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Abstract

Recently, mixtures of ionic liquids (ILs) containing acetate [0Ac] and
tricyanomethanide [C(CN)s7] anions have demonstrated promising characteristics as solvents
and as CO:2 adsorbents. The anion composition can be optimized to obtain a significant
improvement in the diffusivity while only slightly decreasing the solubility. Here, we explore
a similar investigation applied to an ionic polyimide (i-PI) material in order to understand the
molecular-level kinetic and thermodynamic characteristics that emerge when a polymeric
material is used instead. The i-PI systems studied are part of an emerging class of “high-
performance” ionene polymers that hold significant potential for applications in gas
separation membranes. Here, neat i-PI systems with the two counter anions, [0Ac’] and
[C(CN)3], at varying concentrations are modeled by a combination of molecular dynamics
(MD) and grand canonical Monte Carlo (GCMC) simulations. Higher concentrations of
[C(CN)37] are predicted to improve CO: diffusion, similar to the pure IL performance, while
solubility remains relatively unchanged. The structural characteristics of the i-PI systems
provide detailed insight into the effect that the anions have on the adsorption properties. The
solubility is weakly related to the theoretical surface area, and the diffusivity is moderately
correlated to the fractional free volume (FFV). Overall, the combination of different anions is
predicted to be a viable strategy for improving the diffusivity throughout i-PI materials, but
the behavior of pure ILs cannot be simply extrapolated to ion behavior in membranes.
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1. Introduction

Over the past 20 years, there have been many reports on the fundamental behavior of
ionic liquids (ILs), as well as their applications in emerging technologies (electrical energy
storage, industrial gas processing, biomass processing, etc.).!” ILs are salts with low melting
points (often liquid near room temperature), and they tend to have very low vapor pressures,’
high thermal stability,” and low flammability.® Moreover, their specific physical and
chemical properties can be tuned to achieve a wide variety of values, depending upon the
combination of different cations and anions. The tunable nature of ILs provides a route for
designing highly selective solvents for use in industrial applications.

One of the most thoroughly explored applications of ILs is in industrial gas
processing, mainly in the separation of CO2 from N2 or CHa. However, the relatively high
COz selectivity and solubility are compromised by high IL viscosity and high cost (compared
to traditional bulk solvents, such as methanol or aqueous monoethanolamine). Thus, a variety
of alternative approaches are being explored, such as adsorption and membranes formed from
polymerized ILs (poly(ILs)) and supported ILs (SILMs).>°'® Past studies have indicated that
the anion choice plays a dominant role in the CO2 solubility performance,'”?’ and different
functional groups (alkyl, hydroxyl, ether, fluoroalkyl, etc.) can be used to tune the
behavior.?!'*” Recent studies have mostly focused on ILs containing anions which are more
nucleophilic toward CO2, such as acetate [oAc] ** % or imidazolide or pyrrolide. *°

Mixtures of the ILs 1-butyl-3-methylimidazolium acetate, [Csmim][oAc], and

1-butyl-3-methylimidazolium tricyanomethanide, [C4mim][C(CN)s], have been previously
investigated in the literature.*" ** [C4mim][oAc] has demonstrated favorable solvation

properties and has been used for CO: adsorption®

and dissolution of lignocellulose
materials.* > 3% 3 Although the CO; absorption performance is good, its high viscosity (932.3
Pa‘s at 293.15 K)** limits mass transport, which compromises its industrial utility. On the other
hand, pure [Camim][C(CN)3] has an unusually low viscosity,’” but its CO> solubility is 10 times
lower than in [Camim][0Ac]. Due to the general tradeoft in performance, ILs containing these two
anions have been used to obtain IL mixtures with the desired balance of thermophysical properties.
For instance, there is a decrease of the viscosity and a significant increase of ion self-diffusion

coefficients with increasing [C(CN)3] content,*

as well as the diffusivity of the gas molecules in
the mixture®® Likewise, the absorption of CO: decreases with increasing [C(CN)s]

concentration.’!



