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Bacterial genome assemblies produced from long 
single-molecule sequencing reads are substantially more 
contiguous compared to short-read assemblies1,2. In con-

trast, early long-read metagenomic studies reported lower yields 
and reduced read lengths compared to isolate bacterial assemblies, 
which made it difficult to generate high-quality assemblies and sug-
gested that sample preparation protocols have to be optimized to 
utilize long reads in metagenomic studies3,4. The recent improve-
ments in high-molecular-weight DNA extraction techniques have 
enabled the sequencing of complex metagenomes with deep cov-
erage and increased read lengths5–8. Although these improved 
protocols have already been used for analyzing complex bacterial 
communities 9–12, there is still no specialized long-read metage-
nomic assembler. Some long-read assemblers13–17 have been applied 
to metagenomic datasets but none of them were designed to han-
dle the specific challenges of metagenome assembly, including the 
highly nonuniform coverage of the composing species, the presence 
of long intra-genomic and inter-genomic repeats18,19 and inter- and 
intra-species heterogeneity20,21.

Long-read metagenomic assemblies have the potential to greatly 
improve upon the contiguity of short-read assemblies and address 
their inherent limitations, such as strain resolution22, detection of 
horizontal gene transfer23, difficulties in the search for new candi-
date phyla24, sequencing of novel plasmids and viruses25 and search 
for biomedically important biosynthetic gene clusters26. Long-read 
metagenomic assemblers can also improve the performance of 
hybrid assemblers that combine short and long reads6,8.

We recently developed a fast long-read genome assembler, Flye, 
and showed that it produces accurate and contiguous assemblies16. 
Here we describe the metaFlye algorithm for long-read metage-
nome assembly, benchmark it using a diverse set of simulated, mock 

and real bacterial communities and demonstrate that it improves 
over state-of-the-art long-read assemblers Canu15, FALCON13, 
miniasm14, OPERA-MS6 and wtdbg2 (ref. 17).

Results
Assembly of species with highly uneven coverage. The Flye algo-
rithm is designed for single-genome assembly and first attempts to 
approximate the set of genomic k-mers by selecting solid k-mers 
(high-frequency k-mers in the read-set). It further uses solid k-mers 
to efficiently detect overlapping reads and builds disjointigs16. 
However, in a metagenome setting, this approach would favor 
high-abundance species, whereas low-abundance species will have 
a reduced number of solid k-mers (if any) and thus will fail to be 
assembled. Here we introduce a different approach to solid k-mer 
selection, which combines global k-mer counting with analyz-
ing local k-mer distributions (Methods). In addition, we describe 
an algorithm for the detection of repeat edges in the metagenome 
assembly graphs, which is robust to highly nonuniform distribution 
of read coverage (Fig. 1a; Methods).

Assembling multiple closely related bacterial genomes. Another 
important metagenome assembly challenge is the presence of spe-
cies with highly similar genomes in the sample. The related strains 
and species often contain shared conserved sequences as well as 
regions that are unique for each genome. We refer to each genome 
within a group of related species/strains as a strain genome. The 
shared and strain-specific regions generate bubble structures27,28 in 
the repeat graph: simple bubbles in the cases of two strains (Fig. 1b)  
and superbubbles in the case of more than two strains (Fig. 1c). 
Moreover, some strain genomes may share repetitive sequences 
with the other unrelated genomes, which results in roundabouts  
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(Fig. 1d). Similarly to haplotype-aware assembly29, these strain- 
induced subgraphs in the repeat graphs need to be detected and 
simplified to produce accurate and contiguous metagenomic 
assemblies21. The Methods section describes how metaFlye detects 
and simplifies strain-induced subgraphs. In addition to the stan-
dard strain-suppression mode, metaFlye also has a strain-resolution 
mode that we refer to as metaFlyestrain.

Benchmarking using simulated metagenomic datasets. Long-read 
assemblers often generate complete assemblies for many genomes 
in mock community datasets, but fragmented assemblies of more 
complex real metagenomes. Ideally, one could benchmark assem-
bly algorithms using a realistic complex mock dataset with known 
reference genomes; however, no such dataset is currently available. 
We thus simulated two bacterial communities with 64 and 181 
genomes and benchmarked metaFlye, Canu, miniasm and wtdbg2 
on these two datasets that we refer to as SYNTH64 and SYNTH181, 
respectively (Supplementary Notes 1 and 2 and Supplementary 
Tables 1 and 2). Here we summarize the benchmarking results on 
the SYNTH181 dataset generated on the basis of a realistic bacte-
rial community, originally described by the Critical Assessment of 
Metagenome Interpretation consortium30.

First, we selected 181 complete bacterial reference genomes 
that were available for the CAMI_I_TOY_MEDIUM community 
(Supplementary Note 1). The analysis of these genomes using fas-
tANI31 showed that there were 33 genomes with closely related 
strains (average nucleotide identity >95%) and 22 genomes with 
closely related species (average nucleotide identity 85–95%), result-
ing in 55 genomes that are particularly challenging for long-read 
assemblers. We simulated 26 Gb of PacBio reads using Badread32, 
following the abundance distributions from the original dataset 
(mode D1). The read coverage of each genome varied from 0.01× 
to 497×. There were 91 out of 181 genomes with coverage above 5×.

metaFlye showed a substantial improvement over other assem-
blers in both contiguity and reference coverage of separate genomes 
on the SYNTH181 dataset (Fig. 2), with improvements becoming 
more apparent for difficult-to-assemble genomes (characterized by 
low mean NGA50 and coverage among all assemblers). metaFlye/
metaFlyestrain produced the assemblies with a higher total metage-
nome reference coverage (54.8%/54.1%), followed by Canu (43.1%), 

miniasm (42.9%), wtdbg2 (42.7%) and Flye (24.3%). metaFlye 
and metaFlyestrain assembled over 90% of the total length of the 
92 well-covered genomes in the SYNTH181 dataset (with cover-
age above 5×), whereas all other methods had coverage <75% 
(Supplementary Note 2). Similarly, metaFlye/metaFlyestrain pro-
duced the most contiguous assemblies of the entire metagenome 
(NGA20 = 1.25 Mbp/1.23 Mbp), followed by Canu (923 kbp), 
miniasm (782 kbp), Flye (347 kbp) and wtdbg2 (341 kbp). Similar 
conclusions were made from analyzing the smaller SYNTH64 com-
munity, with metaFlye producing assemblies with better reference 
coverage and NGA50 (Extended Data Fig. 1 and Supplementary 
Note 2). Flye (in single-genome mode), produced inferior assem-
blies on both synthetic datasets. NGA50 is the statistic computed 
for contigs that are broken at their misassembly breakpoints (if any). 
It is defined as the highest possible number L such that all broken 
contigs that are longer than L cover at least 50% of the reference. 
NGA20 is defined similarly, but for 20% reference coverage.

Analyzing Human Microbiome Project assemblies. The Human 
Microbiome Project (HMP) mock dataset represents a mock 
human gut microbiome formed by 22 bacteria with known refer-
ence genomes sequenced using PacBio reads (total length 6.8 Gbp 
and N50 = 6.7 kbp). Nineteen of these bacteria have read coverages 
ranging from 39× (Bacillus cereus) to 477× (Helicobacter pylori). 
As the remaining three genomes (Methanobrevibacter smithii, 
Candida albicans and Streptococcus pneumoniae) have low coverage 
(below 1×), they were excluded from further analysis.

