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ABSTRACT: Photocurrent production in quasi-one-dimensional (1D) transition-metal trichalcoge-
nides, TiS3(001) and ZrS3(001), was examined using polarization-dependent scanning photocurrent
microscopy. The photocurrent intensity was the strongest when the excitation source was polarized
along the 1D chains with dichroic ratios of 4:1 and 1.2:1 for ZrS3 and TiS3, respectively. This behavior
is explained by symmetry selection rules applicable to both valence and conduction band states.
Symmetry selection rules are seen to be applicable to the experimental band structure, as is observed
in polarization-dependent nanospot angle-resolved photoemission spectroscopy. Based on these band
symmetry assignments, it is expected that the dichroic ratios for both materials will be maximized
using excitation energies within 1 eV of their band gaps, providing versatile polarization sensitive
photodetection across the visible spectrum and into the near-infrared.
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■ INTRODUCTION

Transition-metal trichalcogenides (TMTs) are a unique class
of two-dimensional (2D) materials that are set apart by their
strongly anisotropic optical and electronic properties within
their 2D layers.1−6 This anisotropy is the result of their quasi-
one-dimensional (1D) crystal structure in which MX3 (M = Ti,
Zr, Hf, Ta, Nb; X = S, Se, Te) trigonal prisms are formed into
1D chains by strong covalent bonds along the crystallographic
b axis.7 These 1D chains then form 2D layers in the a −b plane
through van der Waals-like interactions.7 Because of their 1D
nature, the TMTs have been garnering increasing attention for
possible applications in electronics,5,8−13 optoelec-
tronics,3−5,14−22 thermoelectrics,23−26 and energy storage.27−30

Because of the nature of the chains, the semimetallic and
metallic MX3 trichalcogenides can be scaled to nanometer
widths and retain exceptionally high current densities,31−34

suggesting that these materials may be suitable for devices on
the subnanometer scale.
Of particular interest are the strongly polarization-dependent

optical properties, which have been demonstrated for both
TiS3(001) and ZrS3(001).

3−6,20,22,35,36 The polarization-
dependent optical properties are promising for the creation
of polarization-sensitive photodetectors. Photocurrent meas-
urements, in previous studies, have shown dichroic ratios as
high as 4:1 for TiS3

3 and 2.55:1 for ZrS3,
4 and the dichroic

ratio has been reported to depend on both the excitation
energy3−5 and the sample thickness.4,6 Although established

experimentally, the underlying mechanisms at play in this
photocurrent production have not been intensely studied.
Here, we show that these effects are the result of electronic
orbital symmetry by comparing polarization-dependent scan-
ning photocurrent microscopy (SPCM), along wires 45−85
nm in height by 0.5−0.9 μm wide, to polarization-dependent
nanospot angle-resolved photoemission spectroscopy (nano-
ARPES) for both TiS3(001) and ZrS3(001).

■ EXPERIMENTAL DETAILS
Nanowhiskers of TiS3 and ZrS3 were synthesized through direct
reactions of metallic titanium or zirconium with sulfur vapor in
vacuum-sealed quartz ampules, as described elsewhere.1,2,7,10,12,16,37,38

Figure S1 in the Supporting Information shows optical photographs of
TiS3 and ZrS3 crystals, as well as their Raman spectra. These spectra
are in perfect agreement with the previously published reports7,37,38

and confirm the high crystallinity of the TiS3 and ZrS3 whiskers.
Phototransistors were fabricated by mechanically exfoliating TiS3 and
ZrS3 crystals onto SiO2 substrates, with the transistor channel parallel
to the crystallographic b axis. Contacts 2 μm wide and ∼3 μm apart
were defined using a Heidelberg BWL 66FS laser lithography system;
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then, 5 nm of Cr and 45 nm of Au were deposited with an AJA
electron-beam evaporation system, as indicated in Figure 1. I−V

curves indicate that this process forms largely Ohmic contacts on TiS3
(Figure 1a), which is consistent with previous studies;9,10,12 however,
the contacts appear to form Schottky barriers on ZrS3 (Figure 1b). It
has been shown that pure Au forms superior contacts with TiS3
because of strong bonding with the surface sulfur.9 Au contacts may
also reduce Schottky barrier formation in ZrS3,

9,12 nonetheless, Au is a
large work function metal and ZrS3 is an n-type semiconductor, so
Schottky barrier formation is generally expected. A recognized cause
of low mobility in these systems is phonon scattering,12 which appears
to be suppressed by an overcoat of Al2O3.

