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Abstract

®

CrossMark

The band structures of the transition metal dichalcogenides (TMD’s) 2H-MoS,(0001) and
2H-WSe,(0001), before and after palladium adsorption, were investigated through
angle-resolved photoemission. Palladium adsorption on 2H-Mo0S,(0001) is seen to result in
very different band shifts than seen for palladium on 2H-WSe,(0001). The angle resolved
photoemission results of palladium adsorbed on WSe,(0001) indicate that palladium accepts
electron density from substrate. The resulting band shift will lead to a decrease in the barriers
to the hole injection. The opposite band shifts occur upon palladium adsorption between
2H-Mo0S,(0001). The overall trend is consistent with the deposition of other metals deposited
on TMD’s, except that for palladium adsorption on MoS,(0001), there is an increase in the
MoS,(0001) substrate band gap with palladium adsorption, as is evident from the combination

of photoemission and inverse photoemission.
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1. Introduction

The deposition or doping of transition metal dichalcogenides
(TMD’s) with submonolayer coverage of metals is well stud-
ied, both in terms of addressing contact issues [1-7] and catal-
ysis [8—19]. The usage of small amounts of precious metals,
such as palladium (Pd), can enhance TMD’s as catalysts [17].
The investigations of metal interactions with the TMD’s have
been extensive. The interaction of Al [20, 21], Sc [22-24], Ti
[6,22,23,25-29], Co [18, 30], Ni [18, 23,28, 31], Cu [8], Y
[24], Nb [32], Mo [32], Pd [5, 19, 21, 23-25], Ag [8, 19, 21,
24,33, 34],In [25], Hf [28], W [32, 35], Ir [21], Pt [12, 19, 21,
24, 33], Au [8-16, 21, 22, 25, 27, 31] with MoS, have been
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studied. For WSe,, metal contacts made of Al [1], Ti [25, 36],
Cr[37],Ni[38],Mo[1],Pd[36,38],In[25,39],1r[37] and Au
[1,25,37] have been investigated. Not all metals are seen to be
valuable as low barrier or Ohmic contacts for TMD’s devices,
but a few metals stand out as promising electrode materials.
Among the various metal contacts investigated, Pd has been
seen to be a more efficient contact for hole injection into WSe,
[36, 38]. This is expected [2, 5, 33, 40] as Pd is a large work
function metal (with a work function (Wy;) measured to be
5.12 [41],5.2 eV [42,43],5.3 eV [44],5.55 eV [45],5.6 eV
[46], 5.65 eV [43],5.9 eV [47], 5.95 eV [43]) and WSe, is a
p-type semiconductor [7, 36, 38, 48, 49]. As MoS, is generally
an n-type semiconductor [6, 29-31, 50, 51], we would expect
that Pd would be a blocking contact.

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. The low energy electron diffraction of clean MoS,(0001)
(a) M0S,(0001) following 1 nm of Pd deposition (b) and clean
WSe,(0001) (c). The LEED images were taken at an electron kinetic
energy of (a) 74.1 eV, (b) 66.6 eV and (c) 74.5 eV.

As just noted, Pd stands out as one of the better metal con-
tacts and this paper is an investigation of the basis of those
prior Pd to WSe, contact studies [36, 38] and whether this is
universally applicable to the metal dichalcogenides. In context
to previous investigations into the occupied and unoccupied
band structure of metal-TMD systems, including Na [52, 53],
Co [53], and Au [15], here we detail the influence of sub-
monolayer Pd deposition on the band shifts of the underlying
MoS,(0001) and WSe,(0001). At issue is how a Pd overlayer
affects the band bending at the interface with the TMD.