We used metaQUAST33 to evaluate the statistics of the combined 
references (Table 1, Supplementary Table 3, Extended Data Fig. 2 
and Supplementary Note 3) as well as to compute the separate statis-
tics for each species present in the sample (Fig. 3 and Extended Data 
Fig. 3). Because miniasm outputs contigs with a high per-nucleotide 
error rate, we performed one round of contig polishing  
using Racon34.

The metaFlye, Canu and miniasm assemblies had the highest 
NGA50 (2.0 Mb, 1.8 Mbp and 1.8 Mbp, respectively) and highest 
reference coverage (>99.6%). The wtdbg2 and FALCON assem-
blies had reduced reference coverage and lower contiguity, associ-
ated with bacteria with abundances substantially deviating from 
the median dataset coverage (B. cereus, Rhodobacter shaeroides,  
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Fig. 1 | metaFlye repeat annotation and examples of simple bubbles, superbubbles and roundabouts. a, The subgraph of an assembly graph formed by 
four distinct genome subpaths. Repeat and unique edges are shown in color and black, respectively. metaFlye identifies edges X, Y and Z as repetitive 
by analyzing the distinct read-paths through the subgraph. b, A simple bubble formed by two strains. c, A superbubble formed by three strains. d, A 
roundabout formed by two strains, one of which shares a repeat with a different region of the metagenome.
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Clostridium beijerinckii and H. pylori; Fig. 3). The miniasm and 
metaFlye contigs had the fewest number of misassemblies (71 
and 72, respectively), followed by wtdbg2 (105), Canu (105) and 
FALCON (116). metaFlye assembled all 14 known plasmids that 
have been previously identified in the HMP dataset. In compari-
son, metaplasmidSPAdes short-read plasmid assembler failed 

to assemble 7 out of the 14 plasmids from the same sample35. 
Miniasm, Canu, FALCON and wtdbg2 failed to assemble one, 
two, four and four plasmids, respectively. As expected, Flye 
(in single-genome mode) produced less contiguous assembly 
(NGA50 = 1.4 Mbp) and had more misassemblies (100), as com-
pared to metaFlye.

60 120 180

A
ss

em
bl

ed
 fr

ac
tio

n 
(%

)

Reference index

wtdbg2

100

75

50

25

0 0.01

0.1

1

10
miniasm Canu Flye wtdbg2 miniasm Canu FlyemetaFlye metaFlye

60 120 180

Reference index

N
G

A
50

, M
bp

 (
lo

g 
sc

al
e)

Fig. 2 | Comparison of Canu, Flye, metaFlye, miniasm and wtdbg2 assemblies of the individual genomes in the SYNTH181 dataset. Assembled fraction 
and NGA50 are reported for all 181 reference genomes from the simulated dataset. Genomes are ordered in decreasing mean assembled fraction (left) 
and NGA50 (right) across five assemblers. NGA50 is the statistic computed for contigs that are broken at their misassembly breakpoints (if any). NGA50 
is not shown for values <10 kbp or if the reference coverage is <50%. Overall, 77 (metaFlye), 141 (Flye), 109 (Canu), 106 (miniasm) and 109 (wtdbg2) 
NGA50 values were filtered this way. The full metaQUAST report is provided in Supplementary Table 2.

Table 1 | Assembly statistics for the mock community datasets

Dataset Assembler Assembly length, 
Mbp

Total reference 
coverage

Sequence 
identity

NGA50 
(NGA25), kbp

Misassemblies CPU hours

HMP 6.8 Gbp 
PacBio 19 
bacterial 
references

metaFlye 66.4 99.8% 99.9% 2,018 72 45

Flye 64.7 97.8% 99.9% 1,363 100 49

Canu 67.6 99.7% 99.9% 1,854 105 756

FALCON 60.0 90.3% 99.5% 764 116 150

miniasm 66.6 99.6% 98.9% 1,863 71 11

wtdbg2 65.6 98.7% 99.2% 675 101 4

ZymoEven 
GridION 14 Gbp 
ONT 8 bacterial 
and 2 yeast 
references

metaFlye 63.8 95.7% 99.6% (3,559) 7 90

Flye 31.1 51.5% 99.6% (3,562) 10 105

Canu 62.6 94.9% 99.4% (2,920) 11 4,590

miniasm 52.0 80.1% 99.3% (2,032) 26 67

wtdbg2 54.4 75.2% 99.3% (329) 14 5

ZymoLog 
GridION 16 Gbp 
ONT 8 bacterial 
and 2 yeast 
references

metaFlye 28.2 46.0% 98.5% (75) 40 112

Flye – – – – – 210

Canu 25.3 41.9% 98.6% (81) 6 38,800

miniasm 15.6 26.4% 99.2% (18) 43 299

wtdbg2 23.2 33.7% 98.5% – 24 13

ZymoEven 
PromethION 
146 Gbp ONT 8 
bacterial and 2 
yeast references

metaFlye 69.6 95.9% 99.5% (3,013) 45 1,410

wtdgb2 25.8 41.8% 98.4% (121) 50 12

ZymoLog 
PromethION 
148 Gb ONT 8 
bacterial and 2 
yeast references

metaFlye 37.7 57.7% 99.4% (3,549) 78 3,630

wtdgb2 17.3 25.5% 97.4% – 52 16

Statistics were computed for contigs longer than 500 bp using metaQUAST 5.1.0rc1 with default parameters. Misassembly counts are given for structural variations longer than 1 kbp (default value). 
The best value(s) in each category are highlighted in bold. NGAx is the NGx statistic computed for contigs that are broken at their misassembly breakpoints. Reference coverage is the percentage of the 
reference genome covered by assembled contigs. Sequence identity reported as a mean among all references. Two yeast genomes (Saccharomyces cerevisiae and Cryptococcus neoformans) did not contribute 
to the misassembly counts and sequence identity computation in all Zymo datasets. Miniasm contigs were polished using Racon. Flye did not assemble the ZymoLog datasets due to poor k-mer indexing 
(Methods). Canu and miniasm did not produce assemblies of the Zymo PromethION datasets due to large running time or memory requirements. CPU: central processing unit.

Nature Methods | VOL 17 | November 2020 | 1103–1110 | www.nature.com/naturemethods 1105

http://www.nature.com/naturemethods


Articles NaTurE METHoDS

Analyzing Zymo assemblies. The ZymoBIOMICS Microbial 
Community Standards datasets represent mock community data-
sets generated using Oxford Nanopore Technologies (ONT) 
reads with an N50 of ~5 kbp5,36. The ZymoEven mock community  
consists of eight bacteria with abundance ~12% and two yeast 
species with abundance ~2%. The ZymoLog dataset represents 
the same microbial community with abundances distributed as 
a log scale (Fig. 3). Each of the two communities was sequenced  
using GridION (total read lengths of 14 Gbp and 16 Gbp for the 
ZymoEven and ZymoLog datasets, respectively) and PromethION 
(total read lengths of 146 Gbp and 148 Gbp for the ZymoEven 
and ZymoLog datasets, respectively). As the provided reference 
of the S. cerevisiae was highly fragmented (N50 = 8 kbp), we sub-
stituted them with the closest complete reference strain from the 
National Center for Biotechnology Information (NCBI) (JEC21). 
Because of the structural differences between the references and 
the assembled strains, we ignored misassemblies from S. cerevisiae 
and C. neoformans genomes in the total count of the misassemblies 
(Supplementary Note 3).

The metaFlye and Canu assemblies of the ZymoEven GridION 
covered 95.7% and 94.9% of the references and improved over the 
miniasm and wtdbg2 assemblies (80.1% and 75.2%, respectively). 
The lower coverage of miniasm and wtdbg2 is primarily explained 
by the reduced performance on two yeast species, as compared to 
the bacterial genomes (Fig. 3). metaFlye, as compared to Canu, had 
slightly better NGA50 on bacterial genomes (Fig. 3) and had fewer 
total bacterial misassemblies (7 and 11, respectively). Flye, as com-
pared to metaFlye, produced bacterial genomes with similar conti-
guity, but failed to assemble both yeast genomes (with substantially 
lower read coverage).

