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ABSTRACT

This paper investigates the recently introduced data-driven correction reduced order model (DDC-
ROM) in the numerical simulation of the quasi-geostrophic equations. The DDC-ROM uses available
data to model the correction term that is generally used to represent the missing information in
low-dimensional ROMs. Physical constraints are added to the DDC-ROM to create the constrained
data-driven correction reduced order model (CDDC-ROM) in order to further improve its accuracy
and stability. Finally, the DDC-ROM and CDDC-ROM are tested on time intervals that are longer than
the time interval over which they were trained. The numerical investigation shows that, for low-
dimensional ROMs, both the DDC-ROM and CDDC-ROM perform better than the standard Galerkin

ROM (G-ROM) and the CDDC-ROM provides the best results.

1. Introduction

Reduced order models (ROMs) for fluid dynamics
have been abundantly investigated in recent decades
as a way to reduce the computational cost of high res-
olution numerical schemes. The success of many ROM
approaches has already been documented for various
scientific and engineering applications, especially for
flows that are governed by relatively few recurrent
dominant spatial structures; see e.g. Holmes, Lum-
ley, and Berkooz (1996), Galletti et al. (2004), Sapsis
and Lermusiaux (2009), Noack, Morzynski, and Tad-
mor (2011), Hesthaven, Rozza, and Stamm (2015),
Quarteroni, Manzoni, and Negri (2015), Ballarin
et al. (2016), Gunzburger, Jiang, and Schneier (2017),
Perotto et al. (2017), Fick et al. (2018) and references
therein.

In this article, the recently proposed data-driven
correction ROM (DDC-ROM) and its variants (Xie
et al. 2018; Koc et al. 2019; Mohebujjaman, Rebholz,
and Iliescu 2019) are investigated in the numerical
simulation of a quasi-geostrophic model of the double-
gyre wind-driven ocean circulation. The DDC-ROMs
fall into the category of hybrid projection/data-driven
ROMs (Galletti et al. 2004; Couplet, Basdevant, and
Sagaut 2005; Noack, Papas, and Monkewitz 2005; Lu,
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Lin, and Chorin 2017; Hijazi et al. 2019). More specif-
ically, in DDC-ROMs, the interactions among the
resolved modes are the same as those in the stan-
dard Galerkin projection ROMs, while the interactions
involving the unresolved modes are learned through a
data-driven approach by fitting, e.g. a quadratic ansatz
to the data that represents these missing interactions.
In the following, we provide a brief derivation of the
DDC-ROMs that builds on the standard projection
ROMs, and refer to Xie et al. (2018) and Mohebujja-
man, Rebholz, and Iliescu (2019) for more details.

To construct the standard projection ROM, we start
with a general nonlinear system that has the following
weak form! in a suitable Hilbert space X:

(ﬁ,v) = (f(u),v), VveX, (1)

where f is a general nonlinear function, u € X is the
sought solution, and (,-) denotes the inner prod-
uct on X. We assume that system (1) is parame-
ter dependent and/or needs to be simulated for long
time intervals. ROMs aim at an efficient and relatively
accurate numerical simulation of (1). Next, we use
data (snapshots) available for a few parameter values
and/or a short time interval to construct orthonormal
modes {@;,...,@g}, which represent the recurrent
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spatial structures, where R is the rank of the snap-
shot matrix and typically R = O(10°) or even higher.
Then, we choose the dominant modes {¢,,...,9,},
typically with r = ©(10), as ROM basis functions.
The r-dimensional Galerkin ROM (G-ROM) of (1) is
obtained by replacing u with a Galerkin truncation
u, = Z}Zl aj@; and restricting v to the ROM sub-
space X" := span{@y,...,9,}:

(u,, ) (f(ur)(p) i=1,...,r. (2)

In an offline stage, we construct the ROM, and in an
online stage, we repeatedly use the G-ROM (2) for all
the parameter values and/or the entire time interval of
interest.

To construct the data-driven correction reduced
order model (DDC-ROM) (Xie et al. 2018; Koc
et al. 2019; Mohebujjaman, Rebholz, and Iliescu 2019),
we use an alternative approach: We start with a new
Galerkin truncation, ug = Z]R:l a;j ¢;. We emphasise
that, since R = O(10%) is the rank of the snapshot
matrix, the new Galerkin truncation includes all the
information in the available data (snapshots). Next, we
replace u with up in (1) and project the resulting PDE
onto X":

(uR, ) (f(uR)(o) i=1,...,r. (3)

Since the ROM modes are orthonormal, (u.R,(oi) =
(U @), i=1,..

<ur, ) (f(uR)(p) i=1,...,1, (4)

which can be written as

(u,, ) (fw), 9;) + [(Fwr), 0;) — (Fur), 9:)]

i=1,...,r. (5)

., 7. Thus, (3) becomes

The last term on the right-hand side of (5) is a
Correction term

(Fu,e)].| (6

Correction = [(f(uR),goi) —

Thus, (5) can be written as G-ROM —+ Correction.

