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Abstract

The study of mental representations of concepts has histori-
cally focused on the representations of the “average” person.
Here, we shift away from this aggregate view and examine
the principles of variability across people in conceptual rep-
resentations. Using a database of millions of sketches by peo-
ple worldwide, we ask what predicts whether people converge
or diverge in their representations of a specific concept, and
which kinds of concepts tend to be more or less variable.
We find that larger and more dense populations tend to have
less variable representations, and concepts high in valence and
arousal tend to be less variable across people. Further, two
countries tend to have people with more similar conceptual
representations when they are linguistically, geographically,
and culturally similar. Our work provides the first characteri-
zation of the principles of variability in shared meaning across
a large, diverse sample of participants.

Keywords: concepts and categories; drawings; cultural vari-
ability; large scale data

Introduction

Understanding how the human mind represents concepts is
a fundamental question for psychologists, philosophers, and
linguists (Margolis & Laurence, 1999). Researchers have de-
veloped a wide range of theories characterizing how people
represent relatively simple concepts that are shared across
people, like “chair” and “tree.” Such theories make predic-
tions about how an “average” person should perform in be-
havioral tasks, such as rating how typical members of the cat-
egory are. Here we shift the focus from the representation
of the “average” person, to differences in representations be-
tween people. This allows us to ask (1) what predicts whether
people converge or diverge in their representations of a spe-
cific concept, and (2) which concepts are more vs. less vari-
able. To answer these questions, we use a novel method: anal-
yses of millions of sketches drawn by participants worldwide.

The question of variability in shared meaning across peo-
ple has received remarkably little attention in part because
it is difficult to study. One reason for this is that people
tend to engage in “good enough” processing (Ferreira & Pat-
son, 2007) when faced with behavioral tasks, thus often fail-
ing to reveal to outside observers underlying differences in
their conceptual representations. Second, the psychological
paradigms that are used to study individuals’ concept repre-
sentations, like typicality (e.g., Rosch, 1975) and word asso-
ciation tasks (e.g., De Deyne, Navarro, Perfors, Brysbaert, &
Storms, 2019), are relatively course-grained. And, third, the
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differences in conceptual representations between people are
likely small, requiring a large dataset to observe variability.

One way to get a window into people’s shared meaning
is through drawings. Like words, drawings are emergent
cultural conventions that can be used to communicate about
shared meaning. However, unlike words, drawings resemble
the shared meaning they reference—a drawing of the con-
cept “chair” looks like a chair. Drawings therefore provide an
observable, quantifiable index of a person’s conceptual repre-
sentations (e.g., Fan, Yamins, & Turk-Browne, 2018; Long,
Fan, & Frank, 2018).

Notably, drawings are not an unmediated window into a
person’s conceptual representations—a person’s drawing of
“chair” is not isomorphic to their cognitive representation of
a chair (Cohn, 2019). This difference is due in part to cultural
conventions about how to represent particular concepts in the
drawing modality. For instance, a culture may converge on
the convention of drawing the concept “house” with four win-
dows and a chimney. The fact that drawings are conceptual
representations mediated by drawing-specific conventions is
unproblematic for the current purposes: drawings provide a
test bed for understanding the dynamics of shared meaning in
one particular modality.

Prior work has examined the emergence of drawing con-
ventions in experimental paradigms (Garrod, Fay, Lee, Ober-
lander, & MacLeod, 2007). A key finding from this work is
that drawings become both more consistent through repeated
interactions and also more reliant on memory. For example,
when two interlocutors are tasked with communicating the
meaning “bunny” through sketch, they might draw a detailed
picture with a nose, whiskers, and ears. But, with repeated in-
teractions, this drawing will tend to become more schematic
such that “bunny” is represented simply as two ears.

