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Abstract

®

CrossMark

Interaction between the Au adlayers and ZrS;(001) has been examined via x-ray
photoemission spectroscopy (XPS). The angle-resolved XPS measurements reveal that
ZrS3(001) is disulfide (S,%7) terminated and the Au thickness-dependent XPS indicates that
the observed band bending, for low Au coverage, is consistent with formation of a Schottky
barrier at the Au/ZrS;(001) interface. This band bending, however, appears to be suppressed as
the thickness of Au adlayer is increased, indicating varying interfacial interactions at the
Au/ZrS;(001) interface. Such complex interface effects between Au and ZrS;(001) may
explain the observed non-ohmic /—V characteristics for a ZrS;-based device, and could

suppress current injection.
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(Some figures may appear in colour only in the online journal)

Transition metal trichalcogenides (TMTs), bearing the form
MX; M = Ti, Ta, Zr, Hf; X = S, Se, Te), are two-
dimensional (2D) van der Waals materials that have garnered
great interest owing to their versatility, as these materials find
enormous applications in electronics [1-8], thermoelectrics
[9-12], energy storage [13—16], photocatalysis [17, 18], and
optoelectronics [2, 19-30]. As a consequence of their pre-
cise quasi-one-dimensional (quasi-1D) structure, TMT crys-
tals lack edge disorders and dangling bonds [31], which project
them as promising candidates for fabrication of transistors
with widths of 10 nm or less. Thus, semiconducting TMTs
are superior to other well-studied 2D materials as it is now
known that graphene, graphene-based materials, and transition
metal dichalcogenides are scourged with such unwanted edge
effects. Nonetheless, there is an apparent disparity between
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the predicted (~1800-2500 cm? V~! s71) [32, 33] and mea-
sured (~10-30 cm?> V~! s7! [34, 35] or less [36]) charge car-
rier mobilities for ZrS;, which should be addressed if device
applications are to be realized.

In light of this disagreement between theory [32, 33] and
experiment [34, 35] regarding the expected and measured
mobilities of ZrS3, both phonon scattering and contact prob-
lems must be considered. A recent study [36], which focused
on understanding the possible detrimental effects of phonon
vibrations on carrier mobility of ZrSs, revealed that the elec-
tron—phonon scattering in this material may not be completely
responsible for low observed mobilities, as the ZrS; lattice
is quite stiff. Indeed, ZrS;3 is found to be stiffer than TiSs,
where phonon scattering does play a significant role in sup-
pressing mobility [6]. Nevertheless, this disparity between the
expected and measured mobilities of ZrS; could be a conse-
quence of the formation of either a Schottky barrier at the

© 2021 IOP Publishing Ltd  Printed in the UK
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metal-semiconductor interface (since a high work function
metal, like Au [37, 38], is expected to form a Schottky bar-
rier when brought in contact with an n-type semiconductor
with a relatively low work function [39]) or a very compli-
cated Au/ZrS; interface that limits efficient charge injection.
Deciphering this is crucial since both, presence of a Schottky
barrier (or absence of a good ohmic contact) [40, 41] and less
efficient charge injection [42—44], are known to degrade the
measured transistor mobilities in a device. Therefore, in this
work, we have employed x-ray photoemission spectroscopy
(XPS) to study the interface between Au adlayers of varied
thickness and the n-type ZrS;(001) [10, 45—47] to understand
whether reproducing interfaces, with low contact potential, is
even likely.

