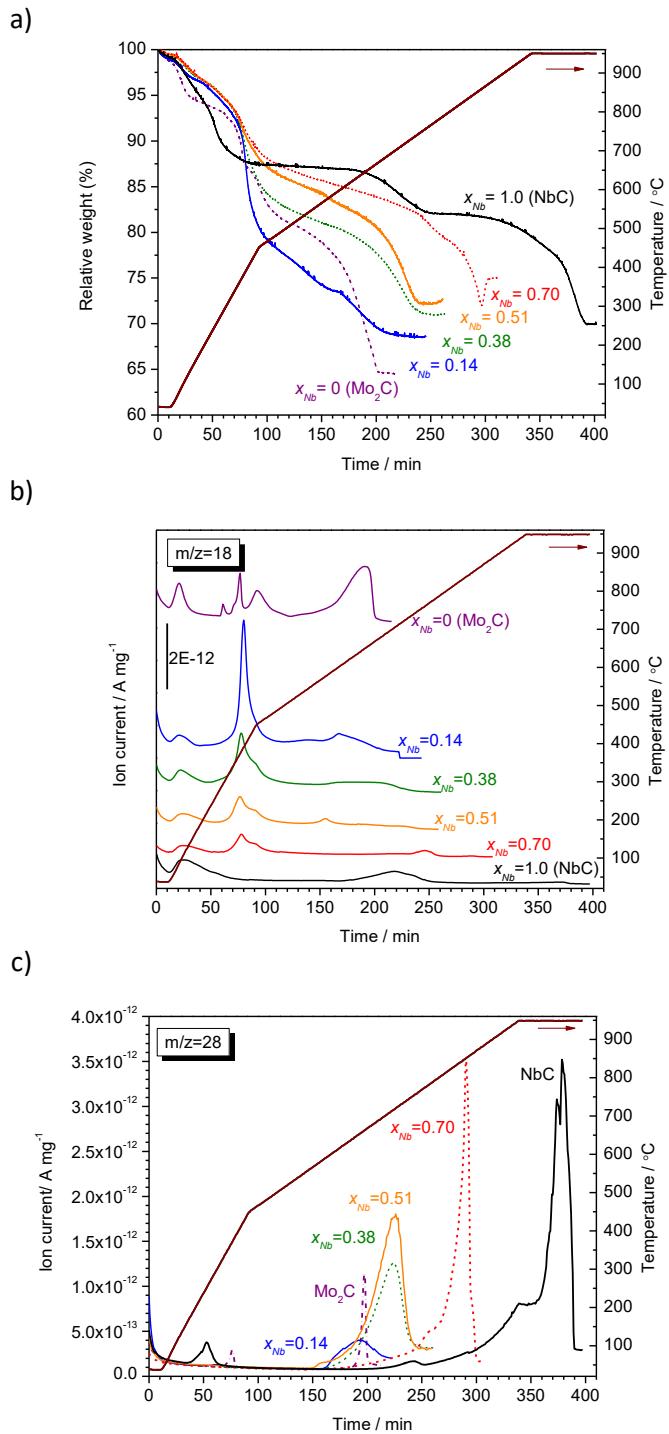
182 was sampled. Products were analyzed using an online HP 5890 GC with a flame ionization
183 detector, equipped with a 30 m, 0.32 mm GASPRO column. Transfer lines to the GC were heated
184 to ensure that no condensation occurred. The GC temperature program was, 5 min isothermal at
185 60 °C, then a temperature ramp of 10 °C/min to the final temperature of 240 °C, which was held
186 for 4 min. Equations for the calculation of conversion, selectivity, rate, and turnover frequency are
187 given in the supporting information. Conversion corresponds to the disappearance of toluene, and
188 selectivity calculations account for the number of carbon atoms in each product.

189 **3 Results**

190 **3.1 Synthesis of metal carbides**

191 *3.1.1 Precursor preparation*

192 Precursors for carburization were prepared by two methods: hydrothermal synthesis (HT) and
193 freeze-drying (FD). The hydrothermal synthesis method was based on the procedure reported by
194 Murayama et al. [36], who prepared precursors for mixed metal oxides, including mixed
195 molybdenum-niobium oxides. In this work, their method was modified by using a soluble niobium
196 salt rather than niobium oxide and by adding acid. The molybdenum precursor was dissolved in
197 oxalic acid to prevent immediate precipitation. The yields obtained by this method were generally
198 low, with the weight of the recovered solid only accounting for about 20 to 30% of the charged
199 weight of solid. In addition, the composition of the eventually obtained carbides (shown in Table
200 1) demonstrates that niobium was preferentially incorporated in the hydrothermally synthesized
201 precursors over most of the compositional range. The addition of oxalic acid resulted in precursors
202 that could be carburized at a lower final temperature than those prepared in the absence of acid;
203 moreover, the final carbides were characterized by smaller particles than those from precursors
204 prepared without oxalic acid. All presented hydrothermally synthesized materials were prepared
205 with acid addition. The hydrothermally prepared precursors were X-ray amorphous. The method
206 of flash-freezing followed by freeze-drying obviously implies quantitative use of the salts and a
207 precursor that has the intended metal composition. The precursors prepared by the HT method
208 were directly carburized, whereas the precursors prepared by the FD method, which incorporate
209 all ions from the salts, were first calcined and then carburized. The intended and actual
210 compositions of the final carbides are reported in Table 1.

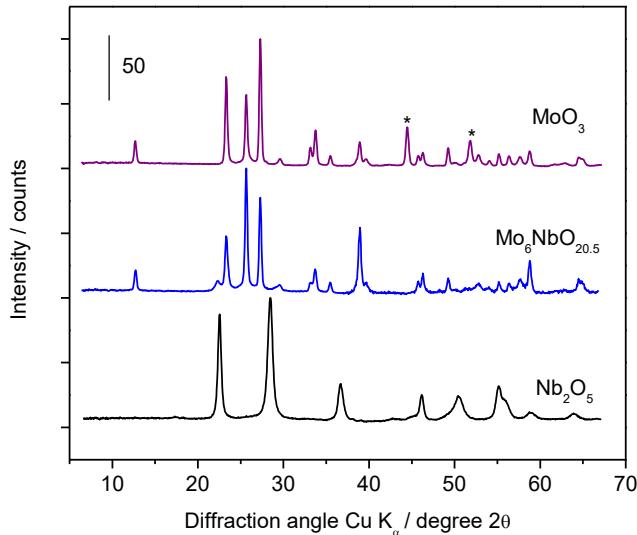

211 3.1.2 *Carburization of hydrothermally synthesized precursors*

212 Precursors with an intended niobium mole fraction x_{Nb} of 0.0, 0.05, 0.14, 0.33, 0.50 and 1.0
213 gave mixed metal carbides that contained more niobium than intended. The measured metal
214 composition (Table 1) will be used in the following to discuss the precursor behavior.

215 Precursors with x_{Nb} of 0.0, 0.13, 0.38, 0.51, 0.70 and 1.0 lost 35.5, 31.4, 28.8, 27.3, 28.0 and
216 30.0 % of their initial weight, respectively, when carburized without prior calcination (Figure 1).
217 For comparison, the conversion of MoO_3 to Mo_2C is associated with a weight loss of 29.2 %, and
218 conversion of Nb_2O_5 to NbC is associated with a weight loss of 21.1 %. The fact that the observed
219 weight losses exceed those of the stoichiometric oxides implies that the hydrothermally
220 synthesized precursors contain additional material such as water, hydroxide or other ions from the
221 salts. The TG traces reflect the decomposition of such species, as they exhibit more than the two
222 steps typical of reduction to an oxide of lower metal oxidation state and carbide formation [39,40].
223 Multiple water formation events (Figure 1b), particularly at low temperature are probably
224 dehydration and dehydroxylation rather than reduction steps. In addition, AHM-HT and ANOH-
225 HT showed evolution of $m/z=28$ at low temperatures, which coincided with the evolution of
226 $m/z=44$ for ANOH-HT, thus indicating CO_2 from oxalate. For AHM-HT, no $m/z=44$ was observed
227 but instead the formation of water, consistent with one of the known decomposition pathways of
228 oxalic acid [41].

229 Since hydrothermally synthesized precursors did not contain much more mass per metal than
230 oxides and the responsible species were readily decomposed before carbide formation, such
231 precursors were generally carburized without calcination to avoid segregation into individual
232 oxides and loss of surface area or loss of molybdenum.

233 At a temperature of about 350 °C, all samples that contained molybdenum lost weight with
234 concomitant water evolution. The formation of CO, which indicates the activation of methane and
235 further removal of oxygen, occurred over a wide range of temperature. For AHM-HT, the
236 maximum of CO evolution was 650 °C. The onset of CO formation for some of the mixed metal
237 precursors occurred at temperatures even lower than that seen for AHM-HT. For samples rich in
238 molybdenum, formation of CO was accompanied by the formation of water, whereas for samples
239 rich in niobium, CO formation occurred without evolution of water (Figure 1b and c).


Figure 1: Direct carburization of hydrothermally prepared precursors monitored by thermogravimetry and mass spectrometry. Gas phase mixture 20% CH₄/70% H₂/10% Ar. a) Weight change, b) water formation (m/z=18) and c) CO formation (m/z=28).

241 There is typically an optimum final temperature, as high temperatures may promote carbon
242 deposition and sintering. The material with $x_{Nb} = 0.70$ was the only one that passed through a
243 minimum in weight (at 72%) and then quickly gained 3.1%. This gain was assumed to result from
244 carbon deposition on the surface and, consequently, to generate samples for the catalytic test and
245 the characterization measurements, the carburization was stopped before the material started to
246 gain weight; the chosen end point was when the weight was stable and no more CO evolved.

247 On the basis of these criteria, carburization of AHM-HT to Mo₂C required the lowest final
248 carburization temperature (680 °C), carburization of ANOH-HT to form NbC required the highest
249 temperature (950 °C), and carburization of the mixed metal precursors required temperatures of
250 650, 720, 720, 850 °C for niobium fractions x_{Nb} of 0.13, 0.38, 0.51, and 0.70.

251 *3.1.3 Calcination and carburization of freeze-dried precursors*

252 Freeze-dried precursors AHM-FD, ANOH-FD and a mixed precursor with intended niobium
253 fraction x_{Nb} of 0.13 were calcined in the TG-MS apparatus at final temperatures of 500 °C (AHM-
254 FD) and 600 °C (mixed precursor and ANOH-FD). The final temperature was held until the weight
255 was stable and no more gas phase products were observed with the online MS. The niobium
256 content of the mixed carbide was later found to be $x_{Nb}=0.14$, and accordingly, the oxide will be
257 designated as Mo₆NbO_{20.5}. The XRD data for the calcined samples are reported in Figure 2. The
258 patterns of the pure oxides could be matched with ICDD: 00-005-058, orthorhombic MoO₃(*oP16*),
259 and ICCD: 00-028-0317, monoclinic Nb₂O₅(*hP7*). The pattern of Mo₆NbO_{20.5} is very similar to
260 that of MoO₃ and is distinguished mainly by an additional reflection at 22.30 ° 2θ.