This prior work makes two general predictions about vari-
ability in shared meaning. The first is that the degree of
interaction among people should be related to the degree
of consensus in a concept: More social interaction should
lead to higher degree of consensus (less variability between
people). This prediction is consonant with findings in the
language evolution literature demonstrating that languages
with fewer people tend to have more complex (arguably, less
variable) language systems (Lupyan & Dale, 2010). Sec-
ond, psychological variables that influence memory should
influence which concepts are more variable across people.
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Prior work has shown that words that are more frequent
(Hall, 1954), more concrete (Fliessbach, Weis, Klaver, El-
ger, & Weber, 2006), more positively valenced (Mather &
Carstensen, 2005), and learned earlier (Barry, Hirsh, John-
ston, & Williams, 2001) tend to be favored in learning and
memory tasks. We predict that properties that make concepts
more memorable should also make them less variable.

In what follows, we test these hypotheses using a database
of millions of drawings by people worldwide. In Study 1, we
develop a psychologically-valid method for quantifying the
similarity of drawings at a large scale. In Studies 2 and 3, we
then use this measure to examine predictors of variability in
shared meaning across people and concepts.

Study 1: Estimating drawing similarity

Quantifying  variability in  drawings requires a
psychologically-valid metric of drawing similarity. Be-
cause collecting human similarity judgments for millions
of drawings is not feasible, in Study 1 we collect human
similarity judgments for a sample of drawing pairs and use
these to develop a computational measure of the similarity
between two arbitrary drawings.

Methods

Participants We recruited 331 participants through Ama-
zon Mechanical Turk and an undergraduate subject pool. Af-
ter excluding participants who missed an attentional check,
our final sample of included 267 participants.

Stimuli Drawings were taken from the Quick, Draw!
dataset collected by Google (https://github.com/
googlecreativelab/quickdraw-dataset). The drawings
were collected through an online app in which participants
were cued with an English word (e.g., “watermelon”) and
asked to sketch the corresponding object in under 20 seconds
(Fig. 1). As participants sketched, a neural net trained on
other participants’ drawings made guesses about the cue
word (this feature lead to some impartial drawings, but it is
unlikely that this effect interacted with demographic features
of the participant). Once the neural net guessed correctly,
the app progressed to the next word cue. Each participant
completed up to 6 drawings per session. Drawings are
represented in the database as a series of x-y coordinates with

Draw: watermelc 00:09
Drow

wotermelon

in under 26 seConds

Figure 1: Screenshots of the Quick, Draw! App
(https://quickdraw.withgoogle.com/).
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individual strokes identified, and have been pre-processed to
standardize position and scaling. Participant’s country is also
included as metadata.

For the current study, we sampled 1,000 drawing pairs for
each of five word cues: “tree,” “bread,” “chair,” “house” and
“bird.” In order to include a range of drawing similarities in
our stimuli, we quantified the similarity between drawings in
a pair using a computational measure of visual image similar-
ity commonly used in machine vision, called Hausdorff dis-
tance (Huttenlocher, Klanderman, & Rucklidge, 1993). In-
formally, Hausdorff distance quantifies the similarity of two
images by treating each image as a set of x-y coordinates, and
calculating the Euclidean norm between each point in one im-
age to the closest point in the other. The Hausdorff distance
is the maximum of these pairwise distances (the distance be-
tween the most mismatched points). We calculated Hausdorft
distance for each drawing pair and then sampled 20 drawing
pairs from each distance decile (see Fig. 2). Our final stimuli
list included 200 drawing pairs for each of the 5 target cues.

Procedure Participants were instructed to rate how similar
pairs of drawings were to each other on a 7-pt Likert scale,
ranging from “almost identical” to “completely different.”
Each participant rated a sample of 50 drawing pairs from a
single cue word. As an attention check, we also included
two additional trials where the two drawings were identical
to each other. Participants were excluded from the final sam-
ple if they responded 3 or higher on the Likert scale for either
of these two trials. Each drawing pair was rated by an average
of 13.34 participants (SD = 7.04).

Results and Discussion

Log Hausdorff distance was moderately positively correlated
with human judgments of visual dissimilarity ((998) = 0.4,
p < .0001; Fig. 3), accounting for 16% of the variance in
human judgments.