We emphasise that (5) is expected to be more
accurate than the G-ROM, since the former is con-
structed from wug, whereas the latter is constructed
from u,, where r = O(10) <« R = O(10%). Note that
(5) is not yet a closed system in u,, since the Correction
term involves ug, which lives in a higher-dimensional

space than X'. Thus, to obtain from (5) an efficient
r-dimensional ROM, we make the ansatz

Correction = [(f(ug), 9;) — (F(ur), 9;)]
~ (g(ur), 9;) (7)
where g is a generic function (e.g. polynomial) whose
coefficients/parameters still need to be determined.
Once g is determined, the ROM (5) with the Correc-

tion term replaced by g yields the data-driven correc-
tion ROM (DDC-ROM):

(”” > (Fu), 0;) + (8w, 9:),

i=1,...,r.

(8)
To determine the coefficients/parameters of the func-
tion g used in (8), we use data-driven modelling
(Peherstorfer and Willcox 2016; Loiseau and Brun-
ton 2018; Brunton and Kutz 2019), i.e. we solve the
tollowing least squares problem:

M
min Correction(t)) — (g(u,(t)), @; 2.
2o i) — (8ur()), 9)) |

g parameters 4
]:

(9)

The numerical investigations in Xie et al. (2018),
Koc et al. (2019) and Mohebujjaman, Rebholz, and
Iliescu (2019) show that the DDC-ROM (8) is signit-
icantly more accurate than the standard G-ROM in
the numerical simulation of two test problems: (i) the
1D Burgers equation with a small diffusion coefficient
vy =1073; and (ii) a 2D flow past a circular cylin-
der at Reynolds numbers Re = 100, Re = 500, and
Re = 1000.

The main goal of this paper is to investigate the
new DDC-ROM (8) in the numerical simulation of
the quasi-geostrophic equations (QGE), which repre-
sent a significantly more difficult test case than the
Burgers equation and the 2D flow past a circular cylin-
der considered in Xie et al. (2018) and Mohebujjaman,
Rebholz, and Iliescu (2019). Indeed, for the 2D flow
past a circular cylinder with the Reynolds number
Re = 1000, the projection of the velocity field onto
the first 8 POD modes captures more than 99% of the
kinetic energy. In contrast, for the QGE in the param-
eter regime investigated in Section 3, a much broader
range of spatial scales are actively involved in the time
evolution of the turbulent fluid field. Indeed, the total
amount of kinetic energy captured by the leading POD
modes increases much slower for the QGE investigated



here: it requires 16 POD modes to capture 90% of the
kinetic energy, 37 modes for 95% of the kinetic energy,
and 49 modes for 96% of the kinetic energy.

Furthermore, given the challenges posed by the
QGE, we investigate two improvements to the DDC-
ROM (8): First, we study the role of adding physical
constraints to the DDC-ROM (Mohebujjaman, Reb-
holz, and Iliescu 2019), in which the model for the
Correction term in (7) satisfies the same type of phys-
ical constraints as those satisfied by the underlying
equations; see (25). We also investigate whether mod-
elling the commutation error, i.e. the error that appears
as a result of interchanging spatial differentiation and
ROM spatial filtering (e.g. projection) (Koc et al. 2019),
improves the DDC-ROM accuracy. Finally, we study
the DDC-ROM when it is trained on a time interval
that is shorter than the time interval over which it is
tested.

1.1. Connections to previous work

The DDC-ROM belongs to the class of ROM clo-
sure models, which model the effect of the truncated
ROM modes (ie. {¢,;1,...,9g}) on the resolved
ROM modes, (ie. {¢y,...,9,}). ROM closure mod-
els were first proposed in the pioneering work of
Lumley and his collaborators (Holmes, Lumley, and
Berkooz 1996) and are currently witnessing a dynamic
development in several new directions, e.g. ROM spa-
tial filtering, large eddy simulation (LES), and vari-
ational multiscale (VMS) (Bergmann, Bruneau, and
Iollo 2009; Wang et al. 2012; Baiges, Codina, and
Idelsohn 2015; Azaiez, Rebollo, and Rubino 2017;
Rebollo et al. 2017), Mori-Zwanzig (MZ) formal-
ism (Parish, Wentland, and Duraisamy 2019), nonlin-
ear autoregression, moving averages with exogenous
inputs (NARMAX) (Chorin and Lu 2015; Lu, Lin,
and Chorin 2017), multilevel approaches and empir-
ical model reduction (EMR) (Kravtsov, Kondrashov,
and Ghil 2005; Majda and Harlim 2012; Kondrashov,
Chekroun, and Ghil 2015), data-adaptive harmonic
decomposition and multilayer Stuart-Landau mod-
els (DAH-MSLM) (Chekroun and Kondrashov 2017;
Kondrashov, Chekroun, and Berloff 2018), and the
parameterising manifold (PM) approach rooted in
the approximation theory of local invariant mani-
folds (Chekroun, Liu, and Wang 2015; Chekroun,
Liu, and McWilliams 2019), to name just a few.
Probably the most dynamic development has been
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in using available data and machine learning tech-
niques to develop ROM closure models (San and
Maulik 2018a, 2018b; Wan et al. 2018; Xie, Zhang, and
Webster 2018; Hijazi et al. 2019; Maulik et al. 2019;
Pagani, Manzoni, and Carlberg 2019).