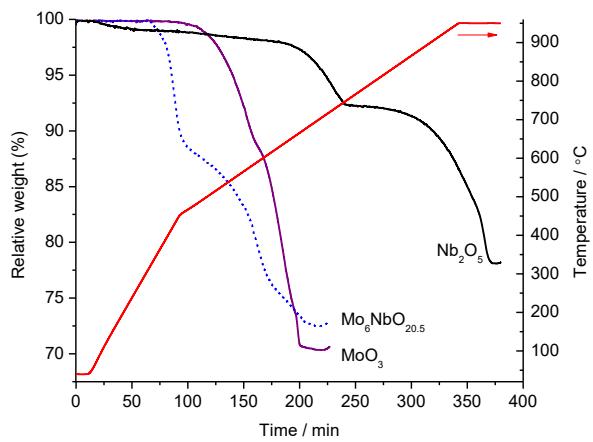
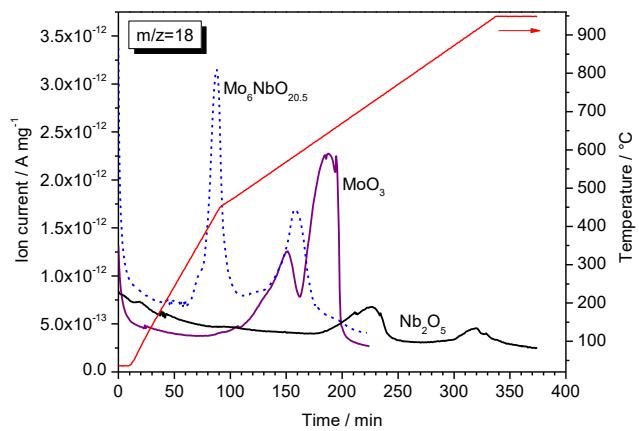
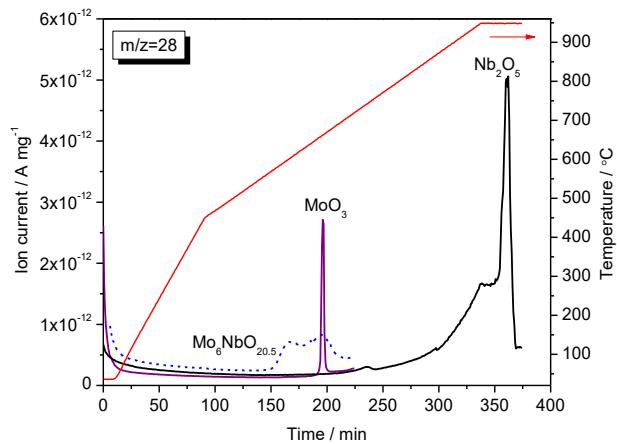


Figure 2: X-ray diffractograms of calcined precursors from flash-freezing/freeze-drying. Calcination temperatures 500 °C for MoO_3 , or 600 °C for $\text{Mo}_6\text{NbO}_{20.5}$ and Nb_2O_5 . Asterisks mark nickel internal standard.


261 The oxides obtained through calcination were carburized in the TG-MS apparatus, and the
 262 weight losses and gas phase products are reported in Figure 3. There were at least two reduction
 263 steps with water formation for all three oxides. The first water peaks were observed at 435, 570
 264 and 720 °C, respectively, and the associated weight loss is consistent with reduction to
 265 approximately $\text{Mo}_6\text{NbO}_{13}$, $\text{MoO}_{1.9}$ and $\text{NbO}_{1.9}$. The second reduction step of the mixed oxide
 266 occurred at much lower temperature than those of either of the pure oxides. During the
 267 carburization of MoO_3 , there was a sharp CO peak that started when the stoichiometry was about
 268 $\text{MoO}_{0.75}$ and reached its maximum at about 650 °C. For the mixed oxide, CO evolution started
 269 when the stoichiometry was about $\text{Mo}_6\text{NbO}_{10}$, and two maxima were observed at 600 and 660 °C.
 270 The carburization of niobium oxide was characterized by two CO peaks; a small CO peak was
 271 observed with the first peak of water at 715 °C and a large peak of CO was observed around 950
 272 °C. Comparing relative CO and H_2O peak sizes, it is obvious that the transformation of the
 273 molybdenum-containing samples resulted in formation of more water than that of Nb_2O_5 , which
 274 in contrast resulted in formation of more CO.

275 Because longer chain hydrocarbons are reported to lower the temperature for formation of
 276 molybdenum carbide [26], carburization of Nb_2O_5 with 10% ethane in H_2 was attempted. Phase-
 277 pure NbC could not be obtained (see the Supporting Information).


a)

b)

c)

Figure 3: Carburization of calcined precursors (labels indicate starting composition) from flash-freezing/freeze-drying monitored by thermogravimetry and mass spectrometry. Gas phase mixture 20% CH₄/70% H₂/10% Ar. a) Weight change, b) water formation (m/z=18) and c) CO formation (m/z=28).

278 During carburization of Nb_2O_5 , at 800 °C, ethylene started to evolve after the first water peak
279 and its formation rate increased at higher temperatures. Formation of ethylene was observed with
280 an empty crucible in the TG apparatus. However, the amount of ethylene formed was twice as
281 large with the catalyst present.

282 The TG profiles and the CO evolution demonstrate that the carburization of Nb_2O_5 was
283 completed at a very high temperature (950 °C), whereas carburization of the mixed metal oxide
284 with $\text{Mo}_6\text{NbO}_{20.5}$ stoichiometry required the same final temperature as was needed for synthesis
285 of Mo_2C (650 °C). Considering MoO_3 , Nb_2O_5 and $\text{Mo}_6\text{NbO}_{20.5}$ as starting stoichiometries and
286 Mo_2C , NbC and $\text{Mo}_6\text{NbC}_{3.5}$ as the product stoichiometries, the theoretical weight losses are 29.2,
287 21.1 and 28.7%. The observed values of 29.6, 20.8 and 27.5% are in good to very good agreement
288 with these predictions.

289 **3.2 Characterization of the carbides**

290 The composition of the mixed carbides was determined by EDS. In Figure 4, the measured
291 niobium fractions in the carbides are plotted versus the niobium fractions in the synthesis solution
292 for the hydrothermal method. The deviation from the parity line shows that the carbides were
293 enriched in niobium relative to the starting solutions.

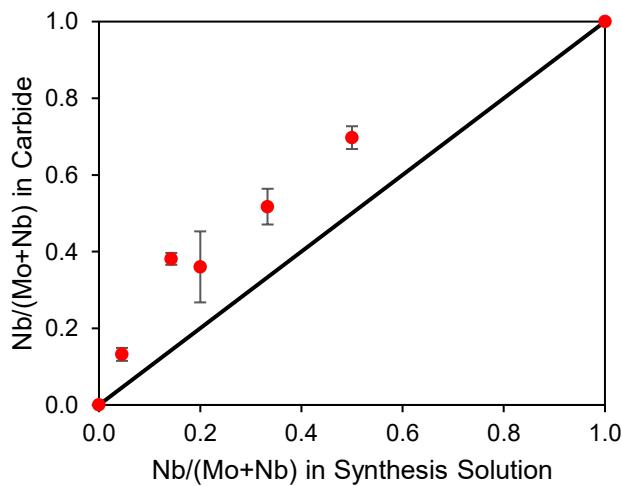
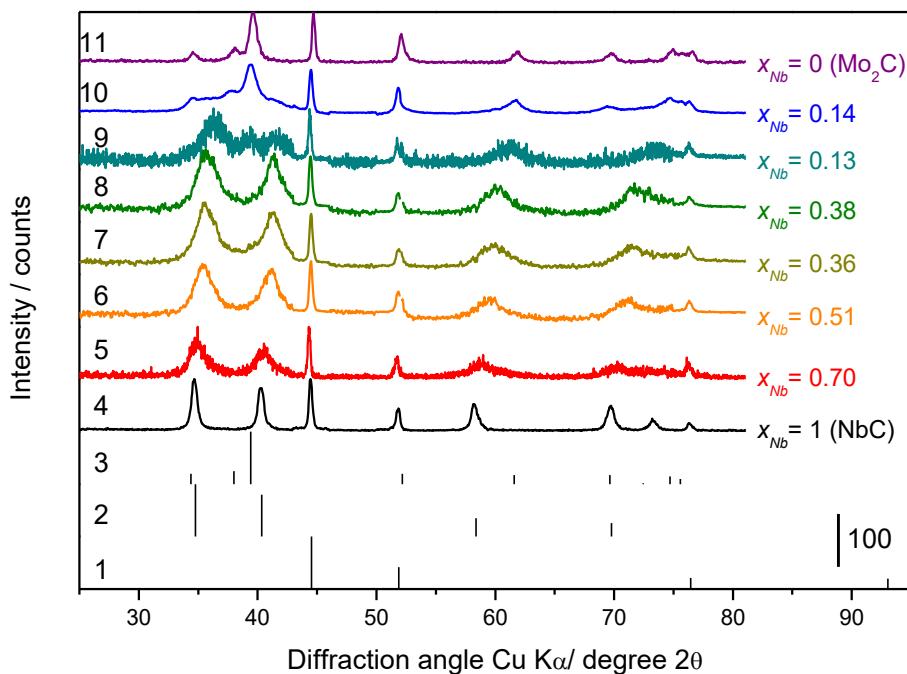



Figure 4: Niobium fraction x_{Nb} in the carbides vs. niobium fraction in the hydrothermal synthesis solution. Solid line represents parity.

