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a b s t r a c t

In this paper, we introduce an uplifted reduced order modeling (UROM) approach through the
integration of standard projection based methods with long short-term memory (LSTM) embedding.
Our approach has three modeling layers or components. In the first layer, we utilize an intrusive
projection approach to model the dynamics represented by the largest modes. The second layer
consists of an LSTM model to account for residuals beyond this truncation. This closure layer refers
to the process of including the residual effect of the discarded modes into the dynamics of the
largest scales. However, the feasibility of generating a low rank approximation tails off for higher
Kolmogorov n-width systems due to the underlying nonlinear processes. The third uplifting layer,
called super-resolution, addresses this limited representation issue by expanding the span into a larger
number of modes utilizing the versatility of LSTM. Therefore, our model integrates a physics-based
projection model with a memory embedded LSTM closure and an LSTM based super-resolution model.
In several applications, we exploit the use of Grassmann manifold to construct UROM for unseen
conditions. We perform numerical experiments by using the Burgers and Navier–Stokes equations with
quadratic nonlinearity. Our results show the robustness of the proposed approach in building reduced
order models for parameterized systems and confirm the improved trade-off between accuracy and
efficiency.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Physical models are often sought because of their reliability,
interpretability, and generalizability being derived from basic
principles and physical intuition. However, accurate solution of
these models for complex systems usually requires the use of
very high spatial and temporal resolutions and/or sophisticated
discretization techniques. This limits their applications to offline
simulations over a few sets of parameters and short time intervals
since they can be excessively computationally-demanding. Al-
though those are valuable in understanding physical phenomena
and gaining more insight, realistic applications often require near
real-time and multi-query responses [1,2]. Therefore, cheaper
numerical approximations using ‘‘adequate-fidelity’’ models are
usually acceptable [3]. In this regard, reduced order modeling
offers a viable technique to address systems characterized by
underlying patterns [4–14]. This is especially true for fluid flows
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dominated by coherent structures (e.g., atmospheric and oceanic
flows) [15–23].

Reduced order models (ROMs) have shown great success for
prototypical problems in different fields. In particular, Galerkin
projection (GP) coupled with the capability of proper orthogo-
nal decomposition (POD) to extract the most energetic modes
has been used to build ROMs for linear and nonlinear systems
[24–31]. These ROMs preserve sufficient interpretability and gen-
eralizability since they are constructed by projecting the full
order model (FOM) operators (from governing equations) on a re-
duced subspace. Despite that, Galerkin projection ROMs (GROMs)
have severe limitations in practice, especially for systems with
strong nonlinearity. Most fluid flows exhibit quadratic nonlinear-
ity, which makes the computational cost of the resulting GROMs
∼ O(R3), where R is the number of retained modes in the ROM
approximation. As a result, R should be kept as low as possi-
ble (e.g., O(5)) through modal truncation for practical purposes;
however, this has two main consequences. First, the solution is
enforced to live in a smaller subspace which might not con-
tain enough information to accurately represent complex real-
istic systems. Examples include advection-dominated flows and
parametric systems where the decay of Kolmogorov n-width is
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slow [32–34]. Second, due to the inherent system’s nonlinearity,
the truncated modes interact with the retained modes. In GROM,
these interactions are simply eliminated by modal truncation,
which often generates instabilities in the approximation [35–37].
Several efforts have been devoted to introduce stabilization and
closure techniques [38–55] to account for the effects of truncated
modes on ROM’s dynamics.

In the present study, we aim to address the above problems
while preserving considerable interpretability, and generalizabil-
ity at the core of our uplifted ROM (UROM) approach. In UROM,
we present a three-modeling layer framework. In the first layer,
we use a standard Galerkin projection method based on the
governing equations to model the large scales of the flow (repre-
sented by the first few R POD modes) and provide a predictor for
the temporal evolution. In the next layer, we introduce a corrector
step to correct the Galerkin approximation and make up for the
interactions of the truncated modes (or scales) with the large
ones. These large scales contribute most to the total system’s
energy. That is why we dedicate two layers of our approach to
correctly resolve them, one of which (i.e., the Galerkin projection)
is totally physics-based to promote framework generality. In the
third layer, we uplift our approximation and expand the solution
subspace to recover some of the flow’s finer details by learning
a map between the large scales (predicted using the first two
layers) and smaller scales.

In particular, we choose the first R ≈ O(5) modes to represent
the resolved largest scales and the next Q −R modes to represent
the resolved smaller scales, where Q is about 4 to 8 times larger
than R. For the second and third layers, we incorporate memory
embedding through the use of long short-term memory (LSTM)
neural network architecture [56,57]. Machine learning (ML) tools
(of which neural network is a subclass) have been gaining pop-
ularity in fluid mechanics community and analysis of dynamical
systems [58–66]. In particular, LSTMs have shown great success
in learning maps of sequential data and time-series [67–72]. It
should be noted here that UROM can be thought of as a way of
augmenting physical models with data-driven tools [73] and vice
versa. For the former, an LSTM closure model (second component)
is developed to correct GROM and an LSTM super-resolution
model (third component) is constructed to uplift GROM and re-
solve smaller scales. This relaxes the computational cost of GROM
to account only for a few R modes. On the other hand, LSTMs
in UROM framework are fed with inputs coming from a physics-
based approach. This is one way of utilizing physical information
rather than full dependence on ML results.

To illustrate the UROM framework, we consider two
convection-dominated flows as test cases. The first is the one-
dimensional (1D) Burgers equation, which is a simplified bench-
mark problem for fluid flows with strong nonlinearity. As the
second test case, we investigate the two-dimensional (2D)
Navier–Stokes equations for a flow with interacting vortices,
namely the vortex merger problem. We compare the UROM ap-
proach with the standard GROM approach using R and Q modes.
We also investigate a fully non-intrusive ROM (NIROM) approach
in these flow problems. We perform a comparison in terms of
solution accuracy and computational time to show the pros and
cons of UROMwith respect to either GROM or NIROM approaches.
The rest of the paper is outlined here. In Section 2, we intro-
duce the POD technique for data compression and constructing
lower-dimensional subspaces to approximate the solution. For
an out-of-sample control parameter (e.g., Reynolds number), we
describe basis interpolation via a Grassmann manifold approach
in Section 3. As a standard physics-informed technique for build-
ing ROMs, we introduce Galerkin projection in Section 4 with a
brief description of the governing equations of the test cases as
well as their corresponding GROM structures. In Section 5, we

present the proposed UROM framework with a description of its
main features. We give results and corresponding discussions in
Section 6. Finally, we draw concluding remarks and insights in
Section 7.

2. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is one of the most
popular techniques for dimensionality reduction and data com-
pression [15,74–77]. Given data sets, POD provides a linear sub-
space that minimizes the error between the true data and its
projection compared to all possible linear subspaces with the
same dimension. If a number of Ns data snapshots, u(x, tn), where
n ∈ {1, 2, . . . ,Ns}, x ∈ RN (N being the spatial resolution), are
collected in a snapshot matrix A ∈ RN×Ns (where N is much
larger than Ns for typical flow problems), then a reduced (or thin)
singular value decomposition (SVD) can be applied to this matrix
as

A = UΣVT , (1)

where U ∈ RN×Ns is a matrix with orthonormal columns rep-
resenting the left-singular vectors of A, also known as spatial
basis, and V ∈ RNs×Ns is also a matrix with orthonormal columns
which represent the right-singular vectors, sometimes referred
to as temporal basis. Σ ∈ RNs×Ns is a diagonal matrix whose
entries are the singular values of A (square-roots of the largest
Ns eigenvalues of AAT or ATA). In Σ, the singular values σi are
sorted in a descending order such that σ1 ≥ σ2 ≥ · · · ≥ σNs ≥ 0.

For dimensionality reduction purposes, only the first R
columns of U (denoted as Û), the first R columns of V (denoted
as V̂), and the upper-left R×R block sub-matrix of Σ (denoted as
Σ̂) are retained to provide a reduced order approximation Â of A
as

Â = ÛΣ̂V̂T . (2)

It can be easily shown that this approximation Â satisfies the
following equalities [78]

∥A− Â∥2 = inf
B∈RN×Ns
rank(B)≤R

∥A− B∥2 (3)

∥A− Â∥2 = σR+1, (4)

where ∥·∥2 refers to the matrix 2-norm. Eq. (3) means that across
all possible matrices B ∈ RN×Ns of rank R (or less), Â provides the
closest one to A in the ℓ2 sense. Moreover, the singular values {σi}
provide a measure of the quality of this approximation as Eq. (4)
shows that the ℓ2 norm between the matrix A and its R-rank
approximation equals σR+1. From now on, the first R columns of U
will be referred to as the POD modes or basis functions, denoted
as Φ = [φ1, φ2, . . . , φR].

3. Grassmann manifold interpolation

In recent years, Grassmann manifold has attracted great inter-
est in various applications including reduced order modeling for
parametric systems [79–83]. The Grassmann manifold, G(q,N), is
a set of all q-dimensional subspaces in RN , where 0 ≤ q ≤ N . A
point [Φ] ∈ G(q,N) is given as [84]

[Φ] = {ΦQ
⏐⏐ ΦTΦ = Iq,Q ∈ O(q)}, (5)

where Φ ∈ RN×q and O(q) is the group of all q × q orthogonal
matrices. This point represents a q-dimensional subspace S in RN

spanned by the columns of Φ. At each point [Φ] ∈ G(q,N), a
tangent space T ([Φ]) of the same dimension, N×q, can be defined
as follows [85,86]

T ([Φ]) = {X ∈ RN×q
⏐⏐ ΦTX = 0}. (6)
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Similarly, each point [Γ] on T represents a subspace spanned by
the columns of Γ. This tangent space is a vector space with its
origin at [Φ]. An exponential mapping from a point [Γ] ∈ T ([Φ])
to [Ψ] ∈ G(q,N) can be defined as

Ψ =

(
ΦV cos (Σ)+ U sin (Σ)

)
VT , (7)

where U, Σ, V are obtained from the reduced SVD of Γ as Γ =

UΣVT . Inversely, a logarithmic map can be defined from a point
[Ψ] in the neighborhood of [Φ] to [Γ] ∈ T ([Φ]) as

Γ = U tan−1 (Σ)VT , (8)

where (Ψ−ΦΦTΨ)(ΦΨ)−1 = UΣVT . We would like to note here
that the trigonometric functions are applied element-wise to the
diagonal entries.

To demonstrate the procedure in our ROM context, for a num-
ber Np of control parameters {µi}

Np
i=1, different sets of POD basis

functions are computed corresponding to each parameter, de-
noted as {Φi}

Np
i=1. These bases correspond to a set of points on the

Grassmann manifold G(R,N). To perform an out-of-sample test-
ing, the basis functions ΦTest for the test parameter µTest should
be computed through interpolation. However, direct interpola-
tion of the POD bases is not effective since it is an interpolation
on a non-flat space and it does not guarantee that the result-
ing point would lie on G(R,N). Moreover, the optimality and
orthonormality characteristics of POD are not necessarily con-
served. Alternatively, the tangent space T is a flat space where
standard interpolation can be performed effectively. First, a refer-
ence point at the Grassmann manifold is selected, corresponding
to ΦRef. The tangent plane at this point is thus defined using
Eq. (6). Then, the neighboring points on Grassmann manifold
corresponding to the subspaces spanned by {Φi}

Np
i=1 are mapped

onto that tangent plane using the logarithmic map, defined in
Eq. (8) to calculate {Γi}

Np
i=1. Standard Lagrange interpolation can

be performed to compute ΓTest as follows

ΓTest =

Np∑
i=1

( Np∏
j=1
j̸=i

µTest − µj

µi − µj

)
Γi. (9)

Finally, the point [ΓTest] ∈ T ([ΦRef]) is mapped to the Grassmann
manifold G(R,N) to obtain the set of POD basis functions at the
test parameter, ΦTest, using the exponential map given in Eq. (7).
Hence, an interpolation on the tangent plane to Grassmann man-
ifold provides a basis of the same dimension (i.e., [ΦTest] ∈

G(R,N)). Moreover, it preserves the orthonormality of the basis
(i.e., the columns of ΦTest are orthonormal to each other). Those
properties are not guaranteed if conventional interpolation tech-
niques are used directly to interpolate basis. The procedure for
Grassmann manifold interpolation is summarized in Algorithm
1. Note that this approach can be generalized to consider more
than one varying parameter (instead of just µ), where higher
dimensional interpolation schemes can be used in lieu of the
adopted one-dimensional Lagrange interpolation.