The DDC-ROM is a hybrid projection/data-driven
ROM, in which the standard Galerkin method is used
to model the terms involving only the resolved modes
and available data is used to model only the ROM
closure term. This parsimonious/minimalistic data-
driven approach is made possible by using ROM spa-
tial filtering (i.e. ROM projection) and an LES/VMS
framework to isolate the ROM closure term, which
is then approximated by using data. The DDC-ROM
minimalistic data-driven framework is similar in spirit
to the NARMAX (Chorin and Lu 2015; Lu, Lin,
and Chorin 2017) and PM (Chekroun, Liu, and
Wang 2015; Chekroun, Liu, and McWilliams 2019)
ROM closure models, although they differ in the way
the closure terms are handled. The DDC-ROM cen-
ters around ROM spatial filtering, whereas in the
NARMAX approach the closure terms are modelled
using nonlinear autoregression moving average with
the resolved modes as exogenous inputs, and the
PM approach parameterises explicitly the unresolved
modes in terms of the resolved modes.

The rest of the paper is organised as follows:
In Section 2, we briefly present the QGE and the
construction of the corresponding DDC-ROM. In
Section 3, we assess the performance of the DDC-
ROM using two metrics: the time-averaged stream-
function and the kinetic energy. Finally, in Section 4,
we summarise our findings and outline future research
directions.

2. Data-driven correction ROM (DDC-ROM)

In this section, we present the construction of the
DDC-ROM for the QGE.

2.1. Quasi-geostrophic equations (QGE)

In what follows, we use the quasi-geostrophic equations
(QGE) as a mathematical model:

dw 1 0Y -1 -1
— +J(w,¥) —Ro™"'— =Re Aw + Ro™'F,
ot 0x
(10)
w=—AY, (11)
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where w is the vorticity, ¥ is the streamfunction, Re is
the Reynolds number, and Ro is the Rossby number. As
a test problem for numerical investigation, we consider
the QGE (10) and (11) with a symmetric double-gyre
wind forcing given by

F =sin(w(y — 1)). (12)

The single-layer QGE (10) and (11) (also known as
a barotropic vorticity equation (BVE)), are a popular
mathematical model for forced-dissipative large scale
ocean circulation (Majda and Wang 2006; Vallis 2006;
Cushman-Roisin and Beckers 2011). The QGE are a
simplified model that allows efficient numerical sim-
ulations while preserving many of the essential fea-
tures of the underlying large scale ocean flows. The
QGE are similar to the streamfunction-vorticity for-
mulation of the two-dimensional Navier Stokes equa-
tions (NSE) (Gunzburger 1989). The main difference
between the two equations is that the QGE include
rotation effects (due to the Coriolis force), which yield
an additional term (—Ro~!(dv/dx)) and an addi-
tional parameter (Ro). The idealised double-gyre wind
forcing setting has been often used to understand
the wind-driven circulation, e.g. the role of mesoscale
eddies and their effect on the mean circulation. ROMs
for the QGE (10) and (11) have been used, e.g. in Sel-
ten (1995), Crommelin and Majda (2004), Galan del
Sastre and Bermejo (2008), San and Iliescu (2015) and
Strazzullo et al. (2018).

The spatial domain of the QGE is @ = [0,1] x
[0,2] and the time domain is [0, 80]. We assume that
¥ and o satisfy homogeneous Dirichlet boundary
conditions:

1//(t»x’}’) =0,

w(t,x,y) =0 for (x,y)€dQandt>0. (13)

The QGE (10) and (11) can be cast in the general
form of the nonlinear equation (1) by choosing

(F(@),7) = — (@, ), ) + Ro™! (aa—fv)

—Re ' (Vo,Vv) + R0 (F,v). (14)

We refrain from giving the precise formulation of
the functional space here since this is tangential to
the numerical study carried out below. The interested
readers can consult for instance (Gunzburger 1989,
Chapter 11), for the case of Navier-Stokes equations

in the streamfunction-vorticity formulation. We will
make precise how the terms in (14) are computed
numerically once a set of POD basis functions for the
vorticity is computed based on the direct numerical
simulation (DNS) data obtained from a spectral code;
see Sections 2.2 and 3.1.

