EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

Benchmarking NetBASILISK: a Network Security Project
for Science

Jem Guhit', Edward Colone?, Shawn McKee!, Kris Steinhoff2?, Katarina Thomas?

"Physics Department, University of Michigan, Ann Arbor, MI, USA
2Information and Technology Services, University of Michigan, Ann Arbor, MI, USA
3School of Information, University of Michigan, Ann Arbor, MI, USA

Abstract. Infrastructures supporting distributed scientific collaborations must
address competing goals in both providing high performance access to resources
while simultaneously securing the infrastructure against security threats. The
NetBASILISK project is attempting to improve the security of such infrastruc-
tures while not adversely impacting their performance. This paper will present
our work to create a benchmark and monitoring infrastructure that allows us to
test for any degradation in transferring data into a NetBASILISK protected site.

1 Introduction

Distributed computing infrastructures face significant challenges in effectively supporting
scientists in moving, accessing, analyzing and transforming data to produce new scientific
insights. This is complicated by continuous attacks that all systems connected to the Internet
experience[1][2]. The challenge is to secure the infrastructure without compromising the
performance and usability of the infrastructure.

The Energy Sciences network (ESnet)[3] created a new paradigm in 2010 to help address
this situation: the Science DMZ [4]. A network DMZ, or demilitarized zone, is a physical or
logical sub-network that contains and exposes an organization’s external-facing services to
an un-trusted network such as the Internet. The DMZ functions as a small, isolated network
positioned between the Internet and the private network [S]. This paradigm allowed data
transfer nodes to bypass firewalls and security devices which would otherwise interfere with
science data-flows, adversely impacting scientists in their work. The intent is to minimize the
number of devices attached to the Science DMZ and carefully monitor and configure them to
provide both performance and security.

The NetBASILISK [6] (NETwork Border At Scale Integrating and Leveraging Individual
Security Components) project, led by researchers and network engineers at the University
of Michigan, seeks to augment and expand the Science DMZ concept. The goal is to allow
institutions to maintain both security and capability for all their users by prototyping and
deploying a network border security solution capable of supporting unfettered network traffic
at 4x100 Gbps using a mix of commercial offerings and locally-developed middleware.

In this paper we will describe the work we have done to evaluate the effectiveness of the
NetBASILISK infrastructure and verify that it does not adversely impact the ability of the
ATLAS scientists at the University of Michigan to move data from outside our institution.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

2 Rationale and Project Components

A network security infrastructure has the potential to impact data entering or leaving
an institution. The focus of the work described in this paper is evaluating the impact of
NetBASILISK on data coming into the University of Michigan.

To understand if NetBASILISK impacts the transfer of external data to the university, we
need to:

e Determine normal transfer behavior in the absence of NetBASILISK (get a baseline).
e Monitor relevant factors other than NetBASILISK that might impact transfers.
e Create a benchmark test which can be run on-demand to determine transfer rates.

Using this set of information and tools, we can evaluate if NetBASILISK (or changes
in NetBASILISK) are adversely impacting our ability to transfer data to the University of
Michigan. The two capabilities we need to evaluate NetBASILISK’s potential impact are a
benchmark application, which can be used both to derive a baseline and make on-demand
evaluation of the current transfer performance, and an environmental monitoring applica-
tion which can gather and track relevant metrics that might be related to the observed transfer
performance. In the following section we will describe the development of the benchmark
and, later, the environmental monitoring application development.

3 Development of the Benchmark

The NetBASILISK benchmark application aims to build a stable transfer file system
that would derive a baseline for normal transfer behavior and evaluate transfer performance.
There are two main components to the benchmark application: data and file transfer tool.

3.1 Data

Since the University of Michigan Physics department is a collaborator of the ATLAS
Experiment [7], the data would be coming from a repository containing samples of ATLAS
datasets located at Brookhaven National Laboratory (BNL). BNL is an ideal choice for an
external data source because it is one of the primary collaborators for data operations, it
has a well-defined network for data transfers coming into the University of Michigan, and it
already has a data repository intended to be accessible for long-term that could be used for
the benchmark test.