Algorithm 1 Grassmann manifold interpolation
1: Given Np sets of basis functions Φ1,Φ2, . . . ,ΦNp correspond-

ing to the offline simulations parameterized by µ1, µ2, . . . ,

µNp .
2: Select a point [ΦRef] ← [Φi] ∈ {[Φ1], . . . , [ΦNp ]} correspond-

ing to the basis function set ΦRef ← Φi ∈ [Φ1, . . . ,ΦNp ] as
the reference point.

3: Map each point [Φi] ∈ G(N, R) to [Γi] ∈ T ([ΦRef]) using
logarithmic map

(Φi −ΦRefΦ
T
RefΦi)(ΦT

RefΦi)−1 = UiΣiVT
i , (10)

Γi = Uitan−1(Σi)VT
i . (11)

4: Construct the matrix ΓTest corresponding to the test param-
eter µTest using Lagrange interpolation of matrices Γi, corre-
sponding to µ1, . . . , µNp

ΓTest =

Np∑
i=1

( Np∏
j=1
j̸=i

µTest − µj

µi − µj

)
Γi. (12)

5: Compute the POD basis functions ΦTest corresponding to the
test parameter µTest using the exponential map

ΓTest = UTestΣTestVT
Test, (13)

ΦTest =

(
ΦRefVTest cos(ΣTest)+ UTest sin(ΣTest)

)
VT
Test, (14)

where the trigonometric operators apply only to the diagonal
elements.

4. Galerkin projection

To emulate the system’s dynamics in ROM context, a Galerkin
projection is usually performed. In Galerkin projection-based
ROM (GROM), the solution u(x, tn) is constrained to lie in a trial
subspace S spanned by the basis Φ. In our study, this basis is
computed using the POD method presented in Section 2. Then,
the full-order operators are projected onto the same subspace S .
In other words, the residual of the governing ODE is enforced
to be orthogonal to S . Galerkin projection can be viewed as
a special case of Petrov–Galerkin method [87–90], by utilizing
the same trial subspace as a test subspace. In the following,
we present the governing equations for our test cases, namely
Burgers equation and Navier–Stokes equations as well as their
low-order approximations.

4.1. 1D Burgers equation

The one-dimensional (1D) viscous Burgers equation represents
a standard benchmark for the analysis of nonlinear advection–
diffusion problems in a 1D setting with similar quadratic non-
linear interaction and Laplacian dissipation. The evolution of the
velocity field u(x, t), in a dimensionless form, is given by

∂u
∂t
+ u

∂u
∂x
=

1
Re
∂2u
∂x2

, (15)

where Re is the dimensionless Reynolds number, defined as the
ratio of inertial effects to viscous effects. Eq. (15) can be rewritten
as
∂u
∂t
=

1
Re
∂2u
∂x2
− u

∂u
∂x
. (16)

Then, the reduced-rank approximation u(x, t) ≈
∑R

k=1 ak(t)φk(x)
(where φk are the constructed POD modes and ak are the cor-
responding coefficients) is plugged into this equation and an
inner product with an arbitrary basis φk is performed to give the
following dynamical ODE, which represents the GROM for the
Burgers equation

dak
dt
=

R∑
i=1

Li,kai +
R∑

i=1

R∑
j=1

Ni,j,kaiaj, k = 1, 2, . . . , R, (17)
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where L and N are the matrix and tensor of predetermined
model coefficients corresponding to linear and nonlinear terms,
respectively. They are precomputed as

Li,k =
⟨ 1
Re
∂2φi

∂x2
;φk

⟩
,

Ni,j,k =
⟨
−φi

∂φj

∂x
;φk

⟩
,

where the angle-parentheses refer to the Euclidean inner product
defined as ⟨x; y⟩ = xTy =

∑N
i=1 xiyi.

We note here that the basis functions φk are spatial functions
and thus, standard discretization techniques (e.g., finite difference
methods) can be used to compute the required derivatives. More-
over, to compute the inner product in Euclidean space, the basis
functions can be treated as regular vectors (i.e., values of φk(x) can
be arranged in a vector as [φk(x1), φk(x2), . . . , φk(xNx )]

T , where Nx
is the number of grid points.

4.2. 2D Navier–Stokes equations

The vorticity-streamfunction formulation of the two-
dimensional (2D) Navier–Stokes equations can be written as [91]
∂ω

∂t
+ J(ω,ψ) =

1
Re
∇

2ω, (18)

where ω is the vorticity and ψ is the streamfunction. The
vorticity-streamfunction formulation prevents the odd–even de-
coupling issues that might arise between pressure and velocity
components and enforces the incompressibility condition. The
kinematic relationship between vorticity and streamfunction is
given by the following Poisson equation,

∇
2ψ = −ω. (19)

Eqs. (18) and (19) include two operators, the Jacobian (J(f , g)) and
the Laplacian (∇2f ) defined as

J(f , g) =
∂ f
∂x
∂g
∂y
−
∂ f
∂y
∂g
∂x
, (20)

∇
2f =

∂2f
∂x2
+
∂2f
∂y2

. (21)

Similar to the 1D Burgers problem, Eq. (18) can be rearranged as
∂ω

∂t
=

1
Re
∇

2ω − J(ω,ψ). (22)

The reduced-rank approximations of the vorticity and stream-
function fields can be written as follows

ω(x, y, t) ≈
R∑

k=1

ak(t)φωk (x, y), (23)

ψ(x, y, t) ≈
R∑

k=1

ak(t)φ
ψ

k (x, y). (24)

We note that the vorticity and streamfunction share the same
time-dependent coefficients (ak(t)) since they are related through
the kinematic relationship given by Eq. (19) (i.e., streamfunc-
tion is not a prognostic variable). Moreover, as POD preserves
linear properties, the spatial modes for streamfunction can be ob-
tained from the vorticity modes by solving the following Poisson
equations

∇
2φ

ψ

k (x, y) = −φωk (x, y), k = 1, 2, . . . , R. (25)

The GROM for the 2D Navier–Stokes equations is given by the
same ODE (Eq. (17)) with the following coefficients

Li,k =
⟨ 1
Re
∇

2φωi ;φ
ω
k

⟩
,

Ni,j,k =
⟨
−J(φωi , φ

ψ

j );φωk
⟩
.

