
An  in
samp

Pooyan
Department

a  r  t  i  c

Article histo
Received 17
Received  in
Accepted 13
Available  on

Keywords:
Microfluidi
Droplets
Flow-Focus
Ammonia d
Digital  sam
Gaseous tar

1. Introd

Over 

and  comp
biochemi
advent o
the techn
tion, man
microrea
KHz) [1].
tages ov
biology a
very high
heat and
rounding
faster rea
niques h
thousand
time. Mo

∗ Corresp
E-mail a

https://doi.
0925-4005/
Sensors and Actuators B 267 (2018) 279–293

Contents lists available at ScienceDirect

Sensors  and  Actuators  B:  Chemical

jo ur nal home page: www.elsev ier .com/ locate /snb

tegrated  gas-liquid  droplet  microfluidic  platform  for  digital
ling  and  detection  of  airborne  targets

 Tirandazi,  Carlos  H.  Hidrovo ∗

 of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering Center, 360 Huntington Ave, Boston, MA  02115, USA

 l  e  i  n  f  o

ry:
 October 2017

 revised form 13 March 2018
 March 2018
line 6 April 2018

cs

ing
etection

a  b  s  t  r  a  c  t

The  use  of microfluidic  droplets  has  become  ubiquitous  in  many  Lab-on-a-Chip  (LOC)  applications  ranging
from  material  synthesis  to  novel  biochemical  sensing.  In  this  paper,  we  introduce  a new  droplet-based
approach  that  incorporates  a gas  phase  for generating  liquid  droplet  microreactors  in  a microfluidic
flow-focusing  format.  We  demonstrate  the  subsequent  on-chip  transition,  collection  and  handling  of  the
droplets  in  a secondary  liquid  carrier  inside  a multilayer  PDMS  structure.  The  presented  technique  has
potential  applications  in  capturing  and  probing  airborne  particles  and  gaseous  vapors  using  high  surface-
to-volume  picoliter  droplets.  The  discrete  microfluidic  gas-liquid  interfaces  created  in  this  approach,
greatly  facilitate  absorption  and  up-concentration  of  a gaseous  target  analyte  into  the  droplet  volume.  The
chip-based  format  of  the units  also allows  for  different  microfluidic  modules  and  analytical  techniques
to  be integrated  in  this  platform  for  droplet  probing,  providing  highly-sensitive  LOC detection  systems.
pling
get

Here,  we  demonstrate  the  basic  principles  of  sample  partitioning  with  gas-liquid  droplets  by  capturing
and  detection  of vaporized  ammonia  at different  gaseous  concentrations  using  Nessler’s  reaction  inside
the  droplets.  The  results  of  this  work  provide  a simple  and  robust  quantification  approach  for  determining
gaseous  ammonia  which  can  be  further  expanded  to  other  gas-phase  analytes  in  next  generation  of
airborne  target  detectors  for  human  breath  analysis  and  environmental  monitoring.

© 2018  Elsevier  B.V.  All  rights  reserved.
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the past two decades the concepts of miniaturization
artmentalization have been extensively incorporated in

cal experiments for a wide variety of applications. The
f droplet microfluidics has greatly facilitated many of
ological developments in this regard through genera-
ipulation, and processing of libraries of ultra-small fluid

ctors (typically pL to nL volume) at high rates (tens of
 The use of microfluidic droplets offers several advan-
er conventional laboratory techniques for performing
nd chemistry [2]. From a physical perspective, due to

 surface-area-to-volume ratios of micron-sized drops,
 mass transfer rate between each droplet and its sur-

 environment are significantly higher which facilitates
ctions. From a mechanical standpoint, microfluidic tech-
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resulting in a tight control over the distribution of the
d droplets. From a chemical perspective, digitizing a reac-

 individual compartments enables precise control over
hiometry of an isolated reaction. Moreover, it provides
c confinement which increases the concentration of the
gnal from a droplets’ population [3]. Accordingly, droplet
dics has rapidly emerged as an essential component in
multifunctional Lab-on-a-Chip (LOC) and micro-Total-
Systems (�TAS) for a multitude of applications, namely
logy [4], polymerase chain reaction (PCR) [5–10], protein
ation [11–13], single-cell analysis [14], fabrication of func-
croparticles [15,16], and drug delivery [17,18].
et formation and entrainment processes are the first steps
ing any droplet-based system in applications that bene-
ample digitization. In microfluidics, droplets are typically
d from an aqueous-based liquid in a continuous flow of
cible oil (or vice versa). In this continuous-flow, emulsion-
hnique the two liquids meet at a junction (T-junction [19]
ocusing [20]) where individual droplets are pinched off