294 The structures of the samples were analyzed by XRD, and the diffractograms are reported in
295 Figure 5. All niobium-containing carbides with $x_{\text{Nb}} \geq 0.38$ prepared by the HT method had the cubic

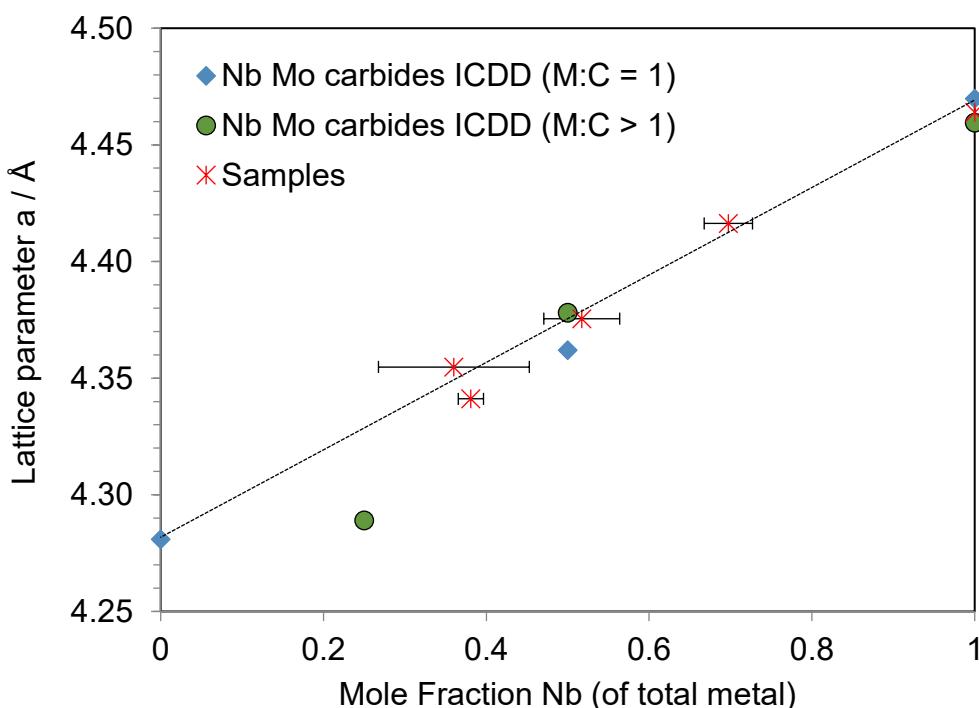

296 structure of NbC(*cF*8) (ICDD: 00-038-1364), which is isostructural with cubic MoC(*cF*8) (ICDD
 297 # 03-065-8092). Pure molybdenum carbide (Figure 5-11) was characterized by the hexagonal
 298 structure reported for Mo₂C(*hP*3) (ICDD: 00-035-0787). A carbide with an intended x_{Nb} of 0.05
 299 and an actual x_{Nb} of 0.13 prepared by carburization of a HT precursor consisted of two phases, of
 300 cubic NbC/MoC and of some Mo₂C as can be seen in Figure 5-9.

Figure 5: XRD patterns for molybdenum-niobium carbide series. Nickel used as internal standard. Patterns 1-3, references. Pattern 10, carbide from flash-frozen and freeze-dried precursor; all other patterns, carbides from hydrothermally synthesized precursors. (1) Ni (ICDD:00-004-0850) (2) NbC (ICDD:00-038-1364) (3) Mo₂C (ICDD: 00-035-0787). (4) x_{Nb} = 1.0 (5) 0.70 (6) 0.51 (7) 0.36 (8) 0.38 (9) 0.13 (10) 0.14 (11) 0.

301 To synthesize a mixed metal carbide with hexagonal Mo₂C structure, mixed metal precursors
 302 containing both molybdenum and niobium were prepared by the freeze-drying method.
 303 Carburization of precursors with $x_{Nb} > 0.13$ resulted in NbC structures (not shown). Direct
 304 carburization of a sample with $x_{Nb} = 0.14$ led to a broad peak assigned to the (002) plane in the
 305 Mo₂C structure; to overcome this problem the FD precursor was calcined and then carburized. The
 306 obtained material contained hexagonal Mo₂C (Figure 5-10) and a poorly crystallized phase that
 307 could be fit with cubic NbC.

308 The diffractograms showing the NbC/MoC structure were fit using Powdercell software, and
 309 the obtained lattice parameters of the samples are plotted versus the niobium mole fraction in
 310 Figure 6, together with reference values from the ICDD. The observed linear relationship is
 311 consistent with Vegard's Law for solid solutions. In contrast, there was no shift in the lattice
 312 parameter of the Mo₂C structure when niobium was present, suggesting that niobium does not
 313 dissolve into this structure.

Figure 6: Lattice parameter of Mo-Nb carbides with cubic NbC/MoC structure vs. mole fraction of niobium. □ MoC (ICDD: 03-065-8092), • (Nb/C >1, (ICDD: 03-065-8768, 03-065-7992 and 01-089-4306), ◇ (Nb/C=1, ICDD: 00-038-1364 and 3-065-8767) and * prepared samples. Line connects endpoints.

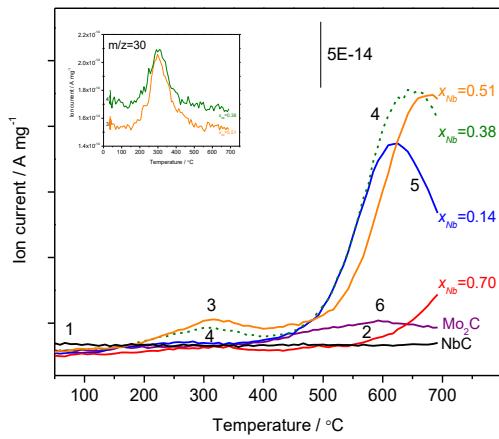
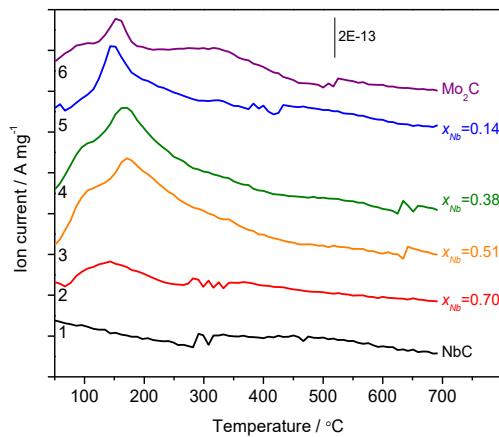
314 Compositions, weight gains after passivation, surface areas and pore size values, and CO
 315 adsorption capacities are reported in Table 1. The carbon content for Mo₂C was found to be slightly
 316 below the theoretical content and that for NbC slightly above the theoretical content. The
 317 theoretical carbon content for the mixed carbides requires an assumption of the number of carbons
 318 per metal, which could be guided by the stoichiometry of the series endpoints, or by the observed
 319 structure. Even if a stoichiometry of only one carbon atom per two molybdenum atoms and of one
 320 carbon atom per niobium atom is assumed, the mixed carbides are carbon-deficient.

321

322

Table 1: Characterization data for molybdenum-niobium carbide samples

Nb/(Mo+Nb)		T _f (°C) ^b	Carbon content (wt%)		Weight gain after passivation ^d (%) ^c	Residual oxygen ^e (%)	S _{BET} (m ² /g) ^f	BJH volume (cm ³ /g) ^f	BJH pore diameter (nm) ^f	CO uptake (μmol/g)
Intended	EDX ^a		Theoretical ^c	Measured						
0.00	0.00	650	5.9	5.3±0.3	2.49	2.0	16.5	0.052	11.2	18.5
0.13 ^g	0.14±0.02	650	6.7	5.5±0.3	2.85	2.3	23.7	0.079	12.0	15.0
0.14	0.38±0.02	700	8.0	6.3±0.9	5.67	4.2	58.4	0.166	11.4	13.5
0.33	0.51±0.05	700	8.8	6.8±0.9	5.80	4.4	102.2	0.134	50.0	7.7
0.50	0.70±0.03	840	9.8	8.6±0.3	1.70	1.4	57.5	0.18	100.0	2.3
1.00	1.00	950	11.4	12.0±0.2	0.00	0.0	16.7	0.088	165.2	0.0



323 ^aMeasured on multiple particles, average and standard deviations are reported. ^bFinal carburization temperature. ^cAssuming one
 324 carbon per two molybdenum atoms and one carbon per niobium atom. ^dBasis is freshly prepared carbide before exposure to air.

325 ^eMeasured at 350 °C during TPR and expressed as percentage of oxygen taken up during passivation. ^fMeasured after passivation.

326 ^gCarburization of freeze-dried precursor, all others from hydrothermally synthesized precursors.

327 The two carbides with Mo_2C structure gained 2.5 and 2.9 %, in weight during passivation,
 328 whereas those with NbC structure gained more than 5 % at low niobium contents (and required
 329 passivation times in 0.1% O_2 of up to 10 h). The weight gain during passivation declined at high
 330 niobium content, and in line with this trend, the surface of NbC was inert towards O_2 .

331 The N_2 physisorption isotherms were type IV with a pore size distribution in the mesoporosity
 332 range. The surface area first increased with increasing niobium content and then decreased. The
 333 pore size increased with increasing niobium content, whereas the CO uptake per mass (and also
 334 per surface area) decreased.

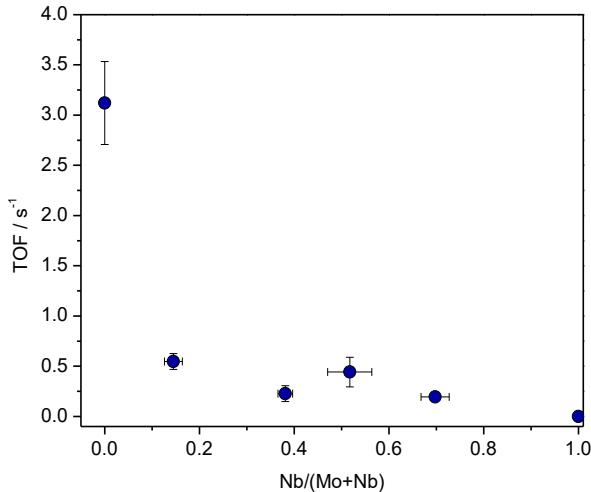
Figure 7: TPR data for Mo-Nb carbides. Formation of water ($\text{m/z}=18$, top), methane and ethane ($\text{m/z}=15$ and 30 , bottom). Samples are carbides with x_{Nb} of (1) 1.0, (2) 0.70, (3) 0.51, (4) 0.38, (5) 0.14 and (6) 0. Gas phase composition: 80% H_2/Ar .

335 **3.3 Reduction after passivation**

336 Temperature-programmed reduction (TPR) in 80% H₂/Ar at atmospheric pressure was used to
337 investigate the temperature range necessary to remove oxygen and carbon from the passivated
338 materials. The TPR results are shown in Figure 7.

339 The main gas phase products were water (m/z=18), methane (m/z=15), and ethane (m/z=30).
340 TPR data for NbC did not show any gas phase products, consistent with the lack of weight gain
341 during the O₂ treatment. For all other samples, water started to form in the temperature range from
342 100 to 300 °C, and the intensity of the water signal scaled with the weight gained during
343 passivation. For the niobium-rich carbides, water started to form at lower temperatures compared
344 to the molybdenum-rich carbides, as can be seen from the peak at 100 °C for x_{Nb} of 0.38, 0.51 and
345 0.70 (traces 4, 3, and 2, in Figure 7). For two of the mixed metal carbides (with x_{Nb} of 0.51 and
346 0.38) that were prepared from HT precursors, ethane evolution was observed at about 300 °C.
347 Methane evolved at or above 400 °C for all samples except for NbC. The maximum of the methane
348 peaks in the mixed metal carbides shifted to higher temperatures with increasing niobium content;
349 methane production reached its maximum at 600 °C for the carbide with x_{Nb} = 0.14 whereas it only
350 began at this temperature for the carbide with x_{Nb} = 0.70. Pure molybdenum carbide formed a small
351 amount of methane, whereas the mixed metal carbides rich in molybdenum formed significantly
352 more methane.