Beyond varying the composition of the bulk ILs, reports of closely-related polymeric
materials have been rapidly growing in the literature. This includes examples of SILMs,
poly(ILs), and other composite membranes. These materials can circumvent some of the
common challenges (cost, energy consumption, solvent recovery, high viscosities, etc.)
associated with the use of IL solvents in conventional absorber-stripper/flash gas
processing.*® Furthermore, poly(ILs) and related composite materials allow for a broader
design space, as the underlying polymer structure and the IL chemistry can be individually
tailored to a specific application.***¢ For instance, an IL immobilized on mesoporous silica
has been shown to increase the CO2/CHa4 selectivity by up to 35%, as compared to
unmodified silica.*’ Studies of 1-ethyl-3-methylimidazolium bistriflimide ([C2mim][Tf:N])
incorporated in Matrimid (a polyimide used in commercial membrane processes) have shown
an increase in the CO:2 permeability coefficient from 6.5 to 38 barrer and the CO2/CH4
permselectivity from 32 to 63.*! Bara, et al.¥ has investigated the polymerized room-
temperature ionic liquids, poly(RTIL) and polymerized room-temperature ionic liquid -room
temperature ionic liquid, poly(RTIL)-RTIL, composite membrane. Incorporation of just 20
mol% free RTIL in the polymer membrane yields a stable material with a CO2 permeability
increase of around 400% and a 33% improvement in CO2/Nz selectivity, as compared to the
neat poly(RTIL). Li, et al.** have also reported the advantages of adding ILs to polymerized
ILs with respect to COz separation in their experimental studies. An increase in 1-butyl-3-
methylimidazolium bistriflimide, [C4mim][Tf2N], content up to 60 wt% within a poly(1-
vinyl-3-butylimidazolium  bistriflimide - 1-butyl-3-methylimidazolium bistriflimide,
poly([vbim][Tf2N])-[Camim][Tf2N], composite membrane resulted in an increase in
solubility of CO2 from 15.1:107 to 23.3-107 cm’(gas STP)/(cm*(RTIL) cmHg) and N2 from
0.61-107 to 0.95-10° cm’(gas STP)/(cm*(RTIL) cmHg). Also, the diffusivity of CO:
increased from 0.67-10° cm s to 2.4-10° ¢cm s™ and that of N2 increased from 0.75-10° cm
s't02.27 10 cm s!. Overall, the permeability of CO; increased from 101.4 barrer to 559.5
barrer, and N2 permeability increased from 4.55 barrer to 21.6 barrer. However, the IL
addition does not change the corresponding CO2/Nz selectivity values, which are ~22 in all
systems.

1.48

Tome, et al.*® explored the properties of SILMs with mixtures of ILs for CO:

separation, focusing on ILs with [Comim] cations paired with different cyano-functionalized

49-51

anions (due to their high CO: permeabilities and selectivities and low viscosities®?).

Improved CO: solubility selectivity was obtained by mixing acetate or lactate with [Tf2N7],
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but the presence of the carboxylate anions decreased the gas permeability through the SILMs
due to the high viscosity. Higher CO: separation performance was found for IL mixtures
containing anions like [N(CN)2] and [SCN'], which are inherently less viscous. Cyano-
functionalized anions can have a significant impact on the gas permeation properties of SILM
membranes, and depending on the number of cyano groups present, the gas permeabilities,
diffusivities and solubilities can be been tuned.*® In general, SILMs prepared with these IL
mixtures approach the Robeson upper bound™ for CO2/N: separation.*® Similar to bulk ILs,
the SILM results demonstrate that a proper balance between CO: selectivity and viscosity is
crucial to achieve improved CO: separation performance.*®

The performance trends summarized above serve as motivation to extend this concept
to the design of ionic polyimide (i-PI) materials. An i-PI is a type of ionene®* polymer with
imidazolium cations in the backbone separated by an diimide linker, which is pyromellitic
dianhydride, PMDA in this study (see Figure 1). Unbound counter ions maintain system
neutrality, and additional ILs can be absorbed by / added to these polymers to create
composite materials.*® Here, we focus on the influence of different anion concentrations,
since the anions tend to form stronger associations with CO2 molecules® and have a stronger
influence on CO2 solubility.”> We have modeled [0Ac]:[C(CN)s] anion compositions of
100%:0%, 75%:25%, 50%:50%, 25%:75% and 0%:100%, including their interactions with
CO2 and corresponding molecular-level structural characteristics. The simulation results
obtained indicate that the anion composition can be used to tune the gas separation properties
of the i-PI polymer, but the general performance trends diverge from those observed in the

corresponding bulk IL mixtures.