The ZymoLog GridION dataset contains only four spe-
cies with coverage above 3×: Listeria monocytogenes (3,960×), 
Pseudomonas aeruginosa (158×), Bacillus subtilis (38×) and S. cere-
visiae (7×). metaFlye and Canu reconstructed over 99% of the three 
bacteria and 79% and 76% of the S. cerevisiae genome, respectively. 
Miniasm and wtdbg2 assembled smaller fractions of S. cerevisiae 
(11% and 40%, respectively). Canu and metaFlye had the best over-
all contiguity (NGA25 = 81 kbp and 75 kbp, respectively). Flye failed 
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Fig. 3 | Per-species reference coverage and NGA50 statistics for the mock community datasets (HMP, ZymoEven GridION and ZymoLog GridION) 
computed using metaQUAST. a,b, Read coverage for each species is given in the brackets after the species name. NGA50 values are not reported for 
assemblies with reference coverage <50%. Blue and red colors correspond to the values higher and lower than the median, respectively. Flye failed to 
assemble the ZymoLog datasets due to poor k-mer indexing. Extended Data Fig. 3 provides the base-pair quality analysis for the same datasets.

Nature Methods | VOL 17 | November 2020 | 1103–1110 | www.nature.com/naturemethods1106

http://www.nature.com/naturemethods


ArticlesNaTurE METHoDS

to produce any assembly of this dataset due to poor k-mer indexing 
(Methods).

metaFlye assembly of ZymoEven PromethION dataset had com-
parable reference coverage and contiguity to the GridION assem-
bly. In contrast, for the ZymoLog dataset, the reference coverage 
of metaFlye assembly increased from 46% to 58%, and NGA25 
increased from 75 kbp to 3.5 Mbp (Table 1 and Fig. 3), a result of 
the increased read coverage of species with low abundance. wtdbg2 
resulted in assemblies with reduced reference coverage and contigu-
ity, as compared to metaFlye (Table 1). Canu and miniasm failed to 
produce PromethION dataset assemblies due to either runtime or 
memory requirements (Supplementary Note 3).

Assembly of the sheep gut microbiome. To investigate the capa-
bility of long-read metagenomics to recover complete bacterial 
genomes from complex samples, we have sequenced a sheep fecal 
sample using PacBio circular consensus sequencing (CCS) protocol 
(Methods). We generated ~3.7 million reads (49.2 Gbp of sequence) 
with read N50 ~14 kbp after the CCS consensus calling. metaFlye 
assembly yielded 1.4 Gbp of sequence in contigs longer than 10 kbp 
(1 Gbp in contigs longer than 100 kbp), including 192 contigs lon-
ger than 1 Mbp with total length 344 Mbp (Table 2). Overall, 28 of 
these contigs were circular, likely representing complete bacterial 
genomes. In addition, there were 59 simple connected components 
(>1 Mbp in length with fewer than ten edges) that represent par-
tial or complete bacterial genomes with a relatively small number 
of repeats.

In comparison, Canu assembled more sequence in short con-
tigs (1.5 Gbp versus 1.4 Gbp in contigs longer than 10 kbp), but less 
sequence in long contigs (0.9 Gbp versus 1 Gbp in contigs longer 
than 100 kbp). Wtdbg2 and miniasm produced assemblies with 
lower contiguity and the total length, as compared to metaFlye and 
Canu (Supplementary Table 6).

CheckM v.1.1.2 (ref. 37) analysis of conserved taxonomy markers 
predicted 63 contigs to be >90% complete and <5% contaminated 
in the metaFlye assembly, potentially representing complete or 
nearly complete bacterial genomes (25 out of these 63 contigs were 
circular). In comparison, Canu assembled 49 such contigs. Out of 
contigs that were >90% complete, 8.6% metaFlye contigs and 9.0% 
Canu contigs were reported to have >5% contamination, suggesting  

a low chimerism rate of both assemblies. In addition, we investi-
gated the quality of contigs containing multiple 16S rRNA gene cop-
ies (Methods). Out of 223 metaFlye contigs with two or more 16S 
rRNA gene copies, 211 contained at least 97% similar 16S rRNA 
copies (a level of similarity expected within bacterial species), con-
firming the low chimerism rate (Supplementary Note 4).

Prodigal38 predicted slightly more ORFs in the Canu assembly 
(1,569,745 versus 1,503,966 for metaFlye); however, the cluster-
ing of the ORF sequences at 99% similarity revealed slightly more 
clusters for metaFlye (1,387,782 versus 1,350,688 for Canu). This 
could be explained by an increased amount of sequence duplica-
tion in the Canu assembly. This distribution of ORF lengths and 
GC content was similar in both assemblies (Extended Data Fig. 4). 
The metaFlye assembly contained fewer split-reads, indicating bet-
ter local sequence quality (Supplementary Table 4). plasmidVerify35 
identified 143 putative plasmids in metaFlye assembly and only 12 
plasmids in the Canu assembly (Methods). In addition, viralVerify 
(https://github.com/ablab/viralVerify) identified 284 and 183 puta-
tive viruses in the metaFlye and Canu assemblies, respectively.

We performed a taxonomic assignment of each contig with the 
BlobTools pipeline39, which uses DIAMOND alignments40 against 
the UniProt reference proteomes database41 (accessed December 
2019). Most of the metaFlye contigs were identified as being of 
bacterial (1.4 Gbp), eukaryotic (47 Mbp) and archaeal (33 Mbp) ori-
gins (Extended Data Fig. 5 and Supplementary Table 5). Notably, 
23 Mbp out of 47 Mbp of the eukaryotic-origin contigs were fur-
ther assigned to the Nematoda phylum. This was consistent with 
the necropsy report of the animal, which revealed the evidence of  
parasite infection.

metaFlye detected 1,873 simple bubbles, 166 roundabouts and 
95 superbubbles of sizes ranging from 0.5 kbp to 50 kbp in this data-
set, including a single bacterial genome of Clostridia class with 20 
simple bubbles and 10 superbubbles, illustrating its complex strain 
composition (Fig. 4).

Analyzing human microbiome assemblies. A recent study6 
introduced a metagenome assembly pipeline OPERA-MS that 
combines short- and long-read assembly with clustering of 
metagenome-assembled genomes using the available bacterial ref-
erences. The authors showed that OPERA-MS improves assembly 