lt of interfacial tension and shear forces induced by the
se [21]. Formation of highly-uniform emulsion libraries

 successfully demonstrated and a variety of methods have
posed for subsequent manipulation of the droplets for
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2–24], sorting [25,26], fusion [27–29], and fission [30].
r, advances in microfabrication techniques have enabled
tion of microfluidic systems which enables the design and
n of highly complex microchannel networks integrated

iaturized LOC platform, capable of performing multiple
s.
as droplet microfluidics has been extensively utilized in
of analytical techniques, using a liquid as both dispersed
nuous phases for creation of droplet reactors is considered
nal. Incorporating a gas phase inside microfluidic chan-
een mainly targeted towards generation of microbubbles

d flow [31–35] for a range of applications from biomedi-
onic imaging [36] to synthesis of micro- and mesoporous
s [37]. However, liquid-in-gas generation of droplets in
dic networks is a new approach which has not been practi-
zed for any analytical application. The use of a continuous
to form uniform liquid sprays has been demonstrated
g a capillary tube behind a round orifice plate [38]. In
od, the liquid stream supplied from the capillary tube

 by a focusing gas stream discharging through a nozzle
en environment, forming uniform droplets [39–41]. This

e has been widely applied to the field of material synthesis
ng uniform microparticles [42]. Growth and motion of the
gs inside gas-flow microchannels have been studied for
oval in polymer electrolyte membrane (PEM) fuel cells

A few recent studies have also investigated the forma-
oplets in confined microfluidic architectures such as the
n [46–48], flow-focusing [49–53], and capillary co-flow
54]. While these studies have provided useful guidelines

 droplet generation within enclosed microfluidic chan-
ring gas-borne droplets for LOC applications has not been
stematically. In this work, we introduce the new concept
gas droplet-based LOC systems that involves microflu-
ration of liquid compartments inside a continuous gas

 capability of subsequent collection and handling of the
in a secondary liquid carrier (see Fig. 1). The fundamen-
ehind this system is to facilitate sampling of a gaseous

hrough rapid absorption of the target across digital gas-
erfaces. We  further provide a microfluidic framework for
ting and processing these gas-based microreactors in the
y liquid carrier.
lize microdroplet reactors in this approach, a number of
s should be realized first. The fundamental characteris-

 technique requires liquid droplets to be created within a
us gaseous phase. In this stage, droplets with high surface-
e ratio can be used to capture and up-concentrate a trace
lyte or an airborne pathogen through diffusion of the tar-
he picoliter volume of discrete droplets. For subsequent
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ceptual illustration of the process flow in the presented microfluidic approach. I) First,
 then carried along the microchannel and are transferred into a second immiscible liqu
r, droplets are collected in an on-chip collector unit. III) Finally, collected droplets are tr

of the droplet’s content.
 267 (2018) 279–293

us, an integral part of this system. For this purpose, the
 generation module is integrated with an on-chip droplet

 unit containing a secondary liquid phase. The archi-
f the proposed platform allows for replacing the initial

 continuous phase with a secondary liquid-based car-
interrogation of the droplet content, they should be in a
l array moving inside microfluidic channels. As such, a
tor structure is also embedded in the platform for har-
nd preparing the droplets in such consecutive format for
ssing operations. All the mentioned steps are performed
single multilayer LOC platform. The actual prototype is

d and tested using lithography-based methods with Poly-
siloxane (PDMS) as the structural material bonded to glass
e  characterize some of the metrics associated with this

 from the generation stage to the final harvesting of the
 The impact of the gaseous flow on the volume of droplet
ctors and their monodispersity is investigated here. More-

 efficiency and rate of droplet entrainment during each
 are quantified. In the last section, we demonstrate the

use of the presented droplet-based approach for detection
zed ammonia (NH3). Known concentrations of ammonia
d as the carrier gas which is absorbed and mixed within

 droplets that contain Nessler’s Reagent. Due to the color
f the droplets, the presence of ammonia can be verified and
uantified from the droplets’ library. With the current con-

