

Solubility and Diffusivity of CO₂ in Ionic Polyimides with [C(CN)₃]_x[oAc]_{1-x} Anion Composition

Joanna Szala-Bilnik, Ellis Crabtree, Asghar Abedini, Jason E. Bara, and C. Heath Turner*

Department of Chemical and Biological Engineering, The University of Alabama,
Tuscaloosa, Alabama, USA 35487-0203

Abstract

Recently, mixtures of ionic liquids (ILs) containing acetate [oAc⁻] and tricyanomethanide [C(CN)₃⁻] anions have demonstrated promising characteristics as solvents and as CO₂ adsorbents. The anion composition can be optimized to obtain a significant improvement in the diffusivity while only slightly decreasing the solubility. Here, we explore a similar investigation applied to an ionic polyimide (i-PI) material in order to understand the molecular-level kinetic and thermodynamic characteristics that emerge when a polymeric material is used instead. The i-PI systems studied are part of an emerging class of “high-performance” ionene polymers that hold significant potential for applications in gas separation membranes. Here, neat i-PI systems with the two counter anions, [oAc⁻] and [C(CN)₃⁻], at varying concentrations are modeled by a combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations. Higher concentrations of [C(CN)₃⁻] are predicted to improve CO₂ diffusion, similar to the pure IL performance, while solubility remains relatively unchanged. The structural characteristics of the i-PI systems provide detailed insight into the effect that the anions have on the adsorption properties. The solubility is weakly related to the theoretical surface area, and the diffusivity is moderately correlated to the fractional free volume (FFV). Overall, the combination of different anions is predicted to be a viable strategy for improving the diffusivity throughout i-PI materials, but the behavior of pure ILs cannot be simply extrapolated to ion behavior in membranes.

Keywords: separations; ionic liquids; molecular simulation; membrane; carbon dioxide

*Corresponding author contact information

hturner@eng.ua.edu

205-348-1733 (ph)

1. Introduction

Over the past 20 years, there have been many reports on the fundamental behavior of ionic liquids (ILs), as well as their applications in emerging technologies (electrical energy storage, industrial gas processing, biomass processing, etc.).¹⁻⁵ ILs are salts with low melting points (often liquid near room temperature), and they tend to have very low vapor pressures,⁶ high thermal stability,⁷ and low flammability.⁸ Moreover, their specific physical and chemical properties can be tuned to achieve a wide variety of values, depending upon the combination of different cations and anions. The tunable nature of ILs provides a route for designing highly selective solvents for use in industrial applications.

One of the most thoroughly explored applications of ILs is in industrial gas processing, mainly in the separation of CO₂ from N₂ or CH₄. However, the relatively high CO₂ selectivity and solubility are compromised by high IL viscosity and high cost (compared to traditional bulk solvents, such as methanol or aqueous monoethanolamine). Thus, a variety of alternative approaches are being explored, such as adsorption and membranes formed from polymerized ILs (poly(ILs)) and supported ILs (SILMs).^{2, 9-16} Past studies have indicated that the anion choice plays a dominant role in the CO₂ solubility performance,¹⁷⁻²⁰ and different functional groups (alkyl, hydroxyl, ether, fluoroalkyl, etc.) can be used to tune the behavior.²¹⁻²⁷ Recent studies have mostly focused on ILs containing anions which are more nucleophilic toward CO₂, such as acetate [oAc⁻]^{28, 29} or imidazolide or pyrrolide.³⁰

Mixtures of the ILs 1-butyl-3-methylimidazolium acetate, [C₄mim][oAc], and 1-butyl-3-methylimidazolium tricyanomethanide, [C₄mim][C(CN)₃], have been previously investigated in the literature.^{31, 32} [C₄mim][oAc] has demonstrated favorable solvation properties and has been used for CO₂ adsorption^{33, 34} and dissolution of lignocellulose materials.^{4, 5, 35, 36} Although the CO₂ absorption performance is good, its high viscosity (932.3 Pa·s at 293.15 K)³³ limits mass transport, which compromises its industrial utility. On the other hand, pure [C₄mim][C(CN)₃] has an unusually low viscosity,³⁷ but its CO₂ solubility is 10 times lower than in [C₄mim][oAc]. Due to the general tradeoff in performance, ILs containing these two anions have been used to obtain IL mixtures with the desired balance of thermophysical properties. For instance, there is a decrease of the viscosity and a significant increase of ion self-diffusion coefficients with increasing [C(CN)₃⁻] content,³² as well as the diffusivity of the gas molecules in the mixture.³⁸ Likewise, the absorption of CO₂ decreases with increasing [C(CN)₃⁻] concentration.³¹

Beyond varying the composition of the bulk ILs, reports of closely-related polymeric materials have been rapidly growing in the literature. This includes examples of SILMs, poly(ILs), and other composite membranes. These materials can circumvent some of the common challenges (cost, energy consumption, solvent recovery, high viscosities, etc.) associated with the use of IL solvents in conventional absorber-stripper/flash gas processing.³⁹ Furthermore, poly(ILs) and related composite materials allow for a broader design space, as the underlying polymer structure and the IL chemistry can be individually tailored to a specific application.⁴⁰⁻⁴⁶ For instance, an IL immobilized on mesoporous silica has been shown to increase the CO₂/CH₄ selectivity by up to 35%, as compared to unmodified silica.⁴⁰ Studies of 1-ethyl-3-methylimidazolium bis(trifluoromethylsilyl)imide ([C₂mim][Tf₂N]) incorporated in Matrimid (a polyimide used in commercial membrane processes) have shown an increase in the CO₂ permeability coefficient from 6.5 to 38 barrer and the CO₂/CH₄ permselectivity from 32 to 63.⁴¹ Bara, et al.⁴⁷ has investigated the polymerized room-temperature ionic liquids, poly(RTIL) and polymerized room-temperature ionic liquid -room temperature ionic liquid, poly(RTIL)-RTIL, composite membrane. Incorporation of just 20 mol% free RTIL in the polymer membrane yields a stable material with a CO₂ permeability increase of around 400% and a 33% improvement in CO₂/N₂ selectivity, as compared to the neat poly(RTIL). Li, et al.⁴² have also reported the advantages of adding ILs to polymerized ILs with respect to CO₂ separation in their experimental studies. An increase in 1-butyl-3-methylimidazolium bis(trifluoromethylsilyl)imide, [C₄mim][Tf₂N], content up to 60 wt% within a poly(1-vinyl-3-butylimidazolium bis(trifluoromethylsilyl)imide - 1-butyl-3-methylimidazolium bis(trifluoromethylsilyl)imide, poly([vbim][Tf₂N])- [C₄mim][Tf₂N]), composite membrane resulted in an increase in solubility of CO₂ from $15.1 \cdot 10^{-3}$ to $23.3 \cdot 10^{-3}$ cm³(gas STP)/(cm³(RTIL) cmHg) and N₂ from $0.61 \cdot 10^{-3}$ to $0.95 \cdot 10^{-3}$ cm³(gas STP)/(cm³(RTIL) cmHg). Also, the diffusivity of CO₂ increased from $0.67 \cdot 10^{-6}$ cm s⁻¹ to $2.4 \cdot 10^{-6}$ cm s⁻¹ and that of N₂ increased from $0.75 \cdot 10^{-6}$ cm s⁻¹ to $2.27 \cdot 10^{-6}$ cm s⁻¹. Overall, the permeability of CO₂ increased from 101.4 barrer to 559.5 barrer, and N₂ permeability increased from 4.55 barrer to 21.6 barrer. However, the IL addition does not change the corresponding CO₂/N₂ selectivity values, which are ~22 in all systems.

