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Abstract 

The CO2 separation characteristics of ionic polyimides (i-PIs) are modeled using 

molecular dynamics simulations in combination with grand canonical Monte Carlo 

calculations.  The performance of neat i-PI systems is evaluated, as well as composite 

structures containing both i-PIs and various ionic liquids (ILs).  The i-PI+IL composites 

are based on combinations of 1-n-butyl-3-methylimidazolium ([C4mim+]) cations with 

three common molecular anions: (bis(trifluoromethylsulfonyl)imide ([Tf2N-]), 

tetrafluoroborate ([BF4
-]), and hexafluorophosphate ([PF6

-]).  It is found that 50 mol% IL 

inclusion can increase CO2/CH4 selectivity by 16% in [BF4
-]-based materials and by 36% 

in [PF6
-]-based materials from mixtures of 5% CO2 / 95% CH4. While the [BF4

-]-based 

system shows higher CO2/CH4 selectivity, the [Tf2N-]-based system shows higher CO2/N2 

gas selectivity. A comprehensive structural analysis (fractional free volume (FFV), pore 

size distribution, surface area, etc.) is used to highlight the underlying differences among 

the different i-PI+IL systems that lead to the different adsorption properties. 
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1. Introduction 

Carbon dioxide (CO2) is the most well-known greenhouse gas (GHG) with many 

industrial emission sources contributing to the detriment of the atmosphere. CO2 removal 

from natural gas has been successfully applied for over 80 years.1 Although amine-based 

solvents, such as monoethanolamine (MEA) exhibit multiple disadvantages including 

corrosion, volatility, toxicity, and high-energy demand for recovery, carbon capture 

processes still heavily depend on typical MEA solvents during CO2 absorption due to the 

high cost or low efficiency of other alternatives.2 The design of alternative materials for 

CO2 capture is of high importance due to a growing need for control of CO2 emissions to 

the atmosphere and for increasing the efficiency of energy supply lines by reducing CO2 

in pre-combustion gases. Several different adsorbents such as activated carbons,3 zeolites,4 

metal organic frameworks (MOFs),5 and covalent organic frameworks (COFs)6 have been 

widely studied for CO2 adsorption. These materials provide a high capacity for gas 

adsorption, but they typically suffer from other limitations (selectivity, cost, or stability).  

In addition to these porous materials, different types of ionic liquid (IL) solvents have 

also been studied and proposed as effective alternatives for CO2 absorption.7 These IL 

solvents have previously been shown to be effective at dissolving CO2, and they tend to 

possess high thermal and physical stability and low vapor pressure.  In particular, 

imidazolium-based ILs have received a great deal of attention, due to their high solubility 

and selectivity for CO2 in post-combustion capture and natural gas sweetening.8-14 

However, their high cost and high viscosity as well as their limited adsorption capacity for 

CO2 render them to be uncompetitive with traditional gas absorbents used in industrial-

scale applications.8,9  
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There have been some previous efforts to circumvent the inherent IL performance 

limitations. For instance, dissolving ILs in an amorphous structure of polymers and crystal 

structures consisting of MOFs11 and COFs15 can alleviate the low capacity of ILs by 

providing more void volume.14 Recently, to explore the directed orientation of IL 

molecules and the resulting effect on gas separation, others have investigated the properties 

of ILs confined within solid pores.5,8,14,16-18 In those works, a thick layer of IL solvent was 

confined between solid surfaces,19 and gas diffusion in that confined layer was studied, as 

well as the influence of confinement on CO2 solubility.14,20,21 Budhathoki, et al. used 

molecular dynamics (MD) simulations to study CO2 solubility selectivity, diffusion 

selectivity, and permselectivity from binary mixtures of CO2/CH4 and CO2/H2 within a 