2. Simulation details

The structure of the i-PI monomer units is presented in Figure 1, along with key sites
labeled. In total, 200 monomers were used to build the i-PI polymers. Ionic polyimide
monomers were inserted into the simulation box followed by energy minimization using a
steepest-descent algorithm. The system was then relaxed with MD simulation using
alternating cycles of canonical (NVT) simulation and isothermal-isobaric (NPT) simulation,
followed by a slow quench to 294 K and 1 bar. The monomer units were polymerized using a
nearest-neighbor algorithm by connecting the head and tail groups. This step was followed by
additional relaxation with MD. A detailed description of the polymerization procedure can be

found in our previous works.*>>” The resulting system is a dispersion of i-PI polymer chains,
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ranging in length from 6 to 80 repeat units and a number average molecular weight of 36.6
kDa with a dispersity of 6.0. The i-PI systems were studied with two different counter ions,
[oAc] and [C(CN)37], over a range of compositions, as summarized in Table 1. Due to the
slow relaxation dynamics of the polymers, the approach used to estimate the CO2 adsorption
in our i-PI system is consistent with that used in our previous studies.’>>” In summary, after
several NVT and NPT molecular dynamics (MD) stages of structural relaxation, the i-PI
system is brought to a final temperature of 294 K and a pressure of 1 bar. All MD simulations
were performed with GROMACS 5.0.%® In order to simulation CO> adsorption in the system,
grand canonical Monte Carlo (GCMC) simulations were performed with Cassandra.” ® In
order to improve convergence, the GCMC and MD simulations were combined in alternating
stages. During the GCMC simulations, the polymer is held rigid, while the GCMC sampling
proceeds for at least 3 x 10° steps (33% insertion, 33% deletion, 17% translation, and 17%
rotation). After each stage of GCMC, the resulting structure (including the gas molecules) is
relaxed via a 1 ns NVT MD simulation at 294 K. Following 15 cycles of GCMC/MD, the
COz adsorption was found to saturate, and the systems were then further relaxed for 20 ns. In
order to study gas transport in the i-PI systems, long-time simulations are required, so an
additional 100 ns of MD simulation were used for analyzing transport behavior in the

systems.

Table 1. Summary of i-PI systems simulated. All compositions correspond to a total of 200
monomers units (with polymers of varying length).

short name number of number of molar ratio equilibrium density,
[OACcT] [C(CN)37] [OACT]:[C(CN)s7] g cm’
0Ac100 400 0 100:0 1.296 + 0.069
0Ac075 325 75 75:25 1.292 + 0.060
0Ac050 200 200 50:50 1.290 + 0.062
0Ac025 75 325 25:75 1.284 +0.067
0Ac000 0 400 0:100 1.279 + 0.046

In the above simulations, the Lennard-Jones potential and electrostatic interactions
were calculated with a cutoff distance of 1.4 nm, and the smooth particle mesh Ewald sum

(SPME)®! method was used to estimate long-range electrostatic interactions, with 0.16 nm



Fourier spacing. In MD, the Nose—Hoover thermostat®> was used to maintain the
temperature, the Parrinello-Rahman® barostat was used to maintain the pressure, and the
time step was 1 fs. Periodic boundary conditions in all three dimensions were used
throughout. The i-PI was modeled using the OPLS-AA force field,** supplemented by partial

charges estimated previously>

with electronic structure calculations. As in our previous
work, the force field parameters for the anions were taken from Lopes, et al.®**”* and the
TraPPE force field was used for CO27!""* The Lorentz—Berthelot mixing rules were used for

cross-term interactions.
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Figure 1. The structure of the i-PI monomer and anions with key atomic labels indicated.

The mean square displacement (MSD) of the CO2 molecules (center of mass) was
calculated over a time span of 100 ns to estimate the diffusion coefficient (DMSP), obtained
using the Einstein relation corresponding to the linear regime. The theoretical surface area of
the i-PI system was calculated from configurations of the polymer after the MD relaxation
process. The reported surface areas represent an average taken from 50 different structural
configurations sampled from the trajectory every 2 ns. Additionally, the FFV of each
polymer system was calculated by sampling 50 configurations, taken every 2 ns during the
MD simulations. The Gelb and Gubbins approach was used for these structural analyses,”*

and additional implementation details are provided in prior works from our group.>> 3

3. Results
Densities of all i-PI compositions are presented in Table 1. The maximum density is
1.296 g cm™ in the 0Ac100 system, and it decreases with the addition of [C(CN)s] (reaching