2. Experimental

The occupied electronic states of the TMD systems before and
after Pd deposition were measured by angle-resolved photoe-
mission spectroscopy (ARPES) at the linear undulator beam-
line (BL-1) [54, 55] of the Hiroshima Synchrotron Radiation
Center (HiSOR), Hiroshima University, Japan. Clean surfaces
of 2H-MoS, and 2H-WSe; bulk crystals were obtained by in
situ cleaving, and Pd deposited. Using this method, the sur-
faces are well ordered, as is evident in the LEED (figure 1).
All measurements were taken at room temperature with
hv = 34 eV, p-polarized light along the ' — K direction of
the surface Brillouin zone, similar to prior TMD band struc-
ture measurements [52, 53]. The energy resolution was limited
by temperature, not the instrument, and estimated to be about
~30 meV for ARPES performed at room temperature. The
angular resolution was 0.7°, corresponding to a wave vector
resolution of 0.035 & 0.005 A~! for hv = 34 eV at the Fermi
level (Eg).

The inverse photoemission spectra were obtained in a
separate ultrahigh vacuum chamber, by sweeping the inci-
dent electron energy and collecting the photons with the
Geiger—Muller-based photon detector, as described in detail
elsewhere [56]. Pd deposition was accomplished through use
of an e-beam evaporator, for deposition of less than a mono-
layer. The inverse photoemission system is capable of angle
resolved measurements to extract wave vector dependence of
the unoccupied states, but here the electrons were incident nor-
mal to the surface, so the spectra shown here are for an in-plane
wave of zero or equivalent to the center of the surface Brillouin
zone. The total resolution, in inverse photoemission, was about
400 meV. Binding energies are denoted, throughout, as E—Er
and referenced to the established gold Fermi level (EF).
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Figure 2. The angle-resolved photoemission valence band, along
the I' — K direction of the surface Brillouin zone, of MoS,(0001)
before (a), and after (b), palladium deposition on the surface. The
dotted line highlights the shift of occupied states toward higher
binding energy at K. Binding energies are denoted as E—Ef.

3. Submonolayer Pd on MoS,(0001)

Starting with the MoS,(0001), the along the I'-K direction
of the surface Brillouin zone, Pd adsorption lead to a rigid
shift of this band structure in binding energy, relative to the
Fermi level. The clean band structure of MoS,(0001), as plot-
ted in figure 2(a), is as reported elsewhere [57—-62] with the
roughly 200 meV spin orbit splitting of the band at the top of
the valence band at the Brillouin zone edge K point [59-63].
With Pd deposition, the Pd adlayer is in registry with the
MoS,(0001) substrate, for Pd films between 0.6 nm and 2 nm
thick, as is evident in LEED (figure 1(b)) for a 1 nm thick Pd
film on MoS,(0001). This is consistent with theoretical predic-
tions that would place on top of a Mo atom [64—66], or roughly
the MoS,(0001) surface hollow site.

Pd deposition on the MoS,(0001) surface, as shown in
figure 2, leads to a shift of the top of valence band away from
the Fermi level (Ef), along the T—K direction of the surface
Brillouin zone. These results are for a submonolayer Pd film
thickness as the Pd adlayer is insufficient to lead to a Pd 4d
band density of states in the vicinity of the Fermi level, with
very weak dispersion, as predicted by theory [65]. This Pd cov-
erage is sufficient, nonetheless, that the shifts in the binding
energy placement of the occupied MoS,(0001) band struc-
ture, with increasing Pd coverage, have saturated. Apart from
a rigid band shift, the MoS,(0001) band structure along the
T'—K line, for the surface Brillouin zone, is left largely unper-
turbed. The shifts are gradual then stop, then the band struc-
ture becomes dominated by the Pd density of states. While
the Pd adlayer is in registry with the MoS,(0001) substrate
(figure 1(b)), some incoherent scattering is expected from the
Pd adlayer and this could be the origin of the broader bands
seen after Pd deposition.