[C4mim][Tf2N] confined IL solvent.8 The IL was confined within graphite nanopores of 2 

to 5 nm in diameter. The ILs confined within the pores demonstrated enhanced 

permselectivity of CO2 (compared to the empty nanopores), but the diffusivity of all gas 

species decreased, relative to bulk ILs. Expelling captured CO2 during adsorption and 

absorption and recycling the adsorbent and absorbent liquids is already a cost effective 

process in separation columns. However, membrane separation mitigates the need for 

frequent adsorbent replacement and absorbent recovery by providing continuous gas 

separation and purification.22-24 

Porous organic polymers25-27 have been considered in gas separation studies due to 

their stability,28,29 large surface area,30,31 and fine-tuned microporosity resulting from the 

voids created in their rigid molecular structure (due to frustrated polymer chain packing).32-

35 Supported ionic liquid membranes (SILMs)36 and polymers of intrinsic microporosity 

(PIMs)23,37 are now receiving much attention due to the combined advantages of both ILs 
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and membranes in gas separation.24,38-41 For instance, CO2 mass transfer can be 

significantly enhanced when ILs are dissolved into polymers and porous solid 

structures.5,42 Also, nitrogen-rich polymer building blocks can help promote CO2 uptake 

within amorphous microporous polymers (AMPs) by increasing the heat of adsorption.33,43  

Ionic polyimides (i-PIs) are one of these promising polymers for membrane-based CO2 

separations (pre-combustion, gas sweetening, and CO2 post-combustion capture).42,44 This 

novel class of materials, like poly(ionic liquids)s (PILs),45,46 contain imidazolium cations 

within the polymer monomer unit. In the poly(ionic liquid) structure, IL molecules are 

bonded to the polymer backbone. However, the i-PI monomer structure is composed of an 

IL segment and an organic linker to provide an additional degree of structural and chemical 

design.  In the i-PI structure, 1-(3-aminopropyl)imidazole is reacted with  pyromellitic 

dianhydride (PMDA) to form a difunctional bis(imidazole) molecule which is then reacted 

with p-dichloroxylene to form the ionic polyimide.  The chloride (Cl-) anions resulting 

from the polymer synthesis (Menshutkin Reaction) are subsequently exchanged to 

bistriflimide (Tf2N-), hexafluorophosphate (PF6
-) or tetrafluoroborate (BF4

-) in the presence 

of aqueous solutions of the corresponding alkali metal salt in excess.  PMDA was chosen 

as an organic ligand because of its low cost and reports that the PMDA-API molecule forms 

triply helical nanostructures in the presence of silver salts.47 Each monomer contains two 

imidazolium cations in the backbone, along with two balancing anion molecules, as 

illustrated in Figure 1. Composite structures were prepared by dispersing IL molecules 

inside the i-PI polymer in different concentrations. 

Our previous experimental work42 reports the significantly enhanced CO2 permeability 

(up to 2200%) by adding [C4mim][Tf2N] to the neat i-PI system. The high permeability in 
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the composite system (i-PI + IL) was directly correlated with diffusivity enhancement of 

CO2 (up to 2300%), while solubility of CO2 in the material was essentially identical in the 

presence/absence of IL.  In order to characterize the molecular-level behavior of different 

gas adsorbents (CO2, CH4, N2) in this system, our previous work44 focused on pure gas 

solubility in [Tf2N-]-based structures.  However, due to the intriguing potential for creating 

different composites by combining different ILs with the same i-PI backbone, the current 

work explores the selective adsorption behavior of binary gas mixtures with a range of 

different i-PI + IL composite materials.   For instance, adding bulkier anions may increase 

the void volume of the composite and specific interactions with different anions may be 

used to tune the selectivity.  In bulk ILs, it has been found that the anions can have a large 

influence on CO2 solubility.9 In the current study, the prepared composite structures 

contain i-PIs and different ILs with [C4mim+] as the cation in combination with one of three 

anions [Tf2N-], [BF4
-], and [PF6

-]. MD calculations and grand canonical Monte Carlo 

(GCMC) simulations are used to study structural changes of the i-PIs and their composites 

during binary mixtures of CO2/CH4 and CO2/N2 adsorption by analyzing the fractional free 

volume (FFV), pore size distribution (PSD), and the surface area. 