1.279 g cm™ in 0Ac000). The fractional free volume (FFV), surface area, and the cavity size

distribution are presented in Figures 2a-c, respectively. Regardless of the probe size, the
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surface area increases (values are naturally inversely proportional to the probe diameter) with
respect to the [C(CN)3] fraction. The FFV also increases with increasing [C(CN)s7] fraction;
however, in both cases it is not a monotonic linear increase. While the FFV increases with
higher concentrations of [C(CN)37] up to a maximum of 0.296, the impact is marginal (i.e., an
FFV increase of 3.5%). This is similar to the low variability that we previously predicted
with other anions, ([PFs], [BF4+] and [Tf:N7),>’ corresponding to slightly different FFV
values of 0.297, 0.303, and 0.305, respectively. Thus, the FFV is more likely to be influenced
by the organization of the polymer backbone versus the corresponding anions, which have
greater structural mobility. Other i-PI monomers with increased rigidity are currently being

investigated (computationally and experimentally), in order to have a more direct influence

on the FFV of the polymer.
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Figure 2. The (a) FFV and (b) surface area (using probe diameters of 3.0 and 4.0 angstroms)
as a function of the anion composition. The cavity size distribution corresponding to three

different systems are illustrated in (c). The lines included are a guide to the eye.



The cavity size distribution shown in part (c) of Figure 2 is very similar, regardless
of anion concentration, with a peak at around 0.6 A. However, the tail corresponding to the
larger cavity sizes (1.5-2.0 A) is more relevant to adsorption properties. Within this region,
the systems that include [C(CN)s7] display elevated values, and this also corresponds to
increased CO2 diffusion coefficients in the materials. The solubility and diffusivity of CO2 as

a function of [C(CN)37] composition are presented in Figure 3a and 3b, respectively.
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Figure 3. The (a) diffusion coefficient and (b) solubility of CO: as a function of the

[C(CN)3] anion concentration. The lines included are a guide to the eye.

The diffusion coefficient of CO: increases from around 5 - 107 c¢cm? s’ to
20-10° cm? s as the relative amount of [C(CN)3] anions increases from 0% to 100%.
Increased CO2 diffusivity was also observed in the mixtures of the pure ILs, ranging from
19.7 - 107 cm? s!' in pure [Csmim][oAc] to 47.6 - 107 cm? s' in
[Camim][C(CN)s3]o.7s[0Ac]o2s.! The increased gas diffusivity follows the viscosity decrease
observed for these mixtures.*> However, the diffusion coefficient is two orders of magnitude
higher in ILs than in our i-PI systems, likely due to the rigid polymer backbone. In our
systems, we also observe that the FFV increases with respect to the [C(CN)37] content, and
this appears to be related to the diffusion coefficient, as previously suggested by others.” 7
Mohammad, et al.”® found that the logarithm of the diffusion coefficient of CO2 in crystalline
and amorphous cellulose increases linearly with respect to the FFV. This same relationship

for the i-PI systems of interest is presented in Figure 4, presenting a similar correlation.
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Figure 4. Correlation between the CO: diffusion coefficient and the FFV of the i-PI systems

of interest. The line is a least-squares fit of the data, with R? = 0.76.

Solubility of CO: in the mixtures of [Csmim][C(CN)s]x[0oAc]ix in i-PIs showed
a small increase with the increase of the [C(CN)3’] concentration. A clearly different trend
was found from the experimental results of bulk IL mixtures,*' as the absorption was much
lower in [Camim][C(CN)3] and increased with respect to the [Camim][oAc] concentration.
This was attributed to the chemical reaction of the gas with [Csmim][oAc] through a
mechanism involving the formation of a carbene [Cismim']-CO: complex.”” 7" This
complex was also observed in the [Camim][0Ac]x[C(CN)3]x-1 mixture, but was not found in
pure [Camim][C(CN)3]. The presence of the carbene complex has been linked to the
formation of acetic acid (HoAc) in both neat [Camim][oAc] and [Csmim][0Ac]x[C(CN)3]x-1
mixture systems.?” 3! Although this reactive interaction is not captured with classical MD, a

strong association between these groups in observed in the current simulations.
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Figure 5. The radial distribution functions between the CR atoms in polymer backbone (as
assigned in Figure 1) and the C atom of COa.



The radial distribution function (RDF) between CO: and the CR sites of the cation
(assigned as CR1 and CR2 in Figure 1) in the i-PI backbone is illustrated in Figure 5. In the
case of CR1 (carbon atom in the cation ring located closer to the PMDA linker), the affinity
with COzis significantly higher in the 0Ac100 system. For 0Ac000, the second maximum at
approximately 6 A is considerably higher than the first, suggesting a reduced probability of
ultimately forming the mentioned carbene complex. In the case of the CR2 site, there are
some moderate offsetting interactions observed. For instance, while 0Acl100 displays the
smallest first peak with the CR1 site, the opposite behavior is found at the CR2 site (0Ac000
corresponds to the largest peak).