 of the microchannels, we could detect down to 500 ppm
ations during sub-second exposure of the droplets to the
or.
rocess presented herein provides many opportunities for
eration of LOC devices suitable for capture and detection
ne targets. Collection and monitoring airborne particles
ous vapors have potential applications in health care,
y assessment, and real-time screening of chemical reac-
–57]. The architecture of this platform enables a variety of
l techniques to be used in such applications with high res-
nd sensitivity. One potential example includes performing
oplet PCR (ddPCR) amplification on captured aerosol sam-
lementing conventional PCR methods in aerosol sciences
rged in recent years thanks to their enhanced sensi-
d detection time compared to culture-based methods
However, as of today ddPCR, in its fundamental level,

 water-in-oil emulsion droplet technology. Furthermore,
the same volumetric basis, typical concentrations of air-
croorganisms are several orders of magnitude less than
ne microorganisms [61], sampling and preconcentrating

 targets are key yet challenging tasks to be undertaken
any detection procedure [62,63]. Through the use of
dic gas-liquid interfaces [64], efficient transport of the

from the gas into isolated droplets’ volumes can take
egrating gas-liquid digital microreactors with microflu-
ipulation strategies presented here, makes this scheme

 droplets are formed within a continuous gaseous flow. The generated
id medium at the exit of the generator unit. II) After transition into the
ansferred into a second network of microchannels and are prepared for
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matic diagram showing the fabrication steps of different sections of the platform. F
 cutting of a PDMS slab and forming a hollow structure that eventually sits on to
tructure with different units embedded in each layer.

ly suitable for developing highly sensitive LOC systems
n be used in point-of-care diagnostic breath analysis and
ental monitoring of airborne particulates.

ials and methods

ce layout and fabrication

tegrated microfluidic platform comprises three main
 units which are referred to as Generation Unit (GU),

 Unit (CU), and Harvesting Unit (HU). Detailed steps in
n of each microfluidic unit are presented in Fig. 2. GU
ontain microchannels that are fabricated using standard
raphy processes to create a mold and soft lithography
S for casting the microstructures. GU is composed of

cusing configuration in which a middle dispersed liquid
eets two side gas flow channels, leading to the genera-

oplets. The microchannels are designed in a CAD software
ed out on high-resolution transparencies (CAD/Art ser-
). Single side polished Silicon (Si) (University Wafer) is
abricate a master mold using photolithography process
gative near-UV photoresist (SU-8 2050 Microchem Corp.).
afer is spin-coated with the photoresist (40 �m thick-
n baked for solvent removal and exposed to UV light
he printed mask. The exposed wafer is then post-baked
loped to obtain a master mold containing the microfea-
ce the mold fabrication is complete, microfluidic chips are
t of the SU-8 master mold by performing standard soft
hy method. PDMS prepolymer mixture (Sylgard 184, Dow

rem
inlet
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is prepared from the elastomer base and curing agent at
 ratio. The solution is then poured onto the Silicon mold,
ssembly is cured at 80 ◦C for approximately 2 h. Hard-
S is peeled off the mold and each microfluidic chip is

layers. Th
to regain 

facilitate
both gase
GU and HU, lithography processes are utilized, whereas the CU chamber
he GU and HU. The actual platform shown at the bottom consists of a

 from the PDMS layer. After punching the required flow
tlets, the chip is bonded to a pre-cleaned standard micro-
de (Thermo Scientific) using an oxygen plasma cleaner
Plasma).
e HU, a separate layout is designed that comprises dif-
b-units which we  refer to as (i) extraction section, (ii)
r, (iii) main channel, and (iv) harvesting microchannels.

traction section droplets enter a V-shaped expansion to
e spacing between individual drops and create an array
-packed digital microreactors. Downstream of the HU,
t ports are designed to separate the carrier oil and the

 The carrier liquid is removed from the main channel while
esting channels separate the droplets. An arrangement of
r posts is also placed in the main channel after the side
g microchannels to prevent the droplets from entering the
nnel while draining the oil. To fabricate the HU structure,
mold is prepared with a different photoresist (SU-8 2100,
m) and spinning speed to obtain taller channels (100 �m
). In addition to the outlet ports, a square piece is also

 from the layer, near the unit entrance, to serve as the bot-
e CU. After bonding the harvesting chip to a second glass
, the previously-fabricated generation chip is bonded on

 harvesting chip. Finally, to complete the structure of the
, a hardened hollow PDMS slab is prepared and assembled

 the previous layers. This structure will be prefilled with
 carrier and is designed to remove the gas bubbles from

top of the CU while retaining and collecting the droplets at
m of the CU. All these units are packed into an integrated
r structure. The assembled device is placed on a hot plate