2.2. Standard Galerkin ROM (G-ROM)

In our investigation, the ROM basis is obtained by
using the proper orthogonal decomposition (POD)
(Holmes, Lumley, and Berkooz 1996; Noack, Morzyn-
ski, and Tadmor 2011). We note, however, that
other bases could be used for this purpose as well;
examples include the dynamic mode decomposition
(Schmid 2010), the principal interaction patterns
(Kwasniok 1996, 1997; Hasselmann 1988), and the
HIGAMod (Perotto et al. 2017). See also (Crommelin
and Majda 2004; Tu et al. 2014; Taira et al. 2017)
for recent surveys and relationships/comparisons
between different modal decomposition approaches.

We focus here mainly on the functional form of
the G-ROM and defer details about the POD basis
construction to Section 3. To this end, given an
r-dimensional ROM subspace X" spanned by the first
r POD basis functions for the vorticity w,

X" := span{gy, ..., ¢}, (15)

the r-dimensional G-ROM takes the form of (2) with
f therein given by (14). Recall that the streamfunction
¥ in (14) is related to the vorticity w through the Pois-
son equation (11) subject to homogeneous Dirichlet
boundary conditions.

To further reduce the G-ROM to an explicit ODE
system, one option would be to replace ¥ in (14) by
—A~lw, with A™! being the inverse of the Laplacian
of @ subject to the aforementioned boundary con-
ditions. But since one important metric we adopt to
assess the performance of the ROMs concerns the time
average of 1, we decide to keep v explicit in the ROM
formulation, although either way would lead to the
same r-dimensional ODE system. For this reason, we
also introduce a reduced set of r basis functions for ¥/,
which are subordinate to the above POD basis func-
tions for w in (15) via ¢i(x,y) = —A"lg;(x,y), ie.



they solve the following Poisson equation:

subject to

(x,y) € 0%2,

—A¢i(x,y) = @i(x,y),
¢i(x,y) =0, for i=1,2,...,r

(16)

Note that while the POD basis {¢;} for the vorticity w is
an orthonormal basis under L? inner product, the basis
{¢i} for the streamfunction v is not orthogonal. Given
the G-ROM approximation w, = Y ;_, ai(t)¢i(x, y) of
w, the corresponding v is approximated by ¥, =
Y i ai(t)i(x, y), which results from the ansatz ¥, =
— A~ 1w, and definition (16) of the basis function ¢;.

With the above notations, the r-dimensional G-
ROM for the problem (10)-(13) is given by:

dwy {0,
( @ wi) + (J(wr> Y1), ¢i) — Ro 1( L4 ,so,-)

ot’ 0x

+Re ! (Vo,, Vo) = Ro™ ! (F9), (17)

where (-,-) denotes the L? inner product over the
spatial domain, and i = 1,...,r. Plugging the vortic-
ity and streamfunction ROM approximations in (17),
yields the Galerkin ROM (G-ROM):

a=b+Aa+a' Ba, (18)

def . . .
where a = (aj(t));:1 is the vector of time-varying
ROM coefficients, b is the r-dimensional vector cor-
responding to the forcing term, A is the r x r matrix
corresponding to the linear terms, and Bis the r x r x
r tensor corresponding to the nonlinear term. The G-
ROM (18) can be written componentwise as follows:
fori=1,2,...,r

@) =bi+ Y Amam(®) + YD Bimnam(Dan(t),
m=1 m=1 n=1

(19)
where b; = Ro™!(F, ¢;), Aim = Ro™ (8¢ /0x, ¢;) —
Re_l(V(pma Vi), Bimn = —J(@m> Pn)> i).

2.3. DDC-ROM

To construct the DDC-ROM (8) for the QGE, we
adapt the general presentation in Section 1 to the QGE
setting.

For clarity of presentation, we assume that the dif-
ferentiation and the ROM projection commute (see,
however, Koc et al. 2019 for a detailed discussion of the
commutation error). Thus, the linear terms in the QGE

INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 151

do not appear in the Correction term of the DDC-
ROM. Next, we note that the Correction term (7) takes
the following form for the QGE:

Correction = (f(wr) — f (@), ¢i)

= (J(wg, wR) — J(wy, wr)’ 901)

_ (OwrdYr  OYriwr
~ \ax 3y ox By’(pl

dw, 0 0y, 0
. Wy Wr . wr Wy o), (20)
ax dy ox dy

where wp(x,t) = Y8 ai()g;(x) and Yr(x, 1) =
Zle ai(t)¢i(x) are the R-dimensional ROM approx-
imations of the vorticity and streamfunction in
XR, respectively, and x = (x, y). We emphasise that
the Correction (20) is R-dimensional instead of
r-dimensional, where R > r. Thus, to include the Cor-
rection (20) in the DDC-ROM, we first need to find an
efficient, r-dimensional approximation of the Correc-
tion. To this end, we make the following linear ansatz:
Vi=1,...,r,

. (30)R oYr  0Yr dwr >
Correction = — ;

dx 0dy ox 0dy i
dw, 0y 0V dwy )
dax dy ox dy i
~ (g(wp) , ¢i)
=(Aa), 21
(), @y

where the operator A € R™" needs to be determined
and (A a); denotes the i-th component of the vec-
tor (A a). The ansatz (21) is chosen to resemble the
right-hand side of the G-ROM (18); we note, how-
ever, that other ansatzes are possible (Xie et al. 2018;
Mohebujjaman, Rebholz, and Iliescu 2019).