The surface area shows a weak correlation to the CO: solubility, as illustrated in
Figure 6. This correlation was explored previously and found to be much stronger in other
i-PI systems containing [PF¢], [BF47, and [Tf:N"] anions.>> 3¢ The theoretical surface area,
contrary to the FFV, changes significantly with respect to the anion used. Additionally, as
shown by Brennecke, et al.,!”?° the anions have a dominant role in CO: solubility for bulk IL
systems, but in our systems the overall range of CO2 solubility was relatively narrow making

it difficult to establish a definitive correlation.
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Figure 6. CO2 solubility as a function of the surface area (corresponding to a probe diameter
of 3.0 A). The red line is a least-square fit to the data, with an R? value of 0.624.

Figure 7 shows the RDF between CO: and the different nitrogen sites of the polymer
backbone, the central carbon of [C(CN)s7] anion (C3A), and the carbon atom of the carboxyl

group of the [0Ac] anion (CTA) in the different anion mixtures.
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Figure 7. RDF between COz (C atom) and (a) the central carbon atom of the [C(CN)37] anion
(C3A), (b) the central carbon atom the [0Ac’] anion (CTA), (¢c) N3 imidazolium site of the
polymer backbone (d), N1 imide site of the polymer backbone, and (e) N5 imidazolium site
of the polymer backbone. Site labels are illustrated in Figure 1.

The RDFs indicate that the CO2 molecules are more often observed in the vicinity of
the anions. Lepre, et al.’! also found that CO: is mostly solvated by the anions in the bulk
ILs, and the affinity between CO2 and the [C(CN)s] anions is a bit stronger than with the
[0Ac’] anions. This is similar to findings for the i-PI systems of interest here. Regardless of
the value of the peak height, the first maximum of the N3-CO2 and N5-COz2 plots tends to
move to longer or shorter distances, respectively, with the increase of the [C(CN)37] fraction.
This is related to the weaker interaction of CO2 with the CR site of the cation upon increase
of the [C(CN)37] composition. Although the RDF between the anions and the N atoms in the
i-PI backbone is also calculated, no significant difference is found with respect to anion
composition (data not shown).

Overall, the results for our i-PI systems cannot easily be interpreted within the
context of bulk IL mixture behavior. For instance, Lepre, et al.’! found that the absorption of
CO2 in mixtures of [Camim][oAc] and [Camim][C(CN)3] is very close to that calculated by

simply averaging the results of the pure ILs, even in the presence of coexisting chemical and
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physical absorption mechanisms. This linear composition-dependent behavior of CO:2

34, 80-82 a5 well.

adsorption in bulk IL mixtures has been reported by several other authors,
However, this linear dependence may not be true for all bulk IL mixtures.®* Nevertheless, we
find that the properties of the bulk ILs cannot simply be translated to the trends in the i-PI

based systems for predicting the CO2 adsorption/diffusion properties.

4. Conclusion

In this study, the solubility and transport behaviors of CO2 within i-PI polymers were
modeled, focusing on the effects of varying ratios of two different counter anions, [0Ac’] and
[C(CN)37]. The structural properties of these polymers are calculated, and we observe an
increase of the surface area and FFV with respect to the [C(CN)s;’] concentration. The
addition of [C(CN)37] improves the diffusivity of the CO2 molecules, but the solubility is only
marginally affected. These findings contrast with the results for the bulk IL mixtures, as the
solubility decreases with respect to the [C(CN)3;7] in bulk IL mixtures. However, in both
cases, the addition of [C(CN)s7] improves the diffusion. Some of the i-PI structural features
can be correlated to the CO2 adsorption and diffusion (surface area weakly correlates with
solubility and FFV moderately correlates with diffusivity).

Our studies of similar i-PI polymer systems>>>’ have shown that the FFV does not
change considerably with respect to different anions, but there can be very large changes in
the theoretical surface area. The monomer structure tends to have a stronger influence on the
FFV (and ultimately gas diffusivity). However, the properties of the bulk ILs cannot be easily
transferred to the trends observed in the i-PI systems. Also, it should be recognized that there
are experimental aspects that are not often captured in the model systems, such as the

presence of water,?! which can directly affect the CO2 absorption capacity.®’
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