10

Both TiS3 and ZrS3 phototransistors show a considerable change in
resistance under illumination, as shown in Figure 1, consistent with
previous studies,14,21 but this effect is reduced at higher voltages for
ZrS3 because of the nonlinearity of the I−V curves. Atomic force
microscopy (AFM) was performed using a Bruker dimension ICON
system, which shows that the TiS3 phototransistor channel was

roughly 45 nm tall and 500 nm wide (Figure 1c) and the ZrS3 channel
was approximately 85 nm tall and 900 nm wide (Figure 1d).

SPCM was performed with a 488 nm solid-state laser (Coherent
Sapphire 100) passed through a neutral density filter followed by a
linear polarizer, before being reflected off a dichroic mirror and
focused onto the phototransistors using an inverted Olympus IX 81
microscope. The neutral density filter was used to maintain a light
intensity of 100 μW for all measurements. Measurements were
performed at normal incidence, so that the incident light was
polarized perpendicular to the c  axis. For more information on the
SPCM setup, see the studies by Li et al.39 and Chen et al.40

NanoARPES measurements were performed on the ANTARES
beamline at the synchrotron SOLEIL41 on nanowhiskers of TiS3(001)
and ZrS3(001) that were exfoliated in situ under vacuum better than
10−10 Torr. Precise alignment and positioning on the nanowhiskers
were achieved with a spot size of ∼500 nm.1,2,42,43 Measurements
were taken at an incidence angle of 45° with respect to the surface
normal. The polarization dependence of nanoARPES was observed by
comparing measurements where the plane of incidence coincides with
either a −c  or b −c  crystallographic planes.

Thus far, all directions have been in terms of the crystallographic
coordinate system; however, throughout this paper, we will also
discuss the directions along the surface Brillouin zone (BZ) as well as
the rectangular representation of the electron orbitals. It is convenient
to clarify before going further that the quasi-1D chains lie along the
crystallographic b axis, which corresponds to the y  axis of the electron
orbitals and the Γ̅ to Y̅ direction along the BZ. Similarly, the
crystallographic a axis maps to the x  electron orbital axis and the Γ̅ to
B̅ direction of the BZ. To avoid confusion, the BZ directions will
always be noted as either Γ̅ to Y̅ or Γ̅ to B̅.

■ RESULTS AND DISCUSSION

The SPCM images of TiS3(001) and ZrS3(001) are shown in
Figure 2 with an excitation energy of 2.5 eV (488 nm) and the
incident light polarized along either the b (θ = 0°) or a (θ =
90°) axis. For both materials, the photocurrent intensity shows
a notable polarization dependence, which is consistent with
other polarization studies on TiS3(001)

3,5,6,35,36 and
ZrS3(001).

4,6,20 However, the change in photocurrent intensity
as a result of changing light polarization is far more significant
for ZrS3(001) than for TiS3(001), as seen by the photocurrent
images in Figure 2, where the dichroic ratio for ZrS3(001) is
∼4:1, but for TiS3(001), the ratio is only ∼1.2:1.

Figure 1. I−V curves for the (a) TiS3 and (b) ZrS3 phototransistors
under different illumination intensities. The insets show expanded
ranges to emphasize the difference in linearity. AFM of the (c) TiS3
and (d) ZrS3 phototransistors with insets showing the height profiles
taken along the white lines.

Figure 2. SPCM images of TiS3(001) (a,b) and ZrS3(001) (d,e) using light polarized along the b (a,d) and a (b,e) axes. The dotted black and
white lines indicate the contacts and transistor channel, respectively. Angle dependence of the photocurrent intensity in TiS3 (c) and ZrS3 (f),
where the angle is measured with respect to the b-axis. The photocurrent intensities in (c) and (f) are the average of the photocurrent magnitudes
at the source and drain.
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The polarization-dependent behavior can be explained by
examining the average electron transition rate dictated by
Fermi’s golden rule,44−50 which is shown in eq 1

π φ φ δ ωΓ =
ℏ

|⟨ | ′| ⟩| − − ℏH E E
2

( )f i
2

f i (1)

where φi, φf, Ei, and Ef are the initial and final state wave
functions and energies, respectively, and H′ is the perturbation
Hamiltonian. For photoexcitation measurements, H′ can be
approximated as ⃗ · ⃗A Pe