353 Analysis of the weight during TPR demonstrated that at a temperature of 350 °C, 95% or more
354 of the oxygen in the passivation layer were removed. The samples with surface areas over 50 m²/g
355 and a high fraction of molybdenum retained a measurable amount of oxygen in this experiment
356 (Table 1).


357 On the basis of these observations, a temperature of 300 °C and a 1 h holding time in H₂ were
358 chosen to reactivate the passivated carbides in the reactor prior to introducing toluene, with the
359 goal of removing oxygen but not carbon.

360 **3.4 Catalytic activity in toluene hydrogenation**

361 Toluene hydrogenation was applied as the test reaction to determine activity, selectivity, and
362 stability of the carbides listed in Table 1. Internal mass transfer limitations were excluded by
363 applying the Weisz-Prater criterion (see the supplementary information). To exclude that the
364 toluene-methylcyclohexane hydrogenation-dehydrogenation equilibrium determines the observed

365 product distribution [42], equilibrium compositions for the reaction between toluene, H₂ and
366 methylcyclohexane at relevant conditions were obtained using ThermoSolver software. At a total
367 pressure of 21 bar and a H₂ to toluene ratio of 36, applying Peng-Robinson fugacity coefficients,
368 the equilibrium molar ratios of toluene to methylcyclohexane were found to be 1.5 x 10⁻⁵ : 1 at 250
369 °C and 1:1 at 400 °C. The highest toluene conversions considered were 77 % at 250 °C and 17%
370 at 400 °C, which are sufficiently far from equilibrium limitations.

371 At a reaction temperature of 250 °C, the catalysts exhibited stable performance, and the product
372 selectivity was 100% methylcyclohexane (MCH). Rates were strictly proportional to inverse space
373 velocities up to conversions of 77 %, and turnover frequencies (TOFs) relative to the number of
374 sites as determined by CO chemisorption were calculated using the average rate of several
375 experiments. TOFs for ring hydrogenation of toluene at 250 °C are reported in Figure 8. The results
376 reveal that the ring hydrogenation activity per site decreases with increasing niobium content, from
377 a turnover frequency of slightly above 3 s⁻¹ on Mo₂C to 0 s⁻¹ on the inactive NbC.

Figure 8: Turnover frequencies for ring hydrogenation of toluene vs molar fraction of niobium. Reaction conditions: temperature 250 °C, total pressure 21 bar, molar ratio of H₂ to toluene 36:1. Shown is the series of molybdenum-niobium carbides presented in Table 1.

378 At a reaction temperature of 400 °C, the activity of the carbide with $x_{Nb} = 0.70$ was very low
379 (less than 2% conversion at W/F=0.25 h) and NbC was inactive. Mo₂C was the most active catalyst
380 and by increasing the amount of niobium, the activity decreased while the stability increased. Over
381 24 hours on stream, all samples showed some deactivation. For Mo₂C, the loss of activity was

382 36%, and for carbides with niobium fractions x_{Nb} of 0.14, 0.38 and 0.51 the losses were 24, 4 and
383 7, respectively. The product selectivity did not change with the degree of deactivation.

384 Table 2: Product selectivity for mixed niobium-molybdenum catalysts at equal toluene
385 conversion at 400 °C and 20.4 bar H₂

Nb/(Mo+Nb)	W/F (h)	Conv. (%)	Selectivity (mol%)					
			C ₁ -C ₆	MCH	ECP	DMCP	Benz.	Xylene
0	0.01	14.9	41.9	40.9	0.0	0.0	11.6	5.6
0.14 ^a	0.02	14.6	40.1	40.7	2.1	0.0	11.5	5.6
0.38	0.16	16.9	22.4	23.7	17.6	14.0	14.6	7.7
0.51	0.20	16.6	34.6	20.2	16.9	11.8	10.7	5.8

386 ^aCarburization of freeze-dried precursor, all others from hydrothermally synthesized precursors.

387 Product selectivities at comparable conversions are reported in Table 2. A weight hourly space
388 velocity spread of one order of magnitude was necessary to achieve equal conversions. Samples
389 rich in molybdenum showed mostly hydrogenolysis products ($\approx 40\%$) and not much
390 ethylcyclopentane (ECP) and dimethylcyclopentane (DMCP). However, adding niobium
391 decreased the fraction of hydrogenolysis products and significantly enhanced the formation of ECP
392 and DMCP. All samples catalyzed the formation of benzene and xylene with a benzene excess.
393 Samples with a higher niobium content produced slightly more benzene and xylene than the
394 molybdenum-rich carbides.

395 4 Discussion

396 4.1 Carburization of precursors

397 4.1.1 Formation of pure Mo₂C and NbC from uncalcined HT and calcined FD precursors

398 Both types of precursor were converted into carbides in several steps that can be classified into
399 decomposition of counter ions from the salts used in the synthesis, reduction, and carbon
400 incorporation with carbide formation. The presence of other elements in addition to metal and
401 oxygen is unique to the uncalcined hydrothermal precursors and while seemingly making the
402 transformation more complex, the additional steps were confined to the early stages, that is to
403 temperatures of less than 300 °C, as can be seen by comparison of the TG traces and gas phase

404 products in Figure 1 with those in Figure 3. The actual reduction and carburization events depended
405 on the metal mole fractions and were largely independent of the nature of the precursor.

406 The transformations of the pure oxides to carbides are described and analyzed in the literature.
407 Reduction requires the activation of hydrogen or the hydrocarbon and may be controlled by the
408 formation of reduced patches on the surface or by mobility of oxygen in the bulk. Carbide
409 formation requires diffusion of carbon into the bulk. The solid state transformation of molybdenum
410 oxide to molybdenum carbide is reported as follows: MoO_3 to MoO_2 to MoO_xC_y to Mo_2C [43]. A
411 similar phase transformation happens during synthesis of niobium carbide: Nb_2O_5 to NbO_2 to
412 NbO_xC_y to NbC [39]. The first reduction (Nb_2O_5 to NbO_2) [39] and also the second step (NbO_2 to
413 NbC) [44] was inferred to be controlled by nucleation. The weight losses observed here in the first
414 step correspond to formation of $\text{MoO}_{1.9}$ and $\text{NbO}_{1.9}$, implying predominant valences of Mo(IV)
415 and Nb(IV) in agreement with known stable oxides of these elements and with the literature
416 [39,43]. There is a significant difference between the two oxides with respect to the temperatures
417 (activation energies) required for each step. The carburization temperatures of 650 °C for Mo_2C
418 and 950 °C for NbC observed are close to literature reports of 657 °C [40] and 900 °C [39].

419 TG and MS data in Figure 3 show that in the first step, both oxides are reduced to an
420 intermediate oxidation state with formation of water, implying activation of only H_2 . In the second
421 step, CO is also formed, indicating activation of methane and further reduction. The weight change
422 and CO formation always ended simultaneously, implying that carbon incorporation and carbide
423 formation occurred in parallel to reduction. Comparison of the intensities reveals that much more
424 H_2O forms from molybdenum oxide than from niobium oxide, whereas the reverse applies for CO
425 formation. These results mean that, depending on the composition of the carbide and the
426 temperature, the surface is more likely to be covered with hydrogen or carbon, which will react
427 with emerging oxygen to form the observed products.

428 During the final stage of Mo_2C formation, water is formed from both H_2 and methane, as the
429 sharp water peak shows that coincides with CO formation (Figure 3). The weight loss during the
430 simultaneous reduction and carburization is rapid, indicating that both oxygen removal and
431 incorporation of carbon into the lattice are facile.

432 During the final stage of niobium carbide formation, only CO is released and no water (Figure
433 1 and Figure 3); presumably, hydrogen from methane evolves as H₂. Although the temperature is
434 much higher, the weight loss is much slower during NbC formation than during Mo₂C formation.
435 Notwithstanding isothermal conditions at 950 °C, there is acceleration in the weight loss, which
436 could be explained by heightened mobility as reduction progresses and vacancies are formed. The
437 high temperatures needed for this process and the inability of the surface to activate enough H₂
438 can promote carbon accumulation on the surface, which can be a problem with the synthesis of
439 niobium carbide [45] and leads to poor catalytic activity. A variety of synthesis methods have been
440 tested to avoid carbon contamination of NbC, with varied success. Precursors with a lower niobium
441 oxidation state or a smaller particle size were employed, but the temperature for carbide formation
442 could not be substantially lowered and surface contamination occurred [39,45,46]. Niobium
443 oxynitride as a precursor led to niobium carbonitride [47], and complete removal of the nitrogen
444 required high temperatures [9]. By employing metal powders as reducing agents, NbC has been
445 prepared at temperatures as low as 550 °C [48,49].

446 *4.1.2 Formation of mixed molybdenum-niobium carbides from both types of precursor*

447 The effect of combining two metals emerges most clearly for the well-defined precursors. The
448 mixed oxide obtained through calcination of the FD precursor is characterized by the MoO₃(*oP16*)
449 structure, that is, niobium is incorporated while the MoO₃ structure is retained. The origin of the
450 extra reflection could not be clarified. The position at 22.30 °2θ does not align with the reflection
451 of Nb₂O₅(*hP7*) at 22.625 °2θ, and the second large reflection of this oxide at 28.611 °2θ is absent.
452 The substitution of cations of lower valence into a metal oxide, here Nb⁵⁺ instead of Mo⁶⁺, implies
453 oxygen vacancies. The reduction of the mixed oxide was much more facile than that of pure MoO₃,
454 the first step occurred at 140 °C lower temperature, and the second one at 50 °C lower temperature,
455 as evident in TG traces and water formation profiles (Figure 3). This effect can be ascribed to
456 oxygen vacancies, whose presence is known to accelerate oxygen diffusion [50]. In particular, the
457 first step occurs much earlier for the mixed oxide than for pure MoO₃ - at this stage, the pure oxide
458 is presumably free of vacancies. The difference in temperatures becomes less pronounced for the
459 second step, when the suboxides formed during the first reduction with stoichiometries of MoO_{1.9}
460 and Mo₆NbO₁₃ (corresponding to MeO_{1.9} with Me=metal) are further reduced.

461 A similar effect is also seen for the hydrothermally synthesized sample with the lowest niobium
462 content in Figure 1. The traces are more complex because of the initial decomposition of
463 extraneous material relative to the oxides. Independent of this difference, the second reduction step
464 occurs earlier for the mixed metal precursor than for the pure molybdenum precursor.

