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metaFlye: scalable long-read metagenome
assembly using repeat graphs

Mikhail Kolmogorov®?, Derek M. Bickhart?, Bahar Behsaz?, Alexey Gurevich?*, Mikhail Rayko®4,
Sung Bong Shin®, Kristen Kuhn®, Jeffrey Yuan®3, Evgeny Polevikov#%, Timothy P. L. Smith©®> and
Pavel A. Pevzner®'7%

Long-read sequencing technologies have substantially improved the assemblies of many isolate bacterial genomes as com-
pared to fragmented short-read assemblies. However, assembling complex metagenomic datasets remains difficult even for
state-of-the-art long-read assemblers. Here we present metaFlye, which addresses important long-read metagenomic assem-
bly challenges, such as uneven bacterial composition and intra-species heterogeneity. First, we benchmarked metaFlye using
simulated and mock bacterial communities and show that it consistently produces assemblies with better completeness and
contiguity than state-of-the-art long-read assemblers. Second, we performed long-read sequencing of the sheep microbiome
and applied metaFlye to reconstruct 63 complete or nearly complete bacterial genomes within single contigs. Finally, we show
that long-read assembly of human microbiomes enables the discovery of full-length biosynthetic gene clusters that encode

biomedically important natural products.

acterial genome assemblies produced from long

single-molecule sequencing reads are substantially more

contiguous compared to short-read assemblies”. In con-
trast, early long-read metagenomic studies reported lower yields
and reduced read lengths compared to isolate bacterial assemblies,
which made it difficult to generate high-quality assemblies and sug-
gested that sample preparation protocols have to be optimized to
utilize long reads in metagenomic studies™'. The recent improve-
ments in high-molecular-weight DNA extraction techniques have
enabled the sequencing of complex metagenomes with deep cov-
erage and increased read lengths’®. Although these improved
protocols have already been used for analyzing complex bacterial
communities %, there is still no specialized long-read metage-
nomic assembler. Some long-read assemblers'’~'” have been applied
to metagenomic datasets but none of them were designed to han-
dle the specific challenges of metagenome assembly, including the
highly nonuniform coverage of the composing species, the presence
of long intra-genomic and inter-genomic repeats'®" and inter- and
intra-species heterogeneity”*”.

Long-read metagenomic assemblies have the potential to greatly
improve upon the contiguity of short-read assemblies and address
their inherent limitations, such as strain resolution”’, detection of
horizontal gene transfer”, difficulties in the search for new candi-
date phyla*, sequencing of novel plasmids and viruses* and search
for biomedically important biosynthetic gene clusters®. Long-read
metagenomic assemblers can also improve the performance of
hybrid assemblers that combine short and long reads®*.

We recently developed a fast long-read genome assembler, Flye,
and showed that it produces accurate and contiguous assemblies'.
Here we describe the metaFlye algorithm for long-read metage-
nome assembly, benchmark it using a diverse set of simulated, mock

and real bacterial communities and demonstrate that it improves
over state-of-the-art long-read assemblers Canu'®, FALCON",
miniasm'!, OPERA-MS® and wtdbg2 (ref. ).

Results

Assembly of species with highly uneven coverage. The Flye algo-
rithm is designed for single-genome assembly and first attempts to
approximate the set of genomic k-mers by selecting solid k-mers
(high-frequency k-mers in the read-set). It further uses solid k-mers
to efficiently detect overlapping reads and builds disjointigs'e.
However, in a metagenome setting, this approach would favor
high-abundance species, whereas low-abundance species will have
a reduced number of solid k-mers (if any) and thus will fail to be
assembled. Here we introduce a different approach to solid k-mer
selection, which combines global k-mer counting with analyz-
ing local k-mer distributions (Methods). In addition, we describe
an algorithm for the detection of repeat edges in the metagenome
assembly graphs, which is robust to highly nonuniform distribution
of read coverage (Fig. 1a; Methods).

Assembling multiple closely related bacterial genomes. Another
important metagenome assembly challenge is the presence of spe-
cies with highly similar genomes in the sample. The related strains
and species often contain shared conserved sequences as well as
regions that are unique for each genome. We refer to each genome
within a group of related species/strains as a strain genome. The
shared and strain-specific regions generate bubble structures”* in
the repeat graph: simple bubbles in the cases of two strains (Fig. 1b)
and superbubbles in the case of more than two strains (Fig. 1c).
Moreover, some strain genomes may share repetitive sequences
with the other unrelated genomes, which results in roundabouts
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Fig. 1| metaFlye repeat annotation and examples of simple bubbles, superbubbles and roundabouts. a, The subgraph of an assembly graph formed by
four distinct genome subpaths. Repeat and unique edges are shown in color and black, respectively. metaFlye identifies edges X, Y and Z as repetitive
by analyzing the distinct read-paths through the subgraph. b, A simple bubble formed by two strains. ¢, A superbubble formed by three strains. d, A
roundabout formed by two strains, one of which shares a repeat with a different region of the metagenome.

(Fig. 1d). Similarly to haplotype-aware assembly”, these strain-
induced subgraphs in the repeat graphs need to be detected and
simplified to produce accurate and contiguous metagenomic
assemblies”’. The Methods section describes how metaFlye detects
and simplifies strain-induced subgraphs. In addition to the stan-
dard strain-suppression mode, metaFlye also has a strain-resolution
mode that we refer to as metaFlye,;..

Benchmarking using simulated metagenomic datasets. Long-read
assemblers often generate complete assemblies for many genomes
in mock community datasets, but fragmented assemblies of more
complex real metagenomes. Ideally, one could benchmark assem-
bly algorithms using a realistic complex mock dataset with known
reference genomes; however, no such dataset is currently available.
We thus simulated two bacterial communities with 64 and 181
genomes and benchmarked metaFlye, Canu, miniasm and wtdbg2
on these two datasets that we refer to as SYNTH64 and SYNTH181,
respectively (Supplementary Notes 1 and 2 and Supplementary
Tables 1 and 2). Here we summarize the benchmarking results on
the SYNTH181 dataset generated on the basis of a realistic bacte-
rial community, originally described by the Critical Assessment of
Metagenome Interpretation consortium™.

First, we selected 181 complete bacterial reference genomes
that were available for the CAMI_I_TOY_MEDIUM community
(Supplementary Note 1). The analysis of these genomes using fas-
tANT"' showed that there were 33 genomes with closely related
strains (average nucleotide identity >95%) and 22 genomes with
closely related species (average nucleotide identity 85-95%), result-
ing in 55 genomes that are particularly challenging for long-read
assemblers. We simulated 26 Gb of PacBio reads using Badread®,
following the abundance distributions from the original dataset
(mode D1). The read coverage of each genome varied from 0.01x
to 497X. There were 91 out of 181 genomes with coverage above 5x.

metaFlye showed a substantial improvement over other assem-
blers in both contiguity and reference coverage of separate genomes
on the SYNTH181 dataset (Fig. 2), with improvements becoming
more apparent for difficult-to-assemble genomes (characterized by
low mean NGA50 and coverage among all assemblers). metaFlye/
metaFlye,,;,, produced the assemblies with a higher total metage-
nome reference coverage (54.8%/54.1%), followed by Canu (43.1%),
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miniasm (42.9%), wtdbg2 (42.7%) and Flye (24.3%). metaFlye
and metaFlye,. assembled over 90% of the total length of the
92 well-covered genomes in the SYNTH181 dataset (with cover-
age above 5x), whereas all other methods had coverage <75%
(Supplementary Note 2). Similarly, metaFlye/metaFlye... pro-
duced the most contiguous assemblies of the entire metagenome
(NGA20=1.25Mbp/1.23Mbp), followed by Canu (923kbp),
miniasm (782kbp), Flye (347kbp) and wtdbg2 (341kbp). Similar
conclusions were made from analyzing the smaller SYNTH64 com-
munity, with metaFlye producing assemblies with better reference
coverage and NGA50 (Extended Data Fig. 1 and Supplementary
Note 2). Flye (in single-genome mode), produced inferior assem-
blies on both synthetic datasets. NGA50 is the statistic computed
for contigs that are broken at their misassembly breakpoints (if any).
It is defined as the highest possible number L such that all broken
contigs that are longer than L cover at least 50% of the reference.
NGAZ20 is defined similarly, but for 20% reference coverage.

Analyzing Human Microbiome Project assemblies. The Human
Microbiome Project (HMP) mock dataset represents a mock
human gut microbiome formed by 22 bacteria with known refer-
ence genomes sequenced using PacBio reads (total length 6.8 Gbp
and N50=6.7kbp). Nineteen of these bacteria have read coverages
ranging from 39X (Bacillus cereus) to 477X (Helicobacter pylori).
As the remaining three genomes (Methanobrevibactersmithii,
Candida albicans and Streptococcus pneumoniae) have low coverage
(below 1x), they were excluded from further analysis.