We next tried to better predict human similarity judgment
using additional computational measures of similarity. We
examined five new measures in drawing similarity: Log av-
erage Hausdorff distance (Taha & Hanbury, 2015), Euclidean
distance, Mahalanobis distance (Mahalanobis, 1936), log dif-
ference in number of strokes between, and the log difference
in mean stroke length. Log average Hausdorff distance is sim-
ilar to the Hausdorff distance metric described above, but is
less sensitive to outliers. Euclidean distance is calculated as
the average pairwise Euclidean distance between all points.
Mahalanobis distance is similar to Euclidean distance, but
takes into account the correlation of points in the drawings.

The five distance measures were moderately correlated
with each other and with human judgments (see Table 1). We
next fit an additive linear model predicting human judgments
with each of these five predictors. This model accounted for
28% of the variance in human judgments (see Table 2 for
model parameters). Figure 4 shows a two-dimensional scal-
ing solution of the predicted human similarity ratings for a
sample of one hundred “bird” drawings.
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71 -
(@] ,‘
£ 6 cue word
©
Table 1: Pairwise correlations (Pearson’s r) between all five D; 5 bird
drawing distance measures. Human = average human disim- E bread
ilarity judgment; Haus. = log average Hausdorff distance; = 4
Euc. = Euclidean distance; Maha. = Mahalanobis distance; g — chair
N strokes = log difference in number of strokes; Stroke Len. Q. —— house
. . . . C
= log difference in stroke length (in pixels). * = p < .01. g
f 5] tree
Human Haus. Euc. Maha. N Strokes r=0.4
Haus. 0.34% B 35 40 45 50 55
Euc. 0.03  0.6% Log Hausdorff Distance
Maha. 04*  0.44* 0.24*
N Strokes ~ 0.27* 0.09* -0.05 0.19* Figure 3: Relationship between human judgments of drawing
Stroke Len.  0.13* -0.04 0.07  0.14* 0.14* similarity and drawing similarity estimated from a compu-

Table 2: Fixed effect parameters for the additive linear model
predicting human similarity judgment of 1,000 drawing pairs
in Study 1 from five computational similarity measures. Log

Avg. Haus. = log average Hausdorff distance.
Estimate ~ SE ft-value Pr(> [7)
Hausdorff 037 0.04 9.84 <.01
Mahalanobis 0.25 0.03 8.18 <.01
Euclidean -0.26  0.03 -744 <01
N Strokes 0.16 0.03 5.88 <.01
Stroke Length 0.10 0.03 371 <01
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tational measure, log Hausdorff distance. Each point corre-
sponds to a drawing pair (N = 1,000). The color lines show
the best fit for each of the five individual cue words; black
line shows the best fit for all drawing pairs and correspond-
ing standard error. Pearson’s r corresponds to the correlation
estimate across all word cues.

In sum, Study 1 provides evidence that human judgments
of sketches are partially predictable from simple computa-
tional measures of visual similarity. In the remaining studies,
we use the parameters of the model we derived for predicting
human similarity judgments to estimate similarity in a large
scale analyses of drawings from the Quick, Draw! dataset.

Study 2: Variability in shared meaning

In Study 2, we ask what characteristics of populations pre-
dicts whether people converge or diverge in their representa-
tions of a specific concept, and which kinds of concepts tend
to be more or less variable across people.

Study 2a: Population properties

Method The Quick, Draw! Dataset contains drawings for
345 cue words. We excluded cues that contained multiple



Figure 4: Multi-dimensional scaling solution of pairwise sim-
ilarity of 100 bird drawings judged in Study 1. Similarity
is estimated from as the predicted values from a model pre-
dicting human judgments with five computational similarity
measures.

words (e.g., “sea turtle;” N = 54) or had synonymous mean-
ings (“bat;” N = 1), leaving 288 words.

