a

remote sensing

Technical Note

In Situ Determination of Dry and Wet Snow Permittivity:
Improving Equations for Low Frequency Radar Applications

Ryan W. Webb 12*, Adrian Marziliano !, Daniel McGrath 3, Randall Bonnell 3, Tate G. Meehan 45,
Carrie Vuyovich ¢ and Hans-Peter Marshall 4

Citation: Webb, R.W.; Marziliano,
A.; McGrath, D.; Bonnell, R.;
Meehan, T.G.; Vuyovich, C,;
Marshall, H.-P. In Situ
Determination of Dry and Wet Snow
Permittivity: Improving Equations
for Low Frequency Radar
Applications. Remote Sens. 2021, 13,
4617. https://doi.org/10.3390/
rs13224617

Academic Editor: Emanuele Santi

Received: 14 September 2021
Accepted: 10 November 2021
Published: 16 November 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

1 Center for Water and the Environment, University of New Mexico, Albuquerque, NM 87131, USA;
amarziliano@unm.edu

2 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80309, USA

3 Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA;
Daniel.McGrath@colostate.edu (D.M.); randall.bonnell@colostate.edu (R.B.)

¢ Department of Geoscience, Boise State University, Boise, ID 83706, USA;
tatemeehan@u.boisestate.edu (T.G.M.); hpmarshall@boisestate.edu (H.-P.M.)

5 US Army Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA

¢ NASA-Goddard Space Flight Center, Greenbelt, MD 20770, USA; carrie.m.vuyovich@nasa.gov

* Correspondence: rwebb@unm.edu

Abstract: Extensive efforts have been made to observe the accumulation and melting of seasonal
snow. However, making accurate observations of snow water equivalent (SWE) at global scales is
challenging. Active radar systems show promise, provided the dielectric properties of the snowpack
are accurately constrained. The dielectric constant (k) determines the velocity of a radar wave
through snow, which is a critical component of time-of-flight radar techniques such as ground pen-
etrating radar and interferometric synthetic aperture radar (InSAR). However, equations used to
estimate k have been validated only for specific conditions with limited in situ validation for sea-
sonal snow applications. The goal of this work was to further understand the dielectric permittivity
of seasonal snow under both dry and wet conditions. We utilized extensive direct field observations
of k, along with corresponding snow density and liquid water content (LWC) measurements. Data
were collected in the Jemez Mountains, NM; Sandia Mountains, NM; Grand Mesa, CO; and Cam-
eron Pass, CO from February 2020 to May 2021. We present empirical relationships based on 146
snow pits for dry snow conditions and 92 independent LWC observations in naturally melting
snowpacks. Regression results had r2 values of 0.57 and 0.37 for dry and wet snow conditions, re-
spectively. Our results in dry snow showed large differences between our in situ observations and
commonly applied equations. We attribute these differences to assumptions in the shape of the
snow grains that may not hold true for seasonal snow applications. Different assumptions, and thus
different equations, may be necessary for varying snowpack conditions in different climates, sug-
gesting that further testing is necessary. When considering wet snow, large differences were found
between commonly applied equations and our in situ measurements. Many previous equations as-
sume a background (dry snow) k that we found to be inaccurate, as previously stated, and is the
primary driver of resulting uncertainty. Our results suggest large errors in SWE (10-15%) or LWC
(0.05-0.07 volumetric LWC) estimates based on current equations. The work presented here could
prove useful for making accurate observations of changes in SWE using future INSAR opportunities
such as NISAR and ROSE-L.

Keywords: snow permittivity; liquid water content; radar

1. Introduction

Snowmelt is the dominant freshwater resource for over a billion people globally [1,2]
with recent studies showing its high monetary value [3]. Furthermore, seasonal snow is
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one of the fastest changing hydrologic states under current climate trends [4-6]. Due to
the importance of snow and the rate it is changing, extensive efforts are being made to
observe the accumulation and melting of seasonal snow (e.g., [7]). Snow observation
methods range from manual ground measurements to remote sensing techniques such as
light detection and ranging (LiDAR) or active radar systems that rely on understanding
the dielectric properties of the snowpack. However, making accurate observations of
snow water equivalent (SWE) at the global scale is challenging.