To compute the entries in the operator Ain (21), we
use a data-driven approach. To this end, we adapt the
least squares problem (9) to the QGE setting:

M
min 3
A j=1

|:<3wR Oyr  OYr dwp )

dx dy dx dy "
door D 3y, d - 2
_ Wy l[/r i lﬂr Wy ,0i A aDNS(fj)
ax dy ax dy
(22)

In (22), aDNS(tj) is the vector of ROM coefhicients
obtained from the DNS data, i.e. from the snapshots,
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at time instances tj, j = 1,..., M, which are obtained
by projecting the corresponding snapshots @PN5(#j) =
Zle a?Ns(tj) ¢k onto the POD basis functions ¢; and
using the orthogonality of the POD basis functions:
Vi=1,..,n¥j=1...,M,

aPNS(tj) = <a)DNS (), <Pi) . (23)

The data-driven correction ROM (DDC-ROM) has
the following form for the QGE:

a=b+ A+ Aa+ a'Ba, (24)

where the operators b, A, and B are the G-ROM oper-
ators in (18) and the operator A is the solution of the
least squares problem (22).

3. Numerical experiments

In this section, we investigate the DDC-ROM (24) in
the numerical simulation of the QGE.

3.1. Computational setting and snapshot
generation

We investigate the QGE (10) and (11) in a com-
putational setting similar to that used in Holm and
Nadiga (2003), San et al. (2011) and San and Ili-
escu (2015). In particular, we use the symmetric
double-gyre wind forcing given in (12), homoge-
neous Dirichlet boundary conditions for ¥ and w
given in (13), and the parameters Re = 450 and Ro =
0.0036.

For the DNS spatial discretization, we use a spec-
tral method with a 257 x 513 spatial resolution. Since
both the vorticity and streamfunction have homo-
geneous boundary conditions, we approximate both
functions with a tensor product Sine expansion in x
and y. For the DNS time discretization, we use an
explicit Runge-Kutta method (Tanaka-Yamashita, an
order 7 method with an embedded order 6 method
for error control) and an error tolerance of 1078 in
time with adaptive time refinement and coarsening.
We record the solution values every 10~2 simulation
time units (starting at 0) regardless of the current
time step size so that the snapshots used in the POD
are equally spaced. These spatial and temporal dis-
cretizations yield numerical results that are similar to
the fine resolution numerical results obtained in San
et al. (2011) and San and Iliescu (2015). We follow

San et al. (2011) and San and Iliescu (2015) and run
the DNS between [0, 80]. The time evolution of the
spatially averaged kinetic energy in Figure 1 in San
and Iliescu (2015) shows that, on the time interval
[0,10], the flow displays a transient behaviour that is
characterised by large changes in the kinetic energy
of the system. After this short transient dynamics, the
flow reaches a statistically steady state on the interval
[10, 80]. Capturing the complex dynamics during the
initial transient phase would require a large number of
ROM modes. Thus, we follow San et al. (2011) and San
and Iliescu (2015) and evaluate the ROMs in the statis-
tically steady regime, i.e. on the time interval [10, 80].
We emphasise, however, that even in the statistically
steady state regime, the flow displays a high degree
of variability. Thus, the numerical approximation of
this statistically steady regime remains challenging for
the low resolution ROMs that we investigate in this
section.

3.2. ROM construction

To generate the ROM basis (see Section 2), we follow
San et al. (2011) and San and Iliescu (2015) and col-
lect 701 equally spaced snapshots of the vorticity, w, in
the time interval [ Tinin, Tmax] = [10, 80] (on which the
statistically steady state regime is attained) at equidis-
tant time intervals. We also interpolate the DNS vortic-
ity onto a uniform mesh with the resolution 257 x 513
over the rectangle domain Q = [0,1] x [0,2],i.e. h =
Ax = Ay = 1/256. We then use the 701 snapshots,
form the correlation matrix C for vorticity, and obtain
the POD basis functions ¢;’s from the eigenvectors of
C. Recall that the element Cj; of C is simply the L
inner product of the i-th and the j-th snapshots, i.e.
Cij = fQ w;wj dx dy (San and Iliescu 2015). Through-
out the article, the L? inner product over €2 is carried
out by using the two-dimensional form of Simpson’s
1/3 rule. Once the POD basis functions for the vortic-
ity are generated, we solve the Poisson equation (16)
to construct the streamfunction basis functions. For
this purpose, we use a second order central difference
(five-point stencil) spatial discretization of the Laplace
operator.