We analyzed drawings for each of these cue words for the
20 countries with the most drawings. For each country-cue
combination (e.g., Thailand-bread), we sampled 1,000 draw-
ings to create 500 drawing pairs (N = 5.76M total draw-
ings). We then quantified the distance between drawings for
each pair by calculating the five distance metrics described
in Study 1 and then calculating the predicted human distance
using the parameters of the additive linear model developed
in Study 1. For each country-cue, we quantified the distribu-
tion of drawing similarity across people as the mean and stan-
dard deviation of predicted human distance drawings across
the 500 pairs. Because mean and standard deviation were
correlated with each other (#(5758) = 0.3, p < .0001), we
quantified the variability in the distances using the coefficient
of variation (the ratio of the standard deviation to the mean).
The coefficient of variation quantifies the variability in a dis-
tribution, controlling for differences in the mean.

We examined the relationship between coefficient of varia-
tion for drawing similarity and two properties of populations
that have been hypothesized to relate to linguistic variabil-
ity: Population size and population density. For each country,
we obtained estimates of population size (log thousands) and
population density (N people/sq. km.) from Worldbank.

Results We next predicted the amount of variability for
each cue within each country. Population density and pop-
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Figure 5: Standardized parameters from additive mixed effect
linear model predicting the coefficient of variation in draw-
ing distances with population (left) and cue (right) predictors.
Ranges correspond to 95% confidence intervals.

ulation size were not significantly correlated (#(18) = 0.03, p
=0.91). We fit an additive mixed effect model predicting the
coefficient of variation for each country-cue pair with pop-
ulation size and density, including random intercepts by cue
and country. Each observation in our model was a country-
cue pair. Both population size ( = -0.05, SE = 0.02, Z =
-3.19) and density (B = -0.03, SE = 0.02, Z = -2.07) were
reliable predictors of variability: countries with smaller and
less dense populations tended to have more variable drawings
(Fig. 5, left; Fig. 6a).

Study 2b: Cue properties

Method We examined six psychologically-relevant proper-
ties of the cue words: (i) word frequency estimated from a
spoken corpus, (log; Brysbaert & New, 2009), (ii) Concrete-
ness (degree to which a word refers to a perceptible entity;
Brysbaert, Warriner, & Kuperman, 2013), (iii) estimated age
of acquisition (log AoA; Kuperman, Stadthagen-Gonzalez, &
Brysbaert, 2012), (iv) arousal (intensity of emotion provoked
by a stimulus), (v) valence (pleasantness of a stimulus), and
(vi) dominance (degree of control exerted by a stimulus; War-
riner, Kuperman, & Brysbaert, 2013). Complete data were
available for 93.4% of cues.

Results We fit an additive mixed effect model predicting
the coefficient of variation for each country-cue combination
with each of the six word-level predictors with random inter-
cepts by cue and country.

Drawings tended to have low variability across people
when the cue words were associated with high arousal
(e.g. “tornado”; B = -0.28, SE = 0.06, Z = -4.9; Fig. 5, right;
Fig. 6b), positive valence (e.g., “angel”; p =-0.13, SE = 0.06,
Z = -2.12), and high concreteness (e.g. “cup”; p = -0.25, SE
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Figure 6: (a) Relationship between drawing variability and population size. (b) Relationship drawing variability and word
cue arousal: Words that have higher arousal (e.g., “tornado™) are associated with more similar drawings across people. The
relationship is robust to the exclusion of two outliers (“circle” and “square;” r =.24, p < .01).

= 0.06, Z = -4.24). Word frequency, age of acquisition, and
dominance were not reliable predictors of variability.

Follow-up analyses revealed that the concreteness effect
was due primarily to the subset of cues related to shapes (e.g.,
“circle,” “square”); with these items excluded, there was no
longer a relationship between concreteness and variability in
drawing similarity (§ =-0.07, SE =0.06, Z = -1.28). Notably,
however, after excluding shape cues, the sample of items were
highly concrete with relatively little variability (M = 4.87; SD
= (.15), making this effect difficult to detect in the current
sample of items.

