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Abstract: Extensive efforts have been made to observe the accumulation and melting of seasonal 
snow. However, making accurate observations of snow water equivalent (SWE) at global scales is 
challenging. Active radar systems show promise, provided the dielectric properties of the snowpack 
are accurately constrained. The dielectric constant (k) determines the velocity of a radar wave 
through snow, which is a critical component of time-of-flight radar techniques such as ground pen-
etrating radar and interferometric synthetic aperture radar (InSAR). However, equations used to 
estimate k have been validated only for specific conditions with limited in situ validation for sea-
sonal snow applications. The goal of this work was to further understand the dielectric permittivity 
of seasonal snow under both dry and wet conditions. We utilized extensive direct field observations 
of k, along with corresponding snow density and liquid water content (LWC) measurements. Data 
were collected in the Jemez Mountains, NM; Sandia Mountains, NM; Grand Mesa, CO; and Cam-
eron Pass, CO from February 2020 to May 2021. We present empirical relationships based on 146 
snow pits for dry snow conditions and 92 independent LWC observations in naturally melting 
snowpacks. Regression results had r2 values of 0.57 and 0.37 for dry and wet snow conditions, re-
spectively. Our results in dry snow showed large differences between our in situ observations and 
commonly applied equations. We attribute these differences to assumptions in the shape of the 
snow grains that may not hold true for seasonal snow applications. Different assumptions, and thus 
different equations, may be necessary for varying snowpack conditions in different climates, sug-
gesting that further testing is necessary. When considering wet snow, large differences were found 
between commonly applied equations and our in situ measurements. Many previous equations as-
sume a background (dry snow) k that we found to be inaccurate, as previously stated, and is the 
primary driver of resulting uncertainty. Our results suggest large errors in SWE (10–15%) or LWC 
(0.05–0.07 volumetric LWC) estimates based on current equations. The work presented here could 
prove useful for making accurate observations of changes in SWE using future InSAR opportunities 
such as NISAR and ROSE-L. 
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1. Introduction 
Snowmelt is the dominant freshwater resource for over a billion people globally [1,2] 

with recent studies showing its high monetary value [3]. Furthermore, seasonal snow is 
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one of the fastest changing hydrologic states under current climate trends [4–6]. Due to 
the importance of snow and the rate it is changing, extensive efforts are being made to 
observe the accumulation and melting of seasonal snow (e.g., [7]). Snow observation 
methods range from manual ground measurements to remote sensing techniques such as 
light detection and ranging (LiDAR) or active radar systems that rely on understanding 
the dielectric properties of the snowpack. However, making accurate observations of 
snow water equivalent (SWE) at the global scale is challenging. 

Recent technological advancements have allowed limited mapping of SWE from re-
mote sensing techniques. Passive microwave instruments such as the Multichannel Mi-
crowave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Ad-
vanced Microwave Scanning Radiometer-EOS instrument (AMSR-E) have been used, 
though the poor spatial resolution of these datasets, sensitivity to varying snow proper-
ties, and inability to measure deep snow make these techniques less feasible for water-
shed-scale scientific applications [8–11], especially in complex mountainous terrain. One 
of the most successful methods in recent years has been the use of airborne LiDAR to 
obtain distributed snow depth maps and SWE estimates when density estimates are avail-
able [7,12,13]. Photogrammetry techniques using stereo satellite image pairs have also 
shown promise to produce snow depth maps [13,14]. However, LiDAR and photogram-
metry techniques are generally limited to regional applications, require accurate and co-
registered snow-off products, and are not viable during days of cloud-cover. Active mi-
crowave radar can overcome these limitations and has recently been used to provide esti-
mates for changes in snow depth and SWE through differential interferometric synthetic 
aperture radar (InSAR) [15–17]. Lower frequency InSAR techniques offer the potential to 
make observations of changes in SWE at high resolutions and are not hindered by cloud 
cover. However, InSAR techniques to observe SWE changes require a priori estimates of 
the dielectric properties of a snowpack. In particular, these low frequency active radar 
techniques are dependent on accurate estimates of the real part of the dielectric permittiv-
ity (𝜀𝜀′). 