Recent technological advancements have allowed limited mapping of SWE from re-
mote sensing techniques. Passive microwave instruments such as the Multichannel Mi-
crowave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Ad-
vanced Microwave Scanning Radiometer-EOS instrument (AMSR-E) have been used,
though the poor spatial resolution of these datasets, sensitivity to varying snow proper-
ties, and inability to measure deep snow make these techniques less feasible for water-
shed-scale scientific applications [8-11], especially in complex mountainous terrain. One
of the most successful methods in recent years has been the use of airborne LiDAR to
obtain distributed snow depth maps and SWE estimates when density estimates are avail-
able [7,12,13]. Photogrammetry techniques using stereo satellite image pairs have also
shown promise to produce snow depth maps [13,14]. However, LiDAR and photogram-
metry techniques are generally limited to regional applications, require accurate and co-
registered snow-off products, and are not viable during days of cloud-cover. Active mi-
crowave radar can overcome these limitations and has recently been used to provide esti-
mates for changes in snow depth and SWE through differential interferometric synthetic
aperture radar (InSAR) [15-17]. Lower frequency InSAR techniques offer the potential to
make observations of changes in SWE at high resolutions and are not hindered by cloud
cover. However, InSAR techniques to observe SWE changes require a priori estimates of
the dielectric properties of a snowpack. In particular, these low frequency active radar
techniques are dependent on accurate estimates of the real part of the dielectric permittiv-
ity (&').

The &’ determines the velocity of a radar wave through snow and has been used to
investigate multiple regions of the cryosphere at spatial scales that range from the labor-
atory to multiple kilometers (e.g., [18-20]). Historically, ¢’ has been used extensively in
ground-penetrating radar (GPR) studies to estimate ice thickness [21], SWE [22], density
[23], and snow liquid water content (LWC); [24]. Values of ¢’ have primarily been vali-
dated for specific conditions such as polar firn and ice (e.g., [25]), with limited validation
in seasonal snow. Additionally, &’ for wet snow has been validated predominantly under
idealized laboratory conditions due to the difficulty of making accurate in situ measure-
ments of snow LWC. The studies that have made in situ observations of snow LWC have
been limited to low values of liquid water (generally below 0.08 by volume) and the ap-
plied methods often sample different volumes of snow than those being measured for &’
(e.g., [26-28]). Thus, there is a need for further evaluation of existing equations that quan-
tify &' for seasonal snow under both dry and wet conditions, particularly with the forth-
coming NASA-ISRO SAR Mission (NISAR) and Radar Observing System for Europe L-
Band (ROSE-L) that have the potential to make global change in SWE products to make
them feasible.

The goal of this work is to develop further understandings of the dielectric permit-
tivity of seasonal snow under dry and wet conditions. We utilize extensive in situ obser-
vations of dielectric permittivity coincident with independent snow density (ps) and LWC
observations to complete the following objectives: (1) compare current permittivity equa-
tions for dry snow conditions against in situ observations, (2) compare current permittiv-
ity equations for wet snow conditions against in situ observations, and (3) determine if
any improvements to current permittivity equations are necessary, and if so, recommend
these improvements.
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Theoretical Background

Many ¢’ equations applied to snow are derived from the Polder and van Santeen
[29] equation that assumes particles in mixed media are in the form of ellipsoids. The
shape of these ellipsoids may be described by the summation of their semi-axial ratios of
the depolarization factors (N:):

Ny + N, + N; =1, 1)

where the subscripts signify the Ni value for each respective semi-axis of the ellipsoid in
three-dimensional space. When all Ni values are equal (i.e., N1 = N2 = N3 = 0.33), the parti-
cles are spherical (Figure 1a). Other Ni value extremes describe discs (i.e., Ni values of 0,
0.5, 0.5) and needles (i.e., Ni values of 1, 0, 0; Figure 1a). When these ellipsoids have a
known permittivity (e;) and are randomly oriented and distributed with a volumetric
fraction (8) within a background material of a different permittivity (&,), the Polder and
van Santeen [29] mixing formula for &’ may be written as:

&' = &+ 3 (e — 80) X iy @

3 e'+Ni(ex—¢€")