We used metaQUAST? to evaluate the statistics of the combined
references (Table 1, Supplementary Table 3, Extended Data Fig. 2
and Supplementary Note 3) as well as to compute the separate statis-
tics for each species present in the sample (Fig. 3 and Extended Data
Fig. 3). Because miniasm outputs contigs with a high per-nucleotide
error rate, we performed one round of contig polishing
using Racon™.

The metaFlye, Canu and miniasm assemblies had the highest
NGAS50 (2.0 Mb, 1.8 Mbp and 1.8 Mbp, respectively) and highest
reference coverage (>99.6%). The wtdbg2 and FALCON assem-
blies had reduced reference coverage and lower contiguity, associ-
ated with bacteria with abundances substantially deviating from
the median dataset coverage (B.cereus, Rhodobacter shaeroides,
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Fig. 2 | Comparison of Canu, Flye, metaFlye, miniasm and wtdbg2 assemblies of the individual genomes in the SYNTH181 dataset. Assembled fraction
and NGAS5O0 are reported for all 181 reference genomes from the simulated dataset. Genomes are ordered in decreasing mean assembled fraction (left)
and NGAS5O (right) across five assemblers. NGA5O is the statistic computed for contigs that are broken at their misassembly breakpoints (if any). NGA50
is not shown for values <10 kbp or if the reference coverage is <50%. Overall, 77 (metaFlye), 141 (Flye), 109 (Canu), 106 (miniasm) and 109 (wtdbg2)
NGAS5O0 values were filtered this way. The full metaQUAST report is provided in Supplementary Table 2.

Table 1| Assembly statistics for the mock community datasets

Dataset Assembler Assembly length, Total reference Sequence NGA50 Misassemblies CPU hours
Mbp coverage identity (NGA25), kbp

HMP 6.8 Gbp metaFlye 66.4 99.8% 99.9% 2,018 72 45

PacBio 19 Flye 64.7 97.8% 99.9% 1363 100 49

bacterial 0 o

el ErEnEEs Canu 67.6 99.7% 99.9% 1,854 105 756
FALCON 60.0 90.3% 99.5% 764 16 150
miniasm 66.6 99.6% 98.9% 1,863 VAl 1
wtdbg2 65.6 98.7% 99.2% 675 101 4

ZymoEven metaFlye 63.8 95.7% 99.6% (3,559) 7 90

GridION14Gbp g, 311 51.5% 99.6% (3,562) 10 105

ONT 8 bacterial o o

and 2 yeast anu 62.6 94.9% 99.4% (2,920) 1 4,590

references miniasm 52.0 80.1% 99.3% (2,032) 26 67
wtdbg?2 54.4 75.2% 99.3% (329) 14 5

Zymolog metaFlye 28.2 46.0% 98.5% (75) 40 112

GridION 16Gbp Flye _ _ _ _ _ 210

ONT 8 bacterial o 0

and 2 yeast anu 25.3 41.9% 98.6% (¢:1)) 6 38,800

references miniasm 15.6 26.4% 99.2% (18) 43 299
wtdbg2 232 33.7% 98.5% = 24 13

ZymoEven metaFlye 69.6 95.9% 99.5% (3,013) 45 1,410

PromethlON 4 4gb2 25.8 41.8% 98.4% (121) 50 12

146 Gbp ONT 8

bacterial and 2

yeast references

Zymolog metaFlye 37.7 57.7% 99.4% (3,549) 78 3,630

PromethlON 440> 173 25.5% 97.4% - 52 16

148 Gb ONT 8

bacterial and 2
yeast references

Statistics were computed for contigs longer than 500 bp using metaQUAST 5.1.0rc1 with default parameters. Misassembly counts are given for structural variations longer than 1kbp (default value).

The best value(s) in each category are highlighted in bold. NGAXx is the NGx statistic computed for contigs that are broken at their misassembly breakpoints. Reference coverage is the percentage of the
reference genome covered by assembled contigs. Sequence identity reported as a mean among all references. Two yeast genomes (Saccharomyces cerevisiae and Cryptococcus neoformans) did not contribute
to the misassembly counts and sequence identity computation in all Zymo datasets. Miniasm contigs were polished using Racon. Flye did not assemble the ZymoLog datasets due to poor k-mer indexing
(Methods). Canu and miniasm did not produce assemblies of the Zymo PromethlON datasets due to large running time or memory requirements. CPU: central processing unit.

Clostridium beijerinckii and H. pylori; Fig. 3). The miniasm and
metaFlye contigs had the fewest number of misassemblies (71
and 72, respectively), followed by wtdbg2 (105), Canu (105) and
FALCON (116). metaFlye assembled all 14 known plasmids that
have been previously identified in the HMP dataset. In compari-
son, metaplasmidSPAdes short-read plasmid assembler failed
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to assemble 7 out of the 14 plasmids from the same sample®.
Miniasm, Canu, FALCON and wtdbg2 failed to assemble one,
two, four and four plasmids, respectively. As expected, Flye
(in single-genome mode) produced less contiguous assembly
(NGA50=1.4 Mbp) and had more misassemblies (100), as com-
pared to metaFlye.
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Reference coverage NGAS50 (Mbp)

HMP

metaFlye Canu  miniasm wtdbg2  Flye FALCON metaFlye Canu miniasm wtdbg2 Flye FALCON
Bacillus cereus (39x) 99.8 100.0 100.0 979 98.5 88.8 4.93 3.83 3.34 0.20 0.33 0.07
Rhodobacter sphaeroides (42x) 100.0 100.0 99.9 97.3 742 3.19 3.18 2.52 0.25 0.04
Clostridium beijerinckii (49x) 100.0 99.9 99.4 97.9 100.0 1.73 1.42 0.27 0.67 0.10
Acinetobacter baumannii (63x) 100.0 99.9 99.9 99.1 99.7 95.4 0.91 0.91 0.77 0.32 0.91 0.45
Escherichia coli (67x) 100.0  100.0 999 998 1000  99.8 4.64 4.64 462  4.64
Enterococcus faecalis (67x) 100.0 100.0 100.0 ~ 99.6 100.0 99.8 2.74 2.74 2.75 1.92 2.74 1.54
Streptococcus agalactiae (67x) 99.8 99.8  99.8 2.16 192 217 2.16 2.15
Actinomyces odontolyticus (79x) 99.8 99.7 99.8 99.1 99.7 95.5 0.62 0.63 0.10
Bacteroides vulgatus (80x) 99.3 99.2 99.1 98.4 99.1 0.54 0.54 0.52
Pseudomonas aeruginosa (81x) 99.9 99.9 99.9 99.9 99.9 99.8 3.99 4.00
Deinococcus radiodurans (83x) 99.3 99.3 99.3 992  99.3 0.77 0.63
Staphylococcus epidermidis (95x) 100.0 100.0 99.9 99.8 99.8 100.0 2.02
Propionibacterium acnes (100x) 100.0 99.9 99.9 100.0 100.0 100.0 2.56 2.56
Neisseria meningitidis (102x) 98.4 985 985 1.75 2.26
Staphylococcus aureus (110x) 100.0 99.9 99.9 99.8 100.0 1.80 1.54 1.49 d
Listeria monocytogenes (124x) 100.0 100.0 100.0 100.0 99.8 100.0 2.94 2.65 2.96 2.47 2.94
Lactobacillus gasseri (128x) 97.9 97.9 97.9 [PEY 97.9 1.81 1.85 186 [ 1.85
Streptococcus mutans (134x) 100.0 100.0 100.0 99.3 99.9 100.0 2.03 2.03 2.05 1.67 1.70
Helicobacter pylori (477x) 1000 1000 1000 99.3  100.0 1.66 0.95 1.68 1.04 1.30
b R

ZymoEven eference coverage NGA50 (Mbp)

metaFlye Canu  miniasm wtdbg2 Flye metaFlye ~ Canu miniasm  wtdbg2 Flye
Cryptococcus neoformans (10x) 83.7 80.8 38.1 40.3 0.1 0.03 0.03
Saccharomyces cerevisiae (17x) 87.4 87.5 81.3 79.6 0.17 0.23  0.03 0.05
Pseudomonas aeruginosa (155x) 100.0 100.0 100.0 6.78 6.77  4.45 6.78
Escherichia coli (220x) 100.0 100.0 98.1 4.02 2.89 0.20 0.18 3.98
Salmonella enterica (227x) 99.9 99.9 98.1 3.56 292 0.21 0.15 3.56
Staphylococcus aureus (445x) 100.0 100.0 99.2 2.71 2.71 2.16 0.42 2.71
Enterococcus faecalis (464x) 100.0 100.0 99.9 2.82 2.16 2.85 2.83
Bacillus subtilis (516x) 100.0 99.9 99.7 4.03 4.01 2.03 0.69 4.03
Listeria monocytogenes (525x) 100.0 100.0 99.4 98.6 2.10 2.98 2.86 1.64 2.98
Lactobacillus fermentum (528x) 100.0 1000 9938 188  [JEIOZAN 1.91 1.68 1.91