The 𝜀𝜀′ determines the velocity of a radar wave through snow and has been used to 
investigate multiple regions of the cryosphere at spatial scales that range from the labor-
atory to multiple kilometers (e.g., [18–20]). Historically, 𝜀𝜀′ has been used extensively in 
ground-penetrating radar (GPR) studies to estimate ice thickness [21], SWE [22], density 
[23], and snow liquid water content (LWC); [24]. Values of 𝜀𝜀′ have primarily been vali-
dated for specific conditions such as polar firn and ice (e.g., [25]), with limited validation 
in seasonal snow. Additionally, 𝜀𝜀′ for wet snow has been validated predominantly under 
idealized laboratory conditions due to the difficulty of making accurate in situ measure-
ments of snow LWC. The studies that have made in situ observations of snow LWC have 
been limited to low values of liquid water (generally below 0.08 by volume) and the ap-
plied methods often sample different volumes of snow than those being measured for 𝜀𝜀′ 
(e.g., [26–28]). Thus, there is a need for further evaluation of existing equations that quan-
tify 𝜀𝜀′ for seasonal snow under both dry and wet conditions, particularly with the forth-
coming NASA-ISRO SAR Mission (NISAR) and Radar Observing System for Europe L-
Band (ROSE-L) that have the potential to make global change in SWE products to make 
them feasible. 

 The goal of this work is to develop further understandings of the dielectric permit-
tivity of seasonal snow under dry and wet conditions. We utilize extensive in situ obser-
vations of dielectric permittivity coincident with independent snow density (𝜌𝜌𝑠𝑠) and LWC 
observations to complete the following objectives: (1) compare current permittivity equa-
tions for dry snow conditions against in situ observations, (2) compare current permittiv-
ity equations for wet snow conditions against in situ observations, and (3) determine if 
any improvements to current permittivity equations are necessary, and if so, recommend 
these improvements. 
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Theoretical Background 
Many 𝜀𝜀′ equations applied to snow are derived from the Polder and van Santeen 

[29] equation that assumes particles in mixed media are in the form of ellipsoids. The 
shape of these ellipsoids may be described by the summation of their semi-axial ratios of 
the depolarization factors (Ni): 

𝑁𝑁1 + 𝑁𝑁2 + 𝑁𝑁3 = 1, (1) 

where the subscripts signify the Ni value for each respective semi-axis of the ellipsoid in 
three-dimensional space. When all Ni values are equal (i.e., N1 = N2 = N3 = 0.33), the parti-
cles are spherical (Figure 1a). Other Ni value extremes describe discs (i.e., Ni values of 0, 
0.5, 0.5) and needles (i.e., Ni values of 1, 0, 0; Figure 1a). When these ellipsoids have a 
known permittivity (𝜀𝜀𝑘𝑘) and are randomly oriented and distributed with a volumetric 
fraction (𝜃𝜃) within a background material of a different permittivity (𝜀𝜀0), the Polder and 
van Santeen [29] mixing formula for 𝜀𝜀′ may be written as: 

𝜀𝜀′ =  𝜀𝜀0 + 𝜃𝜃
3

(𝜀𝜀𝑘𝑘 − 𝜀𝜀0)∑ 𝜀𝜀′

𝜀𝜀′+𝑁𝑁𝑖𝑖(𝜀𝜀𝑘𝑘−𝜀𝜀′)
3
𝑖𝑖=1 , (2) 