3.2 Transfer Tool

After securing an external data source, a software framework tool for grid computing
is used to access the ATLAS data repository and transfer files from BNL to the University
of Michigan. Various software tools exist to handle file transfers. We decided to choose
from the five common transfer tools used in the High Energy Physics Computing toolkit:
File Transfer Service (FTS) [8], Storage Resource Management (SRM) [9], Grid File Access
Library (GFAL) [10], Globus GridFTP [11], and XRootD [12].

To ensure that the benchmark test is reliable and consistent after successive test runs, we
imposed a criteria that the transfer tool has to satisfy, such as:

(a) Stable Transfer Speed

(b) Consistency

(c¢) Checksum Verification

(d) Information about the destination storage nodes

2

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

3.2.1 Transfer Tool Evaluation

The transfer tool’s capabilities are tested by running multiple data transfers using a subset
from the ATLAS data repository, specifically transferring the same ten datasets ten times.
Originally we planned to run the test only once, however, two transfer tools satisfied the
criteria shown in Table 1, thus another round of the test had to be done. At the end, Transfer
Tool Evaluation evolved to encompass two test rounds: the first focused on whether the
storage clients satisfy the criteria, second tested the variability and consistency of the storage
clients that passed the initial criteria.

| Storage Client | Criteria |
a. Transfer b. Consistency c. Checksum | d. Storage
Speed ' Verification Node
FTS X X v X
SRM X 4 v X
GFAL v v v X
Globus v v v v
XRootD v v 4 v

Table 1: Results of the first round of the storage client test. The table shows the requirements
satisfied by each storage client.

Table 1 summarizes the first test round: it shows how different transfer tools satisfy the
established criteria . From the first round, three storage clients were ruled out: FTS, SRM,
and GFAL. FTS did not satisfy criteria (a), (b), and (d): its non-trivial way to extract the
transfer rate and destination storage node information from the log file failed criteria (a) and
(d), FTS’ own system for scheduling data transfers would limit our flexibility to control data
transfers thus it failed criterion (b). SRM did not satisfy criteria (a) and (d): for (a), the
protocol revealed a huge variability in transfer rates, while for criterion (d) it had difficulties
in extracting the destination storage node information from the log files. GFAL did not sat-
isfy criterion (d), because it did not provide information about the destination storage node.
Globus and XRootD both satisfied all the criteria and went to the next round of testing.

The second test iteration, although virtually same as the round one, focused on finding
out which storage client could provide the most stable file transfer performance over a period
of time. In addition, information such as the average and standard deviation for the transfer
rates was gathered for comparison. Figure 1 shows that after the second round of test between
Globus and XRootD, the average and standard deviation of the former had shown higher
transfer rate variability. This determined that XRootD protocol is better suited to use as the
official transfer tool for the benchmark application.

4 Environmental Monitoring Application

Having a benchmark to evaluate transfer performance is critical for our task but it is
equally important to understand the environment in which the benchmark is run. A poor
transfer result could be because NetBASILISK has adversely impacted the transfer OR it
may be due to a number of other possibilities:

e The network between the benchmark source data and destination may be congested at the
source or destination local area network, or in the wide area network.

e The source data servers might be overloaded or have other resource issues.

e The destination data servers might be overloaded or have other resource issues.

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

Comparison of Globus and xROOTD Transfers

1600
1400

1200

[y
[=}
[=}
o

800

600

Seconds(s)

400

200

Transferred File

—Average_xrootd ---STDEV_xrootd —Average_Globus ---STDEV_Globus

Figure 1: The tests transferred the same ten files ten times for each tool. The STDEV and
Average for the xXROOTD case are almost overlapping. The figure shows that Globus has
more fluctuation and instability compared to xROOTD. The total time for 10 tests for Globus
is 11.5 hours while total time for 10 tests in XROOTD is 3.79 hours.

To determine the cause of a poor benchmark result we have to gather sufficient informa-
tion about the environmental conditions under which the benchmark was executed. Thus we
need information on the end systems and the network in between, including the Brookhaven
National Laboratory (BNL) storage systems (source of the benchmark data); the network path
between BNL and the ATLAS Great Lakes Tier-2 [13] cluster at the University of Michigan;
and the storage nodes at AGLT?2 (destination for the benchmark data).