Table 2 | Long-read assemblies of real metagenomic datasets

Dataset Sheep gut (this study) Human gut (Bertrand et al.6) Cow rumen (Bickhart et al.12)

metaFlye Canu metaFlye Canu metaFlye Canu

Length in contigs >10 kbp 1,454 Mbp 1,540 Mbp 837 Mbp 815 Mbp 1,173 Mbp 829 Mbp

Length in contigs >100 kbp 1,001 Mbp 888 Mbp 439 Mbp 428 Mbp 200 Mb 60 Mbp

Length in contigs >1 Mbp 344 Mbp 313 Mbp 152 Mbp 125 Mbp 2 Mb 0

Full-length ORFs 1,489,797 1,569,187 969,005 928,809 1,316,090 896,241

ORF clusters (99%) 1,379,985 1,350,267 753,819 704,087 1,263,687 811,419

16S rRNA genes 1,496 1,679 852 1,091 539 251

16S rRNA clusters (95%) 263 253 71 91 115 35

Contigs with matching 16S 211/223 198/203 77/100 76/116 22/25 8/8

CheckM >90% complete 63 49 14 12 0 0

CheckM >25% complete 331 291 68 60 16 6

Putative plasmids 143 12 109 63 126 51

Putative viruses 284 183 49 26 249 103

CPU h 450 5,500 1,020 15,200 810 –

Human gut statistics are reported for the total of all separate assemblies of all samples. Open reading frames (ORFs) were clustered at 99% similarity. The 16S rRNA genes were clustered into operational 
taxonomic units at 95% similarity. Matching 16S rRNA statistic reports the number of contigs with multiple 16S rRNA copies, where all copies are 97% similar (along with the total number of multicopy 
contigs). CheckM statistics are reported for contigs with <5% contamination. Supplementary Tables 6–8 describe benchmarking of wtdbg2, miniasm, OPERA-MS and Flye on the same datasets. Plasmids 
and viruses were identified in circular contigs shorter than 500 kbp using plasmidVerify and viralVerify, respectively.
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contiguity by an order of magnitude as compared to short-read-only 
methods. To benchmark the performance of long-read assemblers 
on these human gut datasets, we extracted all available records 
from the ENA database (project ID: PRJEB29152) and excluded 
three samples where Canu failed (two samples) or metaFlye 
failed (one sample). Removing these samples resulted in 19 data-
sets (Supplementary Table 9) with total read lengths varying from 
1.6 Gbp to 8.0 Gbp.

We used metaFlye, Canu, miniasm and wtdgb2 to assemble each 
dataset separately, followed by polishing with the corresponding 
Illumina reads using Pilon42. metaFlye and Canu assembled 837 
and 815 Mbp of sequence in contigs >10 kbp and 152 and 125 Mbp 
in contigs >1 Mbp, respectively (separate sample statistics are 
given in Supplementary Table 10). Miniasm and wtdbg2 produced 
suboptimal assemblies that were substantially shorter (377 Mbp 
and 684 Mbp, respectively) and had fewer 90%-complete contigs 
(Supplementary Table 7). Table 2 summarizes the reference-free 
benchmarks of metaFlye and Canu assemblies. In brief, metaFlye 
has produced more 90%-complete contigs (14), had a higher rate 
of contigs validated using 16S rRNA (77 out of 100) and recov-
ered more plasmids (109) and viruses (49), as compared to Canu. 
metaFlye identified 1,141 simple bubbles, 78 superbubbles and 354 
roundabouts of sizes ranging from 0.5 kbp to 50 kbp in this dataset 
(Extended Data Fig. 6).

OPERA-MS implements a hybrid approach that initially assem-
bles short-read contigs and then uses long reads to scaffold these 
contigs. This strategy has resulted in longer, but less contiguous 
assembly (Supplementary Table 7) with only one 90%-complete 
contig and only 16 complete 16S rRNA genes (while metaFlye 
and Canu reconstructed 852 and 1,091 complete 16S rRNA genes, 
respectively).

We further used SibeliaZ43 to analyze the sequence overlap 
between the samples (Methods) and found that 159 Mbp (~40%) of 
the total sequence generated by metaFlye for all 19 samples appears 
in at least two samples (Methods; Extended Data Fig. 7). We there-
fore performed co-assembly by running metaFlye on the mix of 
reads from all samples (Methods).

Search for novel biosynthetic gene clusters in human gut assem-
blies. Nonribosomal peptides (NRPs) are biomedically important 
natural products that include many antibiotics44. Most NRPs are 
cyclopeptides synthesized via nonribosomal (rather than genetic) 
code and built from over 300 different amino acids. Searching 
for new NRPs is an important goal because many pathogens have 
developed resistance against most drugs, including daptomycin and 
vancomycin, NRP antibiotics of last resort45. Today, little is known 
about antibiotic NRPs that are produced by bacteria that live in 
the human gut (rather than doctor-prescribed) and it is unclear 
whether the continuous exposure to them leads to the development 
of antibiotic resistance.

A recent study46 introduced the biosyntheticSPAdes tool for 
identifying NRP-synthesizing biosynthetic gene clusters (BGCs) 
in short-read isolate assemblies, but at the same time, acknowl-
edged that short-read metagenome assemblies are not adequate 
for identification of these long (average length ~60 kb) and repeti-
tive (made up of multiple highly similar domains) BGCs. Here we 
show that metaFlye addresses this limitation and assembles many 
NRP-synthesizing BGCs in the human gut (Supplementary Note 5). 
This analysis is consistent with the recent discovery of a surpris-
ingly large array of still unknown cyclopeptides in the human gut 
that are synthesized by still unknown BGCs47. We benchmarked 
OPERA-MS, Canu and metaFlye and demonstrated that metaFlye 
co-assembly recovered more known NRP-synthesizing BGCs than 
the other assemblies (including separate sample assemblies by 
metaFlye; Supplementary Note 5). metaFlye co-assembly was the 
only method that resolved all repeats in a known NRP-synthesizing 
BGC that synthesizes a compound colibactin associated with 
colorectal cancer48. As these repeats represent adenylation domains 
(that define the colibactin structure), identification of the complete 
BGC is a prerequisite for follow-up structure elucidation efforts 
using peptidogenomics approaches49.

Analyzing cow rumen assemblies. To further benchmark metaFlye 
and the other algorithms, we assembled a cow rumen metagenomic 
dataset sequenced in a recent study12, which consists of PacBio CLR 
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Fig. 4 | Information about strains in the sheep microbiome revealed by metaFlye. a, An assembly graph of a single connected component in the sheep 
microbiome dataset before strain collapsing (visualized using Bandage). The component represents a bacterial genome of the Clostridia class with 92% 
conserved marker completion (computed using CheckM). There are 20 simple bubbles (shown in green) and 10 superbubbles (shown in yellow) that 
account for 1.2 Mbp out of 2.4 Mbp long genome. b, Distribution of length and branch sequence identities of 1,141 bubbles (excluding loops and including 
roundabouts with only two edges) in the sheep microbiome assembly. The length is defined as the length of the longest branch in a simple bubble.
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(continuous long reads; total length 52.2 Gbp with N50 ~9 kb) and 
Illumina reads (Supplementary Note 6). The results are summarized 
in Table 2 and Supplementary Table 8. Briefly, metaFlye produced 
the most 25%-complete contigs (16), recovered the highest number 
of 95% 16S rRNA clusters (115) and had the most contigs validated 
using 16S rRNA (22 out of 25). None of the assemblers produced 
contigs with more than 90% completion, likely due to the higher 
complexity of the cow rumen microbiome, as compared to the 
sheep and human fecal samples12.

Discussion
Although long-read metagenomics is a promising direction for 
untangling complex bacterial communities, it faces difficult algo-
rithmic challenges. metaFlye assemblies of the HMP and Zymo 
mock communities had similar or better quality, as compared to 
the Canu assemblies (in terms of the reference fraction and NGA50 
metrics). Both metaFlye and Canu showed substantial improvement 
over miniasm, wtdbg2 and FALCON on most of the mock com-
munity datasets. While miniasm produced a good-quality assembly 
of the HMP dataset (with relatively uniform species abundance), it 
failed to assemble substantial fractions of low-abundance species in 
the Zymo datasets. Similarly, wtdbg2 and FALCON did not recover 
substantial parts of the HMP and Zymo datasets and had reduced 
assembly contiguity. metaFlye was at least tenfold faster than Canu 
on all metagenomic datasets we analyzed. Only metaFlye and wtdgb2 
were able to scale to the 150 Gbp PromethION runs, but the wtdbg2 
PromethION assemblies were substantially more fragmented.