ZymoLog Reference coverage NGA50 (Mbp)

metaFlye Canu  miniasm wtdbg2 metaFlye Canu  miniasm wtdbg2
Cryptococcusneoformans (0.003x) - - = - = - - -
Staphylococcusaureus (0.006x) - - 0.2 - = = = =
Enterococcusfaecalis (0.08x) - - 0.1 0.4 - = = =
Lactobacillusfermentum (0.2x) - 0.1 - - - - - -
Escherichiacoli (2x) - 13.6 0.4 14.5 = = - -
Salmonellaenterica (2x) 10.4 = 1.5 - - - -
Saccharomycescerevisiae (7x) 79.1 76.4 1.1 40.0 0.03 0.03 = =
Bacillussubtilis (158x) 99.7 100.0 98.8 98.9 1.23 0.74 0.77
Pseudomonasaeruginosa (158x) 100.0 100.0 99.9 98.8 6.78 6.77 257 0.73
Listeriamonocytogenes (3,960x) 100.0 100.0 99.0 87.5 2.98 2.99 2.97 0.03

Fig. 3 | Per-species reference coverage and NGA5O statistics for the mock community datasets (HMP, ZymoEven GridlON and ZymolLog GridION)
computed using metaQUAST. a,b, Read coverage for each species is given in the brackets after the species name. NGA50 values are not reported for
assemblies with reference coverage <50%. Blue and red colors correspond to the values higher and lower than the median, respectively. Flye failed to
assemble the Zymolog datasets due to poor k-mer indexing. Extended Data Fig. 3 provides the base-pair quality analysis for the same datasets.

Analyzing Zymo assemblies. The ZymoBIOMICS Microbial
Community Standards datasets represent mock community data-
sets generated using Oxford Nanopore Technologies (ONT)
reads with an N50 of ~5kbp>*®. The ZymoEven mock community
consists of eight bacteria with abundance ~12% and two yeast
species with abundance ~2%. The ZymoLog dataset represents
the same microbial community with abundances distributed as
a log scale (Fig. 3). Each of the two communities was sequenced
using GridION (total read lengths of 14 Gbp and 16 Gbp for the
ZymoEven and ZymoLog datasets, respectively) and PromethION
(total read lengths of 146 Gbp and 148 Gbp for the ZymoEven
and ZymoLog datasets, respectively). As the provided reference
of the S.cerevisiae was highly fragmented (N50=8kbp), we sub-
stituted them with the closest complete reference strain from the
National Center for Biotechnology Information (NCBI) (JEC21).
Because of the structural differences between the references and
the assembled strains, we ignored misassemblies from S. cerevisiae
and C. neoformans genomes in the total count of the misassemblies
(Supplementary Note 3).
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The metaFlye and Canu assemblies of the ZymoEven GridION
covered 95.7% and 94.9% of the references and improved over the
miniasm and wtdbg2 assemblies (80.1% and 75.2%, respectively).
The lower coverage of miniasm and wtdbg?2 is primarily explained
by the reduced performance on two yeast species, as compared to
the bacterial genomes (Fig. 3). metaFlye, as compared to Canu, had
slightly better NGA50 on bacterial genomes (Fig. 3) and had fewer
total bacterial misassemblies (7 and 11, respectively). Flye, as com-
pared to metaFlye, produced bacterial genomes with similar conti-
guity, but failed to assemble both yeast genomes (with substantially
lower read coverage).

The ZymoLog GridION dataset contains only four spe-
cies with coverage above 3x: Listeria monocytogenes (3,960X),
Pseudomonas aeruginosa (158x), Bacillus subtilis (38X) and . cere-
visiae (7X). metaFlye and Canu reconstructed over 99% of the three
bacteria and 79% and 76% of the S. cerevisiae genome, respectively.
Miniasm and wtdbg2 assembled smaller fractions of S. cerevisiae
(11% and 40%, respectively). Canu and metaFlye had the best over-
all contiguity (NGA25=81kbp and 75kbp, respectively). Flye failed
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Table 2 | Long-read assemblies of real metagenomic datasets

Dataset Sheep gut (this study) Human gut (Bertrand et al.) Cow rumen (Bickhart et al.’?)
metaFlye Canu metaFlye Canu metaFlye Canu
Length in contigs >10 kbp 1,454 Mbp 1,540 Mbp 837 Mbp 815 Mbp 1,173 Mbp 829 Mbp
Length in contigs >100 kbp 1,001 Mbp 888 Mbp 439 Mbp 428 Mbp 200 Mb 60 Mbp
Length in contigs >1Mbp 344 Mbp 313 Mbp 152 Mbp 125 Mbp 2 Mb 0
Full-length ORFs 1,489,797 1,569,187 969,005 928,809 1,316,090 896,241
OREF clusters (99%) 1,379,985 1,350,267 753,819 704,087 1,263,687 811,419
16S rRNA genes 1,496 1,679 852 1,091 539 251
16S rRNA clusters (95%) 263 253 71 a1 15 35
Contigs with matching 16S 211/223 198/203 77/100 76/116 22/25 8/8
CheckM >90% complete 63 49 14 12 0 0
CheckM >25% complete 331 291 68 60 16 6
Putative plasmids 143 12 109 63 126 51
Putative viruses 284 183 49 26 249 103
CPUh 450 5,500 1,020 15,200 810 -

Human gut statistics are reported for the total of all separate assemblies of all samples. Open reading frames (ORFs) were clustered at 99% similarity. The 16S rRNA genes were clustered into operational
taxonomic units at 95% similarity. Matching 16S rRNA statistic reports the number of contigs with multiple 16S rRNA copies, where all copies are 97% similar (along with the total number of multicopy
contigs). CheckM statistics are reported for contigs with <5% contamination. Supplementary Tables 6-8 describe benchmarking of wtdbg2, miniasm, OPERA-MS and Flye on the same datasets. Plasmids
and viruses were identified in circular contigs shorter than 500 kbp using plasmidVerify and viralVerify, respectively.

to produce any assembly of this dataset due to poor k-mer indexing
(Methods).

metaFlye assembly of ZymoEven PromethION dataset had com-
parable reference coverage and contiguity to the GridION assem-
bly. In contrast, for the ZymoLog dataset, the reference coverage
of metaFlye assembly increased from 46% to 58%, and NGA25
increased from 75kbp to 3.5Mbp (Table 1 and Fig. 3), a result of
the increased read coverage of species with low abundance. wtdbg2
resulted in assemblies with reduced reference coverage and contigu-
ity, as compared to metaFlye (Table 1). Canu and miniasm failed to
produce PromethION dataset assemblies due to either runtime or
memory requirements (Supplementary Note 3).

Assembly of the sheep gut microbiome. To investigate the capa-
bility of long-read metagenomics to recover complete bacterial
genomes from complex samples, we have sequenced a sheep fecal
sample using PacBio circular consensus sequencing (CCS) protocol
(Methods). We generated ~3.7 million reads (49.2 Gbp of sequence)
with read N50 ~14kbp after the CCS consensus calling. metaFlye
assembly yielded 1.4 Gbp of sequence in contigs longer than 10kbp
(1 Gbp in contigs longer than 100kbp), including 192 contigs lon-
ger than 1 Mbp with total length 344 Mbp (Table 2). Overall, 28 of
these contigs were circular, likely representing complete bacterial
genomes. In addition, there were 59 simple connected components
(>1Mbp in length with fewer than ten edges) that represent par-
tial or complete bacterial genomes with a relatively small number
of repeats.

In comparison, Canu assembled more sequence in short con-
tigs (1.5 Gbp versus 1.4 Gbp in contigs longer than 10kbp), but less
sequence in long contigs (0.9 Gbp versus 1 Gbp in contigs longer
than 100kbp). Wtdbg2 and miniasm produced assemblies with
lower contiguity and the total length, as compared to metaFlye and
Canu (Supplementary Table 6).