In our current study, the neat i-PI with [BF4
-] as the counter ion shows high CO2/CH4 

selectivity at 1 bar and 294 K, and this is also observed when additional [C4mim][BF4] is 

added to generate the composite material. A high CO2 solubility is found with the [PF6
-]-

based i-PI and i-PI + IL composites. The high solubility is accompanied by a large 

calculated surface area within the materials and a larger fraction of wider pores, while the 

FFV is not a very sensitive indicator of the solubility. Among the three different types of 
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anions studied in this work, the [PF6]-based structures showed the strongest interaction 

with gas molecules, regardless of gas type.  

2. Simulation Details 

Our simulation procedure is comprised of several different steps in order to generate 

the initial configurations, relax the system, perform gas adsorption, and analyze the 

dominant molecular-level interactions. First, quantum mechanical calculations are used to 

assign partial charges on the atom sites of the i-PI monomer units (Figure 1) using the 

B3LYP functional48 and a 6-31G(d,p) basis set in Gaussian09.49 Then MD simulations are 

used to prepare the relaxed initial structure of the neat i-PI and i-PI + IL composite. This 

involves a polymerization scheme followed by several stages of structural relaxation.  The 

initial system also contains an N-methyl-2-pyrrolidone (NMP) solvent, which is eventually 

removed and replaced with the IL species following polymerization. This is intended to 

qualitatively follow the experimental synthesis procedure during the polymerization and 

prepare enough vacant space for IL molecules by deleting NMP molecules.42 Finally, using 

an iterative combination of molecular dynamics and GCMC simulations, the selectivity of 

CO2/CH4 and CO2/N2 is modeled over a wide range of concentrations within the neat i-PI 

and different combinations of i-PI + IL composite materials. The details of each stage are 

described below, which follows our previous approach.44  
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Figure 1. Representative monomer structure of a neat i-PI. Specific nitrogen sites of the i-PI are 
labeled for reference, as well as the head (CH) and tail (CT) designation. 

 

The details of the electronic structure calculations and geometric optimization of the 

monomers, as well as the partial charge calculation and polymerization were provide in our 

previous work.44 Force field parameters for [C4mim+], [Tf2N-], [BF4
-], and [PF6

-] were 

taken from Lopez, et al,50-52 while parameters for NMP molecules were extracted from 

Aparicio, et al.53 The TraPPE54 force fields for CO2, CH4, and N2 were used, based on the 

previous experience of others modeling gas adsorption in ILs.54-57 The Lorentz-Berthelot 

mixing rules were used for cross-term interactions. 
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Following the assignment of the force fields, the i-PI and i-PI + IL systems were 

constructed and conditioned according to the following default procedure (with specific 

variations noted later in the text): 

a) i-PI molecules (as single repeat units) were inserted into the simulation box using 

PACKMOL,58 followed by energy minimization using the steepest descent 

algorithm.59  

b) In addition to the monomers, NMP molecules were also inserted at three different 

ratios: 1:4, 1:6, and 1:8 (monomer:NMP) in order to produce additional replicas of 

the polymer structure. The experiments used a ratio of approximately 1:60 during 

polymerization.42 The effect of different NMP solvent concentrations has been 

studied in our previous work,44 and it was found to be negligible.  We have reached 

the same conclusion in this work (with different ILs).  

c) The monomer + NMP molecules were relaxed with MD simulations using a cycle 

of canonical ensemble (NVT) simulations to increase temperature up to 2000 K, 

followed by isothermal-isobaric (NPT) ensemble simulations at high temperature 

and pressure.  After, the systems were slowly quenched to 294 K. 

d) The individual units were polymerized, using a nearest-neighbor algorithm 

(described in previous work),44 followed by additional relaxation with MD. 

e) The NMP was then removed from the system, and the i-PI + IL samples were 

generated by inserting the IL molecules (anion and cation) in the cavities left by 

the NMP molecules, again using PACKMOL. 

f) A neat i-PI and a composite with the [Tf2N-] anion from the previous step were 

used to produce [BF4
-] and [PF6

-] anion based i-PI and i-PI + IL composites. In this 
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step, all [Tf2N-] anions were replaced with the desired anions, while keeping the 

polymer structure intact. This approach ensures that the i-PI backbone is consistent 

(same number of polymers and chain lengths), and only the anion composition is 

changed.  

g) Both neat i-PI and i-PI + IL systems were further equilibrated and relaxed via NVT 

and NPT cycles as mentioned in step (c), until a final temperature of 294 K and a 

pressure of 1 bar were reached. 