In general, for dry snow, the shape of the snow crystals has a minimal impact on Equation 
(2) due to the relative similarities in permittivity between air and ice, with ice having a 
permittivity ~3 times that of air (Figure 1b). However, liquid water has a permittivity ~29 
times that of ice resulting in a significant change in 𝜀𝜀′ in the presence of even minimal 
amounts of liquid water (Figure 1c). The Polder and van Santeen [29] formula (Equation 
(2)) describes the theoretical basis for multiple equations predicting the dielectric behavior 
of snow and soil [30–32] that are regularly applied to seasonal snowpacks [13,33–35]. 
These equations are derived by assuming the shape of snow crystals for dry snow and 
liquid water inclusions for wet snow. Other equations used for commercially available 
sensors have also been developed empirically using laboratory techniques and a regres-
sion analysis (e.g., [36,37]). However, as previously mentioned, there has been limited 
testing of these equations for in situ snow samples, particularly for wet snow conditions. 
Because of this, estimates of LWC for wet snow conditions are often more sensitive to the 
equation chosen rather than intrinsic snowpack properties (Figure 1d). For further details 
on the permittivity models for mixed materials, Sihvola and Kong [38] and Di Paolo et al. 
[39] provide thorough reviews for dry snow conditions. For wet snow conditions, we pro-
vide a summary in terms of relative permittivity (k) as a function of snow density (ρs) and 
snow volumetric LWC (θw) in Table 1. It is important to note that the equations shown in 
Table 1 are applicable at frequencies between 0.01 and 1.5 GHz where 𝜀𝜀′ will not change 
significantly with frequency [18]. Equations used by instruments that are often utilized in 
the field are also included in Table 1. These instruments include the Snow Fork that uses 
Sihvola and Tiuri [31], a Denoth meter [30], an A2 Photonics WISe sensor [36], and the 
FPGA Company SLF Sensor [37]. Instruments often quantify 𝜀𝜀′ of the observed media as 
k, defined as the ratio of 𝜀𝜀′ for the observed media to the 𝜀𝜀′ of a vacuum. Thus, we utilize 
k for the purpose of consistency with our observations (described later in the Methods 
section). 
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Figure 1. Examples of the Polder and van Santeen [29] formula for various shaped materials. (a) Diagrams of the three-
dimensional ellipsoids defined by the depolarization factors (Ni). For the example plots, N1 is noted in the legend and N2 
= N3. (b) The Polder and van Santeen [29] model for the relative permittivity as a function of dry snow based on different 
Ni assumptions and the Sihvola and Tiuri [31] equation (S and T) shown for comparison. (c) The Polder and van Santeen 
[29] model for relative permittivity as a function of volumetric liquid water content for snow with a density of 300 kg m−3 
based on different Ni assumptions and the Sihvola and Tiuri [31] equation shown for comparison. (d) Comparison of 
Sihvola and Tiuri [31], Denoth et al. [26], and Roth et al. [32] equations for volumetric liquid water content of snow with a 
density of 300 kg m−3. 

Table 1. Common equations that relate snow density (𝜌𝜌𝑠𝑠, kg m−3) and volumetric liquid water content (𝜃𝜃𝑤𝑤, cm cm−3) to the 
relative permittivity (k) at low frequencies (0.01–1.5 GHz). 

Reference θw Range (cm cm−1) Equation for Relative Permittivity, k (Unless Otherwise Specified) 
Sihvola and Tiuri 

[31] 
0.005–0.10 1 + 1.7 �

𝜌𝜌𝑠𝑠
1000

− 𝜃𝜃𝑤𝑤� + 0.7 �
𝜌𝜌𝑠𝑠

1000
− 𝜃𝜃𝑤𝑤�

2
+ 8.7𝜃𝜃𝑤𝑤 + 0.007(100 ∙ 𝜃𝜃𝑤𝑤)2 

Denoth [30] 0.0–0.09 1 + 1.92 �
𝜌𝜌𝑠𝑠

1000
� + 0.44 �

𝜌𝜌𝑠𝑠
1000

�
2

+ 18.7𝜃𝜃𝑤𝑤 + 45 ∙ 𝜃𝜃𝑤𝑤2  

Roth [32] - �9.38 ∙ 𝜃𝜃𝑤𝑤 + 1.78 ∙
� 𝜌𝜌𝑠𝑠

1000 − 𝜃𝜃𝑤𝑤�
0.917

+ �1 −
� 𝜌𝜌𝑠𝑠

1000 − 𝜃𝜃𝑤𝑤�
0.917

− 100 ∙ 𝜃𝜃𝑤𝑤��

2

 

Kendra et al. [40]  0.0–0.1 
1 + 1.7(𝜌𝜌𝑠𝑠 − 𝜃𝜃𝑤𝑤) + 0.7(𝜌𝜌𝑠𝑠 − 𝜃𝜃𝑤𝑤)2 + ∆ 

∆ = 0.02(100 ∙ 𝜃𝜃𝑤𝑤)1.015 +
0.073(100 ∙ 𝜃𝜃𝑤𝑤)1.31

1.0122
 

Lundberg and 
Thunehed [41] 