In Figure 1, we present the contour plots of selected
streamfunction basis functions ¢;’s and vorticity POD
basis functions ¢;’s to give an idea about how the spa-
tial scales are organised in these computed bases as the
basis function index increases. Note that ¢;s are much
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Figure 1. Basis functions for the streamfunction (first row) and vorticity (second row). The vorticity basis functions ¢;’s are the POD modes
computed based on the DNS snapshots for the vorticity, while each streamfunction basis function ¢; is related to ¢; via ¢ = —A ™ ¢;;

see Section 2.2.

rougher than ¢;s, especially for the higher indices,
whereas the roughness is smoothed out by the Lapla-
cian when the ¢;s are computed according to (16). One
source of roughness could be the uniform discretiza-
tion mesh adopted here (257 x 513) when interpolat-
ing the DNS data, since there are steep gradients in the
vorticity field as time evolves, both near the western
boundary and within the domain. However, as we will
illustrate in the next section, such roughness does not
significantly degrade the DDC-ROM accuracy.

To construct the DDC-ROM, we need to solve
the least squares problem (22), which can be ill-
conditioned, especially when the training data is rel-
atively short with respect to the number of coefficients
that need to be learnt. To tackle this ill-conditioning
issue, we use the truncated singular value decomposi-
tion (SVD) (see Step 6 of Algorithm 1 in Xie etal. 2018)
with a tolerance that yields the most accurate results.
Furthermore, to increase the computational efficiency

of the DDC-ROM, we replace (wg,V¥Rr) in (22)
with (@, ¥m), where ¥ < m < R. As explained in
Section 5.3 in Xie et al. (2018), choosing an m value
close to r decreases the cost of computing A and B,
but also reduces the DDC-ROM’s accuracy. On the
other hand, choosing an m value close to R increases
the DDC-ROM’s accuracy, but also increases the cost
of computing A and B. Our numerical experiments
suggest that m = 3r achieves a good balance between
numerical accuracy and computational efficiency for
the considered QGE model.

In our numerical investigation, in addition to
the DDC-ROM, we also consider the physically-
constrained DDC-ROM (CDDC-ROM) (Mohebujja-
man, Rebholz, and Iliescu 2019), which aims at
improving the physical accuracy of the DDC-ROM.
To construct the CDDC-ROM, we add physical con-
straints that require that the data-driven CDDC-ROM
operators satisfy the same type of physical laws as those
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satisfied by the QGE. Specifically, we require that the
CDDC-ROM’s Correction term’s linear component
(i.e. the matrix A) should be dissipative. To implement
these physical constraints, in the data-driven mod-
elling step, we replace the unconstrained least squares
problem (22) with a constrained least squares problem:

& |[[dwrdYR  dYR dwr
min E — > Qi
dx 0dy dox 0dy

AEIRVX’ =
a AaSO =1
dawy 0 3, 9 . 2
_ Wy Yy _ Yy a)r,(Pi . AaDNS(tj)
dx dy ax dy

(25)

Additionally, we also monitor the commutation
error, which represents the effect of interchang-
ing ROM spatial filtering and differentiation (Koc
et al. 2019). For this test problem, modelling the com-
mutation error does not significantly change the DDC-
ROM and CDDC-ROM results, suggesting that the
commutation error does not play a significant role in
the ROM construction. Thus, for clarity of presenta-
tion, we do not include the commutation error in the
DDC-ROM and CDDC-ROM results.

In the online stage, for all the ROMs we utilise the
fourth order Runge-Kutta scheme (RK4) for the tem-
poral discretization. To ensure the numerical stability
of the time discretization, we choose a time step size
At = 0.001. We store ROM data every ten time steps
to match the DNS sampling rate. We use the DNS
snapshot at = 10 to initialise the ROMs.

3.3. Numerical results

In this section, we present numerical results for the
G-ROM, DDC-ROM, and CDDC-ROM. As a bench-
mark for our numerical investigation, we use the DNS
results.

3.3.1. Kinetic energy

In this section, we assess the performance of the ROMs
using the DNS kinetic energy as a metric. As pointed
out in Section 1, due to the involvement of a broad
range of active spatial scales, it would be too demand-
ing to require any ROMs to reproduce the statistics
of the DNS kinetic energy or any other reasonable
observables when the dimension is too low, at least
within the POD basis framework adopted here. Thus,
we confine ourselves instead to a much less ambitious

goal of reproducing the range of oscillations presented
in the DNS kinetic energy. The assessment at a more
quantitative level will be carried out in the next section
for another metric.

Recall that the velocity field (u(x,-),v(x,-)) used
in the computation of the kinetic energy E(t) =
% fg(uz(x, 1) + v2(x, 1)) dx is related to the stream-
function according to (u, v) = (dy, —0xV). The first-
order spatial derivatives are calculated using a 4-th
order accurate central difference scheme. The kinetic
energy itself is computed using the two-dimensional
form of Simpson’s 1/3 rule.