Although mock bacterial communities with known reference 
genomes are convenient for benchmarking, they do not represent 
the full complexity of environmental metagenomes. We thus simu-
lated two extra communities of 64 and 181 bacteria with realistic 
abundances distribution and species composition. Our analysis 
using the simulated datasets showed that long-read assemblers are 
facing challenges when assembling: (1) genomes with low relative 
abundance and (2) genomes with closely related strains or species 
present in a metagenome. metaFlye showed substantial improve-
ment over Canu, miniasm and wtdbg2 in assembling these synthetic 
communities. metaFlye in the strain mode produced more accurate 
assemblies of the closely related species and strains at the cost of 
slightly decreased contiguity.

metaFlye assembly of the sheep microbiome resulted in 63 nearly 
complete bacterial contigs, highlighting the power of long-read 
metagenomics to recover the high-quality genomes from complex 
microbial communities. metaFlye also improved on Canu, miniasm 
and wtdbg2 by producing more contigs with a high degree of com-
pletion and capturing more plasmids and viruses. Notably, metaFlye 
enables the analysis of bacterial strains through identifying alterna-
tive strain structures, whereas other assemblies do not retain the 
strain information.

The analysis of human microbiome samples discovered ten 
NRP-synthesizing BGCs in metaFlye assemblies, including BGC 
producing acinetobactin, colibactin and paenibacterin. In contrast, 
short-read metagenomic assemblies rarely capture any (long and 
highly repetitive) NRP-synthesizing BGCs, which makes the down-
stream NRP discovery difficult26.
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Methods
Ethics declaration. The sheep fecal sample was collected postmortem from the 
lower colon of a Katahdin breed wether (sheep, Ovis aries) that was raised in a 
ranch pasture setting. The animal died naturally and postmortem was diagnosed 
with combined Strongyloides and coccidial infection. No ethical guidance was 
required as, pre-mortem, the animal was cared for under approved guidelines 
for the handling of farm animals by the standard operating procedures of the 
Institutional Care and Use Committee. The animal did not display observable 
disease until shortly before death. All sheep in the flock that die are routinely 
necropsied to determine the cause of death to further improve handling guidelines, 
and the fecal sample used for the present study was a portion of that collected to 
generate the diagnosis.

Assembling mock communities and simulated datasets. metaFlye v.2.7-b1589 
(commit fbd6ba5) was run using the ‘–meta–plasmids’ options for HMP, 
SYNTH64 and SYNTH181 datasets. We added an option ‘–min-overlap 2000’ to 
assemble Zymo GridION datasets to compensate for shorter read length.

Canu v.1.9 was run using parameters recommended for metagenome 
assembly on the HMP, Zymo and SYNTH datasets: ‘corOutCoverage = 10,000, 
corMhapSensitivity = high, corMinCoverage = 0, redMemory = 32, 
oeaMemory = 32, batMemory = 200’. We note that running Canu with default 
parameters is faster than running it with metagenomic parameters (114 versus 
756 CPU h to assemble the HMP mock dataset). However, the default parameters 
produce nonoptimal assemblies of species with low abundance: for example the 
assemblies of B. cereus, C. beijerinckii and Rhodobacter sphaeroides in the HMP 
dataset were substantially more fragmented, as compared to the metagenomic 
parameters set. According to the documentation, Canu outputs circular contigs 
with overlapping ends (multiple kbp in size), which were reported as misassemblies 
by QUAST. To prevent this, we post-processed HMP, Zymo and SYNTH assemblies 
by trimming the overlapping ends of circular contigs output by Canu.

Miniasm 0.3 was run using its default parameters on the HMP, Zymo and 
SYNTH datasets, followed by polishing using Racon v.1.4.10 (ref. 34). FALCON 
(pb-falcon 0.2.5) was run using a configuration file recommended for bacterial 
assemblies. wtdbg2 v.2.3 was run using the default parameters for the HMP dataset. 
However, as the Zymo datasets had higher read coverage as well as low-abundance 
species, we increased the k-mer frequency coverage range using ‘–node-max 
1,000 -e 2’ as suggested by the developers. This resulted in an increase in the total 
assembly length as compared to the default settings (from 28 Mbp to 55 Mbp for 
the ZymoEven dataset and from 12.6 Mbp to 23.4 Mbp for the ZymoLog dataset). 
We used the default parameters for the SYNTH datasets and additionally polished 
the assemblies using Racon v.1.4.10.

All tools were benchmarked on a computational node with two Intel Xeon 8164 
CPUs, with 26 cores each and 1.5 TB of random-access memory.

Generating assemblies of real metagenomic datasets. We used metaFlye v.2.7b 
(commit a52dfba) with ‘–meta–plasmids’ options to generate all real metagenomic 
assemblies. The ‘–min-overlap’ parameter was set to 2 kbp for the cow rumen 
(otherwise, automatically selected). We found that 13% of PacBio reads in the cow 
rumen dataset contained more than one PacBio subread (reads with  
multiple polymerase passes). We split such chimeric reads using the pbclip tool 
(https://github.com/fenderglass/pbclip) before running metaFlye.

We ran Canu v.1.8 on the human gut dataset and Canu v.1.9 on the sheep gut 
microbiome dataset using the metagenomic parameters described above. For the 
sheep gut microbiome dataset that consists of PacBio CCS reads (estimated error 
rate ~2%), we used ‘–pacbio–corr’ mode to generate assemblies. In addition, we 
tested ‘–pacbio–hifi’ mode (recently introduced in Canu v.1.9), which resulted 
into assembly with increased contiguity, but high chimera rate (~20% contigs with 
>90% completeness had >5% contamination rate as reported by CheckM). We 
thus selected the assembly produced with ‘–pacbio–corr’ for our analysis.

Miniasm v.0.3 and wtdbg2 v.2.3 were run using the default parameters on the 
cow rumen, human gut and sheep microbiome datasets. We applied long-read 
polishing using Racon v.1.4.10 to both miniasm and wtdbg2 assemblies to improve 
the base quality.

Sequencing of the sheep microbiome. Sheep from the flock maintained at the US 
Meat Animal Research Center are monitored for health. Necropsy was performed 
in some cases if the cause of death was uncertain. Necropsy of one wether in 2018, 
revealed evidence of infection with coccidial single-cell parasites and Strongyloides 
nematode parasites. Fecal matter was collected from the colon of this animal, with 
watery texture consistent with diarrhea and the presence of eggs presumed to 
reflect parasite infection.

DNA was extracted from the fecal material using the QIAamp PowerFecal 
DNA kit as suggested by the manufacturer (QIAGEN), including the bead beating 
step with a Tissuelyzer. The success of the preparation of high-molecular-weight 
DNA was confirmed using Fragment Analyzer (Advanced Analytical 
Technologies). DNA was sheared to fragment size in the 9–18-kbp range using 
Digilab Genomic Solution Hydroshear instrument (Digilab) and sequencing 
libraries were prepared using the SMRTbell Template Prep kit v.1.0 as 
recommended (Pacific Biosciences). Libraries were size-selected using the SAGE 

ELF size selection system (Sage Science) to final target size, which varied from 
9 kbp up to 16 kbp. Sequencing was performed on a Sequel instrument (Pacific 
Biosciences) using v.2.1 chemistry (libraries in the 9–10 kbp range) or v.3.0 
chemistry (libraries in the 12–16 kbp range) and 20-h movies (8-h pre-extension). 
A total of 45 SMRT cells were collected using ten individual library preparations 
(four selected at 9–10 kbp; three selected at 12–13 kbp; three selected at 15–16 kbp). 
Following sequencing, polymerase reads were converted to circular consensus 
reads using the CCS application in SMRT Link software v.6.0 and default settings. 
The sequenced sample was fully consumed during the experiment.