Tome, et al.⁴⁸ explored the properties of SILMs with mixtures of ILs for CO₂ separation, focusing on ILs with [C₂mim⁺] cations paired with different cyano-functionalized anions (due to their high CO₂ permeabilities and selectivities⁴⁹⁻⁵¹ and low viscosities⁵²). Improved CO₂ solubility selectivity was obtained by mixing acetate or lactate with [Tf₂N⁻],

but the presence of the carboxylate anions decreased the gas permeability through the SILMs due to the high viscosity. Higher CO₂ separation performance was found for IL mixtures containing anions like [N(CN)₂⁻] and [SCN⁻], which are inherently less viscous. Cyano-functionalized anions can have a significant impact on the gas permeation properties of SILM membranes, and depending on the number of cyano groups present, the gas permeabilities, diffusivities and solubilities can be tuned.⁴⁸ In general, SILMs prepared with these IL mixtures approach the Robeson upper bound⁵³ for CO₂/N₂ separation.⁴⁸ Similar to bulk ILs, the SILM results demonstrate that a proper balance between CO₂ selectivity and viscosity is crucial to achieve improved CO₂ separation performance.⁴⁸

The performance trends summarized above serve as motivation to extend this concept to the design of ionic polyimide (i-PI) materials. An i-PI is a type of ionene⁵⁴ polymer with imidazolium cations in the backbone separated by an diimide linker, which is pyromellitic dianhydride, PMDA in this study (see Figure 1). Unbound counter ions maintain system neutrality, and additional ILs can be absorbed by / added to these polymers to create composite materials.⁴⁶ Here, we focus on the influence of different anion concentrations, since the anions tend to form stronger associations with CO₂ molecules² and have a stronger influence on CO₂ solubility.²⁰ We have modeled [oAc⁻]:[C(CN)₃⁻] anion compositions of 100%:0%, 75%:25%, 50%:50%, 25%:75% and 0%:100%, including their interactions with CO₂ and corresponding molecular-level structural characteristics. The simulation results obtained indicate that the anion composition can be used to tune the gas separation properties of the i-PI polymer, but the general performance trends diverge from those observed in the corresponding bulk IL mixtures.

2. Simulation details

The structure of the i-PI monomer units is presented in Figure 1, along with key sites labeled. In total, 200 monomers were used to build the i-PI polymers. Ionic polyimide monomers were inserted into the simulation box followed by energy minimization using a steepest-descent algorithm. The system was then relaxed with MD simulation using alternating cycles of canonical (NVT) simulation and isothermal-isobaric (NPT) simulation, followed by a slow quench to 294 K and 1 bar. The monomer units were polymerized using a nearest-neighbor algorithm by connecting the head and tail groups. This step was followed by additional relaxation with MD. A detailed description of the polymerization procedure can be found in our previous works.⁵⁵⁻⁵⁷ The resulting system is a dispersion of i-PI polymer chains,

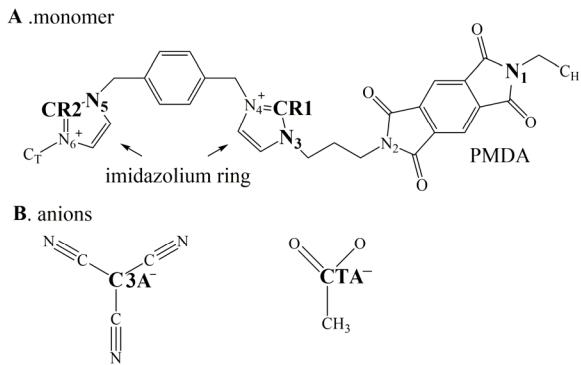
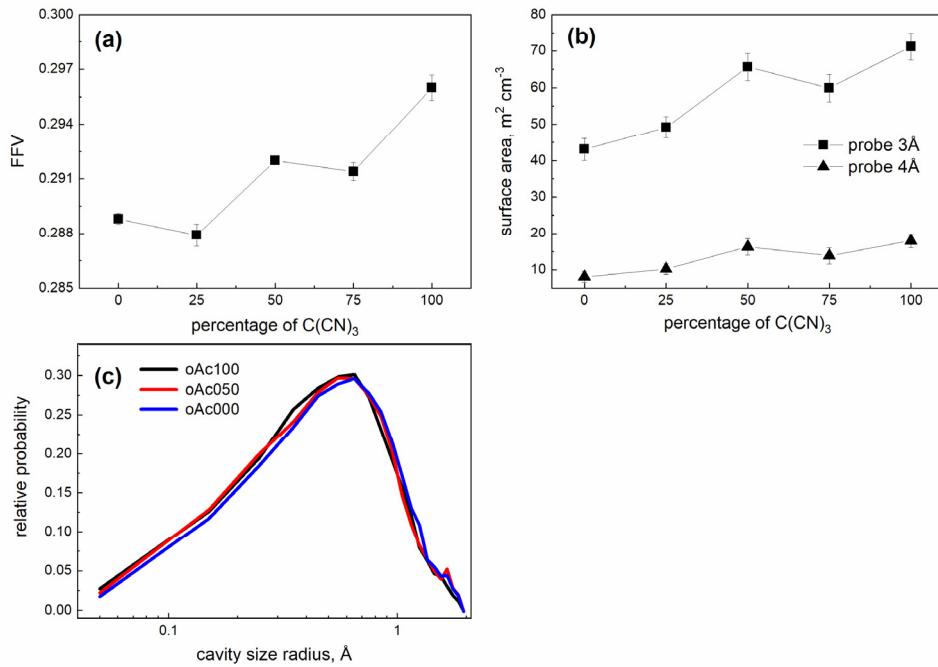