In general, for dry snow, the shape of the snow crystals has a minimal impact on Equation
(2) due to the relative similarities in permittivity between air and ice, with ice having a
permittivity ~3 times that of air (Figure 1b). However, liquid water has a permittivity ~29
times that of ice resulting in a significant change in ¢’ in the presence of even minimal
amounts of liquid water (Figure 1c). The Polder and van Santeen [29] formula (Equation
(2)) describes the theoretical basis for multiple equations predicting the dielectric behavior
of snow and soil [30-32] that are regularly applied to seasonal snowpacks [13,33-35].
These equations are derived by assuming the shape of snow crystals for dry snow and
liquid water inclusions for wet snow. Other equations used for commercially available
sensors have also been developed empirically using laboratory techniques and a regres-
sion analysis (e.g., [36,37]). However, as previously mentioned, there has been limited
testing of these equations for in situ snow samples, particularly for wet snow conditions.
Because of this, estimates of LWC for wet snow conditions are often more sensitive to the
equation chosen rather than intrinsic snowpack properties (Figure 1d). For further details
on the permittivity models for mixed materials, Sihvola and Kong [38] and Di Paolo et al.
[39] provide thorough reviews for dry snow conditions. For wet snow conditions, we pro-
vide a summary in terms of relative permittivity (k) as a function of snow density (ps) and
snow volumetric LWC (Ov) in Table 1. It is important to note that the equations shown in
Table 1 are applicable at frequencies between 0.01 and 1.5 GHz where ¢’ will not change
significantly with frequency [18]. Equations used by instruments that are often utilized in
the field are also included in Table 1. These instruments include the Snow Fork that uses
Sihvola and Tiuri [31], a Denoth meter [30], an A2 Photonics WISe sensor [36], and the
FPGA Company SLF Sensor [37]. Instruments often quantify ¢’ of the observed media as
k, defined as the ratio of ¢’ for the observed media to the &’ of a vacuum. Thus, we utilize
k for the purpose of consistency with our observations (described later in the Methods
section).
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Figure 1. Examples of the Polder and van Santeen [29] formula for various shaped materials. (a) Diagrams of the three-
dimensional ellipsoids defined by the depolarization factors (Ni). For the example plots, N1 is noted in the legend and N:
= Ns. (b) The Polder and van Santeen [29] model for the relative permittivity as a function of dry snow based on different
Ni assumptions and the Sihvola and Tiuri [31] equation (S and T) shown for comparison. (c) The Polder and van Santeen
[29] model for relative permittivity as a function of volumetric liquid water content for snow with a density of 300 kg m™
based on different Ni assumptions and the Sihvola and Tiuri [31] equation shown for comparison. (d) Comparison of
Sihvola and Tiuri [31], Denoth et al. [26], and Roth et al. [32] equations for volumetric liquid water content of snow with a
density of 300 kg m™3.

Table 1. Common equations that relate snow density (ps, kg m=) and volumetric liquid water content (6,,, cm cm™) to the
relative permittivity (k) at low frequencies (0.01-1.5 GHz).

Reference 0w Range (cm cm™) Equation for Relative Permittivity, k (Unless Otherwise Specified)
Sihvola and Tiuri Ds Ds 2
0.005-0.10 - - -6,,)?
(31] 1+17 (1000 ew) +0.7 (1000 ew) +8.76,, + 0.007(100 - 6,,)
Denoth [30] 0.0-0.09 1+1.92(-220) + 0.44 (22 )2 +18.76,, + 45 - 62
1000 1000 v v R
Ps__ ) (L — )
2} 2}
Roth [32 : sp o1y 000~ %) [ (oo =O) .
oth [32] 9386, +1.78 ~0 0 1 % 100 - 6,

14 1.7(ps — 6,,) + 0.7(ps — 6,)% + A

Kendra et al. [40 0.0-0.1 0.073(100 - 8,,)*31
[40] A =0.02(100 - 6,,)1015 + (1 0122“”)

Lundberg and 2
Thaneten 411 ; (1 + 0.851p, +7.093 - 6,)
A2 Photonics [36] 0.0-0.2 1+1202 (2=~ ,) +0983 (22 - ew)z +213-6,
1000 1000
0.271(k — kgry)” — 2.688(k — kapy)” + 10.337(k — kgy )
FPGA [37] 0.0-0.2 w = 100