Identifying putative plasmids and viruses. We used plasmidVerify35, commit 
69e2092b and viralVerify (https://github.com/ablab/viralVerify), commit 017d43a2 
to identify putative plasmids and viruses. We only considered contigs that were (1) 
circular and (2) shorter than 500 kbp as potential plasmid and viral candidates to 
reduce the number of false positives matches (representing fragmented plasmids 
and viruses).

Strain statistics for the metaFlye sheep microbiome assembly. The bacterial 
genome illustrated in Fig. 4a was identified as Clostridia class by comparing the 
extracted 16S rRNA sequences against the SILVA database50 to identify the closest 
database match with 84% identity. We ran metaFlye with the ‘–keep-haplotypes’ 
option, visualized the assembly graph with Bandage51 and visualized the simple 
bubble statistics using Matplotlib52 and Seaborn (https://seaborn.pydata.org/). 
Sequence identity was estimated from the Jaccard similarities53. ORF sequences 
were clustered at 99% similarity using CD-HIT54.

Validating assemblies using 16S rRNA genes. Complete 16S rRNA genes were 
predicted using Barrnap v.0.9 (https://github.com/tseemann/barrnap). We further 
clustered these genes at 95% identity using vsearch v.2.14.1 (ref. 55) to reveal the 
fine-grained taxonomic composition of the microbial communities. Singletons 
were removed because they can potentially represent poorly polished copies of 
16S rRNA genes rather than separate 16S rRNA genes (and artificially inflate the 
number of discovered clusters). To validate the structural accuracy of contigs, we 
clustered 16S rRNA copies within each contig at 97% diversity (expected for single 
bacterial species) using vsearch.

Analyzing human gut sample composition overlap. We used SibeliaZ43 v.1.2.0 
with parameters ‘-k 25 -n -f 50’ to generate multiway whole-genome alignments 
between all assembled samples. Each alignment block represents the aligned 
sequence that appears in one or multiple samples. Nonredundant sequence56 was 
computed by collapsing each multiway-aligned region into a single consensus. 
metaFlye and Canu assemblies contained 425 Mbp and 393 Mbp of nonredundant 
sequence, respectively (Extended Data Fig. 7). Overall, 159 Mbp (~40%) of the 
nonredundant metaFlye sequence appeared in multiple samples and 266 Mbp was 
unique to a single sample.

Co-assembly of multiple human gut samples. As there is a large sequence 
overlap between human gut samples, we co-assembled all of them by running 
metaFlye on the mix of reads from all samples. Co-assembly is computationally 
more difficult than assembling each sample separately due to (1) increased strain 
divergence levels and (2) increased shared sequence content that complicates the 
assembly graph. Indeed, the total number of detected simple bubbles, superbubbles 
and roundabouts increased from 1,573 (separate metaFlye assemblies) to 2,873 
(co-assembly), revealing richer strain composition. Nevertheless, metaFlye 
co-assembly resulted in 453 Mbp of sequence, which closely matched the amount 
of nonredundant sequence from assemblies of separate samples. We also attempted 
to run Canu on the mix of all reads but terminated the pipeline after no substantial 
progress within a month of running it on a computational server.

Solid k-mer selection in metagenome assemblies. The Flye algorithm16 selects 
solid k-mers as follows (the typical k-mer size is 15 or 17 nucleotides for PacBio 
and ONT reads). In the first pass through all reads, the algorithm counts 
frequencies of k-mer hashes using a fixed-size array of counters. In the second pass, 
k-mers with pre-computed frequencies higher than a threshold (typically equal 
to 2 or 3) are counted using the cuckoo hash table57. Given the computed k-mer 
frequency table and an estimated genome size |G|, the algorithm selects the |G| 
most frequent k-mers and sets a frequency threshold t as the minimum frequency 
among the selected k-mers. The selected threshold t separates solid k-mers (that 
are indexed) from erroneous ones (that are discarded).

This strategy typically results in a relatively small misclassification rate; for 
example, in a typical isolate bacterial project only ~5% of unique genomic k-mers 
(true k-mers from the genome) are missing from the set of solid k-mers, and only 
~10% of unique solid k-mers represent nongenomic k-mers. However, although it 
works well in genomic assemblies, it is not suitable for metagenomic assemblies, 
because there is no frequency threshold that robustly separates genomic from 
nongenomic k-mers (due to uneven species coverage). To address this challenge, 
some short-read metagenomic assemblers use more sophisticated strategies for 
selecting k-mers, such as the mercy-k-mer approach in MEGAHIT18. However, as 
these approaches do not work for long reads, we describe an alternative strategy 
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for solid k-mer selection and benchmark it using both isolate and metagenome 
datasets.

Similarly to the uniform coverage mode in Flye, metaFlye also starts with 
counting k-mers in all reads. Although high-frequency k-mers are still expected 
to represent genomic k-mers, nongenomic k-mers arising from reads in 
high-abundance species often outnumber genomic k-mers from low-abundance 
species. Given a per-nucleotide error rate ε in reads, we estimate the probability 
of a k-mer in a read to be error-free as E = e−kε, under a Poisson error distribution 
model. Thus, the expected number of solid k-mers in a read is E × Length(read). 
For each read, metaFlye selects a frequency threshold f, so that there are at least 
E × Length(read) k-mers in this read with frequency at least f and indexes k-mers 
above this threshold using a hash table. Similarly to other k-mer counting/indexing 
tools, metaFlye keeps the canonical representation of each k-mer, which is defined as 
the lexicographical minimum of the forward and reverse complement of the k-mer.

We evaluated the uniform and metagenome k-mer selection modes using an 
isolate genome dataset and a metagenome dataset, for which true k-mers were 
extracted from the available references. Below we show that for isolate genomes, 
the metagenome k-mer selection mode in metaFlye only slightly deteriorates as 
compared to the uniform k-mer selection mode in Flye. However, in the case of 
metagenomes, the metagenome k-mer selection mode significantly improves upon 
the uniform k-mer selection mode.

The first set of PacBio reads from an Escherichia coli isolate (at 50× coverage) 
contains 254.2 million (M) k-mers, out of which 56.7 M (22%) are genomic. In the 
uniform k-mer selection mode, Flye indexed 55.3 M genomic k-mers (97% of all 
genomic k-mers) and 5.0 M nongenomic (erroneous) k-mers. In the metagenome 
selection mode, metaFlye indexed 50.3 M genomic k-mers (89%) and 22 M 
nongenomic k-mers.

We further used the HMP mock dataset to evaluate the k-mer selection in 
metagenome mode. We focused on the two least abundant genomes in the mixture, 
B. cereus and R. sphaeroides, which had coverage that is twofold below the median 
species coverage. These two bacteria contributed to 83 M genomic k-mers in the 
reads. In the uniform coverage mode, Flye selected only 33.2 M (40%) of their 
genomic k-mers. In contrast, metaFlye selected 71 M (86%) of genomic k-mers in 
the metagenome coverage mode.

The challenge of identifying repeats in metagenome assembly graphs. In 
difference from contigs (that are expected to represent contiguous segments of 
a genome), metaFlye first builds error-prone disjointigs that represent arbitrary 
paths in the assembly graph but can be generated much faster than traditional 
contigs. To fix potential misassemblies within disjointigs, Flye constructs the 
repeat graph from disjointigs by collapsing each family of long repeats into a 
single path in the graph16. Each edge of the repeat graph is classified as unique (if 
its sequence appears only once in a single genome) or repetitive (if its sequence 
appears multiple times in a single genome or is shared by multiple genomes). The 
contiguity of Flye assemblies critically depends on its ability to correctly classify 
unique and repetitive edges of the assembly graph as this classification is needed 
for identifying bridging repeats16.