CheckM v.1.1.2 (ref. *) analysis of conserved taxonomy markers
predicted 63 contigs to be >90% complete and <5% contaminated
in the metaFlye assembly, potentially representing complete or
nearly complete bacterial genomes (25 out of these 63 contigs were
circular). In comparison, Canu assembled 49 such contigs. Out of
contigs that were >90% complete, 8.6% metaFlye contigs and 9.0%
Canu contigs were reported to have >5% contamination, suggesting
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a low chimerism rate of both assemblies. In addition, we investi-
gated the quality of contigs containing multiple 16S rRNA gene cop-
ies (Methods). Out of 223 metaFlye contigs with two or more 16S
rRNA gene copies, 211 contained at least 97% similar 16S rRNA
copies (a level of similarity expected within bacterial species), con-
firming the low chimerism rate (Supplementary Note 4).

Prodigal*® predicted slightly more ORFs in the Canu assembly
(1,569,745 versus 1,503,966 for metaFlye); however, the cluster-
ing of the ORF sequences at 99% similarity revealed slightly more
clusters for metaFlye (1,387,782 versus 1,350,688 for Canu). This
could be explained by an increased amount of sequence duplica-
tion in the Canu assembly. This distribution of ORF lengths and
GC content was similar in both assemblies (Extended Data Fig. 4).
The metaFlye assembly contained fewer split-reads, indicating bet-
ter local sequence quality (Supplementary Table 4). plasmid Verify*
identified 143 putative plasmids in metaFlye assembly and only 12
plasmids in the Canu assembly (Methods). In addition, viralVerify
(https://github.com/ablab/viral Verify) identified 284 and 183 puta-
tive viruses in the metaFlye and Canu assemblies, respectively.

We performed a taxonomic assignment of each contig with the
BlobTools pipeline®, which uses DIAMOND alignments”’ against
the UniProt reference proteomes database’ (accessed December
2019). Most of the metaFlye contigs were identified as being of
bacterial (1.4 Gbp), eukaryotic (47 Mbp) and archaeal (33 Mbp) ori-
gins (Extended Data Fig. 5 and Supplementary Table 5). Notably,
23 Mbp out of 47 Mbp of the eukaryotic-origin contigs were fur-
ther assigned to the Nematoda phylum. This was consistent with
the necropsy report of the animal, which revealed the evidence of
parasite infection.

metaFlye detected 1,873 simple bubbles, 166 roundabouts and
95 superbubbles of sizes ranging from 0.5kbp to 50 kbp in this data-
set, including a single bacterial genome of Clostridia class with 20
simple bubbles and 10 superbubbles, illustrating its complex strain
composition (Fig. 4).

Analyzing human microbiome assemblies. A recent study®
introduced a metagenome assembly pipeline OPERA-MS that
combines short- and long-read assembly with clustering of
metagenome-assembled genomes using the available bacterial ref-
erences. The authors showed that OPERA-MS improves assembly

107


https://github.com/ablab/viralVerify
http://www.nature.com/naturemethods

ARTICLES NATURE METHODS

Branch sequence identity (%)

100 - .
"
80 .
B
60 - ¥ o .
s, @
0"‘?
404 "0 -
e ]
AM
204 1
B
0 ““*‘ g B

T T T T T
10,000 20,000 30,000 40,000 50,000
Bubble length (bp)

0

Fig. 4 | Information about strains in the sheep microbiome revealed by metaFlye. a, An assembly graph of a single connected component in the sheep
microbiome dataset before strain collapsing (visualized using Bandage). The component represents a bacterial genome of the Clostridia class with 92%
conserved marker completion (computed using CheckM). There are 20 simple bubbles (shown in green) and 10 superbubbles (shown in yellow) that
account for 1.2 Mbp out of 2.4 Mbp long genome. b, Distribution of length and branch sequence identities of 1,141 bubbles (excluding loops and including
roundabouts with only two edges) in the sheep microbiome assembly. The length is defined as the length of the longest branch in a simple bubble.

contiguity by an order of magnitude as compared to short-read-only
methods. To benchmark the performance of long-read assemblers
on these human gut datasets, we extracted all available records
from the ENA database (project ID: PRJEB29152) and excluded
three samples where Canu failed (two samples) or metaFlye
failed (one sample). Removing these samples resulted in 19 data-
sets (Supplementary Table 9) with total read lengths varying from
1.6 Gbp to 8.0 Gbp.

We used metaFlye, Canu, miniasm and wtdgb2 to assemble each
dataset separately, followed by polishing with the corresponding
Ilumina reads using Pilon*. metaFlye and Canu assembled 837
and 815Mbp of sequence in contigs >10kbp and 152 and 125 Mbp
in contigs >1Mbp, respectively (separate sample statistics are
given in Supplementary Table 10). Miniasm and wtdbg2 produced
suboptimal assemblies that were substantially shorter (377 Mbp
and 684 Mbp, respectively) and had fewer 90%-complete contigs
(Supplementary Table 7). Table 2 summarizes the reference-free
benchmarks of metaFlye and Canu assemblies. In brief, metaFlye
has produced more 90%-complete contigs (14), had a higher rate
of contigs validated using 16S rRNA (77 out of 100) and recov-
ered more plasmids (109) and viruses (49), as compared to Canu.
metaFlye identified 1,141 simple bubbles, 78 superbubbles and 354
roundabouts of sizes ranging from 0.5kbp to 50kbp in this dataset
(Extended Data Fig. 6).

OPERA-MS implements a hybrid approach that initially assem-
bles short-read contigs and then uses long reads to scaffold these
contigs. This strategy has resulted in longer, but less contiguous
assembly (Supplementary Table 7) with only one 90%-complete
contig and only 16 complete 16S rRNA genes (while metaFlye
and Canu reconstructed 852 and 1,091 complete 16S rRNA genes,
respectively).

We further used SibeliaZ* to analyze the sequence overlap
between the samples (Methods) and found that 159 Mbp (~40%) of
the total sequence generated by metaFlye for all 19 samples appears
in at least two samples (Methods; Extended Data Fig. 7). We there-
fore performed co-assembly by running metaFlye on the mix of
reads from all samples (Methods).
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Search for novel biosynthetic gene clusters in human gut assem-
blies. Nonribosomal peptides (NRPs) are biomedically important
natural products that include many antibiotics*’. Most NRPs are
cyclopeptides synthesized via nonribosomal (rather than genetic)
code and built from over 300 different amino acids. Searching
for new NRPs is an important goal because many pathogens have
developed resistance against most drugs, including daptomycin and
vancomycin, NRP antibiotics of last resort”. Today; little is known
about antibiotic NRPs that are produced by bacteria that live in
the human gut (rather than doctor-prescribed) and it is unclear
whether the continuous exposure to them leads to the development
of antibiotic resistance.

A recent study* introduced the biosyntheticSPAdes tool for
identifying NRP-synthesizing biosynthetic gene clusters (BGCs)
in short-read isolate assemblies, but at the same time, acknowl-
edged that short-read metagenome assemblies are not adequate
for identification of these long (average length ~60kb) and repeti-
tive (made up of multiple highly similar domains) BGCs. Here we
show that metaFlye addresses this limitation and assembles many
NRP-synthesizing BGCs in the human gut (Supplementary Note 5).
This analysis is consistent with the recent discovery of a surpris-
ingly large array of still unknown cyclopeptides in the human gut
that are synthesized by still unknown BGCs"”. We benchmarked
OPERA-MS, Canu and metaFlye and demonstrated that metaFlye
co-assembly recovered more known NRP-synthesizing BGCs than
the other assemblies (including separate sample assemblies by
metaFlye; Supplementary Note 5). metaFlye co-assembly was the
only method that resolved all repeats in a known NRP-synthesizing
BGC that synthesizes a compound colibactin associated with
colorectal cancer®. As these repeats represent adenylation domains
(that define the colibactin structure), identification of the complete
BGC is a prerequisite for follow-up structure elucidation efforts
using peptidogenomics approaches®.

Analyzing cow rumen assemblies. To further benchmark metaFlye
and the other algorithms, we assembled a cow rumen metagenomic
dataset sequenced in a recent study'?, which consists of PacBio CLR
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(continuous long reads; total length 52.2 Gbp with N50 ~9kb) and
Mlumina reads (Supplementary Note 6). The results are summarized
in Table 2 and Supplementary Table 8. Briefly, metaFlye produced
the most 25%-complete contigs (16), recovered the highest number
of 95% 16S rRNA clusters (115) and had the most contigs validated
using 16S rRNA (22 out of 25). None of the assemblers produced
contigs with more than 90% completion, likely due to the higher
complexity of the cow rumen microbiome, as compared to the
sheep and human fecal samples'>.