All of the MD simulations were performed with the GROMACS 5.0 simulation 

package.60 The Lennard-Jones potential and electrostatic interactions were calculated with 

a cut-off distance of 14.0 Å, and the smooth particle mesh Ewald sum (SPME)61 method 

was implemented to calculate long-range electrostatic interactions, with a Fourier spacing 

of 1.6 Å. The Nose-Hoover thermostat62 was used to maintain the temperature and the 

Parrinello-Rahman63 barostat was used to maintain the pressure, and the time step was 1 

fs. In the MD simulations, periodic boundary conditions were implemented in all three 

dimensions.  

In order to estimate the reproducibility of our results, three different independent 

replicates were separately simulated and evaluated in our structural and adsorption property 

analysis. A summary of the different i-PI systems is described in Table 1.   

Table 1. Summary of different i-PI systems (a → h) simulated.  

description (including 
approximate box length) 

# monomers 
# 

NMP 
polymer chain 

lengths* 
Average 

Mw (g/mol) 

(a) neat, 6 nm (sample 1) 200 
0 17, 8(2), 5(2), 4(6), 

3(11), 2(18), 1(64)
5484.3 

(b) neat, 6 nm (sample 2) 200 
0 76, 56, 29, 20,15, 

2(2)
31338.9 

(c) neat, 6 nm (sample 4) 200 0 131, 32, 19, 18  54843.1 
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(d) neat, 6 nm (sample 5) 200 
0 94, 30, 28, 16, 15, 8, 

5, 4
27421.6 

(e) neat, 6 nm (sample 3) 200 800 80, 41, 40, 20, 13, 6 36562.1 
(f) composite, 6.8 nm 

(sample 1) 
200 (+ 200 

IL) 
800 

80, 41, 40, 20, 13, 6 36562.1 

(g) composite, 6.8 nm 
(sample 2) 

200 (+ 200 
IL) 

1200 
81, 58, 57, 2(2) 43747.5 

(h) composite, 6.8 nm 
(sample 3) 

200 (+ 200 
IL) 

1600 
178, 14, 8 73124.1 

*Numbers inside the parentheses represent the number of different chains with the same polymer 
chain length. 

 

The density of each sample (designated as (a) through (h) from Table 1) is reported in 

Table 2. For instance, the (a) sample of the [Tf2N-]-based neat polymer has the same 

polymer chain length as the (a) sample in both the [BF4
-]-based and the [PF6

-]-based neat 

polymer as well. The only difference is the type of the anion used to create the neutral 

monomer (Figure 1).  

Table 2. Density (g/cm3) of neat i-PI and composite of i-PI + IL samples at 1 bar and 294 K. The 
columns #1 to #5 indicate different independent replicates. 