In Figure 2, for three different r values (r = 10, 15,
and 40), we plot the time evolution of the ROM kinetic
energy. For r = 10, the G-ROM Kkinetic energy takes
off very quickly and stabilises at a level around 8 x
10%, which is roughly 200 times higher than the DNS
kinetic energy on average. In contrast, both the DDC-
ROM and CDDC-ROM successfully stabilise the G-
ROM, and produce kinetic energies almost of the
same order of magnitude as the DNS kinetic energy
(although there is some overdamping in the CDDC-
ROM result due to the physical constraint a'Aa < 0;
see (25)).

For r = 15, the G-ROM Kkinetic energy is within
good range at the beginning of the simulation, but
increases to an unphysical value around ¢t = 40 and
eventually stabilises and oscillates around 2 x 10%. In
contrast, the DDC-ROM and CDDC-ROM kinetic
energies are both within the good range, and between
the two, the CDDC-ROM performs better in repro-
ducing the peaks and the corresponding frequency of
the peaks.

Finally, for r = 40, the G-ROM and DDC-ROM
perform similarly. The DDC-ROM kinetic energy is
closer to the DNS kinetic energy over certain time
windows (e.g. [50,60]), whereas the CDDC-ROM
kinetic energy is somewhat lower than the DNS kinetic
energy.

The above results suggest that both the DDC-
ROM and CDDC-ROM can successfully stabilise a
severely truncated G-ROM. For the chosen criterion,
the advantage of the DDC-ROM over the G-ROM is
clearly visible for all ROM dimensions r between 10
and 30. The CDDC-ROM can produce results com-
parable or even better than DDC-ROM for r between
10 and 20. For even higher dimensions, the CDDC-
ROM tends to overdamp the kinetic energy. This is
plausible, since the physical constraint a' Aa < 0 in
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Figure 2. Kinetic energy of DNS, G-ROM, DDC-ROM and CDDC-ROM with different r values. All the ROMs are initialised at t = 10 using

the projected DNS data.

the estimation of the matrix A for the CDDC-ROM
aims to enhance the stability of the ROM, but does
not also guarantee improved accuracy compared to the
DDC-ROM.

3.3.2. Relative errors for the time-averaged
streamfunction

In this section, we assess the ROM performance at a
more quantitative level using the ROM time-averaged
streamfunction over the aforementioned time interval,
[10,80]. It is known that the time-averaged stream-
function displays a four-gyre structure (Greatbatch
and Nadiga 2000) even though a double-gyre wind
forcing is employed; cf. (12). The metric that we use

is the following relative error:

”wDNS(X, ) — 2 / ” i 2 i
12 12
(26)
where (-) represents time average over [10,80], and
x = (x,%).

In Table 1, we list this relative error for each of
the ROMs as the ROM dimension r increases. For
small r values (i.e. 5 < r < 20), the CDDC-ROM is
the most accurate. Indeed, for r = 5, the CDDC-
ROM is the only ROM that yields a stable approxi-
mation: all other ROMs with r = 5 experience expo-
nential blowup with the given timestep. Furthermore,
for r =10 and r = 15, the CDDC-ROM error is
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Table 1. Therelative errors for the time-averaged streamfunction
defined by (26).

rvalues G-ROM DDC-ROM CDDC-ROM
r=>5 n/a n/a 5.07e+00
r=10 2.06e+02 3.25e—01 9.58e—02
r=15 3.05e+02 2.83e—01 1.03e—01
r=20 5.05e+4-00 1.39e—01 1.20e—01
r=25 1.73e+00 1.61e—01 2.96e—01
r=30 1.47e+00 1.18e—01 4.58e—01
r=35 6.83e—01 1.34e—01 7.69e—01
r=40 4.69e—01 9.17e—02 4.92e—01
r=45 2.81e—01 4.16e—02 6.83e+-00
r=>50 3.66e—01 8.20e—02 4.16e—01

at most half of the DDC-ROM error. Finally, for
5 < r < 50, the G-ROM error is one to three orders of
magnitude larger than the CDDC-ROM error. These
results are also supported by the plots in Figure 3,
which display the time-average of the streamfunc-
tion ¥ over the time interval [10,80] for DNS, G-
ROM (r = 10), DDC-ROM (r = 10), and CDDC-
ROM (r = 10). These plots clearly show that the DDC-
ROM and CDDC-ROM are able to capture the correct
four-gyre structure, whereas the G-ROM fails drasti-
cally at this low ROM dimension.

For large r values (ie. 25 <r < 50), the DDC-
ROM results in Table 1 are the most accurate. Indeed,
at r = 25 the CDDC-ROM error starts to increase,
whereas the DDC-ROM error generally decreases. The
G-ROM error also continues to decrease, but it is
always larger than the DDC-ROM error.