- (1 + 0.851𝜌𝜌𝑠𝑠 + 7.093 ∙ 𝜃𝜃𝑤𝑤)2 

A2 Photonics [36] 0.0–0.2 1 + 1.202 �
𝜌𝜌𝑠𝑠

1000
− 𝜃𝜃𝑤𝑤� + 0.983 �

𝜌𝜌𝑠𝑠
1000

− 𝜃𝜃𝑤𝑤�
2

+ 21.3 ∙ 𝜃𝜃𝑤𝑤 

FPGA [37] 0.0–0.2 𝜃𝜃𝑤𝑤 =
0.271�𝑘𝑘 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�

3 − 2.688�𝑘𝑘 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�
2 + 10.337�𝑘𝑘 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�

100
 

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 = −0.0083�3.44 × 105 − 239.8(𝜌𝜌𝑠𝑠 − 100 ∙ 𝜃𝜃𝑤𝑤)�0.5 + 4.893 

2. Materials and Methods 
During the winter of 2020 and the springs of 2020 and 2021, robust data collection 

efforts were conducted as part of NASA SnowEx campaigns, designed to address the pri-
mary gaps in snow remote sensing, which included testing various radar remote sensing 
strategies. As part of these efforts, multiple snow pit observations included profiles of 𝜌𝜌𝑠𝑠, 
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k, and θw. The presented analyses are based on data from four sites (Figure 2). One site is 
Grand Mesa, CO where data from 146 snow pits that include 𝜌𝜌𝑠𝑠 and k profiles collected 
during a two-week observation period from 28 January 2020 to 12 February 2020 [42]. 
Further observations of 𝜌𝜌𝑠𝑠 and k profiles were collected weekly in the Jemez Mountains, 
NM from 22 January 2020 to 4 March 2020 [43]. A third and fourth site for observations 
added measurements with a melt calorimeter for θw estimates in the Sandia Mountains, 
NM on a weekly basis from 25 February 2020 to 28 April 2020 [44] and Cameron Pass, CO 
from 9 March 2021 to 20 May 2021 [43]. For this study, Grand Mesa, CO and Jemez Moun-
tains, NM data were used for dry snow conditions and the other two sites focused on data 
collection during wet snow conditions. 

Snow pit observations for all sites measured 𝜌𝜌𝑠𝑠, k, and snow temperature in 10 cm 
increments for the entire snowpack profile. Additionally, grain size, grain type, and man-
ual hand wetness estimates were collected for each identified layer in the snowpack. Two 
profiles of 𝜌𝜌𝑠𝑠 were collected using a 1000 cm3 wedge cutter and an electronic scale with 1 
g precision to obtain observations in kg m−3. Observations of k were made using an A2Pho-
tonics WISe sensor that has a well-constrained measurement volume of 325 cm3 (Figure 
3a) and observations output as 𝑘𝑘 with precision to three decimal places. These k values 
were independently verified using ground-penetrating radar estimates of k, using a com-
bination of radar travel-time and manual depth measurements, for coincident snow pits 
(Appendix A). This independent verification resulted in mean absolute error (MAE) val-
ues of 0.106 in k. The error was found to be higher for wet snow conditions relative to dry 
snow with MAEs of 0.217 and 0.034, respectively (Figure A1). When melt calorimeter ob-
servations were made (described in further detail below), a ~25 g snow sample was taken 
directly from the WISe sensor. Snow temperature profiles were made using a dial stem 
thermometer with an accuracy of 1 °C. Grain size and type were made with a crystal card 
and hand lens. Hand wetness observations were made in accordance with the Interna-
tional Classification of Seasonal Snow on the Ground [45] that is commonly applied (e.g., 
[46]). 

 
Figure 2. Site locations for Cameron Pass, CO (CP); Grand Mesa, CO (GM); Jemez Mountains, NM 
(JM); and Sandia Mountains, NM (SM) displaying (a) the relative location in the western U.S. and 
(b) a hillshade terrain map of Colorado and New Mexico. 
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Figure 3. Image of (a) the A2 Photonics WISe Sensor and (b) the field calorimeter and thermometer 
used for this study. 

For the analyses in this study, we considered the snowpack to be dry when temper-
atures were below 0 °C and the hand wetness observations confirmed a “dry” estimate 
throughout the profile. When comparing dry 𝜌𝜌𝑠𝑠 to 𝑘𝑘, we used the mean 𝜌𝜌𝑠𝑠 and mean 𝑘𝑘 
for each snow pit to account for random errors that may have occurred from the natural 
variability of 𝜌𝜌𝑠𝑠 and the differences in measurement volumes for each method described 
above; therefore, these estimates represent averages of more than 10 independent obser-
vations of dry 𝜌𝜌𝑠𝑠 and 𝑘𝑘. To compare the 𝑘𝑘 of wet snow to melt calorimeter estimates, we 
made direct comparisons since the calorimeter samples were taken directly from the 
measurement volume of the WISe sensor. 