Study 2 provides evidence that shared meaning across peo-
ple is detectable in drawings and varies in predictable ways:
Smaller, less dense populations have more variable shared
representations across a range of concepts, and concepts that
are higher in arousal and valence tend to be more variable.

Study 3: Shared meaning across cultures

In Study 3, we examine a corollary of the prediction that
greater social interaction should lead to greater conceptual
similarity. In particular, we ask whether participants from
more related countries produce drawings that are also more
similar to each other.

Method

We used the same sample of drawings as in Study 2 to quan-
tify the similarity between drawings among people from dif-
ferent countries (1,000 drawings for each country-cue). For
each pair of countries in our dataset (N = 190), we created
1,000 drawing pairs, where each pair was composed of a
drawing of the same item from a different country (e.g. a bird

drawing from a Hungarian participant and one from a Brazil-
ian participant). We quantified the similarity between draw-
ings in a pair using the same method as in Study 2, and then
averaged across drawing pairs to calculate the mean dissimi-
larity rating for each country pair and cue combination.

We examined three variables that relate to the amount of
interaction between people in two countries: geographic dis-
tance, linguistic distance, and amount of migration. Geo-
graphic distance was calculated as the distance in log meters
between the centroid of the two countries. Linguistic dis-
tance was quantified as the Levenshtein edit distance between
a standard set of words in each country’s most frequently spo-
ken language (Dediu, 2017). Migration was quantified as the
log number of people who migrated between two countries
(average from country a to b and b to a; Worldbank, 2017).

Results and Discussion

Figure 7 visualizes the cross-country variability in drawings
for a particular cue, “bread.” To account for this variabil-
ity, we fit an additive mixed effect model predicting mean
dissimilarity rating for each country pair and cue combina-
tion (M = 4.78; SD = 0.36) with geographic distance, lin-
guistic distance, and number of migrants. These three mea-
sures were weakly correlated with each other (geographic-
linguistic: r(188) = -0.01, p = 0.91; linguistic-migration:
r(188) = -0.34, p < .0001; migration-geographic: r(188) =
-0.21, p < .01). Both countries and cue were included as ran-
dom intercepts.

Geographic distance (B = 0.008, SE = 0.001, Z = 5.23),
linguistic distance (f = 0.006, SE = 0.001, Z = 4.59), and
number of migrants (B = -0.003, SE = 0.001, Z = -2.1) each
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Figure 7: Prototypical bread drawings for each country in our
analysis. The prototype was calculated as the drawing with
the shortest average distance to all other drawings from the
same country.

predicted independent variance in mean drawing similarity:
Countries that spoke more similar languages, were closer ge-
ographically, and had more inter-country migration tended to
have people who created more similar drawings. This sug-
gests that countries that are more similar due to cultural con-
tact tend to have a higher degree of shared meaning.

General Discussion

How does one person’s representation of a simple concept,
like “chair,” differ from another’s? Using millions of sketches
collected from an international population, we provide a win-
dow into the principles of variability in shared meaning. We
find that properties of populations—density and size—and
properties of concepts—arousal and valence—influence the
degree of convergence in meaning across people.

There are, however, a number of important limitations of
this work. First, drawings are not a direct window into peo-
ple’s concepts both because they are conventionalized repre-
sentations, and because they only represent a concept through
shape features. Second, our computational metric of drawing
similarity is only able to predict about a third of the variance
in human judgments of drawing similarity. It is possible that
with a better metric of drawing similarity, using, for instance,
neural networks trained on drawings, our method would be
more sensitive to smaller effects.

In sum, how the “average” person represents a con-
cept is only part of a complete theory of conceptual
representations—it is also critical to understand how people
vary in these representations. Variability in shared meaning,
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for example, implies that some groups of people may be bet-
ter able to communicate with each other than others. Our
work provides the first large scale characterization of the prin-
ciples of variability in shared meaning.
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