Removing all unique edges from the repeat graph breaks it into connected 
components that we classify either as simple repeats (consisting of a single edge) or 
mosaic repeats consisting of multiple edges58. Although Flye correctly identifies the 
vast majority of simple repeats, classification of edges in mosaic repeats59 is a more 
challenging task that remains unsolved in the case of metagenomic assemblies. 
We note that the problem of repeat detection has been studied for short-read 
metagenomic graphs60, but it is unclear how to extend it to long-read analysis.

To improve the classification of repeat edges, Flye uses the diverged read-paths 
approach that analyzes read-paths in the repeat graph (a read-path is a path in the 
repeat graph that a read traverses). It initially classifies all edges in the repeat graph 
as unique and checks whether all read-paths through a unique edge continue into 
a single successor edge (a similar test is performed for predecessor edges). If there 
are multiple successors or predecessors, the edge is reclassified as repetitive.

Although this approach works well in genomic assemblies, it is not suitable for 
metagenomic assemblies because the edge coverage is not a reliable predictor of the 
edge multiplicity. Without the coverage test, the read-paths criterion might fail to 
identify repetitive edges that belong to mosaic repeats, as it checks only immediate 
predecessors and successors of each edge, for example, the repetitive edge Y within 
a mosaic repeat in Fig. 1a would be classified as a unique edge. To address this 
pitfall, we substitute the diverged read-paths approach in Flye by the iterative 
repeat detection approach in metaFlye (described below) to identify repeat edges in 
the metagenome assembly graph without using the coverage information.

Iterative repeat detection. Initially, metaFlye classifies all edges in the assembly 
graph as unique. The algorithm iterates through all edges and re-classifies some 
edges into repetitive as described below. Thus, at each intermediate iteration, the 
assembly graph may contain both unique and repetitive edges.

Given a read-path through an edge e, metaFlye defines the next unique edge 
in this path as a successor of e (in contrast to the Flye algorithm that considers 
any edge as a successor). A set of all read-paths through an edge defines a set of 
successors and we denote a successor edge with maximum support as emax (support 
of an edge is defined as the number of read-paths that traverse this edge).  

To account for chimeric reads, metaFlye filters out all successors with small 
support, that is, each successor edge e with Support(e)/Support(emax) < δ. If a 
unique edge has multiple successors or predecessors, it is reclassified as repetitive.

The described test is performed iteratively on the entire set of edges until no 
new edges are reclassified as repetitive. Intuitively, in a mosaic repeat, the first 
iteration of the test will classify some of its edges as repetitive, but consecutive 
iterations extend the set of repeats (Fig. 1a). For a faster convergence of the 
algorithm, we traverse edges of the graph in the increasing order of their length, as 
short edges are more likely to be repetitive (two iterations are typically sufficient). 
The default value δ = 0.2 was derived empirically through the evaluations 
on multiple metagenomic and genomic datasets to minimize the number of 
classification errors.

We evaluated the repeat detection algorithm using the HMP dataset as follows. 
We aligned each edge of the repeat graph (before graph simplification) against 
the combined reference genome using minimap2 (ref. 61). The alignment revealed 
79 repetitive and 403 unique edges (repetitive edges have more than one distinct 
alignment over at least half of the edge length). metaFlye erroneously classified 
13 out of 403 (3.2%) unique edges as repetitive and 2 out of 79 repetitive edges as 
unique (2.5%). Note that the errors of the first type would not lead to misassembly, 
but might result in under-assembly. The errors of the second type potentially 
could lead to misassembly; however, the Flye graph simplification algorithm was 
designed to be robust against the (rare) repeat misclassifications16.

Bubbles. Let G(V, E) be a directed weighted graph with the node-set V and the 
edge-set E. Given a subset U of its nodes, we define EU as the edge-set formed by 
all edges of G that connect nodes in U. We refer to a subgraph with the node-set U 
and the edge-set EU as the U-induced subgraph of G.

A path in a graph is called short if its length does not exceed a threshold 
bubbleDiameter (the default value 50 kb). An edge in a graph is called a bridge if 
its removal increases the number of connected components in the graph. An edge 
that connects a node in E\U to a node in U (a node in U to a node in E\U) is called 
an entrance (exit) edge for a U-induced subgraph. An ending node of an entrance 
edge (a starting node of an exit edge) is called an entrance (exit) node.

A U-induced subgraph is called a bubble if (1) it has a single incoming and a 
single outgoing edge; (2) it has no bridges; and (3) for each edge in this subgraph, 
there is a short path from the entrance to the exit passing through this edge 
(compare with the definition of a blob in ref. 62). A bubble is called simple if it is 
formed by two parallel edges and called a superbubble otherwise (Fig. 1).

Finding simple bubbles. Simple bubbles, often arising from two strains, are 
formed by two short parallel edges in the repeat graph (Fig. 1b). As metaFlye 
collapses edges shorter than the MAX_SEPARATION parameter (500 bp by 
default), some simple bubbles are represented as a pair of loop edges in the repeat 
graph. In difference from the concept of a bubble in previous studies28,63, metaFlye 
considers bubbles where the entrance and exit are represented by the same node.

Finding superbubbles. Many short-read assemblers search for superbubble-like 
structures, defined empirically through the corresponding algorithmic 
implementation62,64. Although most assemblers require superbubble subgraphs 
to be acyclic, a generalization that allows cycles was proposed but has not been 
implemented in a genome assembler yet65. In difference from the previously 
described assemblers (and in difference from the concept of a superbubble in 
previous studies28,63), metaFlye does not require superbubbles to be acyclic and 
thus has the ability to analyze repeats inside superbubbles. This is an important 
distinction because metagenomic superbubbles often contain repeats.

metaFlye considers each edge StartEdge (and the corresponding node 
StartNode) in the repeat graph and attempts to find a bubble that has StartEdge 
as its potential entrance. It finds an arbitrary simple path of length at least 
BubbleDiameter starting at StartNode and iterates over all intermediate edges in 
this path. For each intermediate edge EndEdge (and the corresponding EndNode), 
metaFlye removes this edge from the graph, launches the Dijkstra algorithm to 
find shortest paths from StartNode to all other nodes of the graph and prematurely 
terminate it if the distance from StartNode to the next opened node exceeds 
BubbleDiameter. In the case the algorithm does not terminate prematurely (the 
distance from StartNode to all discovered nodes does not exceed BubbleDiameter), 
we run the ‘reversed’ Dijkstra search starting from EndNode with the flipped 
direction of edges and StartEdge removed. If (1) the reversed Dijkstra search was 
also successful and (2) both searches have discovered the same set of nodes and 
edges, we classify the subgraph discovered by the algorithm as a superbubble with 
the entrance StartNode and the exit EndNode. Although the search for an arbitrary 
path of length at least BubbleDiameter (and follow-up launch of the Dijkstra 
algorithm) can be time-consuming in theory, in practice this algorithm takes 
minutes to process large metagenomic datasets, such as the cow rumen dataset 
with >1 Gbp of assembled sequence and the repeat graph having >150,000 edges.

Finding roundabouts. Alternative strains might share repeated sequences with  
the other genomes within a metagenome, resulting in roundabouts (Fig. 1d)  
that popular short-read metagenomic assemblers, such as metaSPAdes19 and 
MEGAHIT18 do not attempt to simplify. metaFlye identifies and simplifies 
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roundabouts by analyzing read-paths in the repeat graph (read-paths represented 
by a single read are removed to exclude potentially chimeric reads).