  Mol% IL #1 #2 #3 #4 #5 
Average 
density 

[Tf2N-]-based  

neat i-PI 1.643 (a)* 1.605 (b) 1.603(e) 1.602 (c) 1.604 (d) 1.612 ± 0.018 

i-PI + 50% IL 1.584 (f) 1.583 (g) 1.585 (h) - - 1.584 ± 0.001 

i-PI + 30% IL 1.594 (f) 1.593 (g) 1.595 (h) - - 1.594 ± 0.001 

i-PI + 10% IL 1.600 (f) 1.599 (g) 1.599 (h) - - 1.600 ± 0.001 

[BF4
-]-based 

neat i-PI 1.386 (a) 1.369 (b) 1.372 (e) 1.369 (c) 1.368 (d) 1.373 ± 0.008 

i-PI + 50% IL 1.325 (f) 1.322 (g) 1.326 (h) - - 1.324 ± 0.002 

i-PI + 30% IL 1.347 (f) 1.347 (g) 1.346 (h) - - 1.347 ± 0.001 

i-PI + 10% IL 1.363 (f) 1.361 (g) 1.362 (h) - - 1.362 ± 0.001 

[PF6
-]-based 

neat i-PI 1.489 (a) 1.474 (b) 1.474 (e) - - 1.479 ± 0.009 

i-PI + 50% IL 1.446 (f) 1.444 (g) 1.447 (h) - - 1.446 ± 0.001 

i-PI + 30% IL 1.458 (f) 1.465 (g) 1.460 (h) - - 1.461 ± 0.003 

i-PI + 10% IL 1.466 (f) 1.470 (g) 1.478 (h) - - 1.471 ± 0.006 

*the letter in the parentheses corresponds to the polymer system in Table 1.  

Once the neat i-PI and i-PI + IL samples were prepared, we used the Cassandra 

simulation package to run GCMC simulations of gas adsorption.64,65 Each single sample 
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after preparation was followed by 15 MD/GCMC simulation cycles at 1 bar and 294 K. 

These relaxation cycles are important, since the adsorbed gas leads to changes in the 

polymer structure that shift (increase) the predicted equilibrium adsorption.  There is 

negligible swelling of the i-PI system in experiment (due to the low CO2 loading), so NVT 

simulations are used during the MD relaxation.  During the GCMC simulations, the 

polymer and IL molecules were held rigid, while the adsorbate molecules were subject to 

at least 3 × 106 MC steps (33% insertion, 33% deletion, 17% translation, and 17% rotation).  

In order to improve sampling, these GCMC simulations were iteratively combined with 

MD simulations to further relax the system configuration. For instance, after finishing one 

stage of GCMC simulations, the resulting structure (including the gas molecules) was 

subjected to a short NVT MD relaxation process of 1 ns at the same temperature (294 K).  

The final structure after these 15 MD/GCMC cycles of equilibration was used for 

calculating gas selectivity with production runs of 20 × 106 GCMC steps used to calculate 

averages and error bars.  Additional tests were performed with increased MD/GCMC 

cycles to ensure adequate equilibration and structural relaxation (see Figure S-1 to S-3), 

and 15 cycles were generally found to be sufficient. 

Gas selectivity was calculated for two binary gas mixtures (CO2/CH4 and CO2/N2), 

each corresponding to four different gas-phase concentrations (0.5/0.5, 0.2/0.8, 0.1/0.9, 

0.05/0.95) and a total pressure of 1 bar and 294 K. The adsorption selectivity is defined as 

𝑆 ൌ ሺ𝑥஺/𝑦஺ሻ/ሺ𝑥஻/𝑦஻ሻ, where 𝑥௜ is the mole fraction of component i in the adsorbed phase 

and 𝑦௜ is the mole fraction in the gas phase. Two extra samples (#4 and #5) were generated 

and tested only for [Tf2N-] and [BF4
-] anions, since the [Tf2N-]-based structure showed very 
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high variability for the CO2/N2 mixture selectivity, and the [BF4
-]-based structure showed 

very high selectivity for CO2/CH4, so these extra samples were used to improve confidence.  

In order to connect the i-PI and i-PI + IL composite adsorption properties to the 

underlying molecular configurations, several different structural analyses were performed, 

which were originally applied to characterize solid adsorbents. Using the approaches of 

Gelb and Gubbins,66 we calculated the theoretical FFV, PSD,67 and exposed surface area 

for our i-PI and i-PI + IL composite models.  Similar information could be generated from 

publicly available analysis tools like Poreblazer from the Sarkisov group.68  The structural 

analyses was performed by including all atomic sites during the analyses, with the Lennard-

Jones diameters used to define the molecular surfaces, and in the case of the surface area, 

the default probe diameter is 4.0 Å.  This probe diameter is similar to the kinetic diameters 

of the gas molecules, but the sensitivity of our results to this particular value is tested.  Also, 

the radial distribution function (RDF) of key interaction sites in the system are analyzed.   