ranging in length from 6 to 80 repeat units and a number average molecular weight of 36.6 kDa with a dispersity of 6.0. The i-PI systems were studied with two different counter ions, $[\text{oAc}^-]$ and $[\text{C}(\text{CN})_3^-]$, over a range of compositions, as summarized in Table 1. Due to the slow relaxation dynamics of the polymers, the approach used to estimate the CO_2 adsorption in our i-PI system is consistent with that used in our previous studies.⁵⁵⁻⁵⁷ In summary, after several NVT and NPT molecular dynamics (MD) stages of structural relaxation, the i-PI system is brought to a final temperature of 294 K and a pressure of 1 bar. All MD simulations were performed with GROMACS 5.0.⁵⁸ In order to simulation CO_2 adsorption in the system, grand canonical Monte Carlo (GCMC) simulations were performed with Cassandra.^{59, 60} In order to improve convergence, the GCMC and MD simulations were combined in alternating stages. During the GCMC simulations, the polymer is held rigid, while the GCMC sampling proceeds for at least 3×10^6 steps (33% insertion, 33% deletion, 17% translation, and 17% rotation). After each stage of GCMC, the resulting structure (including the gas molecules) is relaxed via a 1 ns NVT MD simulation at 294 K. Following 15 cycles of GCMC/MD, the CO_2 adsorption was found to saturate, and the systems were then further relaxed for 20 ns. In order to study gas transport in the i-PI systems, long-time simulations are required, so an additional 100 ns of MD simulation were used for analyzing transport behavior in the systems.

Table 1. Summary of i-PI systems simulated. All compositions correspond to a total of 200 monomers units (with polymers of varying length).

short name	number of $[\text{OAc}^-]$	number of $[\text{C}(\text{CN})_3^-]$	molar ratio $[\text{OAc}^-]:[\text{C}(\text{CN})_3^-]$	equilibrium density, g cm^{-3}
oAc100	400	0	100:0	1.296 ± 0.069
oAc075	325	75	75:25	1.292 ± 0.060
oAc050	200	200	50:50	1.290 ± 0.062
oAc025	75	325	25:75	1.284 ± 0.067
oAc000	0	400	0:100	1.279 ± 0.046

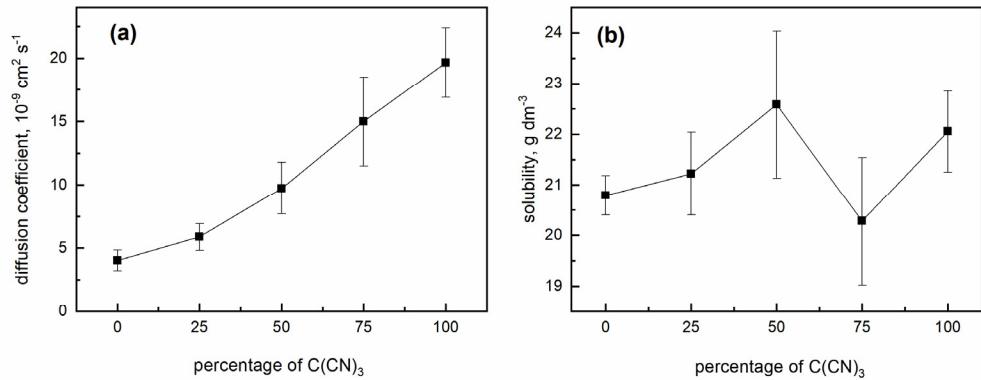
In the above simulations, the Lennard-Jones potential and electrostatic interactions were calculated with a cutoff distance of 1.4 nm, and the smooth particle mesh Ewald sum (SPME)⁶¹ method was used to estimate long-range electrostatic interactions, with 0.16 nm

Fourier spacing. In MD, the Nose–Hoover thermostat⁶² was used to maintain the temperature, the Parrinello–Rahman⁶³ barostat was used to maintain the pressure, and the time step was 1 fs. Periodic boundary conditions in all three dimensions were used throughout. The i-PI was modeled using the OPLS-AA force field,⁶⁴ supplemented by partial charges estimated previously^{55, 65} with electronic structure calculations. As in our previous work, the force field parameters for the anions were taken from Lopes, et al.⁶⁶⁻⁷⁰ and the TraPPE force field was used for CO₂.⁷¹⁻⁷³ The Lorentz–Berthelot mixing rules were used for cross-term interactions.

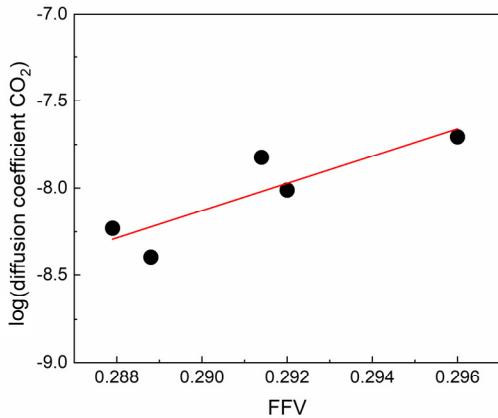

Figure 1. The structure of the i-PI monomer and anions with key atomic labels indicated.

The mean square displacement (MSD) of the CO₂ molecules (center of mass) was calculated over a time span of 100 ns to estimate the diffusion coefficient (D^{MSD}), obtained using the Einstein relation corresponding to the linear regime. The theoretical surface area of the i-PI system was calculated from configurations of the polymer after the MD relaxation process. The reported surface areas represent an average taken from 50 different structural configurations sampled from the trajectory every 2 ns. Additionally, the FFV of each polymer system was calculated by sampling 50 configurations, taken every 2 ns during the MD simulations. The Gelb and Gubbins approach was used for these structural analyses,⁷⁴ and additional implementation details are provided in prior works from our group.^{55, 56}

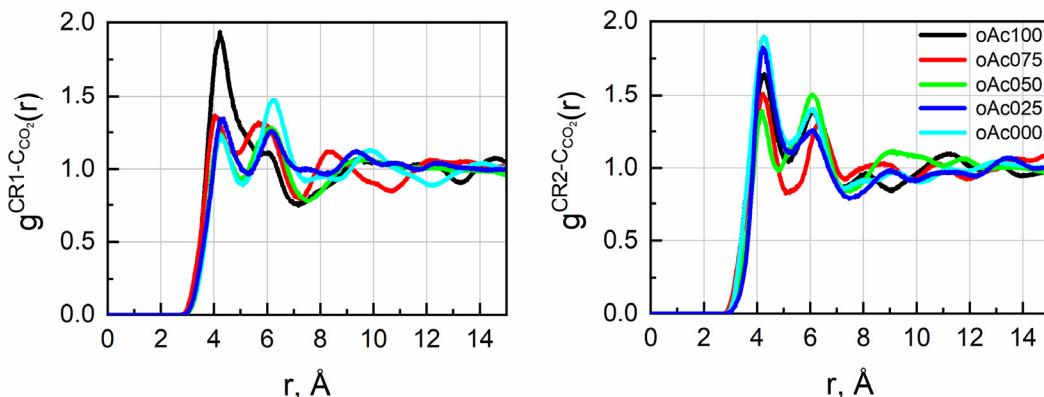
3. Results


Densities of all i-PI compositions are presented in Table 1. The maximum density is 1.296 g cm⁻³ in the oAc100 system, and it decreases with the addition of [C(CN)₃]⁻ (reaching 1.279 g cm⁻³ in oAc000). The fractional free volume (FFV), surface area, and the cavity size distribution are presented in Figures 2a-c, respectively. Regardless of the probe size, the