Figure 1(a) shows the crystal structure of ZrS;, which
belongs to the P2;/m space group with the lattice constants
being a = 5.1107(4) A, b = 3.6179(2) A, ¢ = 8.9725(5) A,
and the cant angle 8 = 97.64(1)°, as reported in the litera-
ture elsewhere [45]. The ZrS; structure contains 2D layers that
are parallel to the ab plane of the unit cell (figure 1(a)). The
2D layers, in turn, are composed of quasi-1D chains of trigo-
nal prisms formed by sulfide (S*7) and disulfide (S,>7) units
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Figure 1. (a) The crystal structure of ZrSs. (b) A vacuum-sealed quartz ampule with ZrSs crystals. (¢) The Raman spectrum of ZrS; crystals.

with Zr** in the center; the quasi-1D chains are oriented along
the b direction (figure 1(a)). The ZrS;5 crystals were synthe-
sized through a reaction between metallic zirconium and sulfur
vapor in vacuum-sealed quartz ampules at 800 °C, as has been
described previously [48, 49]. After two weeks of annealing at
800 °C, numerous 1-2 mm long ZrS;3 crystals were formed,
as shown in figure 1(b). These crystals were characterized by
Raman spectroscopy using a Thermo Scientific DXR Raman
microscope with a 532 nm excitation laser. The Raman spec-
trum in figure 1(c) shows four major peaks at 149 cm~' (1),
279 cm™! (II), 318 cm~! (III) and 527 cm™! (IV), which are
characteristic for ZrS; [28, 43, 44].

All the core-level XPS measurements were performed in
an ultra-high vacuum (UHV) chamber with a base pressure
better than 8 x 107! mbar, using a SPECS x-ray Al anode
(hv = 1486.6 eV) as the source and a hemispherical electron
analyzer (PHI model: 10—-360) that has an angular acceptance
of +10°. The ZrSs crystals were exfoliated inside the UHV
chamber to produce a freshly cleaved surface for the XPS anal-
ysis. The resulting surface of ZrS; that was studied here is the
(001) surface, since ZrS3 is isostructural with TiS; [20, 36, 45],
and for TiS; the most likely cleavage plane is (001) (as was
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Figure 2. ARXPS measurements of ZrS3(001). (a) The raw photoemission spectrum of the S 2p core-level collected at 15° (red) and 45°
(green) along with the fits showing S~ 2ps» (161.1 eV), S*~ 2py (162.3 eV), S22~ 2p3» (162.3 eV), and S,2~ 2py, (163.5 eV) core-level
components. (b) The raw photoemission spectra of the Zr 3d core-level obtained at 15° (red) and 45° (green). (c) XPS peak intensity ratios

of the $,%~ 2p3/» and S?~ 2ps, core-level components as a function of

take-off angle with respect to the surface normal. The inset shows a

schematic of a fragment of the ZrS5 structure, highlighting the two different types of sulfur species (S~ and S,27).
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Figure 3. The XPS spectra of the (a) S 2p and (b) the Zr 3d core-level components of Au/ZrS3(001) with increasing thickness of Au adlayer.
The vertical dashed lines denote the peak XPS binding energies of S 2p and Zr 3d core-levels, whereas the horizontal dashed lines denote the
shifts in binding energies. The red spectra (at top) correspond to 0 A of Au (i.e. the bare ZrS3(001)), the blue spectra correspond to 4 A of

Au, the green spectra correspond to 8 A of Au, the purple spectra correspond to 12 A of Au, and the black spectra correspond to 16 A of Au,

respectively.

shown both theoretically and experimentally [31]). This is also
consistent with the experimental band structures obtained for
ZrS3(001) as reported elsewhere [20, 45] following a similar
procedure.

The angle-resolved x-ray photoemission spectroscopy
(ARXPS) data were collected by changing the photoemission
take-off angle between 0—60°, with respect to the surface nor-
mal. The Au adlayers were physically evaporated onto the
ZrS;3(001) crystals by resistively heating Au wires in a tungsten
basket, as described elsewhere [3]. A thickness monitor was
used to ascertain the thickness of the deposited Au adlayers,
as was done in our previous work [50].