4.1 Network Monitoring

To monitor the network status, we needed to identify the existing network monitoring
mechanisms along our network path. For the environment monitoring script, the path seg-
ments were defined as the source network at BNL, the WAN between our sites and the des-
tination network at AGLT2. Although we considered measuring the round-trip time (RTT),
we found that it was not as relevant for our use-case.

Network at Source: While network monitoring internal to BNL exists, we didn’t have
easy access to those systems. The internal networking at BNL is well provisioned and we are
assuming that the BNL network will not limit our benchmark transfers. As we continue to
evolve the environment monitoring, we intend to include explicit BNL network monitoring.

Wide-area Network: The wide area network path between BNL and AGLT2 has two
distinct components: 1) a path from BNL to Chicago on ESnet, and 2) a path from ESnet’s
location in Chicago to AGLT2. We will discuss each components below. For the 1) BNL
to Chicago component we encountered some challenges in monitoring the network path.
ESnet, which handles the part of the path, provides publicly accessible monitoring informa-
tion[14]. Figure 2 shows the ESnet traffic monitoring, including the possible paths between
BNL to Chicago (CHIC) from the my.es.net website. Unfortunately, because ESnet uses
MPLS[15] to control traffic between their ingress and egress points, we don’t have a way
to identify which interfaces and paths our benchmark traffic traversed. In our current envi-
ronment monitoring, we assume the ESnet portion of the path will not be congested and not

4

EPJ Web of Conferences 251, 02068 (2021)
CHEP 2021

https://doi.org/10.1051/epjcont/202125102068

NNNNNNNN

LGo }? =0

NeTL-ALS @

o=@

SACR

AMES
S

0@

DSNLL

Z

LsWN
oL@

\%

NersC @

DENV

N

A ®
wen

Figure 2: The ESnet network monitored on their portal.

KANS

_)NNSS /\ a < == s
/ AN @ Wiensc
sinc®
caxsy

N

P/\NTEX

KONSC as)

\/

m«/’%&

erTel

cr
N /_’—//:ERN 513
NeTLpoH @

NeTL-moN €

aosr

Pssc
AMST

D/

mw)
b

AOFA ®cern

J WasH

A8

Y12 SRS ORAU

Shown are multiple paths from

BNL to CHIC (Chicago), emphasized in red circles, where our benchmark traffic would exit
ESnet to connect to AGLT2. ESnet uses internal traffic engineering which precludes us from
knowing which of the many possible physical paths between BNL and CHIC are followed

for a given transfer.

contribute to a poor benchmark result due to their traffic engineering. We have been in con-
tact with the ESnet developers and will try to include explicit monitoring in a future update.

ae0

et-1/3/0 [/

\\ et3/1/0
|

et-0/1/0 () et-0/1/0

600 West

710N

R-Bin-SEB

et-8/2/0 et-8/0/0

T
|
|
|

e P>

I
I
11

Shinano

VIAN3207 VIAN2316

/’,’ et-0/3/0

Figure 3: Network Topology between Shinano
(AGLT?2) and ESnet (CHIC) showing the in-
ternal and external routers, ports, port-chanels,

and VLAN line for each server.

The second part of the WAN path,
Chicago to AGLT2, has more useful mon-
itoring available. We monitor and verify
that all the interface along our path are
not congested. In Figure 3 we can show
the routers and interfaces involved, start-
ing from the ESnet presence in Chicago
(at the top of the figure) and connect-
ing all the way to the AGLT2 border
router (named "Shinano") at the bottom.
The environment metrics of the Shinano
Router (and AGLT2 LAN) are available
from the CheckMK interface [16] and
is discussed in more detail in Section
4.2. R-Bin-SEB is an internal router
for the University of Michigan and mon-
itored by the CA Performance Center.
We gather the following metrics using a
python script developed to access the Ap-
plication Programming Interface (API) of
the CA Performance Center [17]:

e Bits In/Out: converted to GBs In/Out
e Bits/s In/Out: converted to GB/s In/Out

e Utilization In/Out: % of capacity

e Error In/Out: number of packets that
caused an error (e.g failed checksum)

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

Buffer Overflow Discards, where packets are dropped when the buffer on either the incom-
ing or outgoing port is full, is another metric being considered for R-Bin-SEB and will be
included if accessible. The routers in Chicago (710 N / 600 West) have metrics stored in
Grafana [18]. We gather the following metrics from a python script developed to interact
with Grafana [19]:

¢ Input: measured in GBps
e Output: measured in GBps

4.2 End-system Monitoring

In addition to the network we need to understand the operating conditions of the end-
systems at the source and destination sites.