The melt calorimeter is a double-walled insulated container with a 250 mL capacity 
(Figure 3b). Calorimeter measurements were made using a digital scale with 1 g precision 
and a thermometer with 0.01 ° precision and factory calibrated accuracy of 0.1 °C. Ap-
proximately 60–80 g of water with a temperature of 30–40 °C was added to the calorimeter 
and shaken to mix. The mass and temperature of the water in the calorimeter were then 
recorded. A snow sample (targeting 20–30 g) was quickly taken from the WISe sensor 
immediately after the k measurement and placed in the calorimeter as quickly as possible. 
The calorimeter was then shaken to mix the water and sample for one minute to com-
pletely melt the snow sample. After mixing, the total mass of the water and melted snow 
sample was recorded along with the final temperature. The gravimetric LWC (𝑊𝑊) was 
then calculated in a similar fashion to Kawashima et al. [27]: 

𝑊𝑊 =  1 − 𝐶𝐶
𝐿𝐿
�𝑀𝑀𝑤𝑤(𝑇𝑇𝑤𝑤−𝑇𝑇𝐹𝐹)

𝑀𝑀𝑠𝑠
− 𝑇𝑇𝐹𝐹� , (3) 

where C is the specific heat of water (4.2 × 103 J kg−1K−1), L is the latent heat of fusion for 
ice (3.34 × 105 J kg−1), Mw is the mass of the warm water prior to the snow sample being 
added, Ms is the mass of the snow sample, Tw is the starting temperature of the warm 
water, and TF is the final temperature of the mixture. The W values were then converted 
to 𝜃𝜃𝑤𝑤 by multiplying W by the associated 𝜌𝜌𝑠𝑠/1000. Melt calorimeter observations were 
collected in the Sandia Mountains and Cameron Pass sites, including snow pits in open 
and forested conditions, after the snowpack became isothermal for a total of 92 independ-
ent wet snow observations. 

3. Results 
3.1. Dry Snow Observations 

Snow pit observations [42,43] during the 2020 data collection resulted in a total of 149 
snow pits for measurements of dry 𝜌𝜌𝑠𝑠 and associated 𝑘𝑘. These snow pits were from the 
Grand Mesa and Jemez sites. Snow pit depths ranged from 0.5 to 1.5 m. Mean dry 𝜌𝜌𝑠𝑠 
ranged from 210 to 360 kg m−3 and mean 𝑘𝑘 measurements ranged from 1.25 to 1.55 (Fig-
ure 4a). A regression analysis of 𝑘𝑘 as a function of dry 𝜌𝜌𝑠𝑠 resulted in an r2 value of 0.57 
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and a root mean squared error (RMSE) of 0.03 with a standard deviation of 0.039 (Figure 
4a). The equation for this regression of k as a function of dry 𝜌𝜌𝑠𝑠 is: 

𝑘𝑘 = 1.0 + 0.0014𝜌𝜌𝑠𝑠 + 2 × 10−7𝜌𝜌𝑠𝑠2, (4) 

when compared with other equations such as the commonly used Sihvola and Tiuri [31], 
our in situ observations resulted in lower k values and more similar to a less commonly 
applied Stein et al. [47] (Figure 4a). 

 
Figure 4. Results of in situ data comparisons for (a) dry snow with Sihvola and Tiuri [31] (S and T) 
and Stein et al. [47] shown for comparison to our regression line; and (b) for calorimeter-based liquid 
water content observations. 