Similar to the case of 1D Burgers problem, the basis functions are
spatial functions and standard discretization techniques can be
used to compute the required derivatives. Moreover, they might
be arranged in a vector form to compute the inner product in
Euclidean space. In 2D case, a reshaping might be necessary to
form the vector version of φk(x, y), e.g., [φk(x1, y1), φk(x2, y1), . . .
φk(xNx , y1), φk(x1, y2), φk(x2, y2), . . . , φk(xNx , y2), . . . , φk(x1, yNy ),
. . . , φk(xNx , yNy )]

T , where Nx and Ny are the number of grid points
in the x and y directions, respectively.

Due to the modal truncation and inherent nonlinearity in
Eq. (17), GROM no longer represents the same system (i.e., it
solves a different problem). As a result, the obtained trajectory
from solving the ROM deviates from the projected trajectory, as
shown in Fig. 1. Therefore, the optimality of the POD basis is lost.
Moreover, due to the triadic nonlinear interactions, instabilities
can occur in GROMs. To mitigate these problems, closure and/or
stabilization techniques are usually required to obtain accurate
results. Increasing the ROM dimension can improve the results.
However, due to the nonlinearity of the resulting ROM, the com-
putational cost of GROM is O(R3), which severely constrains the
ROM dimension used in practical applications.

We note here that we are adopting the tensorial GROM ap-
proach [93], where the coefficients L and N are computed of-
fline. Other approaches can include online computations while
incorporating the empirical interpolation method (EIM) [94] or
its discrete version, the discrete empirical interpolation method
(DEIM) [95] to reduce the online computational cost.

Although, we focus on the standard GROM with POD in the
present study, several studies have been devoted to address-
ing the computational cost and stability/accuracy trade-off for
advection-dominated flows. For example, decomposing the time
domain via a principal interval decomposition approach can pro-
duce localized basis functions and tailor more representative
compact subspaces [96,97], which improves the ROM accuracy
and keeps the online computational cost minimal. Rather than be-
ing restricted to a linear basis, auto-encoders can be used to com-
pute nonlinear subspaces to approximate the solution manifold
[98,99]. Also, Grimberg et al. [100] recently demonstrated that
many ROM instabilities can be attributed to the standard Galerkin
projection, and the Petrov–Galerkin approach can mitigate these
instabilities and provide more accurate ROM [87–90].

5. Uplifted reduced order modeling

As noted in Section 4, the computational cost of GROM is
O(R3), which limits the number of modes to be used in the
ROM. This modal truncation has two major consequences. First,
the flow field variable is constrained to lie in a small subspace,
spanned by the very first few modes. For convection-dominated
flows or parametric problems characterized by slow decay of the
Kolmogorov n-width, these few modes may be less representative
of the true physical system, which might significantly reduce the
accuracy of the resulting ROM. This is shown as the projection
error EΦ⊥ in Fig. 1, since the truncated modes are orthogonal to
the subspace spanned by Φ. Second, due to the inherent nonlin-
earity, the truncated modes (or scales) interact with the retained
ones. Thus, this truncation simply ignores these interactions,
often giving rise to numerical instabilities of solution. This error
is represented as EΦ in Fig. 1 since it lies in the same subspace
Φ. In our uplifted reduced order modeling (UROM) framework
(presented in Fig. 2), we try to address these two problems.

We extend our reduced order approximation to include the
first Q modes, where Q > R, assuming that the first R modes
account for the resolved large scales, and the next (Q −R) modes
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Fig. 1. A representation of error sources in ROM (e.g., see [77,92] for further details). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

represent the resolved small scales (while the remaining trun-
cated modes account for the unresolved scales). So, the UROM
approximation of the true field u(x, tn) can be expanded as

u(x, tn) ≈
R∑

k=1

ak(t)φk(x)  
core

(resolved large scales)

+

Q∑
k=R+1

ak(t)φk(x)  
uplift

(resolved small scales)

, (26)

where u is a general notation for the flow field of interest, and
φk denotes the POD modes. ak represents the corresponding tem-
poral coefficients (sometimes called the generalized coordinates),
defined as the projection of the field u onto the basis function φk,

ak(t) = ⟨u(x, t);φk(x)⟩. (27)

Before presenting the UROM framework, we first briefly revisit
the Galerkin ROM (GROM). Here, we denote the GROM solution
as ãk(tn), where the initial condition ãk(t0) can be computed from
the projection of the initial field (at t0) onto the POD modes (by
using Eq. (27)). Then, GROM is used to evolve ã in time as

dãk
dt
= G(ãk), (28)

which can be numerically solved using a time-stepping integra-
tor,

ãk(tn+1) = ãk(tn)+∆t
s∑

q=0

βqG(ãk(tn−q)), (29)

where s and βq depend upon the numerical scheme used for
the time integration. In the present study, we use the third-
order Adams–Bashforth (AB3) method, for which s = 2, β0 =

23/12, β1 = −16/12, and β2 = 5/12. Here, G(ãk) is obtained by
Galerkin projection (e.g., see Section 4) as

G(ãk(tn)) =
R∑

i=1

Li,kãi(tn)+
R∑

i=1

R∑
j=1

Ni,j,kãi(tn)ãj(tn). (30)

However, due to the modal truncation and incurred errors and
instabilities of GROM (as discussed in Section 4), the resulting
predictions ãk from Eqs. (28)–(30) become erroneous.