K4y = —0.0083(3.44 x 10° — 239.8(p, — 100 - ew))"'5 + 4.893

2. Materials and Methods

During the winter of 2020 and the springs of 2020 and 2021, robust data collection
efforts were conducted as part of NASA SnowEx campaigns, designed to address the pri-
mary gaps in snow remote sensing, which included testing various radar remote sensing
strategies. As part of these efforts, multiple snow pit observations included profiles of p;,
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k, and Bw. The presented analyses are based on data from four sites (Figure 2). One site is
Grand Mesa, CO where data from 146 snow pits that include ps and k profiles collected
during a two-week observation period from 28 January 2020 to 12 February 2020 [42].
Further observations of p; and k profiles were collected weekly in the Jemez Mountains,
NM from 22 January 2020 to 4 March 2020 [43]. A third and fourth site for observations
added measurements with a melt calorimeter for 6. estimates in the Sandia Mountains,
NM on a weekly basis from 25 February 2020 to 28 April 2020 [44] and Cameron Pass, CO
from 9 March 2021 to 20 May 2021 [43]. For this study, Grand Mesa, CO and Jemez Moun-
tains, NM data were used for dry snow conditions and the other two sites focused on data
collection during wet snow conditions.

Snow pit observations for all sites measured p;, k, and snow temperature in 10 cm
increments for the entire snowpack profile. Additionally, grain size, grain type, and man-
ual hand wetness estimates were collected for each identified layer in the snowpack. Two
profiles of ps were collected using a 1000 cm? wedge cutter and an electronic scale with 1
g precision to obtain observations in kg m-3. Observations of k were made using an A2Pho-
tonics WISe sensor that has a well-constrained measurement volume of 325 cm?® (Figure
3a) and observations output as k with precision to three decimal places. These k values
were independently verified using ground-penetrating radar estimates of k, using a com-
bination of radar travel-time and manual depth measurements, for coincident snow pits
(Appendix A). This independent verification resulted in mean absolute error (MAE) val-
ues of 0.106 in k. The error was found to be higher for wet snow conditions relative to dry
snow with MAEs of 0.217 and 0.034, respectively (Figure A1). When melt calorimeter ob-
servations were made (described in further detail below), a ~25 g snow sample was taken
directly from the WISe sensor. Snow temperature profiles were made using a dial stem
thermometer with an accuracy of 1 °C. Grain size and type were made with a crystal card
and hand lens. Hand wetness observations were made in accordance with the Interna-
tional Classification of Seasonal Snow on the Ground [45] that is commonly applied (e.g.,
[46]).

1 20"([)'0“W 1" 0°(|J'0"W 100“?‘0“W
Al R GREAT
ke c
PLAINS
45°0'0"N— Zz
-
/
40°0'0"N= -5 t a e s
=
w
35°0'0" W=
30°0'0"N= Sm
N USGS, NOAA,
Sources: Esri, =
A 1 1 I I L]
500 km

Figure 2. Site locations for Cameron Pass, CO (CP); Grand Mesa, CO (GM); Jemez Mountains, NM
(JM); and Sandia Mountains, NM (SM) displaying (a) the relative location in the western U.S. and
(b) a hillshade terrain map of Colorado and New Mexico.
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Figure 3. Image of (a) the A2 Photonics WISe Sensor and (b) the field calorimeter and thermometer
used for this study.

For the analyses in this study, we considered the snowpack to be dry when temper-
atures were below 0 °C and the hand wetness observations confirmed a “dry” estimate
throughout the profile. When comparing dry p; to k, we used the mean p; and mean k
for each snow pit to account for random errors that may have occurred from the natural
variability of ps; and the differences in measurement volumes for each method described
above; therefore, these estimates represent averages of more than 10 independent obser-
vations of dry p; and k. To compare the k of wet snow to melt calorimeter estimates, we
made direct comparisons since the calorimeter samples were taken directly from the
measurement volume of the WISe sensor.

The melt calorimeter is a double-walled insulated container with a 250 mL capacity
(Figure 3b). Calorimeter measurements were made using a digital scale with 1 g precision
and a thermometer with 0.01 ° precision and factory calibrated accuracy of 0.1 °C. Ap-
proximately 60-80 g of water with a temperature of 30-40 °C was added to the calorimeter
and shaken to mix. The mass and temperature of the water in the calorimeter were then
recorded. A snow sample (targeting 20-30 g) was quickly taken from the WISe sensor
immediately after the k measurement and placed in the calorimeter as quickly as possible.
The calorimeter was then shaken to mix the water and sample for one minute to com-
pletely melt the snow sample. After mixing, the total mass of the water and melted snow
sample was recorded along with the final temperature. The gravimetric LWC (W) was
then calculated in a similar fashion to Kawashima et al. [27]:

w=1- [l _p] 3)

S

where C is the specific heat of water (4.2 x 10° ] kg'K), L is the latent heat of fusion for
ice (3.34 x 105 ] kg'), Mw is the mass of the warm water prior to the snow sample being
added, Ms is the mass of the snow sample, Tw is the starting temperature of the warm
water, and Tr is the final temperature of the mixture. The W values were then converted
to 6,, by multiplying W by the associated p;/1000. Melt calorimeter observations were
collected in the Sandia Mountains and Cameron Pass sites, including snow pits in open
and forested conditions, after the snowpack became isothermal for a total of 92 independ-
ent wet snow observations.