surface area increases (values are naturally inversely proportional to the probe diameter) with respect to the $[\text{C}(\text{CN})_3^-]$ fraction. The FFV also increases with increasing $[\text{C}(\text{CN})_3^-]$ fraction; however, in both cases it is not a monotonic linear increase. While the FFV increases with higher concentrations of $[\text{C}(\text{CN})_3^-]$ up to a maximum of 0.296, the impact is marginal (i.e., an FFV increase of 3.5%). This is similar to the low variability that we previously predicted with other anions, ($[\text{PF}_6^-]$, $[\text{BF}_4^-]$ and $[\text{Tf}_2\text{N}^-]$),⁵⁵⁻⁵⁷ corresponding to slightly different FFV values of 0.297, 0.303, and 0.305, respectively. Thus, the FFV is more likely to be influenced by the organization of the polymer backbone versus the corresponding anions, which have greater structural mobility. Other i-PI monomers with increased rigidity are currently being investigated (computationally and experimentally), in order to have a more direct influence on the FFV of the polymer.


Figure 2. The (a) FFV and (b) surface area (using probe diameters of 3.0 and 4.0 angstroms) as a function of the anion composition. The cavity size distribution corresponding to three different systems are illustrated in (c). The lines included are a guide to the eye.

The cavity size distribution shown in part (c) of Figure 2 is very similar, regardless of anion concentration, with a peak at around 0.6 Å. However, the tail corresponding to the larger cavity sizes (1.5-2.0 Å) is more relevant to adsorption properties. Within this region, the systems that include $[\text{C}(\text{CN})_3^-]$ display elevated values, and this also corresponds to increased CO_2 diffusion coefficients in the materials. The solubility and diffusivity of CO_2 as a function of $[\text{C}(\text{CN})_3^-]$ composition are presented in Figure 3a and 3b, respectively.


Figure 3. The (a) diffusion coefficient and (b) solubility of CO_2 as a function of the $[\text{C}(\text{CN})_3^-]$ anion concentration. The lines included are a guide to the eye.

The diffusion coefficient of CO_2 increases from around $5 \cdot 10^{-9} \text{ cm}^2 \text{ s}^{-1}$ to $20 \cdot 10^{-9} \text{ cm}^2 \text{ s}^{-1}$ as the relative amount of $[\text{C}(\text{CN})_3^-]$ anions increases from 0% to 100%. Increased CO_2 diffusivity was also observed in the mixtures of the pure ILs, ranging from $19.7 \cdot 10^{-7} \text{ cm}^2 \text{ s}^{-1}$ in pure $[\text{C}_4\text{mim}][\text{oAc}]$ to $47.6 \cdot 10^{-7} \text{ cm}^2 \text{ s}^{-1}$ in $[\text{C}_4\text{mim}][\text{C}(\text{CN})_3]_{0.75}[\text{oAc}]_{0.25}$.³¹ The increased gas diffusivity follows the viscosity decrease observed for these mixtures.³² However, the diffusion coefficient is two orders of magnitude higher in ILs than in our i-PI systems, likely due to the rigid polymer backbone. In our systems, we also observe that the FFV increases with respect to the $[\text{C}(\text{CN})_3^-]$ content, and this appears to be related to the diffusion coefficient, as previously suggested by others.^{75, 76} Mohammad, et al.⁷⁶ found that the logarithm of the diffusion coefficient of CO_2 in crystalline and amorphous cellulose increases linearly with respect to the FFV. This same relationship for the i-PI systems of interest is presented in Figure 4, presenting a similar correlation.

Figure 4. Correlation between the CO_2 diffusion coefficient and the FFV of the i-PI systems of interest. The line is a least-squares fit of the data, with $R^2 = 0.76$.

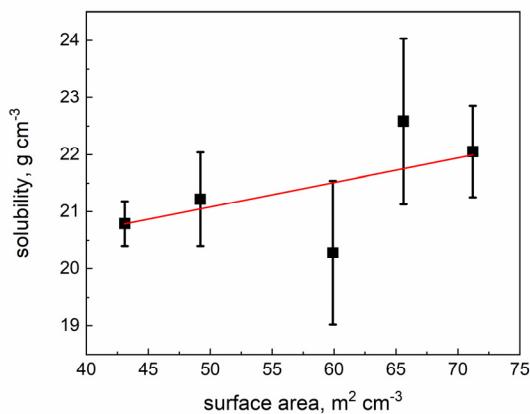
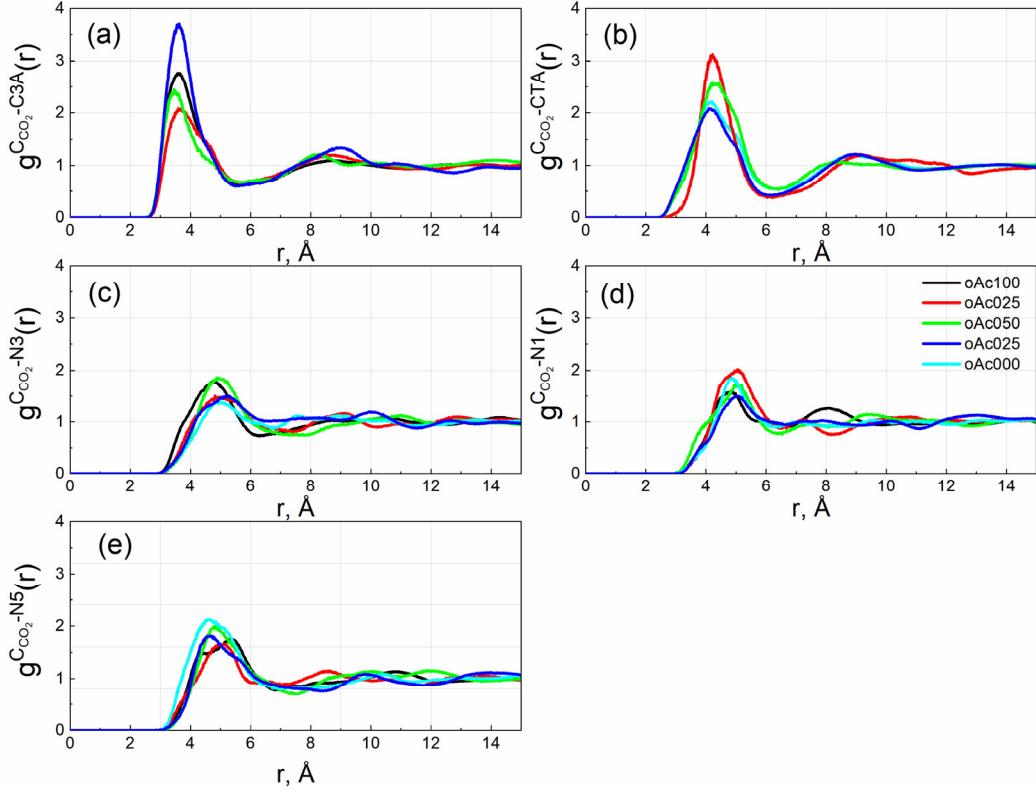