Discussion

Although long-read metagenomics is a promising direction for
untangling complex bacterial communities, it faces difficult algo-
rithmic challenges. metaFlye assemblies of the HMP and Zymo
mock communities had similar or better quality, as compared to
the Canu assemblies (in terms of the reference fraction and NGA50
metrics). Both metaFlye and Canu showed substantial improvement
over miniasm, wtdbg2 and FALCON on most of the mock com-
munity datasets. While miniasm produced a good-quality assembly
of the HMP dataset (with relatively uniform species abundance), it
failed to assemble substantial fractions of low-abundance species in
the Zymo datasets. Similarly, wtdbg2 and FALCON did not recover
substantial parts of the HMP and Zymo datasets and had reduced
assembly contiguity. metaFlye was at least tenfold faster than Canu
on all metagenomic datasets we analyzed. Only metaFlye and wtdgb2
were able to scale to the 150 Gbp PromethION runs, but the wtdbg2
PromethION assemblies were substantially more fragmented.

Although mock bacterial communities with known reference
genomes are convenient for benchmarking, they do not represent
the full complexity of environmental metagenomes. We thus simu-
lated two extra communities of 64 and 181 bacteria with realistic
abundances distribution and species composition. Our analysis
using the simulated datasets showed that long-read assemblers are
facing challenges when assembling: (1) genomes with low relative
abundance and (2) genomes with closely related strains or species
present in a metagenome. metaFlye showed substantial improve-
ment over Canu, miniasm and wtdbg2 in assembling these synthetic
communities. metaFlye in the strain mode produced more accurate
assemblies of the closely related species and strains at the cost of
slightly decreased contiguity.

metaFlye assembly of the sheep microbiome resulted in 63 nearly
complete bacterial contigs, highlighting the power of long-read
metagenomics to recover the high-quality genomes from complex
microbial communities. metaFlye also improved on Canu, miniasm
and wtdbg2 by producing more contigs with a high degree of com-
pletion and capturing more plasmids and viruses. Notably, metaFlye
enables the analysis of bacterial strains through identifying alterna-
tive strain structures, whereas other assemblies do not retain the
strain information.

The analysis of human microbiome samples discovered ten
NRP-synthesizing BGCs in metaFlye assemblies, including BGC
producing acinetobactin, colibactin and paenibacterin. In contrast,
short-read metagenomic assemblies rarely capture any (long and
highly repetitive) NRP-synthesizing BGCs, which makes the down-
stream NRP discovery difficult™.
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Methods

Ethics declaration. The sheep fecal sample was collected postmortem from the
lower colon of a Katahdin breed wether (sheep, Ovis aries) that was raised in a
ranch pasture setting. The animal died naturally and postmortem was diagnosed
with combined Strongyloides and coccidial infection. No ethical guidance was
required as, pre-mortem, the animal was cared for under approved guidelines
for the handling of farm animals by the standard operating procedures of the
Institutional Care and Use Committee. The animal did not display observable
disease until shortly before death. All sheep in the flock that die are routinely
necropsied to determine the cause of death to further improve handling guidelines,
and the fecal sample used for the present study was a portion of that collected to
generate the diagnosis.

Assembling mock communities and simulated datasets. metaFlye v.2.7-b1589
(commit fbd6ba5) was run using the ‘~meta-plasmids” options for HMP,
SYNTH64 and SYNTH181 datasets. We added an option ‘~min-overlap 2000’ to
assemble Zymo GridION datasets to compensate for shorter read length.

Canu v.1.9 was run using parameters recommended for metagenome
assembly on the HMP, Zymo and SYNTH datasets: ‘corOutCoverage = 10,000,
corMhapSensitivity = high, corMinCoverage =0, redMemory =32,
oeaMemory =32, batMemory = 200> We note that running Canu with default
parameters is faster than running it with metagenomic parameters (114 versus
756 CPUh to assemble the HMP mock dataset). However, the default parameters
produce nonoptimal assemblies of species with low abundance: for example the
assemblies of B. cereus, C. beijerinckii and Rhodobacter sphaeroides in the HMP
dataset were substantially more fragmented, as compared to the metagenomic
parameters set. According to the documentation, Canu outputs circular contigs
with overlapping ends (multiple kbp in size), which were reported as misassemblies
by QUAST. To prevent this, we post-processed HMP, Zymo and SYNTH assemblies
by trimming the overlapping ends of circular contigs output by Canu.

Miniasm 0.3 was run using its default parameters on the HMP, Zymo and
SYNTH datasets, followed by polishing using Racon v.1.4.10 (ref. **). FALCON
(pb-falcon 0.2.5) was run using a configuration file recommended for bacterial
assemblies. wtdbg2 v.2.3 was run using the default parameters for the HMP dataset.
However, as the Zymo datasets had higher read coverage as well as low-abundance
species, we increased the k-mer frequency coverage range using ‘-node-max
1,000 -e 2’ as suggested by the developers. This resulted in an increase in the total
assembly length as compared to the default settings (from 28 Mbp to 55 Mbp for
the ZymoEven dataset and from 12.6 Mbp to 23.4 Mbp for the ZymoLog dataset).
We used the default parameters for the SYNTH datasets and additionally polished
the assemblies using Racon v.1.4.10.

All tools were benchmarked on a computational node with two Intel Xeon 8164
CPUgs, with 26 cores each and 1.5 TB of random-access memory.

Generating assemblies of real metagenomic datasets. We used metaFlye v.2.7b
(commit a52dfba) with ‘~meta-plasmids” options to generate all real metagenomic
assemblies. The ‘~min-overlap’ parameter was set to 2kbp for the cow rumen
(otherwise, automatically selected). We found that 13% of PacBio reads in the cow
rumen dataset contained more than one PacBio subread (reads with

multiple polymerase passes). We split such chimeric reads using the pbclip tool
(https://github.com/fenderglass/pbclip) before running metaFlye.

We ran Canu v.1.8 on the human gut dataset and Canu v.1.9 on the sheep gut
microbiome dataset using the metagenomic parameters described above. For the
sheep gut microbiome dataset that consists of PacBio CCS reads (estimated error
rate ~2%), we used ‘—pacbio-corr’ mode to generate assemblies. In addition, we
tested ‘~pacbio-hifi’ mode (recently introduced in Canu v.1.9), which resulted
into assembly with increased contiguity, but high chimera rate (~20% contigs with
>90% completeness had >5% contamination rate as reported by CheckM). We
thus selected the assembly produced with ‘-pacbio-corr’ for our analysis.

Miniasm v.0.3 and wtdbg2 v.2.3 were run using the default parameters on the
cow rumen, human gut and sheep microbiome datasets. We applied long-read
polishing using Racon v.1.4.10 to both miniasm and wtdbg2 assemblies to improve
the base quality.

Sequencing of the sheep microbiome. Sheep from the flock maintained at the US
Meat Animal Research Center are monitored for health. Necropsy was performed
in some cases if the cause of death was uncertain. Necropsy of one wether in 2018,
revealed evidence of infection with coccidial single-cell parasites and Strongyloides
nematode parasites. Fecal matter was collected from the colon of this animal, with
watery texture consistent with diarrhea and the presence of eggs presumed to
reflect parasite infection.

DNA was extracted from the fecal material using the QIAamp PowerFecal
DNA kit as suggested by the manufacturer (QIAGEN), including the bead beating
step with a Tissuelyzer. The success of the preparation of high-molecular-weight
DNA was confirmed using Fragment Analyzer (Advanced Analytical
Technologies). DNA was sheared to fragment size in the 9-18-kbp range using
Digilab Genomic Solution Hydroshear instrument (Digilab) and sequencing
libraries were prepared using the SMRTbell Template Prep kit v.1.0 as
recommended (Pacific Biosciences). Libraries were size-selected using the SAGE
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ELF size selection system (Sage Science) to final target size, which varied from
9kbp up to 16 kbp. Sequencing was performed on a Sequel instrument (Pacific
Biosciences) using v.2.1 chemistry (libraries in the 9-10kbp range) or v.3.0
chemistry (libraries in the 12-16 kbp range) and 20-h movies (8-h pre-extension).
A total of 45 SMRT cells were collected using ten individual library preparations
(four selected at 9-10kbp; three selected at 12-13 kbp; three selected at 15-16kbp).
Following sequencing, polymerase reads were converted to circular consensus
reads using the CCS application in SMRT Link software v.6.0 and default settings.
The sequenced sample was fully consumed during the experiment.

Identifying putative plasmids and viruses. We used plasmidVerify*, commit
69e2092b and viralVerify (https://github.com/ablab/viral Verify), commit 017d43a2
to identify putative plasmids and viruses. We only considered contigs that were (1)
circular and (2) shorter than 500 kbp as potential plasmid and viral candidates to
reduce the number of false positives matches (representing fragmented plasmids
and viruses).