3. Results
3.1. Dry Snow Observations

Snow pit observations [42,43] during the 2020 data collection resulted in a total of 149
snow pits for measurements of dry pg and associated k. These snow pits were from the
Grand Mesa and Jemez sites. Snow pit depths ranged from 0.5 to 1.5 m. Mean dry p;
ranged from 210 to 360 kg m= and mean k measurements ranged from 1.25 to 1.55 (Fig-
ure 4a). A regression analysis of k as a function of dry p; resulted in an r2 value of 0.57
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and a root mean squared error (RMSE) of 0.03 with a standard deviation of 0.039 (Figure
4a). The equation for this regression of k as a function of dry py is:

k = 1.0 +0.0014p; +2 x 1077 p2, (4)

when compared with other equations such as the commonly used Sihvola and Tiuri [31],
our in situ observations resulted in lower k values and more similar to a less commonly
applied Stein et al. [47] (Figure 4a).
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Figure 4. Results of in situ data comparisons for (a) dry snow with Sihvola and Tiuri [31] (S and T)
and Stein et al. [47] shown for comparison to our regression line; and (b) for calorimeter-based liquid
water content observations.

3.2. Wet Snow Observations

Snow pit observations at the Sandia Mountains and Cameron Pass sites resulted in
92 observations with LWC present and isothermal conditions (necessary for appropriate
application of Equation (3)). Values of ps ranged from 147 to 498 kg m-3, observations of
6,, ranged from approximately 0.01 to 0.16, and k measurements from 1.15 to 2.83. A re-
gression analysis of k as a function of p; and 6,, resulted in a r? value of 0.37 with a
RMSE of 0.22 and a standard deviation of 0.21. In terms of deviations from 8,,, this re-
gression resulted in an RMSE of 0.030 and a standard deviation of 0.032 (Figure 4b). This
regression equation for k as a function of p; and 6, is

k = [1.0 + 0.0014(ps — 6,,) + 2 X 1077 (ps — 6,,)2] + (0.016,, + 0.462)k,, G)

where k,, is the relative permittivity of liquid water at 0 °C (~87.9) and the bracketed
portion of the equation is the background effect of dry snow permittivity described using
Equation (4).

When compared to existing equations, Equation (5) aligns most closely with the SLF
sensor equation for observations of 6,, greater than ~0.07 (Figure 5). However, for lower
0,, values Equation (5) aligns well with Sihvola and Tiuri [31]. For the snowpack condi-
tions present at our sites, many of the equations, including four data points when our
presented regression is used, resulted in a negative calculated 8,, that is physically unre-
alistic (Figure 5). These negative values were due to the actual background k being lower
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than the assumed value in the 6,, equation (bracketed part of Equation (5)) and the effect
of liquid water not being large enough to overcome this.
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Figure 5. Comparisons of the calorimeter observed liquid water content and the calculated liquid
water content based on the observed relative permittivity and density observations for common
equations and the regression presented in this study.

4. Discussion

To our knowledge, this is the most robust in situ testing of permittivity equations for
snow that has collected more datapoints than previous validation studies, particularly
those investigating wet snow conditions. While sensors and equations have been com-
pared in the past for in situ snow sampling, errors occurred as a result of differing sample
volumes (e.g., [26,46]). In fact, Denoth et al. [26] mention that data were discarded due to
the high variability during the comparison attempts. Furthermore, it is important to note
that equations may result in different estimates of p; and 6,, for the same snowpack con-
ditions as we have shown (Figures 4 and 5). This is likely a result of differing assumptions
for Niin Equation (2) to theoretically derive some of the equations and/or variable condi-
tions for laboratory tests used to empirically derive other equations.