Solubility of CO_2 in the mixtures of $[\text{C}_4\text{mim}][\text{C}(\text{CN})_3]_x[\text{oAc}]_{1-x}$ in i-PIs showed a small increase with the increase of the $[\text{C}(\text{CN})_3^-]$ concentration. A clearly different trend was found from the experimental results of bulk IL mixtures,³¹ as the absorption was much lower in $[\text{C}_4\text{mim}][\text{C}(\text{CN})_3]$ and increased with respect to the $[\text{C}_4\text{mim}][\text{oAc}]$ concentration. This was attributed to the chemical reaction of the gas with $[\text{C}_4\text{mim}][\text{oAc}]$ through a mechanism involving the formation of a carbene $[\text{C}_4\text{mim}^+]\text{-CO}_2$ complex.^{29, 77-79} This complex was also observed in the $[\text{C}_4\text{mim}][\text{oAc}]_x[\text{C}(\text{CN})_3]_{x-1}$ mixture, but was not found in pure $[\text{C}_4\text{mim}][\text{C}(\text{CN})_3]$. The presence of the carbene complex has been linked to the formation of acetic acid (HoAc) in both neat $[\text{C}_4\text{mim}][\text{oAc}]$ and $[\text{C}_4\text{mim}][\text{oAc}]_x[\text{C}(\text{CN})_3]_{x-1}$ mixture systems.^{29, 31} Although this reactive interaction is not captured with classical MD, a strong association between these groups is observed in the current simulations.

Figure 5. The radial distribution functions between the CR atoms in polymer backbone (as assigned in Figure 1) and the C atom of CO_2 .


The radial distribution function (RDF) between CO₂ and the CR sites of the cation (assigned as CR1 and CR2 in Figure 1) in the i-PI backbone is illustrated in Figure 5. In the case of CR1 (carbon atom in the cation ring located closer to the PMDA linker), the affinity with CO₂ is significantly higher in the oAc100 system. For oAc000, the second maximum at approximately 6 Å is considerably higher than the first, suggesting a reduced probability of ultimately forming the mentioned carbene complex. In the case of the CR2 site, there are some moderate offsetting interactions observed. For instance, while oAc100 displays the smallest first peak with the CR1 site, the opposite behavior is found at the CR2 site (oAc000 corresponds to the largest peak).

The surface area shows a weak correlation to the CO₂ solubility, as illustrated in Figure 6. This correlation was explored previously and found to be much stronger in other i-PI systems containing [PF₆⁻], [BF₄⁻], and [Tf₂N⁻] anions.^{55, 56} The theoretical surface area, contrary to the FFV, changes significantly with respect to the anion used. Additionally, as shown by Brennecke, et al.,¹⁷⁻²⁰ the anions have a dominant role in CO₂ solubility for bulk IL systems, but in our systems the overall range of CO₂ solubility was relatively narrow making it difficult to establish a definitive correlation.

Figure 6. CO₂ solubility as a function of the surface area (corresponding to a probe diameter of 3.0 Å). The red line is a least-square fit to the data, with an R² value of 0.624.

Figure 7 shows the RDF between CO₂ and the different nitrogen sites of the polymer backbone, the central carbon of [C(CN)₃⁻] anion (C3A), and the carbon atom of the carboxyl group of the [oAc⁻] anion (CTA) in the different anion mixtures.

Figure 7. RDF between CO_2 (C atom) and (a) the central carbon atom of the $[\text{C}(\text{CN})_3^-]$ anion (C3A), (b) the central carbon atom the $[\text{oAc}^-]$ anion (CTA), (c) N3 imidazolium site of the polymer backbone (d), N1 imide site of the polymer backbone, and (e) N5 imidazolium site of the polymer backbone. Site labels are illustrated in Figure 1.

The RDFs indicate that the CO_2 molecules are more often observed in the vicinity of the anions. Lepre, et al.³¹ also found that CO_2 is mostly solvated by the anions in the bulk ILs, and the affinity between CO_2 and the $[\text{C}(\text{CN})_3^-]$ anions is a bit stronger than with the $[\text{oAc}^-]$ anions. This is similar to findings for the i-PI systems of interest here. Regardless of the value of the peak height, the first maximum of the N3- CO_2 and N5- CO_2 plots tends to move to longer or shorter distances, respectively, with the increase of the $[\text{C}(\text{CN})_3^-]$ fraction. This is related to the weaker interaction of CO_2 with the CR site of the cation upon increase of the $[\text{C}(\text{CN})_3^-]$ composition. Although the RDF between the anions and the N atoms in the i-PI backbone is also calculated, no significant difference is found with respect to anion composition (data not shown).

Overall, the results for our i-PI systems cannot easily be interpreted within the context of bulk IL mixture behavior. For instance, Lepre, et al.³¹ found that the absorption of CO_2 in mixtures of $[\text{C}_4\text{mim}][\text{oAc}]$ and $[\text{C}_4\text{mim}][\text{C}(\text{CN})_3]$ is very close to that calculated by simply averaging the results of the pure ILs, even in the presence of coexisting chemical and

physical absorption mechanisms. This linear composition-dependent behavior of CO₂ adsorption in bulk IL mixtures has been reported by several other authors,^{34, 80-82} as well. However, this linear dependence may not be true for all bulk IL mixtures.⁸³ Nevertheless, we find that the properties of the bulk ILs cannot simply be translated to the trends in the i-PI based systems for predicting the CO₂ adsorption/diffusion properties.