BNL End-System: As mentioned in Section 4.1, even though a monitoring interface
exists to capture metrics from BNL, accessing the system is currently non-trivial. In the
future update, we plan to include the environment metrics for BNL and the script to access
the API interface.

AGLT2 End-System: As mentioned in Section 4.1, the IT Infrastructure monitoring
software for the AGLT2 Cluster System is Check MK [16]. All transferred files sent to the
AGLT?2 Cluster are randomly stored in one of the dCache [20] servers. Check MK contains a
variety of network metadata of each dCache server and the metrics of interest for the bench-
mark script would be the the following:

e CPU Load: number of active processes in the system.

e CPU Utilization: estimates system performance in percentage.

e Memory: variables of interest are MemFree and MemAuvailable measured in GB.

¢ Disk Input Output (I0): contains the read and write operations of the physical disk and is
usually measured in GBps. The variable of interest for us is the Disk Utilization measured
in percentages.

A python script was developed to gather these metrics from the Application Programming
Interface (API) of the CheckMK Interface[21].

The environment metrics described in this section are important components that would
allow us to monitor the network status along the transfer path. The following section will de-
scribe how the benchmark application and environment monitoring application come together
as a whole framework.

5 Framework Implementation

The benchmark application discussed in Section 3 and the environment monitoring appli-
cation in Section 4 together are the backbone of the framework composed of shell and python
scripts shown in Figure 4. It shows the first version of the framework script where it runs the
benchmark application followed by the environment monitoring application.

The main. sh script holds the framework together and runs the scripts in background
to ensure running processes do not get aborted automatically when the SSH connection
is lost. It contains a sub-module run_control.sh, which runs four sub-modules. The
atlas_setup.sh sets up the XRootD software package. The benchmark.sh script is the
beginning of the benchmark application component and handles the file transfers between
BNL and AGLT?2. This script also records the Start and End times of each benchmark test
to be used for the environment. sh module. Each benchmark test produces a log file which
contains important information about the transfer, more on Section 5.1 which are extracted
in parse.sh and organizes the output metadata into json files. This finishes the benchmark
application portion and we move on to the environment monitoring application component.

6

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

As mentioned earlier, the Start and End times recorded from benchmark. sh are used
as input variables for the three sub-modules of the environment.sh. We initially imple-
mented that the environment monitoring application captures the network metrics in the same
time-range the benchmark test was ran. The environment monitoring component has three
independent scripts for the AGLT2 End-System (AGLT2.py) and Wide Area Network path
for Chicago to AGLT2 (CHI-AGLT2.py, RBIN.py). These scripts have a similar structure
of capturing network metrics but had to be scripted independently because of different API
syntax of the network interfaces.

Framework Master Script

main.sh: Runs run_control.sh in background

run_control.sh: Runs N times to understand and get statistics of benchmark.sh behavior.
—> atlas_setup.sh atlas_setup.sh: Environment setup, access to rucio, and voms proxy
> | benchmark.sh benchmark.sh: Transfers a specific set of files and timing how long it takes.

parse.sh: Reads the output log files from XrootD and extract interesting metadata

| environment.sh environment.sh: Extracts the metadata from the monitoring tools.

CHI-AGLTz,py CHI-AGLT2.py : Accesses the Grafana Interface and extracts network environment metrics

RBIN.py RBIN.py : Accesses the CA Performance Center and extracts network environment metrics
AGLT2.py AGLT2.py: Accesses Check_MK interface at AGLT2 and extracts network environment metrics

Figure 4: First version of the framework master script where it runs the benchmark application
followed by the environment monitoring application.