For our dry snow tests, we showed reasonable agreement in the shape of the permit-
tivity curve as a function of p;. However, differences occurred between our in situ obser-
vations and previous equations (Figure 4a), particularly with one of the more commonly
applied equations [31]. The revised equation presented here is most similar to Stein et al.
[47], that takes a simple linear form. We explored a similar linear fit, but Equation (4)
resulted in a slightly higher r2 value (0.57 for Equation (4) and 0.55 for a linear fit). Addi-
tionally, it is important to note that our regression and data points were outside of the
uncertainty bounds recently suggested by Di Paolo et al. [39]. Our analysis shows that
different assumptions may hold more/less valid for varying snowpack conditions in dif-
ferent climates, though further testing is necessary. However, the relative similarities in
&' between air and ice resulted in small differences between equations for dry snow con-
ditions, particularly when compared to differences between equations in wet snow con-
ditions (Figure 5). Our analysis highlights that care should be taken when applying an
equation developed under conditions that differ from conditions for a site of interest. For
example, for dry snow conditions common equations could underestimate snow density
by ~50 kg m= and the resulting SWE by 10-15% (Figure 4a) and estimates of 6,, could be
underestimated by 0.05-0.07 (Figure 5). Common assumptions to consider when transfer-
ring equations from one condition to another may include factors such as snow climate
that results in differing snow crystal size, form, and/or orientation, which influence the
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dielectric properties (Figure 1). It is important to note that the random orientation assump-
tion in Equation (2) may not hold true in many continental snowpack conditions where
metamorphism, and the resulting orientation, will predominantly occur in the direction
of the temperature gradient (i.e., vertically) resulting in a more organized crystal orienta-
tion [48], though further testing is necessary. These factors will also change the water re-
tention properties of the snowpack and the resulting shape of water inclusions.

The shape of snow crystals and water inclusions is a likely reason for the differences
in 8, estimates between our in situ observations and previous equations. Previous equa-
tions and assumptions have shown to hold relatively true for lower values of 8,, within
the pendular regime (i.e., liquid water is held in disconnected inclusions). However, as
0,, increases towards and into the funicular regime (i.e., liquid water is held within con-
nected pathways) these shape assumptions break down. This is likely the result of prefer-
ential flowpaths that water follows in multiple directions as it percolates through the
snowpack [49,50]. This is supported by our regression for wet snow conditions crossing
over multiple Ni shape curves using the Polder and Van Santeen [29] theoretical model
(Figure 6). While it may be possible to solve for Ni values that match Equation (5), it is
unclear how physically representative of crystal shape and water inclusion this would be
since snow metamorphism occurs quickly in the presence of liquid water and the shape
of the water inclusion may change drastically from the pendular to funicular regimes.
Furthermore, laboratory testing often involves sieving snow crystals to create ideal uni-
form conditions that do not occur in situ. However, these laboratory tests appear to com-
pare reasonably well in the pendular regime with low liquid water contents (Figure 6a).
With this comparison we can see that our in situ based regression followed a similar curve
shape as previous equations, but with a shallower slope of the curve at low values of LWC.
Analysis of the relative change in k as a function of 6,, further supports our interpretation
that the water inclusions change shape as they become more connected throughout the
snowpack with increasing 6,,. As 6,, increases towards 0.3 and above Equation (5), it ap-
proaches the curve of a sphere for Equation (2), though further testing is necessary for
values of 6,, above 0.2.
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Figure 6. Comparison of relative permittivity equations based on the volumetric liquid water content of snow with a dry
density of 300 kg m=. Equations shown are the Polder and van Santeen [29] formula for various shaped materials, Sihvola
and Tiuri [31] (S and T), and the current study (This Study). Panel (a) shows the direct comparison of equations whereas
panel (b) displays the relative change in permittivity for each equation as a function of the volumetricliquid water content.
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Uncertainty and Future Work

When analyzing these 6,, data, itis also important to consider the uncertainty in our
melt calorimeter observations. When using Equation (3), the precision and accuracy of our
instrumentation resulted in a 6,, uncertainty estimate of approximately 0.017 [27]. How-
ever, due to the added potential error from transferring the snow sample from the WISe
sensor to the calorimeter, we estimated an uncertainty of 0.02 6,,. We additionally con-
ducted multiple tests to determine energy losses by the calorimeter itself and found an
average temperature change of ~0.2 °C per minute when a temperature gradient of ~15 °C
was present between the warm water inside the calorimeter and the outside air tempera-
ture. This energy loss is easily accounted for and had minimal impacts on calculations
using Equation (3). This total uncertainty is similar to other calorimeter studies (e.g., [27])
and may be reduced in the future by using a higher precision scale and improved insula-
tion of the calorimeters. For the purposes of the present study, we consider this uncer-
tainty reasonable due to the similarity with other studies and the regression RMSE of
Equation (5) being of similar magnitude [18,24,30,31,37].