4. Conclusion

In this study, the solubility and transport behaviors of CO₂ within i-PI polymers were modeled, focusing on the effects of varying ratios of two different counter anions, [oAc⁻] and [C(CN)₃⁻]. The structural properties of these polymers are calculated, and we observe an increase of the surface area and FFV with respect to the [C(CN)₃⁻] concentration. The addition of [C(CN)₃⁻] improves the diffusivity of the CO₂ molecules, but the solubility is only marginally affected. These findings contrast with the results for the bulk IL mixtures, as the solubility decreases with respect to the [C(CN)₃⁻] in bulk IL mixtures. However, in both cases, the addition of [C(CN)₃⁻] improves the diffusion. Some of the i-PI structural features can be correlated to the CO₂ adsorption and diffusion (surface area weakly correlates with solubility and FFV moderately correlates with diffusivity).

Our studies of similar i-PI polymer systems⁵⁵⁻⁵⁷ have shown that the FFV does not change considerably with respect to different anions, but there can be very large changes in the theoretical surface area. The monomer structure tends to have a stronger influence on the FFV (and ultimately gas diffusivity). However, the properties of the bulk ILs cannot be easily transferred to the trends observed in the i-PI systems. Also, it should be recognized that there are experimental aspects that are not often captured in the model systems, such as the presence of water,³¹ which can directly affect the CO₂ absorption capacity.³³

Acknowledgments

Support for this work was provided by the National Science Foundation (CBET-1605411) and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Separation Science program under Award Number DE-SC0018181. Computer resources were provided by the Alabama Supercomputer Center.

Data Availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

1. Yang, S. Y.; Cicoira, F.; Byrne, R.; Benito-Lopez, F.; Diamond, D.; Owens, R. M.; Malliaras, G. G., Electrochemical transistors with ionic liquids for enzymatic sensing. *Chemical Communications* **2010**, 46 (42), 7972-7974.
2. Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y., Carbon capture with ionic liquids: overview and progress. *Energy & Environmental Science* **2012**, 5 (5), 6668-6681.
3. Brandt, A.; Ray, M. J.; To, T. Q.; Leak, D. J.; Murphy, R. J.; Welton, T., Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. *Green Chemistry* **2011**, 13 (9), 2489-2499.
4. Andanson, J.-M.; Bordes, E.; Devémy, J.; Leroux, F.; Pádua, A. A.; Gomes, M. F. C., Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. *Green Chemistry* **2014**, 16 (5), 2528-2538.
5. Mäki-Arvela, P.; Anugwom, I.; Virtanen, P.; Sjöholm, R.; Mikkola, J.-P., Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. *Industrial Crops and Products* **2010**, 32 (3), 175-201.
6. Earle, M. J.; Esperança, J. M.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P.; Magee, J. W.; Seddon, K. R.; Widegren, J. A., The distillation and volatility of ionic liquids. *Nature* **2006**, 439 (7078), 831.
7. Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W., Structure and properties of high stability geminal dicationic ionic liquids. *J Am Chem Soc* **2005**, 127 (2), 593-604.
8. Smiglak, M.; Reichert, W. M.; Holbrey, J. D.; Wilkes, J. S.; Sun, L.; Thrasher, J. S.; Kirichenko, K.; Singh, S.; Katritzky, A. R.; Rogers, R. D., Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? *Chemical Communications* **2006**, (24), 2554-2556.
9. Baltus, R. E.; Counce, R. M.; Culbertson, B. H.; Luo, H.; DePaoli, D. W.; Dai, S.; Duckworth, D. C., Examination of the potential of ionic liquids for gas separations. *Separ Sci Technol* **2005**, 40 (1-3), 525-541.
10. Scovazzo, P., Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for

the purpose of guiding future research. *Journal of Membrane Science* **2009**, *343* (1-2), 199-211.

11. Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D., Guide to CO₂ separations in imidazolium-based room-temperature ionic liquids. *Industrial & Engineering Chemistry Research* **2009**, *48* (6), 2739-2751.
12. Hasib-ur-Rahman, M.; Siaj, M.; Larachi, F., Ionic liquids for CO₂ capture—development and progress. *Chemical Engineering and Processing: Process Intensification* **2010**, *49* (4), 313-322.
13. Karadas, F.; Atilhan, M.; Aparicio, S., Review on the use of ionic liquids (ILs) as alternative fluids for CO₂ capture and natural gas sweetening. *Energy & Fuels* **2010**, *24* (11), 5817-5828.
14. Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N., CO₂ chemistry: task-specific ionic liquids for CO₂ capture/activation and subsequent conversion. *Rsc Advances* **2011**, *1* (4), 545-567.
15. Shannon, M. S.; Bara, J. E., Reactive and reversible ionic liquids for CO₂ capture and acid gas removal. *Separ Sci Technol* **2012**, *47* (2), 178-188.
16. Wang, C.; Luo, X.; Zhu, X.; Cui, G.; Jiang, D.-e.; Deng, D.; Li, H.; Dai, S., The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. *Rsc Advances* **2013**, *3* (36), 15518-15527.
17. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J., Why is CO₂ so soluble in imidazolium-based ionic liquids? *J Am Chem Soc* **2004**, *126* (16), 5300-5308.
18. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion effects on gas solubility in ionic liquids. *The Journal of Physical Chemistry B* **2005**, *109* (13), 6366-6374.
19. Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Solubility of CO₂, CH₄, C₂H₆, C₂H₄, O₂, and N₂ in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to Other Ionic Liquids. *Accounts Chem Res* **2007**, *40* (11), 1208-1216.
20. Muldoon, M. J.; Aki, S. N.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Improving carbon dioxide solubility in ionic liquids. *The Journal of Physical Chemistry B* **2007**, *111* (30), 9001-9009.
21. Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., CO₂ capture by a task-specific ionic liquid. *J Am Chem Soc* **2002**, *124* (6), 926-927.

22. Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H.; DePaoli, D. W., Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. *The Journal of Physical Chemistry B* **2004**, *108* (2), 721-727.

23. Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.; Finotello, A.; Gin, D. L.; Noble, R. D., Enhanced CO₂ separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids. *Industrial & Engineering Chemistry Research* **2007**, *46* (16), 5380-5386.

24. Camper, D.; Bara, J. E.; Gin, D. L.; Noble, R. D., Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO₂. *Industrial & Engineering Chemistry Research* **2008**, *47* (21), 8496-8498.

25. Carlisle, T. K.; Bara, J. E.; Gabriel, C. J.; Noble, R. D.; Gin, D. L., Interpretation of CO₂ solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. *Industrial & Engineering Chemistry Research* **2008**, *47* (18), 7005-7012.

26. Smith, G. D.; Borodin, O.; Li, L.; Kim, H.; Liu, Q.; Bara, J. E.; Gin, D. L.; Nobel, R., A comparison of ether-and alkyl-derivatized imidazolium-based room-temperature ionic liquids: a molecular dynamics simulation study. *Physical Chemistry Chemical Physics* **2008**, *10* (41), 6301-6312.