3.2. Wet Snow Observations 
Snow pit observations at the Sandia Mountains and Cameron Pass sites resulted in 

92 observations with LWC present and isothermal conditions (necessary for appropriate 
application of Equation (3)). Values of 𝜌𝜌𝑠𝑠 ranged from 147 to 498 kg m−3, observations of 
𝜃𝜃𝑤𝑤 ranged from approximately 0.01 to 0.16, and 𝑘𝑘 measurements from 1.15 to 2.83. A re-
gression analysis of 𝑘𝑘 as a function of 𝜌𝜌𝑠𝑠  and 𝜃𝜃𝑤𝑤  resulted in a r2 value of 0.37 with a 
RMSE of 0.22 and a standard deviation of 0.21. In terms of deviations from 𝜃𝜃𝑤𝑤, this re-
gression resulted in an RMSE of 0.030 and a standard deviation of 0.032 (Figure 4b). This 
regression equation for 𝑘𝑘 as a function of 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑤𝑤 is 

𝑘𝑘 = [1.0 + 0.0014(𝜌𝜌𝑠𝑠 − 𝜃𝜃𝑤𝑤) + 2 × 10−7(𝜌𝜌𝑠𝑠 − 𝜃𝜃𝑤𝑤)2] + (0.01𝜃𝜃𝑤𝑤 + 0.4𝜃𝜃𝑤𝑤2 )𝑘𝑘𝑤𝑤, (5) 

where 𝑘𝑘𝑤𝑤 is the relative permittivity of liquid water at 0 °C (~87.9) and the bracketed 
portion of the equation is the background effect of dry snow permittivity described using 
Equation (4). 

When compared to existing equations, Equation (5) aligns most closely with the SLF 
sensor equation for observations of 𝜃𝜃𝑤𝑤 greater than ~0.07 (Figure 5). However, for lower 
𝜃𝜃𝑤𝑤 values Equation (5) aligns well with Sihvola and Tiuri [31]. For the snowpack condi-
tions present at our sites, many of the equations, including four data points when our 
presented regression is used, resulted in a negative calculated 𝜃𝜃𝑤𝑤 that is physically unre-
alistic (Figure 5). These negative values were due to the actual background k being lower 
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than the assumed value in the 𝜃𝜃𝑤𝑤 equation (bracketed part of Equation (5)) and the effect 
of liquid water not being large enough to overcome this. 

 
Figure 5. Comparisons of the calorimeter observed liquid water content and the calculated liquid 
water content based on the observed relative permittivity and density observations for common 
equations and the regression presented in this study. 

4. Discussion 
To our knowledge, this is the most robust in situ testing of permittivity equations for 

snow that has collected more datapoints than previous validation studies, particularly 
those investigating wet snow conditions. While sensors and equations have been com-
pared in the past for in situ snow sampling, errors occurred as a result of differing sample 
volumes (e.g., [26,46]). In fact, Denoth et al. [26] mention that data were discarded due to 
the high variability during the comparison attempts. Furthermore, it is important to note 
that equations may result in different estimates of 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑤𝑤 for the same snowpack con-
ditions as we have shown (Figures 4 and 5). This is likely a result of differing assumptions 
for Ni in Equation (2) to theoretically derive some of the equations and/or variable condi-
tions for laboratory tests used to empirically derive other equations. 

For our dry snow tests, we showed reasonable agreement in the shape of the permit-
tivity curve as a function of 𝜌𝜌𝑠𝑠. However, differences occurred between our in situ obser-
vations and previous equations (Figure 4a), particularly with one of the more commonly 
applied equations [31]. The revised equation presented here is most similar to Stein et al. 
[47], that takes a simple linear form. We explored a similar linear fit, but Equation (4) 
resulted in a slightly higher r2 value (0.57 for Equation (4) and 0.55 for a linear fit). Addi-
tionally, it is important to note that our regression and data points were outside of the 
uncertainty bounds recently suggested by Di Paolo et al. [39]. Our analysis shows that 
different assumptions may hold more/less valid for varying snowpack conditions in dif-
ferent climates, though further testing is necessary. However, the relative similarities in 
𝜀𝜀′ between air and ice resulted in small differences between equations for dry snow con-
ditions, particularly when compared to differences between equations in wet snow con-
ditions (Figure 5). Our analysis highlights that care should be taken when applying an 
equation developed under conditions that differ from conditions for a site of interest. For 
example, for dry snow conditions common equations could underestimate snow density 
by ~50 kg m−3 and the resulting SWE by 10–15% (Figure 4a) and estimates of 𝜃𝜃𝑤𝑤 could be 
underestimated by 0.05–0.07 (Figure 5). Common assumptions to consider when transfer-
ring equations from one condition to another may include factors such as snow climate 
that results in differing snow crystal size, form, and/or orientation, which influence the 
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dielectric properties (Figure 1). It is important to note that the random orientation assump-
tion in Equation (2) may not hold true in many continental snowpack conditions where 
metamorphism, and the resulting orientation, will predominantly occur in the direction 
of the temperature gradient (i.e., vertically) resulting in a more organized crystal orienta-
tion [48], though further testing is necessary. These factors will also change the water re-
tention properties of the snowpack and the resulting shape of water inclusions. 