The XPS spectra of the S 2p and Zr 3d core-levels
of ZrS; collected at 15° (red) and 45° (green) are shown
in figures 2(a) and (b), respectively. It is observed that
the S 2p core-level of this material has four distinct

features (figure 2(a)), namely: S~ 2ps, (161.1 eV), S?~
2pin (162.3 eV), 522_ 2p3n (162.3 eV), and 522_ 2pin
(163.5 eV), which are consistent with the existing literature
[36]. From figure 2(b), the Zr 3ds;, and Zr 3ds;, core-level
components of this system are identified at the binding ener-
gies of 180.8 eV and 183.2 eV, respectively, which are in
close agreement with the reported binding energies for these
core-levels [51, 52]. Furthermore, the angle-dependent photoe-
mission peak intensity ratios of the disulfide (S,27) 2pay, core-
level and sulfide (S>7) 2ps/, core-level components (shown in
figure 2(c)) indicate that ZrS3(001) terminates in S,>~ (high-
lighted in figure 1(a) and the inset in figure 2(c)), which agrees
with our expectations since ZrSz possesses the same structure
as TiS3 [20, 36, 45].

The photoemission spectra of the S 2p and Zr 3d core-levels
of Au/ZrS;(001) with varying Au adlayer thickness are shown
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Figure 4. Photoemission spectra of the S 2p core-level of Au/ZrS3(001) with (a) 0 A of Au (bare ZrS3(001)), (b) 4 A of Au, and (c) 8 A of
Au, respectively. The dashed lines at 161.1 eV and 162.3 eV in both (a) and (c) mark the binding energies of the S~ 2ps/, and Sy>~ 2p3)»
core-level components, respectively. Whereas the binding energies of the S2- 2p3;2 and S, 2pss» core-level components in (b) are indicated
by the dashed lines at 160.9 eV and 162.1 eV, respectively. The solid black lines show the fit results.
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Figure 5. Change in the peak XPS binding energies of the (a) Sy>~ 2p3s. (b) S~ 2ps2 and () Zr 3ds, core-level features of Au/ZrS;(001)
with varying Au coverage. The solid lines connecting the data points are a guide for the eye. Here, error bars represent what are largely the

systematic errors.

in figures 3(a) and (b), respectively. From these figures, it can
be seen that the peak XPS binding energies for both the core-
levels are shifted toward a lower value as the thickness of Au
adlayer is increased from 0 A (spectra shown in red in figure 3)
to 4 A (spectra shown in blue in figure 3). However, it is also
observed that further increment of the Au adlayer thickness
shifts the peak XPS binding energies of the S 2p and Zr 3d
core-levels toward higher values. Explanation for such a trend
in the binding energy shifts with different thicknesses of Au
adlayer, which may seem confusing at first glance, is presented
in detail below.

Figure 4(a) shows the XPS spectrum of the S 2p core-
level of bare ZrS3;(001) along with the fits showing the S*~
2psn and S;2~ 2psp core-level components at the binding
energy values of 161.1 eV and 162.3 eV, respectively. With
an increase in Au thickness from 0 A to 4 A (figure 4(b)),
there is a shift in the binding energies of the S>~ 2ps;, and
S»%~ 2pss core-level components. The binding energy of the
S2- 2pss, core-level is found to be shifted to a lower value of
160.9 eV and the binding energy of the Sy>~ 2p3,, core-level
is now shifted to 162.1 eV. This shift (of ~0.2 eV) to lower

binding energy values implies an upward band bending, which
may be indicative of a Schottky-barrier formation [39] at the
Au/ZrS;(001) interface. For an n-type semiconductor, the band
bending is upward for the formation of a Schottky barrier at the
metal-semiconductor interface [39]. Absent interface interac-
tions, Schottky barrier formation is expected because ZrS3 is
n-type semiconductor [10, 20, 34, 40, 44], and Au has a large
work function (5.1 eV [38] to 5.4 eV [37, 38]), much greater
than the work function of ZrS;. From the cutoff of the sec-
ondary electrons, we have determined that the work function
of ZrS5 lies between 3.8 and 4.4 eV.