3. Results and Discussion 

3.1. Gas Solubility 

Gas solubility results for different i-PI + IL combinations are reported in Figure S-1 to 

S-3, corresponding to different stages along the MD/GCMC relxation steps. As mentioned 

previously, selected systems were run for 15 additional MD/GCMC cycles (also included 

in Figures S-1 to S-3) to confirm equilibrium saturation values. As Figure 2 shows, the 

composite structures of the i-PI + ILs show lower gas solubility, regardless of the anion, as 

compared to the neat polymer (and this is similar to the experimental systems).  In the 

experimental [Tf2N-]-based i-PI + IL tests, the CO2 solubility decreases by 7% and N2 

solubility decreases by 24%, while the CH4 solubility to relatively constant, as compared 



 14

to the neat i-PI.42 Although not experimentally tested, the simulated CO2 solubility for the 

different anion derivatives show the following order: [PF6
-] > [BF4

-] > [Tf2N-].  This trend 

is also observed for the other gases (N2 and CH4) studied in this work.  However, the bulk 

ILs (no i-PI present) show a different trend for CO2 solubility, as shown in Tables S-1 and 

S-2 (which compares the solubility and selectivity of several different types of porous 

adsorbents and ILs from the literature).  There are several fundamental differences between 

our systems and bulk ILs, so it is not surprising that the trends can differ.  For instance, 

with our systems, the bulk ionic liquid structure is completely disrupted, due to the 

presence of the i-PI (major constituent).  Thus, different atomic sites are more or less 

exposed to the gases, and different geometric cavities can be formed.   

The CO2 solubility of the bulk [Tf2N-]-based ILs is highest among our selected group 

of three anions.  To explore the origin of the IL effect on solubility in the i-PI + IL 

composite, several different structural analyses were implemented and discussed in the 

following. 
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Figure 2. Calculated pure gas solubility at 294 K and 1 bar within neat i-PI and i-PI + IL 
composites. a) CO2, b) N2, and c) CH4. It should be noted that the scale for CO2 solubility is ten 
times higher than that of the other gases. 
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composites. However, upon increasing IL concentration the selectivity will rise back to the 

neat polymer selectivity value, which occurs at 50 mol% IL concentration.  

The gas selectivity calculations of CO2/N2 mixtures (Figure 4) show higher uncertainty 

in comparison to the CO2/CH4 results, and this is primarily due to the small number of N2 

species present in the system. The high uncertainty for CO2/N2 persists even after doubling 

the number of GCMC simulation steps.  In almost all of the different anion based structures, 

adding IL does not have a significant positive effect on the gas selectivity for CO2/N2 

mixtures.  
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Figure 3. Predicted CO2/CH4 selectivity for: a) [Tf2N-], b) [BF4
-], and c) [PF6

-] at 294 K and 
1 bar.  
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Figure 4. Predicted CO2/N2 selectivity for: a) [Tf2N-], b) [BF4

-], and c) [PF6
-] at 294 K and 1 bar. 
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find that gas solubility is strongly correlated with the theoretical surface area of these 
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materials: [PF6
-] > [BF4

-] > [Tf2N-]. The surface areas of all composite i-PI + IL structures 

are less than those of the neat i-PI structures, and this trend mimics the solubility results.  

The impact of detailed structural features on the solubility and selectivity of other 

polymeric materials has been evaluated in some previous computational studies.69,70 For 

instance, Wood, et al. previously performed two separate simulation studies on the uptake 

of both CH4
71 and H2

72
 in hypercrosslinked organic polymers and compared results with 

experimental data. The simulated adsorption data, in agreement with experiment, was 

shown to strongly correlate with the surface area of the material. The two main factors that 

were determined to govern adsorption in these materials were the micropore volume and 

surface area. Also, a high coloration between surface area and permeability of PIMs has 

been previously reported by Madkour and Mark.69 

The FFV values in our study do not provide a consistent indication of gas solubility 

for i-PIs, while it has shown to be a sufficient indicator for permeability in previous studies 

of PIMs.69,73 As Figure 6b shows, the FFV very slightly increases with respect to the IL 

addition, but this trend is not mimicked by the solubility.  For instance, the [Tf2N-]-based 

structures show the highest FFV, and the [BF4
-]-based structures show the lowest FFV 