We conclude that the CDDC-ROM is the most
accurate for small r values and the DDC-ROM is the
most accurate for large r values. These results suggest
that adding physical constraints to the DDC-ROM is
beneficial in the highly truncated cases (i.e. for small

DNS G-ROM

r values), but the benefit brought by the physical con-
straints diminishes as r is further increased, and can
even produce less accurate results than DDC-ROM
due to overdamping, as pointed out in Section 3.3.1.
We emphasise, however, that we are using the linear
ansatz to construct the DDC-ROM; further numer-
ical investigations are needed to determine the role
of physical constraints when the DDC-ROM is built
with a higher-order (e.g. quadratic) ansatz (Mohe-
bujjaman, Rebholz, and Iliescu 2019). We also note
that the G-ROM is consistently less accurate than
the DDC-ROM for all the r values. Finally, we note
that, as r increases, the errors for all the ROMs reach
a plateau instead of converging to zero. We believe
that this behaviour is due to the roughness present in
the vorticity basis functions, especially for the higher
indices (see Figure 1).

3.3.3. Shorter training time interval

In this subsection, we consider the situation when the
ROMs are trained on a time interval that is shorter
than the time interval over which the ROMs are tested.
Specifically, we only use snapshots in the time inter-
val [10,#7], sampled every 0.1 time units as before, to
generate the ROM basis and construct the ROM oper-
ators A, B, and A. This leads to a total number of (t; —
10)/0.1 + 1 snapshots. We investigate two different
cases: (I) t; = 45 and (II) t; = 35,

In Table 2, we list the relative errors associated
with the ROMs for the time-averaged streamfunction
defined in (26). The results show that the DDC-ROM
is significantly more accurate than the G-ROM, espe-
cially for small r values. Moreover, for small r values,

DDC-ROM CDDC-ROM

Figure 3. Time-averaged streamfunction i over the interval [10, 80] for DNS, 10-dim G-ROM, 10-dim DDC-ROM, and 10-dim CDDC-ROM.
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Table 2. The ROM relative errors for the time-averaged streamfunction defined in
(26) for the two predictive test cases: the POD basis functions are generated using
DNS snapshots over the time interval [10, 45] for Case | and over [10, 35] for Case Il.
The ROM simulations are carried out in the time interval [10, 80].

Predictive Case | Predictive Case Il

rvalues G-ROM DDC-ROM CDDC-ROM G-ROM DDC-ROM CDDC-ROM
r=>5 n/a n/a 1.83e+01 n/a n/a 3.40e—01
r=10 1.39e+04 3.33e—01 2.43e—01 1.91e+02 6.56e—01 4.44e—01
r=15 9.58e+00 3.76e—01 1.69e—01 1.94e+-01 3.27e—01 8.18e—02
r=20 5.37e+4-00 1.35e—01 3.47e—01 6.35e+4-00 1.80e—01 2.25e—01
r=25 2.28e+-00 9.47e—02 3.66e—01 1.44e+-00 3.05e—01 4.81e—01
r=130 5.65e—01 1.32e—01 7.70e—01 5.27e—01 1.96e—01 6.25e—01
r=35 2.88e—01 1.76e—01 6.03e—01 2.26e—01 1.71e—01 6.27e—01
r =140 2.07e—01 1.72e—01 6.92e—01 2.44e—01 2.20e—01 6.56e—01
r =45 2.86e—01 2.15e—01 5.74e—01 3.20e—01 2.34e—01 7.04e—01
r =50 1.67e—01 2.09e—01 5.87e—01 3.53e—01 2.72e—01 5.61e—01

the CDDC-ROM is more accurate than the DDC-
ROM, whereas for larger r values, the DDC-ROM is
more accurate than the DDC-ROM. This is in line with
the results in Sections 3.3.1 and 3.3.2. Furthermore,
we note that, as expected, the shorter the time interval
[10, t;] is, the larger the ROM relative error.

4. Conclusions

We enhanced the standard Galerkin ROM (G-ROM)
for the quasi-geostrophic equations (QGE) with an
additional term derived from available data and a
least squares optimisation procedure. These ideas are
based on previous work and are usually referred to
as data-driven correction ROMs (DDC-ROMs) and
constrained data-driven correction ROMs (CDDC-
ROMs). The latter incorporate a negative semidefi-
niteness constraint into the optimisation problem to
preserve a fundamental property of the linear operator
in the DDC-ROM:s.

The QGE are challenging equations that exhibit
complex spatiotemporal behaviour: we were able to
significantly improve the G-ROM performance by
adding an additional term (derived by optimisation) to
the linear component of the G-ROM. For a ROM with
10 POD modes, the DDC-ROM lowered the error in
the mean streamfunction (compared to the G-ROM)
by a factor of about 600; similarly, the CDDC-ROM
lowered the error by a factor of about 2000.

In the future, we plan on investigating whether
using a higher-order (e.g. quadratic) ansatz in the con-
struction of the DDC-ROM and CDDC-ROM vyields
more accurate results than using a linear ansatz (i.e.
the approach utilised in this paper). We also plan
to study parameter sensitivity (on both the Reynolds

and Rossby numbers) and examine the possibility of
constructing a sequence of ROMs that work across a
wide range of each value.

Note

1. Subject to possible further integration by parts for certain
terms in (f (), v).
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