MoS, is widely regarded as an n-type semiconduc-
tor [6, 29-31, 50, 51], with an indirect band gap of
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1.4 + 0.2 eV, in combined photoemission and inverse photoe-
mission studies [52], close to the expected 1.29 eV indirect
band gap MoS,(0001) [58, 67]. As an n-type semiconductor,
this would place the Fermi level (EF) closer to the conduction
band minimum and the top of the valence band should have a
binding energy more than 1/2 the band gap. From photoemis-
sion (figure 2), the top of the valence band is seen to be less
than 0.5 eV binding energy, before palladium deposition. This
placement of the top of the valence band, therefore, indicates
band bending (as schematically plotted in figure 3(b)) near the
surface region which is characteristic of an n-type semicon-
ductor. We note that while this evidence of band bending is
evident elsewhere [52, 53, 58—60], it is not so readily appar-
ent in the band structure mappings of [61-63], indicating that
some dichalcogenide samples have sufficient vacancy defects
that the conductivity negates the expected semiconductor band
bending. The shift of the valence band top to higher binding
energies, upon Pd adsorption, indicates that there is a decrease
in band bending by about 0.25 eV. This type of band shift due
to the band bending near the surface, upon metal adsorption,
was also found for Na adsorption on MoS,(0001) [52, 53].

As seen in figure 3, the inverse photoemission results, for
the center of the Brillouin zone, i.e. with the electrons incident
normal to the surface, show the characteristic MoS,(0001)
unoccupied states [52, 53]. Beginning with the deposition of
a Pd overlayer of about 2 A, and continuing with increas-
ing Pd overlayer coverages, the characteristic unoccupied
MoS,(0001) states shift do not toward the Fermi level (EF), but
away to higher binding energies upon Pd adsorption, by around
200 to 400 meV. Overall, the underlying total MoS,(0001)
band gap increases by around 0.6 eV, with Pd adsorption. This
is somewhat complicated by the fact that the Pd adlayer intro-
duces new spectral features in inverse photoemission. There
are indications (figure 3(a)) of unoccupied states, likely with
Pd 5s4d weight, evident in the inverse photoemission after
Pd adsorption, appearing within the MoS,(0001) band gap.
The presence of such Pd induced mid-gap states is consistent
with the expectations from some of density functional theory
[21, 25, 65]. Some density functional theory [21, 25] provides
only subtle indications of the MoS; band gap opening with Pd
adsorption, and nothing as significant as the 0.6 eV band gap
opening seen here in the combined photoemission and inverse
photoemission results.

The band shifts that occur with Pd adsorption differ signif-
icantly from Na adsorption on MoS,(0001) in that the inverse
photoemission shows the characteristic MoS,(0001) unoccu-
pied states shift not toward the Fermi level (Ef), but away
to higher binding energies, as seen in figure 3. In the case
of Na adsorption on MoS,(0001), the shift in the unoccupied
states, toward the Fermi level was more significant than seen
for the occupied states, leading to indications of a decrease
in the underlying MoS,(0001) band gap [52]. The band gap
was also seen to close significantly with Rb adsorption on
MoS,(0001) [62] and MoSe,(0001) [68], at the Brillouin zone
edge K point, and is accompany by a shift the energy differ-
ence between the top of the valence bands at the I and K points
of the Brillouin zone. A significant shift the energy difference
between the top of the valence bands at the I and K points

of the Brillouin zone is not observed here, nor is there any
evidence of the conduction band minimum placement chang-
ing so significantly as to be brought below the Fermi level, as
observed elsewhere with alkali metal adsorption [62, 68, 69].
In absence of a complete inverse photoemission band mapping
of the conduction band, as in [52], a perturbation of the band
structure near the bottom of the conduction band, as a result
of electron charge abstraction due to the large work function
of Pd [41-47], cannot be excluded. The electric field or Stark
effect invoked [62] to explain the strong perturbation of the
MoS,(0001) band structure, with Rb adsorption, is less plau-
sible for Pd on MoS,(0001), as the electric dipole expected
with Pd adsorption is significantly that is expected with alkali
metal adsorption [64].