UROM builds on the GROM, but considers the output of GROM
at each time step as a first predictor of ak rather than the final
approximation. In other words, starting from an initial condition
ak(t0), we use the same GROM structure (being physics-inspired)
to evolve one time step. In standard GROM, this would be con-
sidered the prediction at t1. Instead, we denote this as âk(t1)
and treat it as just an initial guess. Then, a correction term
is introduced to steer âk(t1) to better approximate ak(t1). This
corrected value is subsequently fed back into GROM structure
to evaluate âk(t2), which is then corrected (and so on). Thus, at
any time tn, the best-known value of temporal coefficients (after
corrections) is denoted as ak(tn). This is used to compute an initial

guess âk(tn+1) for ak(tn+1) for k = 1, 2, . . . , R (i.e., the large scales)
using

âk(tn+1) = ak(tn)+∆t
s∑

q=0

βqG(ak(tn−q)). (31)

After âk(tn+1) is computed from Eq. (31), a correction might
be introduced before evolving GROM to the next time step,
i.e., ak(tn+1) = âk(tn+1) + ck(tn+1), where ck can be considered as
the difference between the physics-based model estimate and the
true projection. In other words, the corrected temporal coefficient
is assumed to be the true value of ak (or at least the best-known
value), which is therefore used as input to GROM to evolve one
time step further. That is why the corrected ak values are used to
compute the right hand side of Eq. (31).

In order to correct GROM results for the first R modes, closure
and/or stabilization are required. In our framework, we propose
the use of LSTM architecture to learn a correction term to steer
the GROM prediction of the modal coefficients {âk(tn)}Rk=1 to the
true values {ak(tn)}Rk=1 at each time step. In other words, an LSTM
is trained to learn the map from {âk(tn)}Rk=1 as input to {ck(tn)}Rk=1
as output, where c is a correction (closure) term defined as

ck(tn) = ak(tn)− âk(tn). (32)

It should be noted here that the introduced data driven closure
takes into account the interactions of all fine scales (k = R +
1, . . . ,Ns) with the resolved large scales (k = 1, . . . , R), as
manifested in the data snapshots. Finally, to account for small
scales, we train a second super-resolution LSTM neural network
to predict the modal coefficients of the next (Q−R) modes, where
the input of the LSTM is {ak(tn)}Rk=1 and the output is {ak(tn)}

Q
k=R+1.

To improve the parametric performance of the UROM architec-
ture and promote generality, the LSTMs’ inputs are augmented
with the control parameter. Therefore, the LSTM maps f and g
corresponding to the closure and super-resolution models, re-
spectively, can be written as

f :

⎡⎢⎢⎣
µ

â1(tn)
...

âR(tn)

⎤⎥⎥⎦ ↦→
⎡⎢⎣c1(tn)

...

cR(tn)

⎤⎥⎦ , g :

⎡⎢⎢⎣
µ

a1(tn)
...

aR(tn)

⎤⎥⎥⎦ ↦→
⎡⎢⎣aR+1(tn)

...

aQ (tn)

⎤⎥⎦ .
(33)

In brief, we first steer the red line in Fig. 1 to the blue one
(i.e., introduce data-driven closure by LSTM). Then, we reduce the
projection error (difference between the blue and black lines) by
expanding our solution subspace to span Q modes rather than
only R. Fig. 2 demonstrates the building blocks and workflow of
our proposed UROM framework in both the offline and online
phases, which can be described as follows.

During offline training, we suppose that we have access to
the true fields at different time instants (those can come from
experiments or numerical simulations). Thus, we can obtain the
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Fig. 2. A schematic diagram for the workflow of UROM framework.

true modal coefficients ak (see Eq. (27)). Moreover, we use the
GROM equations to evolve the modal coefficients for one time
step (in that sense, GROM can be viewed as a mapping from
ak(tn) to âk(tn+1)). Then, a correction term can be computed as
the difference between ak(tn+1) and âk(tn+1) for k = 1, 2, . . . , R.
Therefore, a corrector LSTM is trained to learn the mapping from
âk to ck. Also, a super-resolver LSTM is trained to map ak for
k = 1, 2, . . . , R to ak for k = R+ 1, R+ 2, . . . ,Q .

During online deployment (actual testing), we start with the
initial field (at time zero) and project it onto the first R modes,
to obtain the true ak(t0). Then, GROM is used to evolve these R
coefficients for one time step to obtain âk(t1) for k = 1, 2, . . . , R.
At this point, the corrector LSTM is fed by âk(t1) to output ck(t1),
and the corrected modal coefficients are computed as ak(t1) =
âk(t1) + ck(t1) for k = 1, 2, . . . , R. Those values are again fed to
GROM to compute âk(t2), which are subsequently corrected by the
corrector LSTM, and so on. Finally, before we reconstruct the full
order field at any time instant tn of interest, we utilize a super-
resolver LSTM to recover the finer field scales. This super-resolver
LSTM is fed with the corrected values (ak(tn)) for k = 1, 2, . . . , R,
representing the large scale dynamics resulting from the GROM
and the LSTM corrector. Then, ak(tn) for k = R+ 1, R+ 2, . . . ,Q ,
are obtained as output from this super-resolver. The workflow for
online deployment is shown in Fig. 3. Note the recursive nature
of the deployment, where the corrected values are fed back to
GROM to advance one more time step. We also emphasize that
the super-resolver is only used at instants of interest (i.e., it is
not necessarily required at each time step), which makes further
computational savings possible.

Few merits of the proposed UROM approach can be listed as
follows.

Fig. 3. A schematic diagram for the online deployment of UROM approach. Note
that {ak(tn)}Rk=1 is a short-hand notation for a1(tn), a2(tn), . . . , aR(tn).

• The physics-constrained GROM is maintained to account for
the large scales. This enriches the framework interpretability
and generalizability across a wide range of control parame-
ters.
• GROM acts on a few modes, minimizing the online compu-

tational cost (i.e., O(R3), where R < Q ).
• GROM, being physics-informed, can be used as a sanity

check to decide whether or not the LSTM predictions should
be considered.
• Data-driven closure/correction encapsulates information

from all interacting modes and mechanisms.
• Since both LSTMs are fed with input from a physics-based

approach, UROM can be considered as a way of enforcing
physical knowledge to enhance data-driven tools.
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Table 1
A list of hyperparameters utilized to train the LSTM network for all numerical
experiments.
Variables 1D Burgers 2D Navier–Stokes

Number of hidden layers 3 3
Number of neurons in each hidden layer 60 80
Number of lookbacks 3 3
Batch size 64 64
Epochs 200 200
Activation functions in the LSTM layers tanh tanh
Validation data set 20% 20%
Loss function MSE MSE
Optimizer ADAM ADAM
Learning rate 0.001 0.001
First moment decay rate 0.9 0.9
Second moment decay rate 0.999 0.999

• LSTMs’ inputs are augmented with the control parameter
to provide a more accurate mapping (sometimes also called
physics-guided mapping).