To identify roundabouts, metaFlye iterates through all edges of the repeat graph. 
For each edge StartEdge, it analyzes all read-paths through StartEdge in the graph, 
considers suffixes of these paths that start at StartEdge, and selects maximal suffixes 
(suffixes that are not contained within other suffixes). If there exists an edge EndEdge 
traversed by each maximal suffix, metaFlye trims each maximal suffix by removing 
all its edges, starting from EndEdge. Finally, metaFlye identifies a roundabout as 
a subgraph formed by edges in all shortened maximum suffixes. Note that while 
roundabouts may represent more complex strain variations than superbubbles, the 
size of the roundabouts is limited by the read lengths, whereas the superbubbles are 
identified on the basis of the structure of the repeat graph and irrespectively of reads.

Processing strain groups. metaFlye identifies strain groups (bubbles, superbubbles 
and roundabouts) and retains each group in the graph during the following graph 
simplification steps (such as tip clipping and repeat resolution). It has two strain 
analysis modes: the standard metaFlye strain-suppression mode (each strain group 
is collapsed into a single edge connecting the entrance and exit nodes of the group 
before the final contigs are generated) and the metaFlyestrain strain mode (retaining 
the alternative strain structures in the graph) which produces less contiguous 
assemblies that, however, are better suited for strain analysis.

Additional repeat graph simplification procedures. Some strain variations, such 
as inversions, do not fall under the definition of bubbles/roundabouts or are too 
complex to detect with the described algorithms. After identifying strain groups, 
metaFlye additionally simplifies the repeat graph by removing edges with locally 
reduced coverage and long tip edges (Supplementary Note 7).

Assembling short plasmids. Short plasmid sequencing is an important task 
because these plasmids represent a large fraction (~30%) of all plasmids in the 
RefSeq database. However, although existing long-read assemblers perform well 
in assembling long circular plasmids (longer than the typical read length), our 
benchmarking revealed that they often miss short plasmids. metaFlye implements 
an additional module that ensures the assembly of short circular sequences that are 
spanned by one or two overlapping reads (Supplementary Note 8).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data for the sheep gut sample are available under the NCBI 
BioProject PRJNA595610. HMP mock dataset is available at: https://github.com/
PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun. 
Zymo datasets are at: https://github.com/LomanLab/mockcommunity. Cow rumen 
dataset is at: NCBI SRA repository under BioProject PRJNA507739. Human stool 
samples are at: ENA project PRJEB29152. NCBI accession codes for the sequences 
used in the NRPS analysis are: AM229678.1, AB101202.1, FP929054.1 and 
FP929054.1. All assemblies that were evaluated in this study, as well as SYNTH64 and 
SYNTH181 datasets are available at: https://doi.org/10.5281/zenodo.3986210 (ref. 66).

Code availability
metaFlye is freely available as a part of the Flye package at: https://github.com/
fenderglass/Flye. The pbclip tool for PacBio subread splitting is available from 
https://github.com/fenderglass/pbclip.
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Extended Data Fig. 1 | Information about metaFlye, Flye, Canu, miniasm, and wtdbg2 assemblies of the individual genomes in the SYNTH64 dataset. 
NGA50 (in megabases) and reference coverage (in percentages) reported for all genomes from the SYNTH64 dataset. Genomes are ordered in the 
increasing mean NGA50 across all assemblers. Challenging genomes that have closely related species or strains in the metagenome are marked with (!). 
Grey bars on the NGA50 plot represent the length of the longest chromosome in the reference sequence for each genome (a theoretical upper bound for 
NGA50). NGA50 is shown in logarithmic scale (not shown for values lower than 100 kb or if the reference coverage is below 50%). The full metaQUAST 
report for the SYNTH64 dataset is provided in Supplementary Table 1.
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Extended Data Fig. 2 | NGAx plots for the mock community datasets (HMP mock, ZymoEven GridION, ZymoLog GridION). NGA(x) is the statistic 
computed for contigs that are broken at their misassembly breakpoints (if any). NGA(x) is the highest possible number L such that all broken contigs that 
are longer than L cover at least X% of the reference. Plots were generated by metaQUAST using all available references for each dataset. Flye failed to 
assemble the ZymoLog datasets due to poor k-mer indexing (Methods).
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Extended Data Fig. 3 | Base-pair accuracy analysis for assemblies of the mock community datasets (HMP, ZymoEven GridION, and ZymoLog GridION). 
Heatmaps showing the number of mismatches and short indels per 100 kbp for each species reference, computed using metaQUAST. Blue and red colors 
correspond to the values higher and lower than the median, respectively. Statistics were not computed for genomes with no assembled sequence (“-” 
symbol). Flye failed to assemble the ZymoLog datasets due to poor k-mer indexing (Methods).
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Extended Data Fig. 4 | The ORF lengths distribution and the GC content distribution of metaFlye and Canu assemblies of the sheep microbiome. The 
ORF length distribution suggests similar base-level accuracy for both assemblies.
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Extended Data Fig. 5 | Taxonomic assignments of sheep microbiome assemblies. a, metaFlye contigs assignment at the phylum level visualized with 
BlobTools. b, Length distributions of metaFlye and Canu contigs within each assigned superkingdom.
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Extended Data Fig. 6 | Statistics of simple bubbles for the metaFlye assemblies human gut and cow rumen. (Left) the human gut dataset with 615 
bubbles, and (right) the cow rumen dataset with 1510 bubbles. Bubble counts exclude loops, and include roundabouts with two edges.
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Extended Data Fig. 7 | Analysis of sequence overlap between 19 human gut samples. Multi-way sequence alignments were computed using SiebliaZ. 
(left) The proportions of unique and shared sequences in each sample. An assembled segment within a sample is called unique if it has no alignments 
against sequence from any other samples. Otherwise, the segment is shared. (right) The total amount of sequence for each multiplicity bin. A sequence 
fragment belongs to the multiplicity bin X if it is shared by exactly X samples.
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PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun. Zymo datasets: https://github.com/LomanLab/mockcommunity. Cow rumen 
dataset: NCBI SRA repository under BioProject PRJNA507739. Human stool samples: ENA project PRJEB29152. NCBI accession codes for the sequences used in the 
NRPS analysis: AM229678.1, AB101202.1, FP929054.1, FP929054.1. All assemblies that were evaluated in this study, as well as SYNTH64 and SYNTH181 datasets are 
available at: https://doi.org/10.5281/zenodo.3986210 (ref. [66]).
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Sample size Does not apply since the study does not include statistical analysis of any hypotheses

Data exclusions We excluded four human gut sequencing samples due to low ONT read coverage, as described in the Results section. No other data exclusions 
were made

Replication Does not apply, since this study introduces a method and does not include biological hypotheses analysis
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Laboratory animals Did not involve laboratory animals

Wild animals Did not involve wild animals

Field-collected samples The fecal sample was collected postmortem from the lower colon of a Katahdin breed wether (sheep, Ovis aires) that was raised 
in a ranch pasture setting. The animal died naturally and post-mortem was diagnosed with combined Strongyloides and coccidial 
infection.

Ethics oversight No ethical guidance was required as pre-mortem, the animal was cared for under approved guidelines for the handling of farm 
animals by the standard operating procedures of the Institutional Care and Use Committee. The animal did not display 
observable disease until shortly before death. All sheep in the flock that die are routinely necropsied to determine cause of 
death to further improve handling guidelines, and the fecal sample used for the present study was a portion of that collected to 
generate the diagnosis.
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