465 A general strategy for facilitating the reduction step can be deduced from these observations:
466 metals of lower valence that are incorporated into a precursor may lead to oxygen vacancies, which
467 enhance oxygen mobility and lower the reduction temperature.

468 A clear trend with composition is seen in the degree of reduction during the first step.
469 Molybdenum-rich samples are further reduced at lower temperatures than niobium-rich samples,
470 which is indicated by the increasing H₂O signal (at about 90 min or 450 °C in Figure 1 and Figure
471 3) and the lower weight after this step (at about 150 min or 550 °C). With increasing niobium
472 content, methane becomes the more important reductant, and the relative size of the CO signal
473 increases. The profiles also show that the process is drawn out over a temperature range whereas
474 it is a well-defined event for pure molybdenum oxide.

475 The stoichiometry of the carburization reaction changes with composition; for the
476 transformation of MoO₃ to Mo₂C, 3 oxygen atoms have to be removed and 0.5 carbon atoms have
477 to be introduced per metal atom, whereas for the transformation of Nb₂O₅ to NbC, only 2.5 oxygen
478 atoms have to be removed while 1 carbon atom per metal atom has to be introduced. This exchange
479 of the anion proceeds much more slowly with increasing niobium content, which can be explained
480 by the higher affinity of niobium to oxygen and perhaps also by structures less conducive to oxygen
481 and carbon mobility. The general carbon deficiency of the mixed carbides with NbC structure
482 indicates the difficulty of incorporating carbon, for lack of carbon chemical potential or for poor
483 carbon diffusion. In this context, it is curious that the weight change stops when the CO evolution
484 stops – this correlation suggests that oxygen may be needed and, hence, the earlier loss of oxygen
485 in the form of water, which is promoted by the presence of molybdenum, could be disadvantageous
486 for the carbon incorporation process. Obviously, carburization process parameters including gas
487 composition and total pressure could be optimized, as has been done for tungsten carbides [51,52].

488 The final carburization temperature of mixed carbides with predominantly Mo₂C(*hP3*)
489 structure was close to that of pure Mo₂C (Figure 3). Formation of CO occurred over a broader

490 range for the mixed materials; the evolution below 650 °C (which is the temperature of maximum
491 CO evolution for Mo₂C) is ascribed to the beneficial effect of oxygen vacancies or other defects
492 for ion mobility; the evolution at temperatures above 650 °C is ascribed to formation of small
493 amounts of materials with cubic NbC structure (cf. diffractograms 9 and 10 in Figure 5).

494 All final carburization temperatures of mixed carbides with NbC(*cF8*) structure were between
495 those of the pure carbides, implying that the presence of molybdenum decreases the temperature
496 for formation of this carbide. Several factors affect the carbide formation, immediately relevant
497 are the ability of the surface to activate methane and the mobility of oxygen and carbon in the bulk.
498 In addition, while surface carbon is needed as a driving force, excessive carbon accumulation leads
499 to inertization and must be prevented, which can be achieved through carbon hydrogenation by
500 activated H₂ or through carbon oxidation by residual oxygen emerging from the bulk. From
501 research on methane aromatization, it is well known that MoO_x species are able to activate methane
502 [53] whereas no such reports exist for NbO_x; and NbC is much less active in methane activation
503 than Mo₂C [54]. Consistent with these reports, significant CO evolution in molybdenum-
504 containing precursors occurred at much lower temperature than in niobium-only precursors. If the
505 molybdenum content is low, then carbon accumulation becomes an issue once the oxygen is
506 consumed, as can be seen from the behavior of the sample with $x_{Nb} = 0.7$, which rapidly gains
507 weight at the end of the carburization. The presence of molybdenum lowers the final carburization
508 temperature; possible reasons are a defective lattice allowing for higher mobility.

509 A new approach to synthesize niobium carbide at low final carburization temperature, without
510 carbon contamination on the surface, emerges from these observations. The addition of another
511 metal cation such as molybdenum into the niobium precursor apparently suffices to lower the
512 carburization temperature and can be an alternative to addition of nickel or other metallic
513 reductants. However, a significant amount of molybdenum was required.

514 4.2 Characterization of carbides

515 4.2.1 Structure and composition

516 The diffractograms in Figure 5 demonstrate that phase-pure mixed metal carbides could be
517 obtained in the range $x_{Nb} = 0.36$ to $x_{Nb} = 1$ using hydrothermally synthesized precursors. Phase-pure
518 carbides with a composition in this range could also be obtained via the freeze-drying method,

519 whereas carbides more rich in molybdenum prepared by either synthesis method were not phase
520 pure. Both methods of precursor synthesis are thus principally successful.

521 The hydrothermal method produced precursors that did not contain too much extraneous
522 material and could be carburized successfully without prior calcination. However, the yields were
523 low, implying a significant amount of waste solution. Most importantly, the stoichiometry could
524 not be fully controlled because of the preferential incorporation of niobium in the precursor (Figure
525 4). Loss of molybdenum during carburization as a reason for the enrichment in niobium was
526 excluded on the basis of prior observations [17]. It was not possible to prepare materials with a
527 metal ratio of Mo/Nb larger than 2 that after carburization would form a single phase molybdenum-
528 niobium carbide. The FD method has several advantages over the hydrothermal method, including
529 producing less waste and allowing full control of the stoichiometry. A potential drawback is the
530 additional calcination step that may be advisable to remove excess ions from the starting materials.
531 The advantage of these two synthesis methods over other reported methods is the more intimate
532 mixing of precursor metals, which results in phase-pure materials over a wider range of
533 compositions. Physical mixtures of oxide or nitrates, even if milled or slurried [20,29], do not
534 provide atomic level mixing. Dissolution with subsequent solvent removal, which has also been
535 used for precursor formation [55], can result in sequential precipitation. An advantage of these
536 reported methods is that no starting material is wasted (as with the FD method reported here), and
537 physical mixing completely avoids wet chemistry.

538 The phase-pure materials crystallized in either of two different structures; molybdenum-rich
539 materials formed hexagonal Mo₂C(*hP3, P6₃/mmc*) (NiAs type) and niobium-rich materials formed
540 the cubic structure characteristic of both NbC(*cF8, Pm*₃*m*) (NaCl type) and the isostructural MoC,
541 respectively. The reported lattice constants for the pure carbides are 4.47 Å for NbC (ICDD # 00-
542 038-1364) and 4.281 Å for MoC (ICDD # 03-065-8092), and the trend to higher angles seen in
543 Figure 6 with increasing molybdenum content reflects this shrinkage of the unit cell. The cubic
544 structure seems to be preferred over a wide range, which was also observed by Yu et al. [29] who
545 succeeded in preparing phase-pure materials with x_{Nb} of 0.36 and 0.4. The series of samples with
546 the cubic structure fits well on a Vegard's Law plot (Figure 6), implying true solid solutions. The
547 equilibrium Gibbs free energy will determine whether the structure of the carbide is cubic or
548 hexagonal. Cubic NbC is more stable than hexagonal Mo₂C [56], which explains why over most

549 of the compositional range, it is the preferred structure. Mixtures of phases appeared towards the
550 molybdenum-rich end of the series. This behavior is consistent with calculations that show
551 MoC(*cF8*) to be endergonic and thus less stable than NbC(*cF8*) or Mo₂C(*hP3*) [56], promoting
552 the segregation into two phases. No evidence was found for incorporation of niobium into the
553 Mo₂C structure, which explains why even at low niobium concentrations a second phase appears.

554 The weight losses observed during carburization of the calcined freeze-dried materials are
555 close to the theoretical weight losses and indicate that conversion to carbides is complete. Others
556 have observed formation of oxycarbides [57]; comparison of experimental conditions shows that
557 the process may be sensitive to any of a number of parameters, such as precursor type, heating
558 rate, or final temperature. Except for the pure molybdenum and niobium carbides, the materials
559 were noticeably carbon-deficient, even if a stoichiometry of only one carbon atom per two
560 molybdenum atoms was assumed, also for the NbC/MoC structure (Table 1). Calculations have
561 shown that carbon vacancies increase or do not affect the stability of these cubic carbides [56].

562 *4.2.2 Textural and surface properties*

563 The properties of Mo₂C from a hydrothermally synthesized precursor were similar to those of
564 Mo₂C from commercial MoO₃. The oxygen uptake was less at 2.49 wt% compared to literature
565 values of 3.1 wt%, corresponding to the relative surface areas [17]. The CO uptake at 18.5 μmol/g
566 was slightly higher than the 15.5 μmol/g for a MoO₃-derived carbide but given the generally large
567 variation of such values depending on the method of preparation, this Mo₂C can be considered to
568 be reasonably similar to reported materials. This similarity allows the conclusion that carbides can
569 be obtained from hydrothermally synthesized precursors, and that an intermediate calcination step
570 is not necessary.

571 The surface of NbC obtained from the hydrothermally synthesized precursor was inert. There
572 was no oxygen or CO uptake. It is reported that oxygen dissociatively adsorbs on clean NbC (100)
573 and NbC (111) surfaces [58,59]. Possible explanations for the inertness are a surface that was never
574 fully reduced or a surface covered with a carbon layer. In the literature, NbC generated at a
575 temperature of 900 °C [20] exhibited metallic sites for CO adsorption. The temperature applied
576 here for carburization did not differ much from that in the literature, 950 °C, which should ensure
577 full conversion to NbC [39], as also found by XRD. There was no mass gain observed by TG at
578 the end of the carburization that would suggest carbon uptake, and the elemental analysis suggests

579 only a small excess over the stoichiometric amount (12 vs. 11.4 wt%). As much as 18 wt% carbon
580 have been reported [39]. Various procedures for surface cleaning can be found in the literature.
581 Some authors [20] have successfully increased the number of CO adsorption sites by treating NbC
582 at 350 °C in O₂ followed by reduction at 450 °C. Others [47] report that surface cleaning to remove
583 deposited carbon can be done at high temperatures (950 °C) with H₂ and not with O₂. It was
584 attempted in this work to oxidize the surface of NbC and then re-carburize the niobium oxycarbide,
585 but a temperature of 950 °C was still needed for complete carburization and removal of oxygen
586 from surface (as indicated by evolution of CO). This behavior demonstrates that oxygen can adsorb
587 very strongly on the surface of niobium. The surface area of NbC was significant at 17 m²/g
588 although it was synthesized at 950 °C; possibly, the inert surface inhibited sintering.