m ce
where A is the vector potential and P 

is the momentum operator, under the assumptions that the
field is sufficiently weak so that |A |2 is negligible and the
momentum of the photon is negligible compared to the
electron’s momentum.49,50 Using this approximation, H′|φi⟩ is
proportional to ε·⃗r  where ε ⃗ is the light polarization vector and r  
is the dipole of the electron orbital. Furthermore, group theory
considerations dictate that the transition will only occur if ε·⃗r  
belongs to the same irreducible representation as φf. The
TMTs belong to the P21/m space group1,2,51 where the
rotation axis is along the crystallographic b axis. This space
group corresponds to the C2h group symmetry in Schönflies
notation. However, at the surface of the material, both
rotational and inversion symmetries are lost such that the
group symmetry reduces to Cs. This loss of symmetry and the
corresponding change in the selection rules are likely
responsible for the dependence of the dichroic ratio on the
sample thickness.4,6 Based on density functional theory (DFT)
calculations,52 the bottom of the conduction band in TiS3 is
dominated by the Ti 3dz2 and 3dx2−y2 electron orbitals.
Similarly, the bottom of the conduction band in ZrS3 should
be largely Zr 4dz2 and 4dx2−y2.

53 All of these orbitals belong to
the highest symmetry irreducible representations in the C2h
and Cs symmetry groups. If the final states are limited to dz2
and dx2−y2, then, in the bulk with C2h symmetry, light polarized
along the orbital y axis (εy = along the chains) will exclusively
excite electrons from the py orbitals and light polarized along
the x axis (εx) will excite the px orbitals. Because of the
reduction of symmetry at the surface, εy can also excite the dyz
and dxy orbitals and εx + εz can also excite the dxz, dz2, and dx2−y2
orbitals, though the latter two should have negligible
contributions to the valence band.52,53 These additional

excitations will only occur if there is p−d hybridization since
d → d transitions are optically forbidden.49,50 The stronger
photocurrent signal using εy (Figure 2) indicates that the py
orbitals contribute most strongly to photocurrent production.
The cause of the py dominance, in the dichroism of

photoconductance, can be examined through symmetry
assignments of the experimentally determined band structure
using polarization-dependent nanoARPES, which is shown for
TiS3(001) and ZrS3(001) in Figures 3 and 4, respectively.

Photoemission is extremely surface sensitive with a final state
that is a fully symmetric free electron such that the selection
rules are the same as the photocurrent measurements. Electron
orbitals within the same irreducible representations were
distinguished with the assistance of previously reported DFT
calculations.52,53

Figure 3a schematically shows the light polarization
geometry for the nanoARPES measurements on TiS3(001)
shown in Figure 3c where ε ⃗ = εx + εz. Our previous work

1,2

utilized this polarization because it emphasizes the top of the
valence band, which may be attributed to the S 3px
orbitals.52,53 These px orbitals are highly anisotropic with a
hole effective mass that is twice as large along Γ̅ to Y̅ than
along Γ̅ to B̅, as has been noted elsewhere.1,2 The S 3pz orbitals
contribute most strongly to the band structure 2 eV below the
Fermi level (EF) or ∼1 eV below the valence band maximum,
and these bands have minimal dispersion. The S 3pz weighted
bands are very evident with light polarized along εx + εz
(Figure 3c), and the symmetry selection rules allow photo-
emission from this initial state. The features of the S 3pz bands

Figure 3. Experimental setups illustrating polarizations (a) εx + εz and (b) εz + εy used in the ARPES measurements of TiS3(001) shown in (c,d),
respectively, taken at a photon energy of 100 eV.

Figure 4. Angle-resolved photoemission derived band structure of
ZrS3(001) using incident light polarizations (a) εx, (b) εy, and (c) εx
+ εz. The photon energy is 130 eV.
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can be more easily discerned after a second derivative
treatment of the data, which was reported in our previous
work.2 Both of these assignments are in agreement with DFT
calculations.52

When the light polarization is switched to ε ⃗ = εz + εy (Figure
3b), additional bands are observed near the top of the valence
band (Figure 3d) which can be assigned to the S 3py orbitals.
The S 3px and 3py orbitals at the top of the valence band are
nearly degenerate at Γ̅, contrary to DFT calculations, which
place the 3py orbital weighted band at a binding energy well
below the 3px orbital.

3,20,52−54 Unlike the 3px orbitals, the 3py
bands have a significantly larger hole effective mass along Γ̅ to
B̅ than along Γ̅ to Y̅. The 3px hybridized bands remain visible,
though significantly weaker, with the light polarization
perpendicular to the x  orbital axis. This indicates that although
these bands are mostly S 3px weighted, they also have other
contributions which DFT calculations52 place as largely the Ti
3dxz orbitals.
The nanoARPES measurements on ZrS3(001) with polar-

ization vectors εx, εy, and εx + εz are shown in Figure 4a−c,
respectively. As with TiS3(001), the S 3px and 3py orbitals in
ZrS3(001) are both present near the top of the valence band
and nearly degenerate at Γ̅. Previous ARPES measurements on
ZrS3(001) attributed these two bands to spin−orbit
coupling.55 The orbital symmetries of these two bands, near
the top of the valence band, are observed to be significantly
different in Figure 4. Furthermore, the spectral weight
assignments to sulfur weight p bands, as suggested by theory,
and the absence of wave vector displacement that is typical of
spin−orbit coupling indicate that this band splitting at the top
of the valence band at Γ̅ is not dominated by spin−orbit
splitting and has no exchange splitting contribution.
The S 3px orbital weighted band is almost entirely absent in