The shape of snow crystals and water inclusions is a likely reason for the differences 
in 𝜃𝜃𝑤𝑤 estimates between our in situ observations and previous equations. Previous equa-
tions and assumptions have shown to hold relatively true for lower values of 𝜃𝜃𝑤𝑤 within 
the pendular regime (i.e., liquid water is held in disconnected inclusions). However, as 
𝜃𝜃𝑤𝑤 increases towards and into the funicular regime (i.e., liquid water is held within con-
nected pathways) these shape assumptions break down. This is likely the result of prefer-
ential flowpaths that water follows in multiple directions as it percolates through the 
snowpack [49,50]. This is supported by our regression for wet snow conditions crossing 
over multiple Ni shape curves using the Polder and Van Santeen [29] theoretical model 
(Figure 6). While it may be possible to solve for Ni values that match Equation (5), it is 
unclear how physically representative of crystal shape and water inclusion this would be 
since snow metamorphism occurs quickly in the presence of liquid water and the shape 
of the water inclusion may change drastically from the pendular to funicular regimes. 
Furthermore, laboratory testing often involves sieving snow crystals to create ideal uni-
form conditions that do not occur in situ. However, these laboratory tests appear to com-
pare reasonably well in the pendular regime with low liquid water contents (Figure 6a). 
With this comparison we can see that our in situ based regression followed a similar curve 
shape as previous equations, but with a shallower slope of the curve at low values of LWC. 
Analysis of the relative change in k as a function of 𝜃𝜃𝑤𝑤 further supports our interpretation 
that the water inclusions change shape as they become more connected throughout the 
snowpack with increasing 𝜃𝜃𝑤𝑤. As 𝜃𝜃𝑤𝑤 increases towards 0.3 and above Equation (5), it ap-
proaches the curve of a sphere for Equation (2), though further testing is necessary for 
values of 𝜃𝜃𝑤𝑤 above 0.2. 

 
Figure 6. Comparison of relative permittivity equations based on the volumetric liquid water content of snow with a dry 
density of 300 kg m−3. Equations shown are the Polder and van Santeen [29] formula for various shaped materials, Sihvola 
and Tiuri [31] (S and T), and the current study (This Study). Panel (a) shows the direct comparison of equations whereas 
panel (b) displays the relative change in permittivity for each equation as a function of the volumetric liquid water content. 
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Uncertainty and Future Work 
When analyzing these 𝜃𝜃𝑤𝑤 data, it is also important to consider the uncertainty in our 

melt calorimeter observations. When using Equation (3), the precision and accuracy of our 
instrumentation resulted in a 𝜃𝜃𝑤𝑤 uncertainty estimate of approximately 0.017 [27]. How-
ever, due to the added potential error from transferring the snow sample from the WISe 
sensor to the calorimeter, we estimated an uncertainty of 0.02 𝜃𝜃𝑤𝑤. We additionally con-
ducted multiple tests to determine energy losses by the calorimeter itself and found an 
average temperature change of ~0.2 °C per minute when a temperature gradient of ~15 °C 
was present between the warm water inside the calorimeter and the outside air tempera-
ture. This energy loss is easily accounted for and had minimal impacts on calculations 
using Equation (3). This total uncertainty is similar to other calorimeter studies (e.g., [27]) 
and may be reduced in the future by using a higher precision scale and improved insula-
tion of the calorimeters. For the purposes of the present study, we consider this uncer-
tainty reasonable due to the similarity with other studies and the regression RMSE of 
Equation (5) being of similar magnitude [18,24,30,31,37]. 