Though the 12 value for our wet snow equation (Equation (5)) was relatively low at
0.37, it is worth noting that the uncertainty in the background k from the dry snow equa-
tion, which has an 12 of 0.57, factors into the spread. Thus, the change in permittivity as a
result of liquid water increased the uncertainty by ~20%, whereas the dry snow portion of
the equation (bracketed term of Equation (5)) had ~45% uncertainty. A more accurate un-
derstanding of the background permittivity could replace the bracketed term of Equation
(5) to improve applications of this equation, though this may be difficult to acquire in the
field as seasonal snowpacks often retain liquid water overnight once melt has begun
[51,52]. Further investigations are necessary to reduce this uncertainty.

Future investigations may also consider expanding the range of p; and 6, values
for analysis. In this study, over 80% of samples of dry snow p; were between 240 and 300
kg m= and, similarly, over 80% of samples for 6,, calculations were between 0.05 and 0.15
with p; over 300 kg m=. Future data collection efforts could target ps and 6, values that
were outside the sampling range of the current study. Additionally, these data were col-
lected in continental snowpacks with snow depths less than 2.0 m and future data collec-
tion could further our understanding of the influence from varying snow climates and
conditions to determine if different equations are necessary for differing snowpack re-
gimes. Additionally, we recommend that future studies include additional parameters
such as crystal structure and/or specific surface area in an attempt to reduce the uncer-
tainty in empirical analyses.

However, our current results show that previous equations do not account for the
changes in shape in relation to water held in snow pore spaces as increases in 6,, occur.
This suggests that previous studies investigating the LWC of snow may have had errors
in estimates as high as 0.1 6,, depending on the choice of equation and the conditions
present for the study (Figure 5). For conditions in the pendular regime, this error is the
lowest whereas the funicular regime introduces the largest amount of error (Figures 5 and
6). For both dry and wet snow conditions, care should be taken when applying equations
developed under different conditions. Future work that investigates the influence of var-
ying snowpack conditions on the dielectric properties will assist in developing methods
to utilize the forthcoming NISAR and ROSE-L satellite missions in producing accurate
global changes in SWE products using low frequency microwave InSAR.

5. Conclusions

Our robust data collection effort and analysis showed that large differences exist be-
tween common equations and our field observations. These differences were found for
both dry and wet snow conditions, illustrating that site-specific conditions strongly influ-
ence the corresponding empirical relations. For the snow conditions observed in this
study, continental snowpacks with depths less than 2 m and densities less than 500 kg m-3,
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we recommend Equations (4) and (5). Future work that utilizes the dielectric properties of
snow should consider the snow climate when choosing an equation to apply.
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Appendix A. Validation of the A2 Photonics WISe Sensor

In order to independently validate the permittivity values observed using the A2
Photonics WISe sensor, we utilized permittivity estimates from coincident ground pene-
trating radar (GPR) surveys. A GPR pulse is an electromagnetic wave that travels through
the snowpack and is reflected off changes in material properties such as density, with the
strongest reflection often from the snow—soil interface. The GPR data were processed to
estimate the two-way traveltime (TWT) of the radar wave through the snowpack. The ve-
locity of the radar wave (v) was then calculated as:

ds

YTy A

where d;s is the depth of snow. The relative permittivity (k) of snow can then be calculated
from:

k = (5)2, (A2)

v

where c is the speed of light in a vacuum (~0.3 m/ns).

We estimated the bulk k value for snow pits using GPR TWT and observed ds that
were compared to the mean snow pit k values recorded using the A2 Photonics WISe sen-
sor. In total, we had coincident observations for 28 snow pits, 17 in dry snow conditions
and 11 in wet snow conditions. For all data points, a mean absolute error (MAE) in k values
of 0.106 was found (0.034 for dry snow and 0.217 for wet snow; Figure Al). We attribute
the higher deviation under wet snow conditions to the high spatial variability of liquid
water in snow that is known to occur and the difference in volumes of influence between
the GPR and WISe sensor profiles.
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