al hours at 200 ◦C to enhance the bonding strength of the
e post-bake process also allows for PDMS microchannels

their intrinsic degree of hydrophobicity [65] which greatly
s generation and entrainment of aqueous droplets within
ous and liquid (oil) carriers of the system.
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Fig. 3. (A) Schematic and (B) actual images of the operation principle of the platform (side view). The outlet of the GU feeds into the oil bath where the droplets are collected
in  this immiscible liquid accumulating at the bottom of the CU. Concurrently, the gaseous phase is separated from the droplets as it leaves the CU in the form of bubbles. (C)
Operation procedure of the GU; droplets are formed in a flow-focusing junction where two  side air flows meet the liquid and pinch off the droplets. (D) Operation procedure
of  the HU; The HU is connected to the CU and pulls in the collected droplets by means of the withdrawal action of the syringes. The droplets enter the extraction section of
the  HU in which they form packed arrays on the sides while the carrier oil travels through the center of the channel. Downstream of the HU the flow is divided into a main
channel flo arves
aimed at re  the tw
the  droplet

The co
timedia C
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w (Qmain) for removing the carrier oil and a pair of side microflows (Qharvesting ) for h
taining the droplets while draining the carrier liquid. By adjusting the flow rates of
s can be used for further processing operations.

ncurrent operation of the units is shown in Fig. 3 and Mul-
omponent 1 (supplementary data). For operation of the
e gas phase is initially introduced in the microchannels
. The CU is then filled with the oil medium to com-
ver the outlet of the GU and the HU microchannels are
ed with the carrier oil. Finally, the liquid dispersed phase
d into the GU. Droplets are generated as a result of the
d gas flow and subsequently move with the gaseous car-

 the unit outlet. As the droplets reach the end of the GU,
nuous gaseous phase forms air bubbles as it enters the
use of the difference in relative densities of the gener-

a  hig
show
inter
that
tion
base
CU w
accu
indu
sion
HU, 
lets (�droplet>�oil) and gas bubbles (�bubble<�oil) the liquid
re separated from the gas phase at this stage. To facilitate

e-exchange process from the gaseous carrier to the liq-
r, the outlet of the GU should be connected to the CU at

on the sid
the suppl
emulsion
and prep
ting the droplets. A Microfilter array is also placed in the main channel
o paths, the droplets and the carrier liquid are optimally separated and

level in comparison to the inlet of the HU. Experiments
t placing the GU as the bottom layer results in subsequent
n of the air bubble and the liquid droplets inside the CU

d substantially affect the droplets’ population after collec-
ever, placing the GU at a higher level from the platform

ws for the droplets to gradually sink at the bottom of the
ut much interaction with the gas bubbles. As the droplets
te at the bottom of the CU, they enter the HU due to an
ow from pulling syringes that brings in the created emul-

prising the collected droplets and the oil carrier. Inside the
lets are initially packed in the V-shaped extraction section

es of the microchannel (see Multimedia Component 2 in

ementary data). Subsequently the oil is extracted from the
 through the main channel while the droplets are retained
ared for subsequent interrogation operations in harvesting
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c platform.

nnels. This is achieved using a cross-flow scheme where
endently-controlled flows (Qmain and Qharvesting) manipu-

roplets population and the carrier oil to travel in separate

rimental procedure

om microfluidic test bench, shown in Fig. 4, is developed
te simultaneous liquid-gas generation and liquid–liquid
of droplets for all the units. For the GU, gas flow is sup-

 the facility compressed air line and is first dried and
rough a desiccator. A manual regulator (0–150 psi) fol-

 a voltage-controlled valve (0–20 psi) (Proportion-Air Inc.)
e pressure to the operational range of the device. A mass
or (Sierra Smart-Trak2) is also placed in the route of the
easuring the rate of incoming gas flows. The control valve
ensors are connected to a host computer where a cus-
LabVIEW interface is used for real-time user control as
ta acquisition. For the proof-of-concept experiments, an

iate blending chamber is placed in the air route. The pur-
is chamber is to prepare a gaseous ammonia sample with
concentration and inject it into the device. Multiple man-
s are thus placed in the line to easily switch between the
d ammonia mixture lines if needed. All the liquids are

 individual glass syringes and are controlled using con-
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involved 

compare
tform. For the characterization of the platform, dry air is directly injected
d as the continuous gas which is prepared in a chamber upstream of the