That said, strong interactions at the Au—ZrS; interface are
indicated. With a further increase in the Au adlayer thickness
from 4 A to 8 A (figure 4(c)) there is a complete suppres-
sion of Schottky barrier-like band bending, as is illustrated
by a shift in the binding energy values of the S>~ 2ps and
S»%~ 2psp core-levels back to what they were for the bare
ZrS3(001), as very clearly illustrated in figure 5. This observed
suppression of a possible Schottky barrier at the Au/ZrS;(001)
interface, which occurs as the thickness of Au adlayer is
increased more than 4 A, is most likely a consequence of Au—S
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Figure 6. XPS peak intensity ratios of the Sy>~ 2ps/, and S>~ 2p3, core-level components as a function of Au coverage are shown in red,
whereas the XPS peak intensity ratios of the 2ps/, core-level components of the two sulfurs combined (S;>~ 4 S>7) to the 3ds), core-level of
Zr as a function of Au coverage are shown in black. For reference, for three S atoms and one Zr atom, ratio of the combined 2p3,, core-levels

of (S22~ + S?7) to the Zr 3ds, core-level would correspond to ~0.96.

[53, 54] and Au—Zr [55-59] interactions. This is because an
increase in binding energies of the S 2p and Zr 3d core-levels
implies that the Au—S and Au—Zr chemical interactions are
responsible for the downward bending of the bands (away from
the Fermi level (Er)), which actually opposes the upward band
bending that occurs due to the formation of a Schottky barrier.
Our results are consistent with the observed Schottky barrier
suppression in n-type TiS3 [6, 60] as a result of strong Au—S
interactions [3].

The changes in binding energies of the S>2~ 2p3/2, S~ 2p3p
and Zr 3ds), core-level features of Au/ZrS;(001) with increase
in Au coverage are shown in figures 5(a)—(c), respectively.
Since the dependence of binding energies on Au coverage for
all these core-level components follow more or less the same
trend, it can be inferred that with increasing Au coverage
any tendency towards the formation of Schottky barrier at the
Au/ZrS;3(001) interface is overwhelmed by strong Au—S and
Au—Zr interactions, as noted above, that are enhanced as the
thickness of the Au adlayer is increased. And the strength-
ening of these Au adlayer thickness dependent interactions is
reflected in the elevated core-level binding energies as the Au
coverage is increased above 4 A. Additionally, a closer exam-
ination of figure 5 reveals that the shift in the binding energy
of the S,2~ 2psp, core-level of Au/ZrS;(001) for 16 A of Au
is +0.6 eV in reference to the S,2~ 2ps/ core-level binding
energy in absence of Au, whereas the shifts in the binding ener-
gies of the S*~ 2ps; and Zr 3ds), core-levels under the same
conditions are +0.5 eV and +0.55 eV, respectively. In other
words, figure 5 implies that the interaction of S,?~ with Au is
stronger than that of Zr with Au (which is still stronger than the

interaction of S>~ with Au), which is in line with our surface
termination results (shown in figure 2(c)).

Additionally, the trend seen for the dependence of bind-
ing energies of the core-levels on Au coverage (figure 5) is
also reflected in the dependence of XPS peak intensity ratios
on Au coverage, which are shown in figure 6. The S,2~ 2ps3)»
core-level relative to the S~ 2ps;, core-level peak intensity
ratio is not precisely ~2:1 (see the red curve in figure 6)
because of the dominant S,%~ disulfide surface termination of
ZrS3(001) which in turn makes the S>>~ 2ps,; core-level rela-
tively stronger and, overall, since XPS is a highly surface sen-
sitive characterization technique. The sudden dip in the XPS
peak intensity of the S, 2psn core-level relative to the S2-
2psy, core-level seen for 4 A of Au adlayer thickness (see the
red curve in figure 6) is consistent with the fact that ZrS;(001)
terminates in S,2~ and, hence, more of the S,2~ interacts with
Au than S>~ does. For further increments in the Au adlayer
thickness, the S»2~ 2ps;, core-level relative to the S~ 2psp
core-level peak intensity tends to increase due to the Au—S
formation (which occurs as a result of interaction of S*~ with
Au), and also suggests sulfur replacement at the Au/ZrS;(001)
interface. Thus, thicker depositions of Au adlayers will lead to
a decrease in the peak XPS intensity of the S>~ 2p core-level,
although the ratio of disulfide to sulfide (S,2:S?>") remains
roughly 2 (see the red curve in figure 6).