(similar to the density trend in Table 2).  However, the [BF4
-]-based structures are predicted 

to have higher gas solubility. In addition, while the [BF4
-]-based structures have a lower 

density than the [PF6
-]-based structures, the gas solubility of [PF6

-]-based structures is 

higher. As a result, the density and FFV are not found to correlate well with gas solubility 

in the present study. While these metrics may be useful for identifying larger differences 

in other systems, we find that they are not able to adequately capture the subtle structural 

features in our i-PI and i-PI + IL systems. 
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Figure 7 shows the structural changes (surface area and FFV) before and after 

performing the MD/GCMC cycles, in order to map the simultaneous evolution of these 

system properties. Positive changes in the surface area between the initial and final 

structures show that adsorbed CO2 imparts increases in the surface area (while the density 

is constant throughout all of the MD/GCMC cycles). The small increases in the surface 

area (~1-4%) correlate with large impacts on the CO2 solubility (by up to 200%), as shown 

in Figure 7b. However, FFV does not show significant changes. In fact, FFV decreases in 

half of the cases, indicating a clear inconsistency with respect to the CO2 solubility. 

The accessible surface area calculation is strongly dependent upon the probe size used, 

and this can potentially be a major factor in our analysis and comparison.  In particular, we 

are working with three different gases (CO2, N2, and CH4 with kinetic diameters of 3.30, 

3.64, 3.80 Å, respectively).74-76 To explore this issue, a range of different probe sizes were 

tested in the surface area calculation, with the resulting surface areas shown in Figure 8 (a 

default value of 4.0 Å was used in Figure 6). Regardless of the probe size used, the [PF6
-]-

based structures show the highest surface area, and the [Tf2N-]-based structures show the 

lowest. Using a probe diameter of 1.0 Å, the calculated surface area of the composite 

structures is higher than that of the neat polymer.  Also when using this small probe size, 

the surface area is predicted to increase as the concentration of the IL increases (in contrast 

to the trend predicted with the larger probes).  However, a probe diameter of 1.0 Å is able 

to explore large regions of the material that are likely inaccessible and irrelevant to our 

adsorbates. 

Another interesting result is the surface area of the i-PI + 10% IL in [Tf2N-]-based and 

[BF4
-]-based systems, as there is a large probe-size dependency. As Figures 8c and 8d 
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show, with a probe size larger than 3.0 Å, the surface area of the i-PI + 10% IL composite 

is larger than the neat i-PI. With a probe diameter of 2.0 Å, the surface areas of the neat 

and composite (10% IL) structures are almost overlapping. However, as the probe size 

grows from 3.0 to 4.0 Å, the gap between neat and composite (10% IL) increases in favor 

of the composite structure. This surface area analysis indicates that the composite structures 

have a higher probability of smaller pore sizes, and this further corroborates the PSD 

analysis in Figure 5.  
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Figure 5. Pore size distribution for: a) neat i-PI, b) composite structure of i-PI + 10% IL, c) i-PI + 
30% IL, and d) i-PI + 50% IL at 294 K and 1 bar (specifically, sample #2 of Table 2 after CO2 
saturation). 