589 The properties of the mixed molybdenum-niobium carbides were found to be determined by
590 the actual composition and the final carburization temperature T_f (2nd and 3rd column in Table 1).
591 Even though the temperatures were equal to or higher than that used for Mo₂C, all mixed carbides
592 exhibited higher surface areas and higher pore volumes than Mo₂C. Niobium obviously has a
593 positive effect on surface area, which maybe counteracted to some extent by the need for a higher
594 carburization temperature with increasing niobium content. The highest surface areas exceed those
595 reported for mixed molybdenum-niobium carbides, which reach values of 44 m²/g [20] and are
596 closer to those reported for molybdenum-niobium oxycarbides [29]. Trends in oxygen uptake
597 reflect trends in surface area but there is no strict proportionality. There are two possible
598 explanations: surface areas were measured after passivation, which is known to alter (*i.e.*, reduce)
599 surface area; and the surface may become more inert towards O₂ with increasing niobium content,
600 approaching the properties of pure NbC. The maximum surface area and oxygen uptake occurred
601 around $x_{Nb} = 0.5$.

602 The number of sites titrated by CO chemisorption steadily increased with increasing
603 molybdenum content (Table 1), which for many samples opposes the trend seen in oxygen
604 chemisorption during passivation. This behavior can be explained by the differences between the
605 sites on which oxygen and CO chemisorb. Oxygen chemisorbs on all metallic sites whereas CO
606 chemisorbs selectively on noble metal-like sites [18]. The observed relationship of CO uptake with
607 composition also suggests that the surfaces of these mixed carbides, unlike those of previously

608 described tungsten-molybdenum [19] and molybdenum-niobium carbides [21], were not enriched
609 in molybdenum.

610 **4.3 Reduction after passivation**

611 The TPR data (Figure 7) show that depending on the temperature, oxygen or carbon can be
612 removed from molybdenum-containing carbides, whereas neither oxygen nor carbon could be
613 removed from NbC by H₂ treatment at temperatures up to 700 °C. Mo₂C obtained from a
614 hydrothermally synthesized precursor behaved like MoO₃-derived Mo₂C [17]. Reduction of the
615 passivated surface in H₂ was fastest at a temperature slightly above 150 °C. Methane release, which
616 required a temperature of 600 °C, was insignificant, suggesting no carbon removal from the bulk.

617 Surface reduction, analogous to bulk reduction, was promoted on the mixed metal carbides, as
618 indicated by the pronounced shoulder in the water evolution profile at 100 °C. Sites with a lower
619 oxygen binding energy could result from electronic effects that weaken chemisorption of oxygen
620 on the surface or from highly oxidized metal atoms associated with edge and corner sites (for high
621 surface area and correspondingly small particle size). In molybdenum-niobium carbide, electron
622 density is removed from both molybdenum and the molybdenum-carbon covalent bond relative to
623 the situation in molybdenum carbide [60]. This charge relocation could also explain a weaker
624 binding of other anionic species.

625 For samples with $x_{Nb}=0.38$ or 0.51 prepared via hydrothermal synthesis, ethane evolved at 300
626 °C. The C_xH_y fragments may have been formed during carburization, and are hydrogenated and
627 volatilized during TPR.

628 Methane formation was promoted and substantial for materials of intermediate composition
629 (traces 3, 4, 5 in Figure 7) indicating facile creation of carbon vacancies on the surface and in the
630 bulk. The relocation of electron density described above could be the reason for weaker metal-
631 carbon bonds and facile carbon vacancy formation. This property distinguishes the mixed carbides
632 from Mo₂C and NbC. The creation of vacancies as active sites is important for reactions such as
633 direct desulfurization [61], and may be the reason that molybdenum-niobium carbides are active
634 for hydrotreating [21,29].

635 **4.4 Catalytic performance**

636 At a reaction temperature of 250 °C and 21 bar pressure, methylcyclohexane was the only
637 product, that is, the ability of the catalyst to activate H₂ and adsorb toluene such that ring
638 hydrogenation can occur was probed. NbC did not show any activity, consistent with its generally
639 inert behavior. Addition of molybdenum resulted in an increasing number of noble metal-like sites
640 according to the CO uptake values in Table 1. Principally in agreement with this trend, the
641 hydrogenation activity (relative to catalyst mass) increased, which is conceivable since it is
642 associated with the metallic behavior of metal carbides. However, TOFs (Figure 8, referenced to
643 CO uptake) increased significantly with increasing molybdenum content, implying a change in the
644 quality of the sites. The different bulk structures could play a role; the mixed carbides with the
645 cubic structure of NbC/MoC were characterized by similar TOFs for hydrogenation, whereas
646 carbides with the hexagonal structure of Mo₂C enabled higher TOFs. Molybdenum carbide itself
647 can be prepared in various structures including hexagonal Mo₂C(*hP3*), cubic Mo₂C(*cF6*), and
648 cubic MoC(*cF8*). A complete understanding of the catalytic behavior associated with these phases
649 is lacking. Mo₂C(*cF6*) is reported to have a higher specific activity than Mo₂C(*hP3*) for
650 hydrogenation of CO whereas Mo₂C(*hP3*) was found to be 200 times more active for
651 hydrogenolysis of ethane than Mo₂C(*cF6*), which was ascribed to differences in the structure of
652 the main exposed planes [62]. For hydrogenation of toluene, Mo₂C(*cF6*) was characterized by a
653 one order of magnitude higher rate per area than (commercially acquired) hexagonal-phase
654 molybdenum carbide [63], but the calculation was based on the assumption that the surface area
655 of Mo₂C(*cF6*) scaled with its mass fraction of 11% in the sample (which also contained MoO₂ and
656 C). CO uptakes were available in some cases [62], and differed by much less than the reaction
657 rates, suggesting that for certain reactions, TOFs can indeed vary significantly for different
658 structures.

659 At 400 °C, as at 250 °C, carbides rich in molybdenum with hexagonal Mo₂C structure were
660 more active than those rich in niobium. While the samples with high molybdenum content
661 deactivated more rapidly, the total amount of toluene converted in 24 hours on stream was much
662 higher for these samples than for the less active niobium-rich samples. Products indicative of
663 multifunctional catalysis were observed at 400 °C (Table 2). Ring hydrogenation and
664 hydrogenolysis to short alkanes reflect the metallic function, whereas ring contraction to

665 cyclopentanes and disproportionation to benzene and xylenes indicate acid sites. Dealkylation to
666 benzene can be catalyzed by a variety of sites, including acid and metallic sites.

667 The molybdenum carbide $\text{Mo}_2\text{C}(hP3)$ is known to have pronounced metallic behavior that
668 favors hydrogenation and hydrogenolysis. At a niobium content of $x_{Nb} = 0.14$, the structure is still
669 predominantly $\text{Mo}_2\text{C}(hP3)$ and the metallic behavior is conserved with ring hydrogenation to
670 methylcyclohexane and hydrogenolysis to small alkanes being the predominant reactions.
671 Calculations show that substitution of molybdenum by niobium does not alter the electronic
672 structure of Mo_2C significantly, whereas substitution of carbon by oxygen increases ionicity [60].
673 Here, a higher fraction of niobium and a change in structure have three effects: the activity is lower
674 (as indicated by the W/F that was needed to adjust to equal conversion, Table 2), hydrogenolysis
675 is suppressed, and ring contraction is promoted. The residual amount of oxygen (remaining after
676 passivation and reduction, Table 1) seems to be too small to explain the dramatic decrease in
677 toluene TOF with incorporation of niobium (Figure 8). More likely are geometric effects resulting
678 from a much higher surface area and correspondingly smaller particle size, which are equivalent
679 to a loss of ensemble sites. At least on noble metals, toluene hydrogenation is structure-sensitive
680 [64,65] as is alkane hydrogenolysis [66].

681 The ring contraction products can be ascribed to Brønsted acid sites that are associated with
682 the residual oxygen on the surface of these materials (Table 1, $x_{Nb}=0.38$ or 0.51). Niobium
683 oxycarbides have mainly been tested for HDS [29], and little is known about a catalytic
684 contribution of acid sites. In contrast, tungsten and molybdenum surface oxycarbides can provide
685 acid sites, which, for example, catalyze alkane isomerization [11,14]. The majority of sites on
686 partially oxidized mixed molybdenum-tungsten carbides are Brønsted acid sites [67]. The source
687 of the oxygen affinity here is evidently the niobium, in line with prior reports. In the case of mixed
688 molybdenum-niobium carbides, oxygen tends to adsorb preferentially on niobium [29]. Also,
689 niobium nitride can adsorb more oxygen than molybdenum or tungsten nitride, because of the
690 higher affinity of niobium to oxygen [68]. Niobium forms oxides with stoichiometries NbO ,
691 Nb_2O_3 , NbO_2 and Nb_2O_5 with different catalytic properties [69]. The pentoxide, Nb_2O_5 , possesses
692 strong Brønsted acid sites with H_o between -5.6 and -8.2 as well as Lewis acid sites [70]. Niobium
693 (III) oxide would be expected to have less acidic OH groups than the (V) oxide, according to trends
694 in the periodic table. On the surface of the mixed carbide, species reminiscent of the surface

695 structure of these oxides may be present and provide acid sites. It is established in the literature
696 [71,72] that ring contraction needs strong acid sites such as those in zeolites or on sulfated zirconia.
697 Further differentiation can be made; ethylcyclopentane can be formed on a range of strong acid
698 sites, whereas significant formation of dimethylcyclopentane requires very strong acid sites as can
699 be found in the structures FAU, MOR, or BEA [72]. The formation of ring contraction products
700 indicates that strongly acidic Brønsted sites are present on the mixed molybdenum-niobium
701 carbides although the sites are not sufficient in strength to produce predominantly
702 dimethylcyclopentanes.

703 The formation of disproportionation products at 400 °C, benzene and xylene, is an indication
704 of acid sites. Toluene disproportionation is typically conducted using MFI zeolites as catalysts,
705 and the activity scales with the strength of the Brønsted acid sites [73].

706 The benzene excess over xylenes can be explained by dealkylation on acid sites or
707 hydrodealkylation on metallic sites [74]. The selectivity, as represented by the benzene excess,
708 varies between 4.9 and 6.9% and is highest when the disproportionation selectivity is highest,
709 suggesting this pathway may be catalyzed by acid sites. Dealkylation has been claimed to be
710 promoted by the presence of both Brønsted and Lewis acid sites [Error! Bookmark not defined.],
711 or to require stronger acid sites than disproportionation [75]. However, overall the benzene excess
712 is only weakly dependent on catalyst composition and hydrodealkylation as a pathway cannot be
713 ruled out.

714 In summary, the catalytic behavior of the mixed carbides depends on the balance between
715 metallic and acidic sites. In the hydrogenation of toluene on platinum, addition of the 5th hydrogen
716 has been identified as the rate-determining step [76]. Assuming a similar scenario on carbides,
717 desorption of methylcyclohexene and, depending on the number of metallic sites versus number
718 of acid sites, hydrogenation and hydrogenolysis or ring contraction can occur. The data in Table 2
719 suggest that there may be an optimum niobium content with respect to ring contraction selectivity,
720 but a broader data base would be needed to confirm this observation. The trend from more metallic
721 to more acidic behavior with increasing niobium content is consistent with the behavior of the
722 corresponding nitrides. Molybdenum oxynitride has been compared with niobium oxynitride for
723 metal-catalyzed reactions (hydrogenation of toluene) and acid-catalyzed reactions (isomerization

724 of cyclohexane) and results revealed that molybdenum oxynitride has more pronounced metallic
725 behavior whereas niobium oxynitride has more pronounced acid behavior [77].