The increase in the effective band gap of the underlying
MoS,(0001), inferred from the combination of photoemission
and inverse photoemission upon Pd adsorption, implies an
increase in the Schottky barrier height by about 0.4 eV enhanc-
ing the blocking of electron transport across the MoS,(0001) to
metal interface. The changes in band alignment, inferred from
the combination of angle-resolved photoemission (figure 2)
and inverse photoemission (figure 3(b)) are schematically indi-
cated in figure 3(b). Intercalation of Pd, between the MoS,
layers can be excluded, nonetheless, in spite of the increase
in band gap that accompanies intercalation [69]. Intercalation
would also lead to a distortion of the band structure and, at
the very least, lead to a significant shift the energy difference
between the top of the valence bands at the I" and K points of
the Brillouin zone, raising the K point toward the top of the
valence band [69].

4. Submonolayer Pd on WSe,(0001)

Pd deposition on the WSe,(0001) surface, as shown in figure 4,
also leads to a rigid shift of the occupied band structure, along
the T—K direction of the surface Brillouin zone, toward the
Fermi level. The occupied band structure of the WSe,(0001)
surface, along the T-K direction of the surface Brillouin zone,
seen in figure 4(a), is similar to the experimental band structure
previously reported for WSe,(0001) [70-72]. The clean band
structure of WSe,(0001), as plotted in in figure 4(a), retains
the roughly 500 meV spin orbit splitting of the band at the top
of the valence band at the Brillouin zone edge K point [70-73]
which begins at wavevector of roughly 0.5 A~! along the T-K
direction of the surface Brillouin zone [70].

As noted at the outset, WSe, is a p-type semiconductor
[7, 36, 38, 48, 49], so the Fermi level should placed close to
the valence band maximum, but this is not observed as is seen
figure 4(a) and evident in the angle resolved band structure
results reported elsewhere [53, 70]. This is indicative of band
bending near the surface region as schematically plotted in
figure 3(c). Upon Pd adsorption, the valence band rigidly shifts
toward the Fermi level, as seen in figure 4. This rigid band shift
toward the Fermi level is evidence of a decrease in the band
bending near the WSe,(0001) surface, upon Pd adsorption, to
a band placement more characteristic of a p-type semiconduc-
tor. This type of valence band shift was also found for Co metal
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Figure 3. (a) The conduction band spectra for the center of the MoS,(0001) surface Brillouin zone, from inverse photoemission, before
(red) and after the deposition of nominally 2 A (blue), 6 A (green), and 10 A (purple) palladium. The solid lines are the ‘smoothed’ spectra.
A schematic diagram of the band realignment after palladium deposition, for a nominally n-type MoS,(0001) (b) and for a nominally p-type
WSe»(0001) (c), for the top and bottom of the TMD valence band and conduction band, respectively.
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Figure 4. The angle-resolved photoemission valence band, along
the I' — K direction of the surface Brillouin zone, of WSe»(0001)
before (a) and after (b), palladium deposition on the surface. The
dotted line highlights the shift of occupied states toward lower
binding energy. Binding energies are denoted as E—FEF.

adsorption on WSe»(0001) [53]. The shift of occupied elec-
tronic states toward the Fermi level of 0.4 eV (Er =0 eV where
Epinging = E—EF, relative to an Au reference) and the more
apparent p-type behavior, after the adsorption, is indicative of
electron donation from the WSe,(0001) surface to Pd.

The changes in band alignment, inferred from angle-
resolved photoemission (figure 4) is schematically indicated
in figure 3(c). These band shifts are consistent with an effec-
tive decrease to the barrier to hole injection into WSe,(0001)
and a validation of the metal to WSe, interface band models
proposed to explain the origin of Pd as efficient contact for hole
injection [36, 38].
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Figure 5. The energy distribution curves for WSe»(0001) in the
region near the top of the valence band at K direction of the surface
Brillouin zone before (a) and after (b), palladium deposition on the
surface. The spin orbit splitting (SO) at the top of the valence band
is indicated. Binding energies are denoted as E—EF.