5.1. Long short-term memory embedding

To learn the maps f and g in UROM, we incorporate memory
embedding through the use of LSTM architecture. LSTM is a
variant of recurrent neural networks capable of learning and pre-
dicting the temporal dependencies between given data sequences
based on the input information and previously acquired infor-
mation. Recurrent neural networks have been used successfully
in ROM community to enhance standard projection ROMs [101]
and build fully non-intrusive ROMs [96,102–106]. In the present
study, we use LSTMs to augment the standard physics-informed
ROM by introducing closure as well as super-resolution data-
driven models. We utilize Keras API [107] to build the LSTMs used
in our UROM approach. Details about the LSTM architecture can
be found in [96,104]. A summary of the adopted hyperparameters
is presented in Table 1. We also found that the constructed neu-
ral networks are not very sensitive to hyperparameters. Mean-
while, for optimal hyperparameter selection, different techniques
(e.g., gridsearch) can be used to tune them.

6. Results

In order to demonstrate the features and merits of UROM, we
present results for the two test cases at out-of-sample control
parameters (interpolatory and extrapolatory). For the number of
modes, we use R = 4 for the core dynamics and Q = 16 for
super-resolution. We compare the accuracy of UROM prediction
with the FOM results as well as the true projection of the FOM
snapshots on the POD subspace (denoted as ‘True’ in our results),
where

aTruek (tn) =
⟨
u(x, tn);φk(x)

⟩
, (34)

uTrue(x, tn) =
Q∑

k=1

aTruek (tn)φk(x). (35)

Since UROM can be considered as a hybrid approach between
fully intrusive and fully non-intrusive ROMs, we compare it with
standard Galerkin projection ROM with 4 and 16 modes, denoted
as GROM(4) and GROM(16), respectively. Moreover, we show the
results of a fully non-intrusive ROM approach using 16 modes
(denoted as NIROM). For this NIROM, we use the same LSTM
architecture presented in Section 5.1 as a time-stepping integra-
tor. In particular, we learn a map between the values of modal
coefficients at current time step and their values at the following
time step. Also, we augment our input with the control parameter

to enhance the mapping accuracy. In other words, the NIROM
map h can be represented as follows

h :

⎡⎢⎢⎣
µ

a1(tn)
...

aQ (tn)

⎤⎥⎥⎦ ↦→
⎡⎢⎣a1(tn+1)

...

aQ (tn+1)

⎤⎥⎦ . (36)

Finally, we present the CPU time for UROM, GROM(4), GROM(16),
and NIROM to demonstrate the computational gain. For inter-
ested readers, we also provide a GitHub repository (https://
github.com/Shady-Ahmed/UROM) describing a Python implemen-
tation of UROM as well as the reproduction of the numerical
experiments discussed in the present study.

6.1. 1D Burgers problem

For 1D Burgers simulation, we consider the initial condi-
tion [108]

u(x, 0) =
x

1+ exp
(
Re
16

(
4x2 − 1

)) , (37)

with x ∈ [0, 1]. The 1D Burgers equation with the above initial
condition and Dirichlet boundary conditions has the following
analytic solution representing a traveling wave [108]

u(x, t) =
x

t+1

1+
√

t+1
t0

exp
(
Re x2

4t+4

) , (38)

where t0 = exp(Re/8). For offline training, we obtain solu-
tions for different Reynolds numbers (Re ∈ {200, 400, 600, 800}).
Data generation is performed using the analytic solution given
in Eq. (38) after dividing the spatial domain [0, 1] into 1024
equally-spaced spatial intervals (i.e., Nx = 1025). For each case,
we collect 1000 snapshots for t ∈ [0, 1] (i.e., ∆t = 0.001). That is,
a snapshot matrix of {u(t0),u(t2), . . . ,u(t1000)} is formed, where
u(tn) is the velocity field u(x, tn) collected as a column vector.
Then, the POD basis functions are computed using the technique
presented in Section 2. For online deployment, we obtain the POD
basis at Re = 500 and Re = 1000 using Grassmann manifold
interpolation as discussed in Section 3.

6.1.1. Re = 500: demonstrating interpolatory capability
A Reynolds number of 500 represents an interpolatory case,

where we use the POD basis at Re = 600 as our reference
point for basis interpolation. The evolution of the first 4 POD
temporal coefficients using different frameworks is shown in
Fig. 4. It is clear that GROM(4) is incapable of capturing the true
dynamics due to the severe modal truncation. On the other hand,
both GROM(16) and UROM show very good results; however,
GROM(16) is more computationally expensive as will be shown
in Section 6.3.

For field reconstruction, we present the temporal field evolu-
tion in Fig. 5 for FOM snapshots, true projection, UROM, GROM,
and NIROM. It can be seen that UROM gives very good predictions
for field reconstruction compared with GROM(4) and NIROM,
which yield less accurate results. For better visualizations, we
show the final field (i.e., at t = 1) in Fig. 6 with a close-up view
on the region characterizing the wave-shock.

6.1.2. Re = 1000: demonstrating extrapolatory capability
In order to investigate the extrapolatory performance of UROM,

we test the approach at Re = 1000, with the basis at Re = 800 as
reference point for interpolation. The POD modal coefficients are
shown in Fig. 7, where we can see that both UROM and GROM(16)

https://github.com/Shady-Ahmed/UROM
https://github.com/Shady-Ahmed/UROM
https://github.com/Shady-Ahmed/UROM
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Fig. 4. Temporal evolution of the first 4 POD modal coefficients for Burgers problem as predicted by UROM, GROM(4), GROM(16), and NIROM compared with the
true values obtained by projection of FOM field on the interpolated modes at Re = 500. Note that GROM(4) and NIROM yield inaccurate results.

Fig. 5. Temporal evolution of velocity fields for Burgers problem at Re = 500 with R = 4 and Q = 16.

are still capable of capturing the true projected trajectory. In-
terestingly, the NIROM predictions are less satisfactory, giving
non-physical behavior at some time instants. This suggests that
the physical core of UROM promotes its generality, compared to
the totally data-driven NIROM approach. However, we note that
the deficient behavior of NIROM can be partly due to the sub-
optimal architecture of our network as we only use the same
hyperparameters (except for the size of input and output layers)
for all simulations (as given in Table 1). More sophisticated archi-
tectures and further tuning of hyperparameters would probably
improve NIROM predictions.