Strain statistics for the metaFlye sheep microbiome assembly. The bacterial
genome illustrated in Fig. 4a was identified as Clostridia class by comparing the
extracted 16S rRNA sequences against the SILVA database™ to identify the closest
database match with 84% identity. We ran metaFlye with the ‘~keep-haplotypes’
option, visualized the assembly graph with Bandage® and visualized the simple
bubble statistics using Matplotlib>* and Seaborn (https://seaborn.pydata.org/).
Sequence identity was estimated from the Jaccard similarities”’. ORF sequences
were clustered at 99% similarity using CD-HIT".

Validating assemblies using 16S rRNA genes. Complete 16S rRNA genes were
predicted using Barrnap v.0.9 (https://github.com/tseemann/barrnap). We further
clustered these genes at 95% identity using vsearch v.2.14.1 (ref. *°) to reveal the
fine-grained taxonomic composition of the microbial communities. Singletons
were removed because they can potentially represent poorly polished copies of
16S rRNA genes rather than separate 16S rRNA genes (and artificially inflate the
number of discovered clusters). To validate the structural accuracy of contigs, we
clustered 16S rRNA copies within each contig at 97% diversity (expected for single
bacterial species) using vsearch.

Analyzing human gut sample composition overlap. We used SibeliaZ* v.1.2.0
with parameters -k 25 -n -f 50’ to generate multiway whole-genome alignments
between all assembled samples. Each alignment block represents the aligned
sequence that appears in one or multiple samples. Nonredundant sequence™ was
computed by collapsing each multiway-aligned region into a single consensus.
metaFlye and Canu assemblies contained 425 Mbp and 393 Mbp of nonredundant
sequence, respectively (Extended Data Fig. 7). Overall, 159 Mbp (~40%) of the
nonredundant metaFlye sequence appeared in multiple samples and 266 Mbp was
unique to a single sample.

Co-assembly of multiple human gut samples. As there is a large sequence

overlap between human gut samples, we co-assembled all of them by running
metaFlye on the mix of reads from all samples. Co-assembly is computationally
more difficult than assembling each sample separately due to (1) increased strain
divergence levels and (2) increased shared sequence content that complicates the
assembly graph. Indeed, the total number of detected simple bubbles, superbubbles
and roundabouts increased from 1,573 (separate metaFlye assemblies) to 2,873
(co-assembly), revealing richer strain composition. Nevertheless, metaFlye
co-assembly resulted in 453 Mbp of sequence, which closely matched the amount
of nonredundant sequence from assemblies of separate samples. We also attempted
to run Canu on the mix of all reads but terminated the pipeline after no substantial
progress within a month of running it on a computational server.

Solid k-mer selection in metagenome assemblies. The Flye algorithm'® selects
solid k-mers as follows (the typical k-mer size is 15 or 17 nucleotides for PacBio
and ONT reads). In the first pass through all reads, the algorithm counts
frequencies of k-mer hashes using a fixed-size array of counters. In the second pass,
k-mers with pre-computed frequencies higher than a threshold (typically equal

to 2 or 3) are counted using the cuckoo hash table”. Given the computed k-mer
frequency table and an estimated genome size |G|, the algorithm selects the |G|
most frequent k-mers and sets a frequency threshold t as the minimum frequency
among the selected k-mers. The selected threshold ¢ separates solid k-mers (that
are indexed) from erroneous ones (that are discarded).

This strategy typically results in a relatively small misclassification rate; for
example, in a typical isolate bacterial project only ~5% of unique genomic k-mers
(true k-mers from the genome) are missing from the set of solid k-mers, and only
~10% of unique solid k-mers represent nongenomic k-mers. However, although it
works well in genomic assemblies, it is not suitable for metagenomic assemblies,
because there is no frequency threshold that robustly separates genomic from
nongenomic k-mers (due to uneven species coverage). To address this challenge,
some short-read metagenomic assemblers use more sophisticated strategies for
selecting k-mers, such as the mercy-k-mer approach in MEGAHIT". However, as
these approaches do not work for long reads, we describe an alternative strategy
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for solid k-mer selection and benchmark it using both isolate and metagenome
datasets.

Similarly to the uniform coverage mode in Flye, metaFlye also starts with
counting k-mers in all reads. Although high-frequency k-mers are still expected
to represent genomic k-mers, nongenomic k-mers arising from reads in
high-abundance species often outnumber genomic k-mers from low-abundance
species. Given a per-nucleotide error rate ¢ in reads, we estimate the probability
of a k-mer in a read to be error-free as E=¢*, under a Poisson error distribution
model. Thus, the expected number of solid k-mers in a read is E x Length(read).
For each read, metaFlye selects a frequency threshold f, so that there are at least
E x Length(read) k-mers in this read with frequency at least f and indexes k-mers
above this threshold using a hash table. Similarly to other k-mer counting/indexing
tools, metaFlye keeps the canonical representation of each k-mer, which is defined as
the lexicographical minimum of the forward and reverse complement of the k-mer.

We evaluated the uniform and metagenome k-mer selection modes using an
isolate genome dataset and a metagenome dataset, for which true k-mers were
extracted from the available references. Below we show that for isolate genomes,
the metagenome k-mer selection mode in metaFlye only slightly deteriorates as
compared to the uniform k-mer selection mode in Flye. However, in the case of
metagenomes, the metagenome k-mer selection mode significantly improves upon
the uniform k-mer selection mode.

The first set of PacBio reads from an Escherichia coli isolate (at 50X coverage)
contains 254.2 million (M) k-mers, out of which 56.7 M (22%) are genomic. In the
uniform k-mer selection mode, Flye indexed 55.3 M genomic k-mers (97% of all
genomic k-mers) and 5.0 M nongenomic (erroneous) k-mers. In the metagenome
selection mode, metaFlye indexed 50.3 M genomic k-mers (89%) and 22M
nongenomic k-mers.

We further used the HMP mock dataset to evaluate the k-mer selection in
metagenome mode. We focused on the two least abundant genomes in the mixture,
B. cereus and R. sphaeroides, which had coverage that is twofold below the median
species coverage. These two bacteria contributed to 83 M genomic k-mers in the
reads. In the uniform coverage mode, Flye selected only 33.2 M (40%) of their
genomic k-mers. In contrast, metaFlye selected 71 M (86%) of genomic k-mers in
the metagenome coverage mode.

The challenge of identifying repeats in metagenome assembly graphs. In
difference from contigs (that are expected to represent contiguous segments of

a genome), metaFlye first builds error-prone disjointigs that represent arbitrary
paths in the assembly graph but can be generated much faster than traditional
contigs. To fix potential misassemblies within disjointigs, Flye constructs the
repeat graph from disjointigs by collapsing each family of long repeats into a
single path in the graph'®. Each edge of the repeat graph is classified as unique (if
its sequence appears only once in a single genome) or repetitive (if its sequence
appears multiple times in a single genome or is shared by multiple genomes). The
contiguity of Flye assemblies critically depends on its ability to correctly classify
unique and repetitive edges of the assembly graph as this classification is needed
for identifying bridging repeats'®.

Removing all unique edges from the repeat graph breaks it into connected
components that we classify either as simple repeats (consisting of a single edge) or
mosaic repeats consisting of multiple edges™. Although Flye correctly identifies the
vast majority of simple repeats, classification of edges in mosaic repeats™ is a more
challenging task that remains unsolved in the case of metagenomic assemblies.

We note that the problem of repeat detection has been studied for short-read
metagenomic graphs®, but it is unclear how to extend it to long-read analysis.

To improve the classification of repeat edges, Flye uses the diverged read-paths
approach that analyzes read-paths in the repeat graph (a read-path is a path in the
repeat graph that a read traverses). It initially classifies all edges in the repeat graph
as unique and checks whether all read-paths through a unique edge continue into
a single successor edge (a similar test is performed for predecessor edges). If there
are multiple successors or predecessors, the edge is reclassified as repetitive.

Although this approach works well in genomic assemblies, it is not suitable for
metagenomic assemblies because the edge coverage is not a reliable predictor of the
edge multiplicity. Without the coverage test, the read-paths criterion might fail to
identify repetitive edges that belong to mosaic repeats, as it checks only immediate
predecessors and successors of each edge, for example, the repetitive edge Y within
a mosaic repeat in Fig. 1a would be classified as a unique edge. To address this
pitfall, we substitute the diverged read-paths approach in Flye by the iterative
repeat detection approach in metaFlye (described below) to identify repeat edges in
the metagenome assembly graph without using the coverage information.

Iterative repeat detection. Initially, metaFlye classifies all edges in the assembly
graph as unique. The algorithm iterates through all edges and re-classifies some
edges into repetitive as described below. Thus, at each intermediate iteration, the
assembly graph may contain both unique and repetitive edges.