Pd will bond to the substrate through the Frontier orbitals
of the WSe, substrate, changes in spectral weight density are
expected near the center of the Brillouin zone I'. This may well
be the origin increase in photoemission intensity seen after
Pd adsorption and, as indicated by the known band symme-
tries [70], this suggests that the Pd bonds to the WSe,(0001)
through the Se p, weighted bands, as is suggested by theory
[64]. The perturbation to the WSe,(0001) band structure, as a
result of Pd adsorption appears to be small. As seen in figure 5,
the spin orbit splitting at the top of the valence band, at K, is
about 495 + 10 meV before Pd adsorption and 510 eV 4 30
meV after Pd adsorption. This spin orbit coupling is consis-
tent with prior measurements that place the spin orbit splitting
at the top of the valence band, at K, at about 490 meV [70] and
500 meV [71-73].
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Figure 6. A summary of the TMD band shifts for the occupied
valence band states (solid marks—results from photoemission
spectroscopy) and unoccupied conduction band states (open
marks—results from inverse photoemission spectroscopy)
electronic features for Co (in blue), Na (in red), Pd (in green) on
MoS,(0001) (circles) and WSe,(0001) (triangles) Wy refers to the
metal work function, and Wryp refers to the TMD work function.

5. Discussion

When comparing electronic structure shifts of the top of the
valence band and bottom of the conduction band, as compiled
within figure 6, there is a moderate correlation of the difference
in work function between adsorbed metal (Wy;) and the under-
lying TMD (Wrymp). This trend was noted elsewhere [53],
within the scope of a contact potential difference model of
interaction. In general, when the deposited metal has a greater
work function than the TMD substrate, the observed occupied
valence band features should shift toward the Fermi level with
a transfer of electron density from the substrate to the metal
[66]. Consequently, when a metal with a lower work func-
tion than the underlying substrate is adsorbed, electron charge
transfer occurs from the metal to the substrate [66] resulting
in band shifts of occupied electronic states within the system
toward larger binding energies and away from the Fermi level.
This scenario is generally consistent with theoretical expecta-
tions for metal interactions with MoS, [64, 66] and the long-
standing foundational Gurney model [74] of adsorbate interac-
tion on metals, but also oversimplistic. In this context, showing
the correlation of the band shift with the work function dif-
ference seems appropriate but as noted above, band bending
and observed band shifts are not entire consistent from exper-
iment to experiment, with evidence of band bending in the
placement of the bands structure in some measurements [52,
53, 58-60], but not others [61-63], as obtained from angle
resolved photoemission of MoS,(0001). While the behavior
of adsorbed metals on WSe, appears to better fit this sim-
ple model of electron density transfer than MoS,, from the
data sets show here, there is apparent band broadening of the

MoS; and WSe, features within the occupied electronic state
measurements. The trend evident in figure 6 is, nonetheless,
consistent with the expectations from density functional theory
for metals adsorbed on MoS, monolayers [66].

6. Conclusion

The influence of Pd adsorption on the occupied electronic
states of both MoS,(0001) and WSe,(0001) along the T-K
surface Brillouin zone direction were investigated. From other
occupied valence band investigations of MoS,(0001) and
WSe,(0001), it appears that metal doping of the surface fits
a conventional contact potential difference modeling. From a
contact potential difference model, Pd adsorption has the effect
of p-type doping of the surface, similar to Co [2]. What is
unexpected is that, from the combination of photoemission and
inverse photoemission, Pd deposition on the MoS,(0001) sur-
face enhances the band gap of the underlying MoS,(0001). The
latter result was not predicted in the prior density functional
theory calculations [21, 25]. Except for cases where there is
alkali metal intercalation [69], low work function metals like
Na [52, 53] and Rb [62, 68], appear to result in a decrease in
band gap, while large work function metals like Pd lead to an
increase in band gap.
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