27. Almantariotis, D.; Gefflaut, T.; Pádua, A. A.; Coxam, J.-Y.; Costa Gomes, M., Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ionic liquids. *The Journal of Physical Chemistry B* **2010**, *114* (10), 3608-3617.

28. Wang, G.; Hou, W.; Xiao, F.; Geng, J.; Wu, Y.; Zhang, Z., Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO₂ absorption. *Journal of Chemical & Engineering Data* **2011**, *56* (4), 1125-1133.

29. Gurau, G.; Rodríguez, H.; Kelley, S. P.; Janiczek, P.; Kalb, R. S.; Rogers, R. D., Demonstration of chemisorption of carbon dioxide in 1, 3-dialkylimidazolium acetate ionic liquids. *Angewandte Chemie International Edition* **2011**, *50* (50), 12024-12026.

30. Wang, C.; Luo, X.; Luo, H.; Jiang, D. e.; Li, H.; Dai, S., Tuning the basicity of ionic liquids for equimolar CO₂ capture. *Angewandte Chemie International Edition* **2011**, *50* (21), 4918-4922.

31. Lepre, L.; Szala-Bilnik, J.; Pison, L.; Traikia, M.; Padua, A.; Ando, R.; Gomes, M. C., Can the tricyanomethanide anion improve CO₂ absorption by acetate-based ionic liquids? *Physical Chemistry Chemical Physics* **2017**, *19* (19), 12431-12440.

32. Lepre, L.; Szala-Bilnik, J.; Padua, A.; Traikia, M.; Ando, R.; Gomes, M. C., Tailoring the properties of acetate-based ionic liquids using the tricyanomethanide anion. *Physical Chemistry Chemical Physics* **2016**, *18* (33), 23285-23295.

33. Stevanovic, S. p.; Podgoršek, A.; Pádua, A. A.; Costa Gomes, M. F., Effect of water on the carbon dioxide absorption by 1-alkyl-3-methylimidazolium acetate ionic liquids. *The Journal of Physical Chemistry B* **2012**, *116* (49), 14416-14425.

34. Shiflett, M. B.; Yokozeki, A., Phase behavior of carbon dioxide in ionic liquids:[emim][acetate],[emim][trifluoroacetate], and [emim][acetate] + [emim][trifluoroacetate] mixtures. *Journal of Chemical & Engineering Data* **2008**, *54* (1), 108-114.

35. Zhao, H.; Baker, G. A.; Song, Z.; Olubajo, O.; Crittle, T.; Peters, D., Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. *Green Chemistry* **2008**, *10* (6), 696-705.

36. Sun, N.; Rahman, M.; Qin, Y.; Maxim, M. L.; Rodríguez, H.; Rogers, R. D., Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. *Green Chemistry* **2009**, *11* (5), 646-655.

37. Chaban, V. V., The tricyanomethanide anion favors low viscosity of the pure ionic liquid and its aqueous mixtures. *Physical Chemistry Chemical Physics* **2015**, *17* (47), 31839-31849.

38. Gouveia, A. S.; Tomé, L. C.; Marrucho, I. M., Towards the potential of cyano and amino acid-based ionic liquid mixtures for facilitated CO₂ transport membranes. *Journal of Membrane Science* **2016**, *510*, 174-181.

39. Bernardo, P.; Drioli, E.; Golemme, G., Membrane gas separation: a review/state of the art. *Industrial & Engineering Chemistry Research* **2009**, *48* (10), 4638-4663.

40. Duczinski, R.; Bernard, F.; Rojas, M.; Duarte, E.; Chaban, V.; Dalla Vecchia, F.; Menezes, S.; Einloft, S., Waste derived MCMRH-supported IL for CO₂/CH₄ separation. *Journal of Natural Gas Science and Engineering* **2018**, *54*, 54-64.

41. Abdollahi, S.; Mortaheb, H.; Ghadimi, A.; Esmaeili, M., Improvement in separation performance of Matrimid® 5218 with encapsulated [Emim][Tf₂N] in a heterogeneous structure: CO₂/CH₄ separation. *Journal of Membrane Science* **2018**, *557*, 38-48.

42. Li, P.; Pramoda, K.; Chung, T.-S., CO₂ separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. *Industrial & Engineering Chemistry Research* **2011**, *50* (15), 9344-9353.

43. Budhathoki, S.; Shah, J. K.; Maginn, E. J., Molecular simulation study of the performance of supported ionic liquid phase materials for the separation of carbon dioxide from methane and hydrogen. *Industrial & Engineering Chemistry Research* **2017**, *56* (23), 6775-6784.

44. Song, T.; Zhang, X.; Li, Y.; Jiang, K.; Zhang, S.; Cui, X.; Bai, L., Separation Efficiency of CO₂ in Ionic Liquids/Poly (vinylidene fluoride) Composite Membrane: A Molecular Dynamics Study. *Industrial & Engineering Chemistry Research* **2019**, *58* (16), 6887-6898.

45. Kanehashi, S.; Kishida, M.; Kidesaki, T.; Shindo, R.; Sato, S.; Miyakoshi, T.; Nagai, K., CO₂ separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquid. *Journal of Membrane Science* **2013**, *430*, 211-222.

46. Mittenthal, M. S.; Flowers, B. S.; Bara, J. E.; Whitley, J. W.; Spear, S. K.; Roveda, J. D.; Wallace, D. A.; Shannon, M. S.; Holler, R.; Martens, R., Ionic polyimides: hybrid polymer architectures and composites with ionic liquids for advanced gas separation membranes. *Industrial & Engineering Chemistry Research* **2017**, *56* (17), 5055-5069.

47. Bara, J. E.; Hatakeyama, E. S.; Gin, D. L.; Noble, R. D., Improving CO₂ permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. *Polymers for Advanced Technologies* **2008**, *19* (10), 1415-1420.

48. Tomé, L. C.; Florindo, C.; Freire, C. S.; Rebelo, L. P. N.; Marrucho, I. M., Playing with ionic liquid mixtures to design engineered CO₂ separation membranes. *Physical Chemistry Chemical Physics* **2014**, *16* (32), 17172-17182.

49. Mahurin, S. M.; Lee, J. S.; Baker, G. A.; Luo, H.; Dai, S., Performance of nitrile-containing anions in task-specific ionic liquids for improved CO₂/N₂ separation. *Journal of Membrane Science* **2010**, *353* (1-2), 177-183.

50. Mahurin, S. M.; Hillesheim, P. C.; Yeary, J. S.; Jiang, D.-e.; Dai, S., High CO₂ solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion. *RSC Advances* **2012**, *2* (31), 11813-11819.