726 **5 Conclusions**

727 Single-phase mixed metal carbides of molybdenum and niobium with various compositions
728 were prepared by carburizing precursors with atomic level mixing of metal ions. Both
729 hydrothermal synthesis and flash-freezing with subsequent freeze-drying were suitable to obtain
730 such precursors. The presence of two metals caused reduction and carburization to occur at lower
731 temperatures compared to the synthesis of the pure metal carbides. Based on the metal ratios and
732 method of precursor synthesis, the cubic NbC/MoC structure or the hexagonal Mo₂C structure was
733 preferably formed. Single-phase mixed metal carbides with the cubic NbC/MoC structure were
734 obtained at niobium mole fractions between 0.38 and 1. Mixed metal carbides with a niobium mole
735 fraction less than 0.38 were a mixture of the cubic NbC/MoC structure and the hexagonal Mo₂C
736 structure. Samples prepared from hydrothermally precipitated precursors were characterized by
737 surface areas exceeding 50 m²/g and high oxygen uptakes during passivation. TPR data showed
738 that creation of carbon vacancies or surface reduction is more facile for mixed metal carbides
739 compared to their monometallic counterparts. The number of metallic sites as probed by CO
740 chemisorption increased with increasing molybdenum content. Carbides with high molybdenum
741 fraction and hexagonal Mo₂C structure yielded more metal-catalyzed products (hydrogenation and
742 hydrogenolysis) during toluene conversion, whereas carbides with high niobium fraction and cubic
743 NbC/MoC structure were less active and produced more acid-catalyzed products. At a niobium
744 metal fraction of $x_{Nb}=0.14$, the ring hydrogenation TOF (based on CO adsorption sites) was
745 decreased by a factor of six relative to Mo₂C. At equal conversion, the selectivity for ring opening
746 products was 32% for a mixed metal carbide with $x_{Nb}=0.38$ vs. 0% for Mo₂C. These results
747 demonstrate that the bulk and surface properties of carbides can be tuned by tuning the composition
748 and that the strategy to improve oxygen retention on carbide surfaces by incorporating a more
749 oxophilic metal is successful.

750

751 **Acknowledgements**

752 Acknowledgment is made to the Donors of the American Chemical Society Petroleum
753 Research Fund for support (or partial support) of this research under PRF#51448-ND5. This work

754 was, in part, supported by NSF award 0923247 (thermal analysis equipment as part of a major
755 research instrumentation grant). The authors thank Lance L. Lobban for providing the test reactor
756 and Alana Denning for her assistance with EDX measurements.

757 **References**

- [1] J.H. Sinfelt, D.J.C. Yates, Effect of carbiding on hydrogenolysis activity of molybdenum, *Nature Phys. Sci.* 229 (1971) 27.
- [2] R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, *Science, New Series* 181 (1973) 547-549.
- [3] S.T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, *Catal. Today* 15 (1992) 179-200.
- [4] S.T. Oyama, Transition metal carbides, nitrides, and phosphides, in *Handbook of Heterogeneous Catalysis*, Vol. I, Eds. G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, 2nd edition, Wiley-VCh, 2008, pp. 342-356.
- [5] E. Furimsky, Metal carbides and nitrides as potential catalysts for hydroprocessing, *Appl. Catal. A: General* 240 (2003) 1–28.
- [6] K. Xiong, W. Yu, J.G. Chen, Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo₂C) surfaces, *Appl. Surf. Sci.* 323 (2014) 88–95.
- [7] W.-S. Lee, Z. Wang, R.J. Wu, A. Bhan, Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts, *J. Catal.* 319 (2014) 44-53.
- [8] D.J. Ham, J.S. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells, *Energies* 2 (2009) 873-899.
- [9] C. Chagas, R. Pfeifer, A. Rocha, V. Teixeira da Silva, Synthesis of niobium carbonitride by thermal decomposition of guanidine oxaloniobate and its application to the hydrodesulfurization of dibenzothiophene, *Topics Catal.* 55 (2012) 910-921.
- [10] F.H. Ribeiro, M. Boudart, R.A. Dalla Betta, E. Iglesia, Catalytic reactions of *n*-alkanes on β -W₂C and WC: The effect of surface oxygen on reaction pathways, *J. Catal.* 130 (1991) 498-513.
- [11] E. Iglesia, J.E. Baumgartner, F.H. Ribeiro, M. Boudart, Bifunctional reactions of alkanes on tungsten carbides modified by chemisorbed oxygen, *J. Catal.* 131 (1991) 523-544.
- [12] E. Iglesia, F.H. Ribeiro, M. Boudart, J.E. Baumgartner, Synthesis, characterization, and catalytic properties of clean and oxygen-modified tungsten carbides, *Catal. Today* 15 (1992) 307-337.
- [13] P. Delporte, F. Meunier, C. Pham-Huu, P. Vennegues, M.J. Ledoux, J. Guille, Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS, *Catal. Today* 23 (1995) 251-267.
- [14] P. Delporte, C. Pham-Huu, M.J. Ledoux, Effect of the reaction temperature and hydrocarbon partial pressure on the activity of carbon-modified MoO₃ for *n*-hexane isomerization, *Appl. Catal. A: General* 149 (1997) 151–180.

[15] C. Bouchy, C. Pham-Huu, B. Heinrich, E.G. Derouane, S.B. Derouane-Abd Hamid, M.J. Ledoux, In situ TPO, TPD and XRD characterisation of a molybdenum oxycarbohydride catalyst for *n*-butane isomerization, *Appl. Catal. A: General* 215 (2001) 175–184.

[16] A.J. Medford, A. Vojvodic, F. Studt, F. Abild-Pedersen, J.K. Nørskov, Elementary steps of syngas reactions on Mo₂C(001): Adsorption thermochemistry and bond dissociation, *J. Catal.* 290 (2012) 108-117.

[17] A. Mehdad, R.E. Jentoft, F.C. Jentoft, Passivation agents and conditions for Mo₂C and W₂C: Effect on catalytic activity for toluene hydrogenation, *J. Catal.* 347 (2017) 89-101.

[18] J.-S. Choi, G. Bugli, G. Djéga-Mariadassou, Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides, *J. Catal.* 193 (2000) 238-247.

[19] L. Leclercq, M. Provost, H. Pastor, G. Leclercq, Catalytic properties of transition metal carbides II. Activity of bulk mixed carbides of molybdenum and tungsten in hydrocarbon conversion, *J. Catal.* 117 (1989) 384-395.

[20] V.L.S. Teixeira da Silva, M. Schmal, V. Schwartz, S.T. Oyama, Synthesis of a Mo/Nb mixed carbide, *J. Mater. Res.* 13 (1998) 1977-1988.

[21] V. Schwartz, S.T. Oyama, J.G. Chen, Supported bimetallic Nb–Mo carbide: Synthesis, characterization, and reactivity, *J. Phys. Chem. B* 104 (2000) 8800-8806.

[22] T.-C. Xiao, A.P.E. York, H. Al-Megren, J.B. Claridge, H.-T. Wang, M.L.H. Green, Preparation of molybdenum carbide-based catalysts for deep HDN, *C. R. Acad. Sci. Paris, Série IIc, Chimie: Chemistry* 3 (2000) 451–458.

[23] T.-C. Xiao, A.P. E. York, H. Al-Megren, C.V. Williams, H.-T. Wang, M.L.H. Green, Preparation and characterisation of bimetallic cobalt and molybdenum carbides, *J. Catal.* 202 (2001) 100–109.

[24] T. Xiao, H. Wang, A.P. E. York, V.C. Williams, M.L.H. Green, Preparation of nickel–tungsten bimetallic carbide catalysts, *J. Catal.* 209 (2002) 318–330.

[25] T.-C. Xiao, A. Hanif, A.P.E. York, M.L.H. Green, Methane partial oxidation to synthesis gas over bimetallic cobalt/tungsten carbide catalysts and integration with a Mn substituted hexaaluminate combustion catalyst, *Catal. Today* 147 (2009) 196–202.

[26] H.A. Al-Megren , S.L. González-Cortés, T. Xiao, M.L.H. Green, A comparative study of the catalytic performance of Co-Mo and Co(Ni)-W carbide catalysts in the hydrodenitrogenation (HDN) reaction of pyridine, *Appl. Catal. A: General* 329 (2007) 36–45.

[27] D.J. Haynes, D.A. Berry, D. Shekhawat, T.-C. Xiao, M.L.H. Green, J.J. Spivey, Partial oxidation of *n*-tetradecane over 1 wt % Pt/γ-Al₂O₃ and Co_{0.4}Mo_{0.6}C_x carbide catalysts: A comparative study, *Ind. Eng. Chem. Res.* 47 (2008) 7663–7671.

[28] B. Frank, T.P. Cotter, M.E. Schuster, R. Schlögl, A. Trunschke, Carbon dynamics on the molybdenum carbide surface during catalytic propane dehydrogenation, *Chem. Europ. J.* 19 (2013) 16938-16945.

[29] C.C. Yu, S. Ramanathan, B. Dhandapani, J.G. Chen, S.T. Oyama, Bimetallic Nb–Mo carbide hydroprocessing catalysts: Synthesis, characterization, and activity studies, *J. Phys. Chem. B* 101 (1997) 512-518.

[30] C. Marquez-Alvarez, J.B. Claridge, A.P.E. York, J. Sloan, M.L.H. Green, Benzene hydrogenation over transition metal carbides, *Stud. Surf. Sci. Catal.* 106 (1997) 485–490.

[31] L.C. A. Bastos, W.R. Monteiro, M.A. Zacharias, G.M. da Cruz, J. Augusto, J. Rodrigues, Preparation and characterization of Mo/W bimetallic carbides by using different synthesis methods, *Catal. Lett.* 120 (2008) 48–55.

[32] L. Leclercq, M. Provost, H. Pastor, J. Grimblot, A.M. Hardy, L. Gengembre, G. Leclercq, Catalytic Properties of Transition Metal Carbides I. Preparation and physical characterization of bulk mixed carbides of molybdenum and tungsten, *J. Catal.* 117 (1989) 371–383.

[33] T.-H. Nguyen, A.A. Adesina, E.M.T Yue, Y.-J. Lee, A. Khodakov, M.P. Brungs, Synthesis of Mo–W carbide via propane carburization of the precursor sulfide: Kinetic analysis, *J. Chem. Technol. Biotechnol.* 79 (2004) 286–290.

[34] S. Ramanathan, S.T. Oyama, New catalysts for hydroprocessing: Transition metal carbides and nitrides, *J. Phys. Chem.* 99 (1995) 16365–16372.