The black curve in figure 6 illustrates that the XPS peak
intensity ratios of the combined sulfur (S,>~ + S?>7) 2ps/, core-
levels to the 3ds;; core-level of Zr decrease with increasing
Au thickness. This ratio primarily depends on the XPS inten-
sity of the S»2~ 2p3/» core-level not only due to the disulfide
surface termination of ZrS;(001) but also because of the pos-
sibility of gold sulfide formation. Therefore, the XPS peak
intensity ratio I(S,>~ + S?7)/I(Zr) increases as the Au adlayer
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Figure 7. The /-V curve obtained from a ZrS; FET with Au electrodes at zero gate bias. The ZrS; semiconductor channel is roughly 70 nm

high and 1 um wide.

thickness is increased beyond 4 A. The nature of this increment
in the 1(S,>~ + S?7)/I(Zr) ratio is such that the eventually, at
an Au coverage of 16 A or more, the I(S,2~ + S$*7)/I(Zr) ratio
is larger than what was observed for bare ZrS;(001).

Furthermore, unlike the case of Au/TiS; interface [3],
where the field effect transistor (FET) measurements confirm
that the Au contacts are essentially ohmic, we see that the /-V
curve for our ZrS3 device (shown in figure 7) is non-ohmic.
As noted above, the non-ohmic nature of this /—V curve can
be understood as the effect of barriers to charge injection at
the Au/ZrS; interface, which, for small bias voltages, is a con-
sequence of the strong, but complex, Au—S and Au—Zr inter-
actions. It is the strong Au to sulfur interaction that appears
to overcome the tendency for Au to form a Schottky barrier
with TiS3 [3], which would be expected as a result of the large
work function of Au. It is expected that the Zr to S interaction
are stronger than Ti to S given that the Ti—S bond energy is
about 4.4 eV while the Zr—S bond is about 6 eV. Given the
likely strong sulfur to zirconium bond strength, the S interac-
tions with Au at the ZrS; interface may not be sufficient for
formation of an ohmic like contact. The interface between Au
and ZrS;(001) is, nonetheless, driven by Au-S interactions,
suggesting that gold sulfide compound formation may occur at
the interface, as is also suggested by the Au core level spetrum
(supplementary materials).

The device measurements are consistent with the XPS data.
Our ARXPS results indicate that the Au—S,%~ interaction is
more significant than the Au—S?>~ and Au—Zr interactions. As
reported elsewhere [36], the measured transistor mobilities for
TiS; are 10° greater than ZrSs, consistent with the fact that the

Au-TiS; interface is largely ohmic [3, 6], which is not seen
here for ZrSs;.

In conclusion, our Au thickness-dependent XPS mea-
surements indicate the presence of band bending at the
Au/ZrS;(001) interface for very low thickness (~4 A) of Au
adlayer. However, this Schottky-barrier type band bending is
easily suppressed owing to the strong Au—S and Au—Zr inter-
actions that become increasingly evident as the Au cover-
age is increased further. The interface interactions between
Au and ZrS;(001) are consistent with our ARXPS results as
the Au—S,%~ interaction is found to be more significant than
Au-S?~ and Au-Zr. It is expected that the Zr to S interac-
tion is stronger than Ti to S, thus the S interactions with Au
at the ZrS; interface may not be sufficient for formation of an
ohmic like contact seen with TiS; [3]. The interactions at the
Au/ZrS;(001) interface may be one of the major factors that
adversely affect the performance of ZrS;-based devices with
Au contacts with thicknesses >15 nm. This is consistent with
(and also explains) the observed non-ohmic behavior of the
I1-V curve for a ZrS5 device [20].
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