Given a read-path through an edge e, metaFlye defines the next unique edge
in this path as a successor of e (in contrast to the Flye algorithm that considers
any edge as a successor). A set of all read-paths through an edge defines a set of
successors and we denote a successor edge with maximum support as e, (support
of an edge is defined as the number of read-paths that traverse this edge).

To account for chimeric reads, metaFlye filters out all successors with small
support, that is, each successor edge e with Support(e)/Support(e,,,) <6.Ifa
unique edge has multiple successors or predecessors, it is reclassified as repetitive.

The described test is performed iteratively on the entire set of edges until no
new edges are reclassified as repetitive. Intuitively, in a mosaic repeat, the first
iteration of the test will classify some of its edges as repetitive, but consecutive
iterations extend the set of repeats (Fig. 1a). For a faster convergence of the
algorithm, we traverse edges of the graph in the increasing order of their length, as
short edges are more likely to be repetitive (two iterations are typically sufficient).
The default value §=0.2 was derived empirically through the evaluations
on multiple metagenomic and genomic datasets to minimize the number of
classification errors.

We evaluated the repeat detection algorithm using the HMP dataset as follows.
We aligned each edge of the repeat graph (before graph simplification) against
the combined reference genome using minimap2 (ref. °'). The alignment revealed
79 repetitive and 403 unique edges (repetitive edges have more than one distinct
alignment over at least half of the edge length). metaFlye erroneously classified
13 out of 403 (3.2%) unique edges as repetitive and 2 out of 79 repetitive edges as
unique (2.5%). Note that the errors of the first type would not lead to misassembly,
but might result in under-assembly. The errors of the second type potentially
could lead to misassembly; however, the Flye graph simplification algorithm was
designed to be robust against the (rare) repeat misclassifications'®.

Bubbles. Let G(V, E) be a directed weighted graph with the node-set V and the
edge-set E. Given a subset U of its nodes, we define E, as the edge-set formed by
all edges of G that connect nodes in U. We refer to a subgraph with the node-set U
and the edge-set Ej, as the U-induced subgraph of G.

A path in a graph is called short if its length does not exceed a threshold
bubbleDiameter (the default value 50kb). An edge in a graph is called a bridge if
its removal increases the number of connected components in the graph. An edge
that connects a node in E\U to a node in U (a node in U to a node in E\U) is called
an entrance (exit) edge for a U-induced subgraph. An ending node of an entrance
edge (a starting node of an exit edge) is called an entrance (exit) node.

A U-induced subgraph is called a bubble if (1) it has a single incoming and a
single outgoing edge; (2) it has no bridges; and (3) for each edge in this subgraph,
there is a short path from the entrance to the exit passing through this edge
(compare with the definition of a blob in ref. ®*). A bubble is called simple if it is
formed by two parallel edges and called a superbubble otherwise (Fig. 1).

Finding simple bubbles. Simple bubbles, often arising from two strains, are
formed by two short parallel edges in the repeat graph (Fig. 1b). As metaFlye
collapses edges shorter than the MAX_SEPARATION parameter (500 bp by
default), some simple bubbles are represented as a pair of loop edges in the repeat
graph. In difference from the concept of a bubble in previous studies’**’, metaFlye
considers bubbles where the entrance and exit are represented by the same node.

Finding superbubbles. Many short-read assemblers search for superbubble-like
structures, defined empirically through the corresponding algorithmic
implementation®**‘. Although most assemblers require superbubble subgraphs
to be acyclic, a generalization that allows cycles was proposed but has not been
implemented in a genome assembler yet®. In difference from the previously
described assemblers (and in difference from the concept of a superbubble in
previous studies®***), metaFlye does not require superbubbles to be acyclic and
thus has the ability to analyze repeats inside superbubbles. This is an important
distinction because metagenomic superbubbles often contain repeats.

metaFlye considers each edge StartEdge (and the corresponding node
StartNode) in the repeat graph and attempts to find a bubble that has StartEdge
as its potential entrance. It finds an arbitrary simple path of length at least
BubbleDiameter starting at StartNode and iterates over all intermediate edges in
this path. For each intermediate edge EndEdge (and the corresponding EndNode),
metaFlye removes this edge from the graph, launches the Dijkstra algorithm to
find shortest paths from StartNode to all other nodes of the graph and prematurely
terminate it if the distance from StartNode to the next opened node exceeds
BubbleDiameter. In the case the algorithm does not terminate prematurely (the
distance from StartNode to all discovered nodes does not exceed BubbleDiameter),
we run the ‘reversed’ Dijkstra search starting from EndNode with the flipped
direction of edges and StartEdge removed. If (1) the reversed Dijkstra search was
also successful and (2) both searches have discovered the same set of nodes and
edges, we classify the subgraph discovered by the algorithm as a superbubble with
the entrance StartNode and the exit EndNode. Although the search for an arbitrary
path of length at least BubbleDiameter (and follow-up launch of the Dijkstra
algorithm) can be time-consuming in theory, in practice this algorithm takes
minutes to process large metagenomic datasets, such as the cow rumen dataset
with >1Gbp of assembled sequence and the repeat graph having >150,000 edges.

Finding roundabouts. Alternative strains might share repeated sequences with
the other genomes within a metagenome, resulting in roundabouts (Fig. 1d)
that popular short-read metagenomic assemblers, such as metaSPAdes'” and
MEGAHIT" do not attempt to simplify. metaFlye identifies and simplifies
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roundabouts by analyzing read-paths in the repeat graph (read-paths represented
by a single read are removed to exclude potentially chimeric reads).

To identify roundabouts, metaFlye iterates through all edges of the repeat graph.
For each edge StartEdge, it analyzes all read-paths through StartEdge in the graph,
considers suffixes of these paths that start at StartEdge, and selects maximal suffixes
(suffixes that are not contained within other suffixes). If there exists an edge EndEdge
traversed by each maximal suffix, metaFlye trims each maximal suffix by removing
all its edges, starting from EndEdge. Finally, metaFlye identifies a roundabout as
a subgraph formed by edges in all shortened maximum suffixes. Note that while
roundabouts may represent more complex strain variations than superbubbles, the
size of the roundabouts is limited by the read lengths, whereas the superbubbles are
identified on the basis of the structure of the repeat graph and irrespectively of reads.

Processing strain groups. metaFlye identifies strain groups (bubbles, superbubbles
and roundabouts) and retains each group in the graph during the following graph
simplification steps (such as tip clipping and repeat resolution). It has two strain
analysis modes: the standard metaFlye strain-suppression mode (each strain group
is collapsed into a single edge connecting the entrance and exit nodes of the group
before the final contigs are generated) and the metaFlye,,;, strain mode (retaining
the alternative strain structures in the graph) which produces less contiguous
assemblies that, however, are better suited for strain analysis.

Additional repeat graph simplification procedures. Some strain variations, such
as inversions, do not fall under the definition of bubbles/roundabouts or are too
complex to detect with the described algorithms. After identifying strain groups,
metaFlye additionally simplifies the repeat graph by removing edges with locally
reduced coverage and long tip edges (Supplementary Note 7).

Assembling short plasmids. Short plasmid sequencing is an important task
because these plasmids represent a large fraction (~30%) of all plasmids in the
RefSeq database. However, although existing long-read assemblers perform well

in assembling long circular plasmids (longer than the typical read length), our
benchmarking revealed that they often miss short plasmids. metaFlye implements
an additional module that ensures the assembly of short circular sequences that are
spanned by one or two overlapping reads (Supplementary Note 8).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Sequencing data for the sheep gut sample are available under the NCBI

BioProject PRINA595610. HMP mock dataset is available at: https://github.com/
PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun.
Zymo datasets are at: https://github.com/LomanLab/mockcommunity. Cow rumen
dataset is at: NCBI SRA repository under BioProject PRINA507739. Human stool
samples are at: ENA project PRJEB29152. NCBI accession codes for the sequences
used in the NRPS analysis are: AM229678.1, AB101202.1, FP929054.1 and
FP929054.1. All assemblies that were evaluated in this study, as well as SYNTH64 and
SYNTH]181 datasets are available at: https://doi.org/10.5281/zenodo.3986210 (ref. ©°).

Code availability

metaFlye is freely available as a part of the Flye package at: https://github.com/
fenderglass/Flye. The pbclip tool for PacBio subread splitting is available from
https://github.com/fenderglass/pbclip.
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Extended Data Fig. 1| Information about metaFlye, Flye, Canu, miniasm, and wtdbg2 assemblies of the individual genomes in the SYNTH64 dataset.

NGAS5O (in megabases) and reference coverage (in percentages) reported for all genomes from the SYNTH64 dataset. Genomes are ordered in the

increasing mean NGA50 across all assemblers. Challenging genomes that have closely related species or strains in the metagenome are marked with (1.