51. Tomé, L. C.; Patinha, D. J.; Freire, C. S.; Rebelo, L. P. N.; Marrucho, I. M., CO₂ separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. *RSC Advances* **2013**, *3* (30), 12220-12229.

52. Neves, C. M.; Kurnia, K. A.; Coutinho, J. o. A.; Marrucho, I. M.; Lopes, J. N. C.; Freire, M. G.; Rebelo, L. P. N., Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. *The Journal of Physical Chemistry B* **2013**, *117* (35), 10271-10283.

53. Robeson, L. M., The upper bound revisited. *Journal of Membrane Science* **2008**, *320* (1-2), 390-400.

54. Bara, J. E.; O'Harra, K. E., Recent Advances in the Design of Ionenes: Toward Convergence with High-Performance Polymers. *Macromolecular Chemistry and Physics* **2019**, 1900078.

55. Abedini, A., Ellis Crabtree, Jason E. Bara, and C. Heath Turner, Molecular simulation of ionic polyimides and composites with ionic liquids as gas-separation membranes. *Langmuir* **2017**, 11377-11389.

56. Abedini, A.; Crabtree, E.; Bara, J. E.; Turner, C. H., Molecular analysis of selective gas adsorption within composites of ionic polyimides and ionic liquids as gas separation membranes. *Chemical Physics* **2019**, *516*, 71-83.

57. Szala-Bilnik, J. A., A.; Crabtree, E.; Turner, C. H., Molecular Transport Behavior of CO₂ in Ionic Polyimides and Ionic Liquid Composite Membrane Materials. *J Phys Chem B* **2019**, *123* (34), 7455-7463.

58. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J., GROMACS: fast, flexible, and free. *Journal of Computational Chemistry* **2005**, *26* (16), 1701-1718.

59. Shah, J. K.; Maginn, E. J., A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. *J Chem Phys* **2011**, *135* (13), 134121-11.

60. Shah, J. K.; Marin-Rimoldi, E.; Mullen, R. G.; Keene, B. P.; Khan, S.; Paluch, A. S.; Rai, N.; Romaniello, L. L.; Rosch, T. W.; Yoo, B., Cassandra: An open source Monte Carlo package for molecular simulation. *Journal of Computational Chemistry* **2017**, *38* (19), 1727-1739.

61. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A smooth particle mesh Ewald method. *The Journal of Chemical Physics* **1995**, *103* (19), 8577-8593.

62. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. *Physical Review A* **1985**, *31* (3), 1695-1697.

63. Parrinello, M.; Rahman, A., Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. *Physical Review Letters* **1980**, *45* (14), 1196-1199.

64. Damm, W.; Frontera, A.; Tirado-Rives, J.; Jorgensen, W. L., OPLS all-atom force field for carbohydrates. *Journal of Computational Chemistry* **1997**, *18* (16), 1955-1970.

65. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009.

66. Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A., Modeling ionic liquids using a systematic all-atom force field. *The Journal of Physical Chemistry B* **2004**, *108* (6), 2038-2047.

67. Canongia Lopes, J. N.; Pádua, A. A., Molecular force field for ionic liquids composed of triflate or bis(triflylimide) anions. *The Journal of Physical Chemistry B* **2004**, *108* (43), 16893-16898.

68. Lopes, J. C.; Padua, A. A. In *Modeling ionic liquids using a systematic all-atom force field. Di-alkylimidazolium and tetra-alkylammonium cations, halide, triflate, bis(triflylimide), nitrate and hexa-fluorophosphate anions*, 1st Int. Congress on Ionic Liquids (COIL), 2005.

69. Canongia Lopes, J. N.; Pádua, A. A., Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. *The Journal of Physical Chemistry B* **2006**, *110* (39), 19586-19592.

70. Lopes, J. N. C.; Pádua, A. A., CL&P: A generic and systematic force field for ionic liquids modeling. *Theoretical Chemistry Accounts* **2012**, *131* (3), 1129.

71. Budhathoki, S.; Shah, J. K.; Maginn, E. J., Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO₂ and CH₄ in the Ionic Liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. *Industrial & Engineering Chemistry Research* **2015**, *54* (35), 8821-8828.

72. Turner, C. H.; Cooper, A.; Zhang, Z.; Shannon, M. S.; Bara, J. E., Molecular simulation of the thermophysical properties of N-functionalized alkylimidazoles. *The Journal of Physical Chemistry B* **2012**, *116* (22), 6529-6535.

73. Trinh, T. T.; Vlugt, T. J.; Kjelstrup, S., Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields. *The Journal of Chemical Physics* **2014**, *141* (13), 134504.

74. Gelb, L. D.; Gubbins, K.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M., Phase separation in confined systems. *Reports on Progress in Physics* **1999**, *62* (12), 1573.

75. Thran, A.; Kroll, G.; Faupel, F., Correlation between fractional free volume and diffusivity of gas molecules in glassy polymers. *Journal of Polymer Science Part B: Polymer Physics* **1999**, *37* (23), 3344-3358.

76. Mohammad, A. S.; Biernacki, J. J.; Northrup, S.; Adenson, M., Diffusion of CO₂ and fractional free volume in crystalline and amorphous cellulose. *Journal of Analytical and Applied Pyrolysis* **2018**, *134*, 43-51.

77. Maginn, E. *Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO₂ Capture*; Univ. of Notre Dame, IN (United States): 2012.

78. Cabaço, M. I.; Besnard, M.; Danten, Y.; Coutinho, J., Carbon dioxide in 1-butyl-3-methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations. *The Journal of Physical Chemistry A* **2012**, *116* (6), 1605-1620.

79. Besnard, M.; Cabaço, M. I.; Chávez, F. V.; Pinaud, N.; Sebastião, P. J.; Coutinho, J. A.; Danten, Y., On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide. *Chemical Communications* **2012**, *48* (9), 1245-1247.

80. Pinto, A. M.; Rodríguez, H.; Arce, A.; Soto, A., Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids. *The Journal of Chemical Thermodynamics* **2014**, *77*, 197-205.

81. Kanakubo, M.; Makino, T.; Umecky, T., CO₂ solubility in and physical properties for ionic liquid mixtures of 1-butyl-3-methylimidazolium acetate and 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide. *Journal of Molecular Liquids* **2016**, *217*, 112-119.

82. Finotello, A.; Bara, J. E.; Narayan, S.; Camper, D.; Noble, R. D., Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids. *The Journal of Physical Chemistry B* **2008**, *112* (8), 2335-2339.

83. Kapoor, U.; Shah, J. K.; Molecular origins of the apparent ideal CO₂ solubilities in binary ionic liquid mixtures. *The Journal of Physical Chemistry B* **2018**, *122*, 9763-9774.