The temporal field evolution of flow field is shown in Fig. 8,
which illustrates the non-physical and unstable behavior of both
GROM(4) and NIROM approaches. The final field is plotted in

Fig. 9 with a close-up view at the right. It can be seen that even
the true projected fields do not match the FOM and show some
fluctuations at the shock region. For this type of behavior, a larger
subspace is required to capture most of the dynamics of the flow
at Re = 1000.

As indicated in the previous discussion, a more sophisticated
architecture for LSTM and elegant tuning of the hyperparameters
would be needed to get acceptable performance for NIROM. It is
quite common that NIROM suffers in long time predictions. In
other words, during training and validation, the LSTM learns a
map from the true modal coefficients to their values after one
time step. Therefore, the network is always supposed to be fed
with the true values. However, during actual deployment in the
testing phase, the network is fed with true values only at the
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Fig. 6. Final velocity fields (at t = 1) for Burgers problem at Re = 500 with a zoom-in view at the right using R = 4 and Q = 16. Note that UROM is giving smooth
predictions while GROM(4) is showing significant oscillations.

Fig. 7. Temporal evolution of the first 4 POD modal coefficients for Burgers problem as predicted by UROM, GROM(4), GROM(16), and NIROM compared with the
true values obtained by projection of FOM field on the interpolated modes at Re = 1000. GROM(4) deviates from true trajectory while NIROM gives non-physical
predictions.

initial time (t0). Then, the output of the network is returned
back as input in a recursive manner to provide long time pre-
dictions. Thus, when the network encounters any error in the
output (which is to be expected for testing at different parame-
ters/regions), this error is amplified in the subsequent time steps.
Being fully non-intrusive, the network has no way to account
for errors. As a result, after a few time steps, the output of
the LSTM might blow-up giving non-physical results, unless the
network is stabilized. As a demonstration, we show in Fig. 10 the
predictions for NIROM at Re = 1000 with a simple variation of
architectures (different number of layers and neurons). We note

that all these combinations give a converging performance during
training/validation, where the training and validation losses fall
below 1 × 10−5. On the other hand, they are not doing very
well during actual testing, in the presence of numerical errors
and instabilities. In that sense, a hybridization between physics-
based and data-driven models helps to stabilize the predictions
during the online deployment phase. In the rest of the paper, we
use the same architecture for NIROM and UROM, but the reader
should be aware of these issues, which suggest the need for the
development of more involved architectures and/or more elegant
training and validation.
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Fig. 8. Temporal evolution of velocity fields for Burgers problem at Re = 1000 with R = 4 and Q = 16.

Fig. 9. Final velocity fields (at t = 1) for Burgers problem at Re = 1000 with a zoom-in view at the right using R = 4, and Q = 16. Oscillations in UROM and
GROM(16) occur mainly because a subspace spanning the first 16 modes is insufficient to capture the dynamics at this Reynolds number.

6.2. 2D vortex merger problem

As an application for 2D Navier–Stokes equations, we examine
the vortex merger problem (i.e., the merging of co-rotating vortex
pair) [109]. The merging process occurs when two vortices of
the same sign with parallel axes are within a certain critical
distance from each other, ending as a single, nearly axisymmetric,
final vortex [110]. We consider an initial vorticity field of two
Gaussian-distributed vortices with a unit circulation as follows,

ω(x, y, 0) = exp
(
−ρ

[
(x− x1)2 + (y− y1)2

])
+ exp

(
−ρ

[
(x− x2)2 + (y− y2)2

])
, (39)

where ρ is an interacting constant set as ρ = π and the

vortices centers are initially located at (x1, y1) =
(
3π
4
, π

)

and (x2, y2) =
(
5π
4
, π

)
. We use a Cartesian domain (x, y) ∈

[0, 2π ] × [0, 2π ] over a spatial grid of 256 × 256, with peri-
odic boundary conditions. For this 2D problem, we collect 200
snapshots for t ∈ [0, 20], while varying Reynolds number as
Re ∈ {200, 400, 600, 800}. For solving the full order model
equations, we use a third-order Arakawa scheme [111] for spatial
derivatives, and a third-order total variation diminishing Runge–
Kutta scheme (TVD-RK3) [112] for temporal integration. Similar
to the 1D Burgers problem, we test our framework at Re = 500
and Re = 1000. Also, for basis interpolations, we use reference
points at Re = 600 and Re = 800, respectively.

6.2.1. Re = 500: demonstrating interpolatory capability
Fig. 11 shows the temporal evolution of the first 4 POD coeffi-

cients for the vorticity field. Recall that the temporal coefficients
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Fig. 10. NIROM predictions for Burgers problem at Re = 1000 with Q = 16, and different numbers of layers and neurons.

Fig. 11. Temporal evolution of the first 4 POD modal coefficients of vorticity field for 2D vortex merger problem as predicted by UROM, GROM(4), GROM(16), and
NIROM compared with the true values obtained by projection of FOM field on the interpolated modes at Re = 500.
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Fig. 12. Final vorticity fields (at t = 20) for 2D vortex merger problem at Re = 500 with R = 4, and Q = 16.

for vorticity and streamfunction fields are the same, as discussed
in Section 4.2. We can see that both UROM and GROM(16) accu-
rately predict the true modal dynamics. For better visualizations,
the final vorticity field at t = 20 is given in Fig. 12, where
GROM(4) is showing instabilities manifested in the reconstructed
field. For this interpolatory case, NIROM is providing acceptable
results.

6.2.2. Re = 1000: demonstrating extrapolatory capability
The investigated approaches, namely GROM, UROM and

NIROM, are tested at Re = 1000 as a case that is out-of-
range compared to the training set. The POD modal coefficients
predicted by these approaches are given in Fig. 13. It can be
easily seen that as time increases, the predictions of GROM(4) and
NIROM become poor. Using a neural network as time-stepping
integrator in NIROM increases its sensitivity to computational
noise and this recursive deployment accumulates the error until
predictions totally depart from the true trajectory. This is even
clearer in the reconstructed field shown in Fig. 14, where the
orientation of the merging vortices is not matching the true
orientation. GROM(4) prediction is also suffering from severe
deformation of the true flow topology. On the other hand, the
field reconstruction via UROM is accurate compared to the true
projection and GROM(16).