The first version included the environment monitoring application in the framework
script. However, we wanted to track the variability of the environment monitoring appli-
cation in the long-term and not only when the benchmark application was ran. Therefore, we
decided to detach the environment monitoring script from the benchmark application script
and make it its own continuous operating service.

7
=]
g :
=

5.1 Benchmark Application Metrics
As described above, a bash script parse.sh extracts the following metadata from the
benchmark file transfers:
e Bandwidth: The average rate of the benchmark transfers measured in MB/s.
e Transfer Time: Total time to transfer all files measured in seconds.
e Destination Host Frequency: Count of files sent to each destination host.
o File Size: The size of each file transferred measured in GB. Summing gives us the total.
o Transfer Speed: The transfer speed of each file measured in MB/s.
These benchmark metrics are stored in a json file on the execution host and sent to Humio

[22] for plotting and analysis. The benchmark results correspond to a benchmark score de-
termining whether the average transfer speed of the test is OK, ,or CRITICAL.

7

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

5.2 Environment Monitoring Application Metrics

As described above, a bash script environment.sh runs the three sub-modules:
CHI-AGLT2.py, RBIN.py, and AGLT2.py to extract the environment metadata discussed
in Section 4. CHI-AGLT2.py extracts the metadata from routers in Chicago (710N /600 W)
stored in the Grafana interface and saves it in json format. Similarly RBIN.py extracts meta-
data from the R-Bin-SEB router stored in the CA Performance Center. A pre-processing
script [23] takes the json outputs and calculates important statistics (mean, standard devia-
tion, min, and max). These results correspond to a benchmark score determining whether the
network activity in the Chicago and AGLT?2 path is OK, , or CRITICAL.

As for the AGLT2 End-System, AGLT2.py extracts the benchmark metadata defined in
Section 5.1 for each dCache server from the Check MK interface and saves it in json format.
A pre-processing script [23] takes the json output and calculates the statistics (mean, standard
deviation, min, and max) for each dCache server. Since the transferred files are randomly as-
signed to the dCache servers, the destination of host frequency variable defined in Section
5.1 is used to normalize and re-weight the statistics. These results correspond to the bench-
mark score determining whether the AGLT?2 network activity at a specific time frame is OK,

, or CRITICAL.

6 Interpreting Results

This section describes how we interpret the results coming from the benchmark applica-
tion and environment monitoring application components.

6.1 Framework Score

The framework score is based on the results of the (1)Benchmark Application which
provides statistics from the file transfers from BNL to AGLT2. Then (2) Environment Mon-
itoring Application which queries network metadata from the (2)a Source, (2)b Network
In Between, and (2)c Destination.

Three threshold levels are defined for each component: OK, , and CRITI-
CAL. OK means fast transfer time in the context of (1) and a congestion free network in the
context of (2)a - (2)c. means medium transfer time in the context of (1) and a
medium-congested network in the context of (2)a - (2)c. CRITICAL means slow transfer
time in the context of (1) and a congested network in the context of (2)a - (2)c. The threshold
level for (2) is determined by the worst result of (2)a - 2(c).

6.2 Framework Score Example

How is the Benchmark Score interpreted to provide information about NetBASILISK?
This is best explained by two cases presented in Table 3. Case 1 shows that the cause of a
CRITICAL transfer time might be due to NetBASILISK. The Testing Environment is desig-
nated as OK, meaning the environment metrics indicate a congestion free network. However,
the transfer time is slow which means that NetBASILISK might have played a role in this per-
formance degradation. Case 2 indicates that even if the time transfer is CRITICAL, the slow
transfer time might not be caused by NetBASILISK as the Testing Environment is CRITI-
CAL also: the environment metrics indicate a congested network which might have been a
cause for the slow transfer time.

7 perfSONAR Testing

In order to correlate data transfer benchmarks with prevailing network conditions, Net-
BASILISK uses perfSONAR [24] to run periodic latency and bandwidth tests between the
relevant network locations. perfSONAR is an open-source network metric gathering toolkit

8

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

Framework Components | Casel | Case2
Source OK CRITICAL
Network In Between OK
Destination OK OK
Testing Environment OK CRITICAL
Ave Transfer Speed CRITICAL | CRITICAL

Table 2: In Case 1, all environment metrics are OK but poor transfer results are observed,
indicating a likely problem caused by NetBASILISK. Case 2 shows an example where the
Source is the likely cause of the poor transfer result.

that allows for ad-hoc and scheduled testing between perfSONAR testpoints. It uses existing,
standard tools such as iperf3 and owamp to generate performance metrics.