 
Figure 6. Comparison of: a) the surface area and b) the FFV at 294 K and 1 bar for CO2 saturated 
structures. 
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Figure 7. Comparison of the average: a) surface area, b) solubility, and c) FFV change before and 
after the MD/GCMC cycles involving CO2 adsorption. 
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Figure 8. Probe diameter size sensitivity analysis for the CO2 saturated structures: a) 1.0 Å, b) 2.0 
Å, c) 3.0 Å, and d) 4.0 Å. 
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Figure 9. Radial distribution functions of gas interactions with different anion species: a and b) 
carbon site of CO2; c and d) nitrogen sites of N2 ; e and f) carbon site of CH4. 
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The N2 molecules show very similar behavior to the CO2 molecules, with respect to 

their interaction with the anions. Adding IL to the i-PI does not significantly change the N2 

gas molecule interactions within the [Tf2N-] and [PF6
-]-based structures. However, the N2 

gas molecules within the [BF4
-]-based structures show a weakened interaction with the 

[BF4
-] anions from the addition of 10% and 30 % IL. In the polymer + 50% IL samples, 

the interaction rises back to the value observed in the neat i-PI. 

The interactions of CH4 with the anions are characteristically different from those of 

the CO2 and N2 gas molecules.  In the [Tf2N-] and [BF4
-]-based structures, the CH4 

interaction with the anions decreases with the addition of the IL.  In the i-PI + 50% IL in 

[BF4
-]-based structures, the CH4 and anion interaction returns to the value found within the 

neat polymer.  In the [PF6
-]-based structures, the CH4 interaction with the anions remains 

constant, despite IL addition to the polymer. 

While the changes in adsorption and site-site specificity are moderate, these details 

provide fundamental insight into further tuning the gas selectivity of mixed i-PI + IL 

composite systems.  While other site-site interactions were investigated (such as different 

sites of i-PI backbone and [C4mim+] species), our primary focus of this investigation and 

the largest changes are found to be associated with the anions. 

4.   Conclusion 

In this study, the gas selectivity of different combinations of anions in a composite (i-

PI + IL) material are evaluated, and the performance is analyzed with respect to detailed 

structural changes and specific molecular interactions. The positive charge of the monomer 

backbone is compensated by paring with different anions ([PF6
-], [BF4

-], and [Tf2N-]) to 
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yield a charge neutral i-PI structure. Additionally, different composite structures of the i-

PI + IL ([C4mim+] with [PF6
-], [BF4

-], and [Tf2N-]) were investigated to evaluate the effect 

of the IL on gas solubility and selectivity for each structure.  

While [PF6
-]-based structures (neat i-PI and i-PI + IL composites) showed the highest 

CO2 solubility, [BF4
-]-based structures showed the highest selectivity for CO2 from the 

CO2/CH4 mixture. Comparing the initial and equilibrated structures of the prepared 

samples reveals that the CO2 adsorption leads to notable changes in the structure.  A high 

surface area as well as a high probability of larger pore sizes increases the gas solubility, 

while adding IL to the neat polymer system reduces the surface area and decreases the gas 

solubility, and this is consistent with experiments.  The surface area follows the same trend 

for three different anion based structures: [PF6
-] > [BF4

-] > [Tf2N-].  The composite 

structure of neat i-PI + IL also switches the adsorption sites in the polymer structure for the 

CO2/CH4 gas mixture from ligand to imidazolium sites. 

In our previous work,44 pure CH4 displays a stronger interaction with the neat [Tf2N-

]-based i-PI in comparison to the CO2 gas. However, upon adding IL, the CH4:anion 

interaction showed a sharp decrease in the i-PI + IL composite structure. This current study 

supports the previous work and explains the competitive occupation and interaction 

between mixed gas adsorption. The CO2 has a stronger interaction with the anion in all of 

the neat i-PI and i-PI + IL composites. Although the [PF6
-]-based structure has higher gas 

solubility (due to larger pores and surface area), the selectivity remains a challenging issue.  

Experimental investigations are currently underway to corroborate the trends found in the 

current study and it has been verified that i-PIs with each anion can be readily synthesized 

from the corresponding Cl- salt, although i-PIs with BF4
- and PF6

- anions form much more 
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brittle films than those with Tf2N- anions.  We are also exploring how the nature of the IL 

additive influences gas permeability and separation by utilizing the different cations such 

as 1-ethyl-3-methylimidazolium ([C2mim+]) or 1-benzyl-3-methylimidazolium 

([Bnmim+]). 
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