Grey bars on the NGA5O0 plot represent the length of the longest chromosome in the reference sequence for each genome (a theoretical upper bound for

NGAS50). NGA50 is shown in logarithmic scale (not shown for values lower than 100 kb or if the reference coverage is below 50%). The full metaQUAST

report for the SYNTH64 dataset is provided in Supplementary Table 1.
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Extended Data Fig. 2 | NGAXx plots for the mock community datasets (HMP mock, ZymoEven GridlION, ZymoLog GridION). NGA(x) is the statistic
computed for contigs that are broken at their misassembly breakpoints (if any). NGA(x) is the highest possible number L such that all broken contigs that
are longer than L cover at least X% of the reference. Plots were generated by metaQUAST using all available references for each dataset. Flye failed to
assemble the Zymolog datasets due to poor k-mer indexing (Methods).
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(a) HMP Mismatches per 100 kbp Indels per100 kbp

metaFlye Canu miniasm wtdbg2 Flye  FALCON metaFlye Canu  miniasm wtdbg2 Flye FALCON
B. cereus (39x) 301  27.23 2.83 55.57 2497 4797 677.72 987.9 2221 479.24
R. sphaeroides (42x) 321  3.43 14.23 31.98 79.17 172.04 683.28 81.44  798.63
C. beijerinckii (49x) 098  1.03 244 2548 18.39  27.87 657.88 875.29 135  446.91
A. baumannii (63x) 419  0.65 0.75  22.78 28.07 17.73 562.74 460.58 14.83 369.17
E. coli (67x) 933  3.74 3.04 2857 26.59  30.24 544.82 284.54 2597 448.16
E. faecalis (67x) 78.93 19.16 16.11 31.14 35.87 19.78 628.9 540.91 24.02 419.93
S. agalactiae (67x) 37.15 57.56 19.51 42.16 23.03 4043 578.29 397.15 21.04 358.6
A. odontolyticus (79x) 18.47  6.45 7.72  38.68 108.59 95.68 595.5 865.58 107.54 719.5
B. vulgatus (80x) 17.73  6.41 15.97  30.27 66.04  33.28 572.34 377.64 38.28 404.68
P, aeruginosa (81x) 419 487 5558 6568 22 3523 49.02 4135 578.49 29539 48.95 602.28
D. radiodurans (83x) 10.15 10.02 76.65 9826 19.22  47.6 136.56 108.65 682.75 526.59 137.07 760.04
S. epidermidis (95x) 71.89  54.06 73.51 59.78 31.39 1328 621.56 353.78 35.29 283.66
P. acnes (100x) 235 1.76 1.17  25.52 97.68  50.93 530.13 295.44 97.53 495.82
N. meningitidis (102x) 1533 7.95 5.09  33.58 4473 3157 642.67 423 4321 447.47
S. aureus (110x) 155.29 158.01 153.89 40.28  28.45 250.47 4033 262.72
L. monocytogenes (124x)  64.49  15.14 21 17.24 41.89  10.62 212.97 35.07 202.53
L. gasseri (128x) 6.06  0.65 7.6 21.2 26.72 6.94 182.96 2559 228.61
S. mutans (134x) 403  6.43 85.85 93.94 146.66 21.9 25.48  12.13 598.52 257.74 50.7  263.18
H. pylori (477x) 24.93 8.84 [BIEA %051 993 6171 182.31 [HER 180.74 208.65
(b) ZymoEven Mismatches per 100 kbp Indels per 100 kbp

metaFlye  Canu miniasm wtdbg2 Flye metaFlye Canu miniasm wtdbg2 Flye
C. neoformans (10x) 2772.45 2655.65 2795.26 2778.53 1202.84 1220.42 1087.26“
S. cerevisiae (17x) 486.39 497.61 541.21 [Ji5G9NBN 477.92 AT 633.33 625.94 746.5
P, aeruginosa (155x) 29.02 13.16 68.68 93.01  28.92 119.41 209.94 320.01 43438 119.62
E. coli (220x) 308.82 216.61 483.79 280.08 448.78 290.11 505.47 546.6 71224 301.07
S. enterica (227x) 321.7 211.83 489.06 277.5 48553 322.43 544.09 540.26 75459 335.55
S. aureus (445x) 117.29 111.59 115.14 272.75 421.14 457.89 548.05 267.45
E. faecalis (464x) 53.06 41.86 94.82 91.8 52.13 429.74 654.03 566.41 743.37 427.4
B. subtilis (516x) 76.64 39.92 1343 13882 1276 406.13 625.95 559.23 780.26 409.28
L. monocytogenes (525x)  g.75 91.82 57.29  72.06 385.88 591.03 532.17 657.58 381.76
L. fermentum (528x) 37.01 2373 117.73 98.89  34.29 355.14 543.44 53426 71436 351.22
(c) ZymoLog Mismatches per 100 kbp Indels per 100 kbp

metaFlye Canu  miniasm wtdbg2 metaFlye Canu miniasm wtdbg2
C. neoformans (0.003x) 2 7506.2 = 2 = 2378 g 3
S. aureus (0.006x) - - 8057.68 - - - 1529.87 -
E. faecalis (0.08x) . . 7584.31 92.84 . . 1420.04 779.87
L. fermentum (0.2x) - 717.88 - - - 1651.11 - -
E. coli (2x) 2815.39 1183.21 822.2 2929.27 3053.28 2156.19 1490.24 4736.2
S. enterica (2x) 2897.61 1307.57 2 2639.75 3081.19 2333.09 -
S. cerevisiae (7x) 803.46 728.11 741.61 |53l 1307.06 1338.34 968.71
B. subtilis (37x) 81.38 57.07 116.38 143.88 467.42 779.97 565.95 1239.98
P aeruginosa (158x) 34.9 13.79  69.11 97.7 155.64 280.26 359.82 507.07
L. monocytogenes (3960x) 37,07  15.16  396.2  241.15 463.88 698.76 906.95 938.63

Extended Data Fig. 3 | Base-pair accuracy analysis for assemblies of the mock community datasets (HMP, ZymoEven GridlON, and ZymoLog GridlION).
Heatmaps showing the number of mismatches and short indels per 100 kbp for each species reference, computed using metaQUAST. Blue and red colors
correspond to the values higher and lower than the median, respectively. Statistics were not computed for genomes with no assembled sequence (“-"
symbol). Flye failed to assemble the Zymolog datasets due to poor k-mer indexing (Methods).
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Extended Data Fig. 4 | The ORF lengths distribution and the GC content distribution of metaFlye and Canu assemblies of the sheep microbiome. The
OREF length distribution suggests similar base-level accuracy for both assemblies.
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Extended Data Fig. 5 | Taxonomic assignments of sheep microbiome assemblies. a, metaFlye contigs assignment at the phylum level visualized with
BlobTools. b, Length distributions of metaFlye and Canu contigs within each assigned superkingdom.
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Extended Data Fig. 6 | Statistics of simple bubbles for the metaFlye assemblies human gut and cow rumen. (Left) the human gut dataset with 615
bubbles, and (right) the cow rumen dataset with 1510 bubbles. Bubble counts exclude loops, and include roundabouts with two edges.
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Extended Data Fig. 7 | Analysis of sequence overlap between 19 human gut samples. Multi-way sequence alignments were computed using SiebliaZ.
(left) The proportions of unique and shared sequences in each sample. An assembled segment within a sample is called unique if it has no alignments
against sequence from any other samples. Otherwise, the segment is shared. (right) The total amount of sequence for each multiplicity bin. A sequence
fragment belongs to the multiplicity bin X if it is shared by exactly X samples.
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PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun. Zymo datasets: https://github.com/LomanLab/mockcommunity. Cow rumen
dataset: NCBI SRA repository under BioProject PRINA507739. Human stool samples: ENA project PRIEB29152. NCBI accession codes for the sequences used in the
NRPS analysis: AM229678.1, AB101202.1, FP929054.1, FP929054.1. All assemblies that were evaluated in this study, as well as SYNTH64 and SYNTH181 datasets are
available at: https://doi.org/10.5281/zenodo.3986210 (ref. [66]).
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Laboratory animals Did not involve laboratory animals
Wild animals Did not involve wild animals

Field-collected samples  The fecal sample was collected postmortem from the lower colon of a Katahdin breed wether (sheep, Ovis aires) that was raised
in a ranch pasture setting. The animal died naturally and post-mortem was diagnosed with combined Strongyloides and coccidial
infection.

Ethics oversight No ethical guidance was required as pre-mortem, the animal was cared for under approved guidelines for the handling of farm
animals by the standard operating procedures of the Institutional Care and Use Committee. The animal did not display
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death to further improve handling guidelines, and the fecal sample used for the present study was a portion of that collected to
generate the diagnosis.
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