The benefit of using perfSONAR is to generate network performance metrics which can
be contrasted against application- and service-level metrics. In theory, if we observe poor
service metrics, we can determine if the network performance has impacted the service by
using perfSONAR to generate throughput and latency measurements around the time of the
substandard performance. If the network metrics are within the established performance
thresholds, we can infer that other infrastructure related to the service, such as CPU, disk,
relative load, and other conditions not related to the network are the cause of the poor service
performance. If the network performance metrics are below the threshold, we can assert that
the network itself is partially or wholly the cause of poor service performance.

To gauge NetBASILISK’s ipact on performance, we will run scheduled metric gathering
tests. This testing activity will alternate between simulated science activities interspersed
with perfSONAR throughput and latency measurements. As AGLT?2 represents data ingress,
we will run file transfers from BNL to the University of Michigan. We will also utilize pub-
licly available perfSONAR nodes to test throughput and latency from BNL to the University
of Michigan to gauge metrics before and after the file transfers. This scheduled activity is run
with cron at AGLT2. The script that is executed is an Ansible playbook [25] that alternates
perfSONAR testing with file transfer test activities. The Ansible playbook has provisions for
interacting with pScheduler, and the benchmark scripts.

8 Conclusion and Future Work

To relate test result data with other science drivers, the NetBASILISK project will explore
the use of the Humio log platform [22] to aggregate test results from a variety of benchmark
and perfSONAR tests.

We plan to update our benchmark implementation to automatically send results to the
Humio API to include those test results in the repository shared with other parts of the Net-
BASILISK project. This work will involve evaluating the best ways to represent the bench-
mark outcome data in a way that it can be effectively analyzed.

The perfSONAR project is transitioning to the Elastic Stack platform [26] for data archiv-
ing and visualization. The perfSONAR team has published Logstash pipelines in order to
facilitate data analysis of perfSONAR results [27]. To this end we are standing up an Elastic
Logstash server and using the perfSONAR pipelines. Humio is able to ingest data with the
same methods as Elastic, so we are going to use Logstash to import the data to Humio.

9

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

The ultimate goal is to be able to combine similar benchmark and network test results
into a single repository. This will allow analysis across the variations and could ultimately
provide for more detailed monitoring and alerting. We hope to use Humio’s capabilities as a
data visualizer to contrast science driver results with perfSONAR and other metrics.

9 Acknowledgements

We gratefully acknowledge the National Science Foundation which supported this work
through NSF grant OAC-1925476. In addition, we acknowledge contributions from the rest
of the NetBASILISK team.

Process | LepHad SLT SR (%) | LepHad LTT SR (%) | Description

VBF 0.863 0.624 Scales
VBF 0.149 0.233 PDF+a;
VBF 6.315 2.103 Parton Shower

Table 3: In Case 1, all environment metrics are OK but poor transfer results are observed,
indicating a likely problem caused by NetBASILISK. Case 2 shows an example where the
Source is the likely cause of the poor transfer result.

10

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068

CHEP 2021

References

[1]

(2]

[4]

(8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]
(17]

(18]

(19]

Julian Jang-Jaccard and Surya Nepal. “A survey of emerging threats in cybersecurity”.
In: Journal of Computer and System Sciences 80.5 (2014). Special Issue on Depend-
able and Secure Computing, pp. 973-993. 1ssn: 0022-0000. por: https://doi.org/10.
1016/j.jcss.2014.02.005. urL: https://www.sciencedirect.com/science/article/pii/
50022000014000178.

The Center for Strategic and International Studies. Significant Cyber Incidents. URL:
https://www.csis.org/programs/strategic - technologies - program/significant- cyber-
incidents.

ESnet-Team. Energy Sciences Network. Feb 2020. urL: http://www.es.net/.