Though the r2 value for our wet snow equation (Equation (5)) was relatively low at 
0.37, it is worth noting that the uncertainty in the background k from the dry snow equa-
tion, which has an r2 of 0.57, factors into the spread. Thus, the change in permittivity as a 
result of liquid water increased the uncertainty by ~20%, whereas the dry snow portion of 
the equation (bracketed term of Equation (5)) had ~45% uncertainty. A more accurate un-
derstanding of the background permittivity could replace the bracketed term of Equation 
(5) to improve applications of this equation, though this may be difficult to acquire in the 
field as seasonal snowpacks often retain liquid water overnight once melt has begun 
[51,52]. Further investigations are necessary to reduce this uncertainty. 

 Future investigations may also consider expanding the range of 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑤𝑤 values 
for analysis. In this study, over 80% of samples of dry snow 𝜌𝜌𝑠𝑠 were between 240 and 300 
kg m−3 and, similarly, over 80% of samples for 𝜃𝜃𝑤𝑤 calculations were between 0.05 and 0.15 
with 𝜌𝜌𝑠𝑠 over 300 kg m−3. Future data collection efforts could target 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑤𝑤 values that 
were outside the sampling range of the current study. Additionally, these data were col-
lected in continental snowpacks with snow depths less than 2.0 m and future data collec-
tion could further our understanding of the influence from varying snow climates and 
conditions to determine if different equations are necessary for differing snowpack re-
gimes. Additionally, we recommend that future studies include additional parameters 
such as crystal structure and/or specific surface area in an attempt to reduce the uncer-
tainty in empirical analyses. 

 However, our current results show that previous equations do not account for the 
changes in shape in relation to water held in snow pore spaces as increases in 𝜃𝜃𝑤𝑤 occur. 
This suggests that previous studies investigating the LWC of snow may have had errors 
in estimates as high as 0.1 𝜃𝜃𝑤𝑤 depending on the choice of equation and the conditions 
present for the study (Figure 5). For conditions in the pendular regime, this error is the 
lowest whereas the funicular regime introduces the largest amount of error (Figures 5 and 
6). For both dry and wet snow conditions, care should be taken when applying equations 
developed under different conditions. Future work that investigates the influence of var-
ying snowpack conditions on the dielectric properties will assist in developing methods 
to utilize the forthcoming NISAR and ROSE-L satellite missions in producing accurate 
global changes in SWE products using low frequency microwave InSAR. 

5. Conclusions 
Our robust data collection effort and analysis showed that large differences exist be-

tween common equations and our field observations. These differences were found for 
both dry and wet snow conditions, illustrating that site-specific conditions strongly influ-
ence the corresponding empirical relations. For the snow conditions observed in this 
study, continental snowpacks with depths less than 2 m and densities less than 500 kg m−3, 
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we recommend Equations (4) and (5). Future work that utilizes the dielectric properties of 
snow should consider the snow climate when choosing an equation to apply. 
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Appendix A. Validation of the A2 Photonics WISe Sensor 
In order to independently validate the permittivity values observed using the A2 

Photonics WISe sensor, we utilized permittivity estimates from coincident ground pene-
trating radar (GPR) surveys. A GPR pulse is an electromagnetic wave that travels through 
the snowpack and is reflected off changes in material properties such as density, with the 
strongest reflection often from the snow–soil interface. The GPR data were processed to 
estimate the two-way traveltime (TWT) of the radar wave through the snowpack. The ve-
locity of the radar wave (v) was then calculated as: 

𝑣𝑣 =  𝑑𝑑𝑠𝑠
�𝑇𝑇𝑇𝑇𝑇𝑇

2� �
, (A1) 

where ds is the depth of snow. The relative permittivity (k) of snow can then be calculated 
from: 

𝑘𝑘 = �𝑐𝑐
𝑣𝑣
�
2
, (A2) 

where c is the speed of light in a vacuum (~0.3 m/ns). 
We estimated the bulk k value for snow pits using GPR TWT and observed ds that 

were compared to the mean snow pit k values recorded using the A2 Photonics WISe sen-
sor. In total, we had coincident observations for 28 snow pits, 17 in dry snow conditions 
and 11 in wet snow conditions. For all data points, a mean absolute error (MAE) in k values 
of 0.106 was found (0.034 for dry snow and 0.217 for wet snow; Figure A1). We attribute 
the higher deviation under wet snow conditions to the high spatial variability of liquid 
water in snow that is known to occur and the difference in volumes of influence between 
the GPR and WISe sensor profiles. 
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Figure A1. Comparison of relative permittivity estimates using a GPR and the A2 Photonics WISe 
sensor. 
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