6.3. Computing time

Finally, we report the ‘‘online’’ computing time for the investi-
gated approaches. In particular, we show the computational time
as well as the root-mean squared error (RMSE) of reconstructed
fields at final time for the two test cases at Re = 1000 in Table 2.
The reported RMSE is computed as

RMSE(t) =

√ 1
N

N∑
i=1

(
uFOM (x, t)− uROM (x, t)

)2
, (40)

where N represents the spatial resolution (i.e., N = Nx × Ny). In
this table, we also report the NIROM results using 4 modes in

the input and output layers. Although GROM(4) is the fastest, its
predictions are very poor and further corrections and stabilization
might be required. Also, a subspace spanned by only the first four
POD modes might be insufficient in complex applications. On the
other hand, GROM(16) is the slowest. We can also observe that
computing time of UROM is close to that of NIROM and much
lower than GROM(16). In Fig. 15, we present a bar chart for both
the computing time and RMSE of reconstructed fields at final time
to illustrate the time-accuracy trade-off.

We note that Table 2 and Fig. 15 document the performance
of our implementation rather than that of the approaches. We
should emphasize that, in this paper, we are not aiming at bench-
marking the computational performance of these approaches.
Instead, our main objective is to demonstrate the feasibility of
hybrid approaches fusing physics-based and machine learning
models. Nonetheless, the runtimes in Table 2 indicate that GROM
approximately (not exactly due to various other loading/writing
abstractions in our Python implementations) scales with R3.
Therefore, combining NIROM and GROM, UROM yields better
computational performance. We also note that, if written more
optimally, we would also expect that the execution time of UROM
(with 16 modes) can be reduced to the sum of the execution
times of GROM (with 4 modes) and NIROM (with 16 modes).
Indeed, we remark that the second LSTM in UROM (representing
the map g) need not be used at all times and can be deployed
only at the instant of interest. In that case, the UROM computing
times become 1.31 s for Burgers case and 0.30 s for vortex merger
(which are very close to NIROM computing time).

In a nutshell, our investigation, for the considered test cases,
shows that GROM with 4 modes provides inaccurate results,
while GROM with 16 modes gives good predictions. However,
the computing cost of the latter is significantly higher than the
computing cost of the former. Adopting the UROM approach, we
are able to get an accuracy similar to the GROM(16) accuracy,
but with a minimal computing cost. Moreover, UROM is more
stable than NIROM for moderate LSTM architectures, since the
UROM is always constrained in its core by the GROM update step.
Conversely, NIROM is totally non-intrusive and the output is fed



S.E. Ahmed, O. San, A. Rasheed et al. / Physica D 409 (2020) 132471 13

Fig. 13. Temporal evolution of the first 4 POD modal coefficients of vorticity field for 2D vortex merger problem as predicted by UROM, GROM(4), GROM(16), and
NIROM compared with the true values obtained by projection of FOM field on the interpolated modes at Re = 1000.

Fig. 14. Final vorticity fields (at t = 20) for 2D vortex merger problem at Re = 1000 with R = 4, and Q = 16.

back to the LSTM recursively, resulting in amplification of error
for long time predictions. This framework can also be generalized
to get higher accuracy or address more complex problems by
increasing R and/or Q .

7. Concluding remarks

In the present study, we have proposed an uplifted reduced or-
der modeling (UROM) approach to elevate the standard Galerkin
projection reduced order modeling (GROM). This approach can

be considered as a hybrid approach between physics-based and
purely data-driven techniques. With GROM at the core of the
framework, UROM (with three modeling layers) enhances the
model generalizability and interpretability. Moreover, large scales
(represented by the first few modes) are given due attention
since they control most of the bulk mass, momentum, and en-
ergy transfers. Therefore, two out of a total of three layers in
UROM aim at predicting the dynamics of these modes as accu-
rately as possible. Then, an uplifting layer is designed to enhance
the prediction resolution (i.e., super-resolution). Performance of
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Fig. 15. Computing time of testing (online) stage at Re = 1000 (left) and RMSE of reconstructed fields at final time (right) for UROM(4+12) (i.e., R = 4 and Q = 16),
GROM(16), and NIROM(16).

Table 2
Computing time (in seconds) and RMSE of UROM, GROM(4), GROM(16),
NIROM(4), and NIROM(16) for Re = 1000. We note that the computing time
assessments documented in this table are based on Python executions.
Framework 1D Burgers 2D vortex-merger

Time (s) RMSE Time (s) RMSE

UROM 2.46 4.13E−3 0.54 5.44E−3
GROM(16) 8.40 3.17E−3 1.67 4.17E−3
GROM(4) 0.17 5.17E−2 0.06 3.99E−2
NIROM(16) 1.16 4.64E−3 0.25 7.80E−2
NIROM(4) 1.07 3.14E−2 0.23 8.58E−2

UROM has been compared against standard GROM and fully
non-intrusive ROM (NIROM) approaches.

Two test cases, representing convection-dominated flows in
1D and 2D settings, have been used to evaluate the UROM.
For testing, two out-of-sample control parameters have been
investigated to study the interpolatory and extrapolatory per-
formances. In all cases, UROM has showed very good results,
compared to GROM and NIROM. In particular, UROM(4 + 12)
has been demonstrated to provide more accurate results than
both GROM(4) and NIROM. In contrast to NIROM where the
deployment is fully data-driven, the LSTMs in UROM take their
inputs from a physics-based approach. This can be considered
as one way of leveraging physical information and intuition into
LSTM. On the other hand, UROM has provided significant speed-
ups compared to GROM(16) with comparable accuracy. Although
we have presented the results for Q = 16, more complex flows
can require much larger Q , which makes GROM(Q ) unfeasible.
Finally, this UROM approach is thought to open new avenues to
utilize data-driven tools to enhance existing physical models as
well as use physics to inform data-driven approaches to maximize
the pros of both approaches and mitigate their cons.
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