Figure 4c which is consistent with S 3px combined with a
minor Zr 4dxz component dominating the top of the valence
band. As with TiS3, the S 3pz character states in ZrS3
contribute to the valence band structure at binding energies
∼1 eV below the valence band maximum. These symmetry
assignments are the same as seen in Figure 3 for TiS3(001) and
agree with DFT for TiS3(001)

52 and ZrS3(001).
53

Based on Figures 3 and 4, the S py orbitals extend from close
to the valence band maximum to binding energies ∼2 eV
below the valence band maximum. The S py orbitals,
nonetheless, have a strong spectral weight density within 0.5
eV of the valence band maximum. Because the top of the
valence band occurs at the center of the BZ,1,2 the near
degeneracy of the py and px bands at the center of the BZ, Γ̅,
affects light polarization sensitivity. If the trichalcogenide S px
orbital weighted band occurred at significantly higher binding
energies than the S py orbital weight bands, as suggested by
theory,3,20,52−54 then excitation energies close to the band gap
would generate larger photocurrents with light polarized
perpendicular to the 1D chains, resulting in a region of
photon energy where the dichroic ratio could switch.
Larger Z value TMTs, specifically ZrSe3 and HfSe3, do

exhibit an appreciable splitting in binding energy between the
trichalcogenide S px and S py bands at Γ̅,55 but this splitting is
not resolved here at Γ̅, the center of the surface BZ, for
TiS3(001) and ZrS3(001), as seen in Figures 3 and 4,
respectively. Yet, the existing band structure calculations,52,53

that include symmetry assignments, are seen to be in
agreement with the experiment. The band structure is also

seen to be consistent with many of the device characteristics as
noted elsewhere.12

Since the dz2 and dx2−y2 orbitals dominate the bottom 0.5 eV
of the conduction band for both ZrS3 and TiS3,

52,53 it is
expected that the dichroic ratios will be maximized with
excitation energies within 1 eV of the band gap and will begin
to diminish for larger excitation energies. The band gaps for
TiS3 and ZrS3 are ∼12,14,15,17,54,56,57 and ∼2 eV,1,4,20,53,54,58−61

respectively, so that the dichroic ratios should be maximized
with excitation energies of 1.0−2.0 eV for TiS3 and 2.0−3.0 eV
for ZrS3. This conclusion is supported by comparison of the
presently reported SPCM data with other experimental
measurements.3−6 Here, the polarization dependence of the
photoconductance is far more significant for ZrS3(001) than
for TiS3(001), but the photon energy of 2.5 eV (488 nm) used
here is much closer to the band gap of ZrS3 than TiS3. For
TiS3, the dichroic ratio has been observed to increase as the
photon excitation energy is decreased from 2.3 to 1.5 eV.3

Although prior absorption calculations vary significantly,3−5,62

they tend to place the maximum dichroic ratio at slightly
higher excitation energies, which is likely caused by the
discrepancies between calculated3,20,52−54 and experimen-
tal1,2,55 band structures mentioned earlier. Indeed, the optical
excitation wavelength used here (488 nm) is very close to the
observed optical resonance seen for ZrS3(001) (see Figure S2
in the Supporting Information). Despite possible discrepancies,
it is clear that when combined, TiS3 and ZrS3 have promise as
polarization sensitive photodetectors over a wide range of
wavelengths.

■ CONCLUSIONS
Both TiS3(001) and ZrS3(001) exhibit strongly polarization
sensitive photocurrent production because of their electronic
bands with distinct in-plane symmetries. As we have noted,
existing band structure calculations that include symmetry
assignments, as noted elsewhere,52,53 are seen to be in
agreement with the experiment. The S 3py orbital weighted
band is strongest within 0.5 eV of valence band maximum and
dominates photocurrent production. Because the bottom 0.5
eV of the conduction band for both materials is comprised
primarily of dz2 and dx2−y2 orbitals, the dichroism in the
photocurrent production will be most significant for excitation
energies between 1.0 and 2.0 eV for TiS3(001) and 2.0 and 3.0
eV for ZrS3(001). Thus, TiS3 and ZrS3 show considerable
promise as versatile polarization sensitive photodetectors
across the visible spectrum and into the near-infrared.
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