Eli Dart et al. “The Science DMZ: A Network Design Pattern for Data-Intensive Sci-
ence”. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. SC *13. Denver, Colorado: Association for
Computing Machinery, 2013. 1sBx: 9781450323789. por: 10.1145/2503210.2503245.
URL: https://doi.org/10.1145/2503210.2503245.

Wikipedia Community. DMZ (networking). 2021. urL: https://en.wikipedia.org/wiki/
DMZ_(computing).

Eric Boyd and Katarina Thomas. NetBASILISK Project. UrL: https://netbasilisk.net/
about.

The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron Col-
lider”. In: Journal of Instrumentation 3.08 (2008), S08003—S08003. por: https://doi.
org/10.1088/1748-0221/3/08/s08003.

A A Ayllon et al. “FTS3: New Data Movement Service For WLCG”. In: J. Phys.: Conf.
Ser 513.3 (2014), p. 032081. urL: http://stacks.iop.org/1742-6596/513/i=3/a=032081.

F Donno et al. “Storage resource manager version 2.2: Design, Implementation, and
Testing Experience”. In: Journal of Physics: Conference Series 119.6 (July 2008),
p- 062028. por: 10.1088/1742-6596/119/6/062028.

A Frohner et al. “Data Management in EGEE”. In: Journal of Physics: Conference
Series 219.6 (Apr. 2010), p. 062012. por: doi:10.1088/1742-6596/219/6/062012.

Globus Team. Globus GridFTP. urL: http://toolkit. globus. org/toolkit/docs/latest-
stable/gridftp/.

A Dorigo et al. XROOTD - A Highly Scalable Architecture For Data Access. URL:
https://xrootd.slac.stanford.edu/presentations/xpaper3_cut_journal.pdf.

AGLT?2 Personnel. ATLAS Great Lakes Tier 2. URL: https://www.aglt2.org/index.php.
ESnet Team. The My ES net portal. 2021. urL: https://my.es.net/.

Wikipedia Community. Multi-Protocol Label Switching. 2021. urL: https ://en .
wikipedia.org/wiki/Multiprotocol_Label_Switching.

Mathias Kettner. Check_Mk. URL: https://mathias-kettner.de/check%5C_mk.html.

Jem Guhit. CA Performance Environment Metrics Script. URL: https://github.com/
NetBASILISK/EnvironmentMonitoring/blob/main/Scripts/RBIN_ind.py.

Grafana Team. Grafana is the Open Source Analytics and Monitoring Solution for
Every Database. urL: https://grafana.com.

Jem Guhit. Grafana Environment Metrics Script. URL: https : / / github . com /
NetBASILISK/EnvironmentMonitoring/blob/main/Scripts/ AGLT2CHI_ind.py.

11

EPJ Web of Conferences 251, 02068 (2021) https://doi.org/10.1051/epjcont/202125102068
CHEP 2021

[20] P Fuhrmann. dCache, The Overview. URL: http://www.dcache.org/manuals/dcache-
whitepaper-light.pdf.

[21] Jem Guhit. Check MK Environment Metrics Script. URL: https : / / github . com /
NetBASILISK/EnvironmentMonitoring/blob/main/Scripts/ AGLT2_ind.py.

[22] Humio Team. Humio. urL: https://www.humio.com.

[23] Jem Guhit. Grafana Environment Metrics Script. UrL: https : / / github . com /
NetBASILISK/EnvironmentMonitoring/blob/main/Scripts/ AGLT2CHI_ind.py.

[24] Andreas Hanemann et al. “PerfSONAR: A Service Oriented Architecture for Multi-
domain Network Monitoring”. In: Service-Oriented Computing - ICSOC 2005. Ed. by
Boualem Benatallah, Fabio Casati, and Paolo Traverso. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 241-254. 1sBN: 978-3-540-32294-8.

[25] Ansible Team. Red Hat Ansible. urL: https://www.ansible.com.
[26] Elastic Team. Elastic Stack. urL: https://www.elastic.co/elastic-stack.

[27] Andrew Lake. perfSONAR archiving-sandbox. UrL: https :// github.com/perfsonar/
archiving-sandbox.

12