[35] M.K. Neylon, S. Choi, H. Kwon, K.E. Curry, L.T. Thompson, Catalytic properties of early transition metal nitrides and carbides: *n*-butane hydrogenolysis, dehydrogenation and isomerization, *Appl. Catal. A: General* 183 (1999) 253–263.

[36] T. Murayama, N. Kuramata, S. Takatama, K. Nakatani, S. Izumi, X. Yi, W. Ueda, Synthesis of porous and acidic complex metal oxide catalyst based on group 5 and 6 elements, *Catal. Today* 185 (2012) 224–229.

[37] A. El-Himri, F. Sapiña, R. Ibáñez, A. Beltrán, Synthesis of new vanadium-chromium and chromium-molybdenum oxynitrides by direct ammonolysis of freeze-dried precursors, *J. Mater. Chem.* 10 (2000) 2537–2541.

[38] A. El-Himri, P. Núñez, F. Sapiña, R. Ibáñez, A. Beltrán, J.-M. Martínez-Agudoc, Synthesis of new molybdenum–tungsten, vanadium–tungsten and vanadium–molybdenum–tungsten oxynitrides from freeze-dried precursors, *J. Solid State Chem.* 177 (2004) 2423–2431.

[39] V.L.S. Teixeira da Silva, M. Schmal, S.T. Oyama, Niobium carbide synthesis from niobium oxide: study of the synthesis conditions, kinetics, and solid-state transformation mechanism, *J. Solid State Chem.* 123 (1996) 168–182.

[40] J.S. Lee, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts I. Synthesis of unsupported powders, *J. Catal.* 106 (1987) 125–133.

[41] D.E. Wobbe, W.A. Noyes, Photochemical studies IV The thermal decomposition of anhydrous oxalic acid and its relation to the photochemical decomposition, *J. Am. Chem. Soc.* 48 (1926) 2856–2868.

[42] Y. Okada, E. Sasaki, E. Watanabe, S. Hyodo, H. Nishijima, Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method, *Int. J. Hydrogen Energy* 31 (2006) 1348–1356.

[43] A. Hanif, T. Xiao, A.P.E. York, J. Sloan, M.L.H. Green, Study on the structure and formation mechanism of molybdenum carbides, *Chem. Mater.* 14 (2002) 1009–1015.

[44] F.A.O. Fontes, J.F. de Sousa, C.P. Souza, M.B.D. Bezerra, M. Benachour, Production of NbC from Nb₂O₅ in a rotating cylinder reactor: Kinetic study of reduction/carburization reactions, *Chem. Engr. J.* 175 (2011) 534–538.

[45] V.L.S. Teixeira da Silva, E.I. Ko, M. Schmal, S.T. Oyama, Synthesis of niobium carbide from niobium oxide aerogels, *Chem. Mater.* 7 (1995) 179-184.

[46] S. Witkowski, M. Ruszak, C. Sayag, J. Pielaszek, G. Djéga-Mariadassou, Nanocrystalline NbC formation from mesostructured niobium oxide studied by HRTEM, SAED and in situ XRD, *Appl. Catal. A: General* 307 (2006) 205-211.

[47] H.S. Kim, G. Bugli, G. Djéga-Mariadassou, Preparation and characterization of niobium carbide and carbonitride, *J. Solid State Chem.* 142 (1999) 100-107.

[48] L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma, Y. Qian, Synthesis and oxidation behavior of nanocrystalline niobium carbide, *Solid State Ionics*, 176 (2005) 841-843.

[49] J. Ma, M. Wu, Y. Du, S. Chen, W. Jin, L. Fu, Q. Yang, A. Wen, Formation of nanocrystalline niobium carbide (NbC) with a convenient route at low temperature, *J. Alloys Comps.* 475 (2009) 415-417.

[50] M. Martin, Diffusion in oxides, in *Diffusion in Condensed Matter: Methods, Materials, Models*, Editors: Heitjans, Paul, Kärger, Jörg (Eds.), 2005 Springer-Verlag Berlin Heidelberg, p. 209-247.

[51] G. Leclercq, M. Kamal, J. M. Giraudon, P. Devassine, L. Feigenbaum, L. Leclercq, A. Frennet, J. M. Bastin, A. Löfberg, S. Decker, M. Dufour, Study of the preparation of bulk powder tungsten carbides by temperature programmed reaction with $\text{CH}_4 + \text{H}_2$ mixtures, *J. Catal.* 158 (1996) 142–169.

[52] A. Löfberg, A. Frennet, G. Leclercq, L. Leclercq, J.M. Giraudon, Mechanism of WO_3 reduction and carburization in CH_4/H_2 mixtures leading to bulk tungsten carbide powder catalysts, *J. Catal.* 189 (2000) 170–183.

[53] J. Gao, Y. Zheng, J.-M. Jehng, Y. Tang, I.E. Wachs, S.G. Podkolzin, Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion, *Science* 348 (2015) 686-690.

[54] A.C. Camacho Rodrigues, J.L. Fontes Monteiro, Effect of the introduction of niobium carbide on non-oxidative dehydro-aromatization of methane over MoMCM-22, *Reac. Kinet. Mech. Cat.* 105 (2012) 441–450.

[55] X.-H. Wang, M.-H. Zhang, W. Lia, K.-Y. Tao, A simple synthesis route and characterisation of $\text{Co}_3\text{Mo}_3\text{C}$, *Dalton Trans.* (2007) 5165–5170.

[56] H.W. Hugosson, O. Eriksson, U. Jansson, B. Johansson, Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study, *Phys. Rev. B* 63 (2001) 134108.

[57] S. Ted Oyama,¹ C. Charles Yu, S. Ramanathan, Transition metal bimetallic oxycarbides: synthesis, characterization, and activity studies, *J. Catal.* 184 (1999) 535–549.

[58] K. Edamoto, T. Anazawa, E. Shiobara, M. Hatta, E. Miyazaki, H. Kato, S. Otani, Oxygen adsorption on a $\text{NbC}_{0.9}$ (111) surface: Angle-resolved photoemission study, *Phys. Rev. B* 43 (1991) 3871-3875.

[59] T. Aizawa, W. Hayami, R. Souda, S. Otani, T. Tanaka, Y. Ishizawa, Molecular adsorption of oxygen on transition-metal carbide, *Surf. Sci.* 357–358 (1996) 645-650.

[60] H.W. Hugosson, L. Nordström, U. Jansson, B. Johansson, O. Eriksson, Theoretical studies of substitutional impurities in molybdenum carbide, *Phys. Rev. B* 60 (1999) 15123-15130.

[61] M. Egorova, R. Prins, Hydrodesulfurization of dibenzothiophene and 4,6-dimethylbibenzothiophene over sulfided NiMo/ γ -Al₂O₃, CoMo/ γ -Al₂O₃, and Mo/ γ -Al₂O₃ catalysts, *J. Catal.* 225 (2004) 417-427.

[62] G.S. Ranhatra, A.T. Bell, J.A. Reimer, Catalysis over molybdenum carbides and nitrides: II. Studies of CO hydrogenation and C₂H₆ hydrogenolysis, *J. Catal.* 108 (1987) 40-49.

[63] M.-L. Frauwallner, F. López-Linares, J. Lara-Romero, C.E. Scott, V. Ali, E. Hernández, P. Pereira-Almao, Toluene hydrogenation at low temperature using a molybdenum carbide catalyst, *Appl. Catal. A: General* 394 (2011) 62-70.

[64] V.V. Pushkarev, K. An, S. Alayoglu, S.K. Beaumont, G.A. Somorjai, Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: Elucidation of the Pt particle size effect on reaction kinetics, *J. Catal.* 292 (2012) 64-72.

[65] P.S.F. Mendes, G. Lapisardi, C. Bouchy, M. Rivallan, J.M. Silva, M.F. Ribeiro, Hydrogenating activity of Pt/zeolite catalysts focusing acid support and metal dispersion influence, *Appl. Catal. A: General* 504 (2015) 17-28.

[66] D. Nazimek, J. Ryczkowski, Influence of the crystallite size of platinum on the course of hydrogenolysis and isomerization of *n*-butane over Pt/Al₂O₃ catalysts, *React. Kinet. Catal. Lett.* 40 (1989) 137-143.

[67] A.-F. Lamic, C.-H. Shin, G. Djéga-Mariadassou, C. Potvin, Characterization of new bimetallic oxycarbide (MoWC_{0.5}O_{0.6}) for bifunctional isomerization of *n*-heptane, *Catal. Lett.* 107 (2006) 89-94.

[68] R. Brayner, J.A.J. Rodrigues, G.M. Cruz, Synthesis and molding of niobium oxynitrides with macropores generation: Reactivity and stability in cyclohexane dehydrogenation, *Catal. Today* 57 (2000) 219-223.

[69] S. Isobe, K. Kudoh, S. Hino, K. Hara, N. Hashimoto, S. Ohnuki, Catalytic efficiency of Nb and Nb oxides for hydrogen dissociation, *Appl. Phys. Lett.* 107 (2015) 081602.

[70] I. Nowak, M. Ziolek, Niobium compounds: Preparation, characterization, and application in heterogeneous catalysis, *Chem. Rev.* 99 (1999) 3603-3624.

[71] K. Shimizu, T. Sunagawa, C.R. Vera, K. Ukegawa, Catalytic activity for synthesis of isomerized products from benzene over platinum-supported sulfated zirconia, *Appl. Catal. A: General* 206 (2001) 79-86.

[72] G.B. McVicker, O.C. Feeley, J.J. Ziemiak, D.E.W. Vaughan, K.C. Strohmaier, W.R. Kliwer, D.P. Leta, Methylcyclohexane ring-contraction: A sensitive solid acidity and shape selectivity probe reaction, *J. Phys. Chem. B* 109 (2005) 2222-2226.

[74] D.C. Grenoble, The chemistry and catalysis of the toluene hydrodealkylation reaction: I. The specific activities and selectivities of Group VIIB and Group VIII metals supported on alumina, *J. Catal.* 56 (1979) 32-39.

[75] M.A. Uguina, J.L. Sotelo, D.P. Serrano, J.L. Valverde, Deactivation kinetics of para-selective toluene disproportionation over modified ZSM-5, *Ind. Eng. Chem. Res.* 33 (1994) 26-31.

[76] M. Saeys, M.-F. Reyniers, J.W. Thybaut, M. Neurock, G.B. Marin, First-principles based kinetic model for the hydrogenation of toluene, *J. Catal.* 236 (2005) 129-138.

[77] H.S. Kim, C. Sayag, G. Bugli, G. Djega-Mariadassou, M. Boudart, Preparation, characterization and catalytic activity of niobium oxynitride and oxycarbide in hydrotreatment, MRS Online Proceedings Library 368 (1994) 3-14.