isualization and imaging is done by a high-speed CMOS
hotron SA5) coupled with an inverted microscope (Nikon
mination is provided by a metal halide white light (Prior
).
ter is used as the dispersed phase and dry air as the con-
hase for the platform demonstration. The carrier liquid

et collection and harvesting is composed of Hexadecane
 of a nonionic surfactant (Span 80) (Sigma Aldrich Corp.).
roof-of-concept, ammonia is introduced in the gaseous
ich acts as a trace vapor. The vapor mixture is prepared by

ion of 30% ammonium hydroxide solution (NH4OH,  Sigma
orp.) in a confined pressurized air chamber. We  added 50%
r’s Reagent (NR) (Hach Company) to the dispersed water
the detection solution. The reaction between NR and the
mmonia results in a color shift of the droplets that was

robe the ammonia in the gaseous mixture.

ts and discussion

let generation and collection

et formation and breakup in liquid environments are
died in the literature [66–71]. It has been shown recently
let generation in gas microchannels can also occur in sim-
known regimes, such as dripping and jetting which are

ost preferable modes for controlled sample digitization

]. Due to high viscosities and low velocities of the liquids
in the microchannel, the Reynolds number (Re), which

s the relative importance of inertia to shear forces, is typi-
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ll in liquid-based microfluidic systems (Re ≤ 10) [72]. Thus,
viscous stresses dominating the flow, droplet generation
ed to occur in an inertia-less medium [73] allowing for

edictable flow dynamics inside the microchannel. Con-
, generation process can be effectively manipulated for
niform droplets. Having a low-viscosity gas phase as the

us fluid necessitates much higher flow speeds to provide
 force during droplet breakup process. Although the con-
as phase has a lower density in comparison to a typical oil
gher speeds and lower viscosities all result in bigger gas

 number (ReG) during droplet generation. For this system,
 ReG as;

QG

Dch
(1)

 � and � are the air density and viscosities at room tem-
 QG is the measured gas flow rate inside the channel and

 characteristic length scale (hydraulic diameter) of the GU
G for the dripping regime ranges from 101 to 103. There-
tia effects become more relevant and prominent in the
nce of this system. In contrast to the liquid–liquid systems,
ntal observations of liquid-gas droplet generation in this
ows a more delicate and unstable dripping behavior due
h-speed flows around the liquid thread. We  investigate
nce of ReG on two important parameters; first, the vol-
e generated droplets under different ReG and second, the
n distribution of the droplets. Experiments are conducted
nt flow rates of water (dispersed phase) and air (continu-
) within the dripping region of the GU. The droplets were

 in the gaseous medium and transferred and collected
e immiscible liquid medium in the CU. We  performed the

ents of droplet volume and distribution in the collected
ng a custom MATLAB script to analyze droplet popula-
5 shows the trend of the droplet volume for different ReG
d flow rates. Generated droplets in this system contained
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 the liquid flow rate. Thus, the volumes can be expressed
tion of ReG in this system.
orth noting that although higher ReG substantiates the
ertia in the breakup dynamics, it does not mean that

nduced forces are completely negligible. Direct viscous-
ear stresses at the droplet interface are relatively small
nificant in the droplet breakup. However, forces induced
dynamic pressure differences arising from viscous gas

finement in the microchannel can be quite relevant. This
 apparent by looking at the ratio of Re to Po (Poiseuille)
mber, which is calculated to be in the order of unity for
m, reflecting the non-trivial and in some cases signifi-

 of this viscous induced force in the breakup. As such,
reakup in the dripping regime is caused by a combina-
rface tension, viscous-based hydrodynamic pressure, and
ased drag [49].
gh speed gaseous flow also impacts the monodispersity of
ated droplets. The results of droplet distribution as a func-
G are shown in Fig. 6. We  can see that as the ReG increases,
opulation becomes less monodisperse. We  think these

stem from two phenomena. Upon increasing ReG , inertial
 the gaseous stream severely impact the liquid thread dur-
tion of the droplets and result in the creation of smaller

droplets. Thus, at higher ReG (>100) droplet population
idisperse distribution consisting of original droplets and
aughter droplets. The second influence of the gas phase

 the process of transitioning from the GU to the CU.  Since
ovement inside the GU happens at relatively high veloc-

 m/s), transitioning into the liquid medium can possibly
high speed impact of the droplets with the oil interface.
r, physical interaction of the generated bubbles in the CU
iquid droplets can cause secondary droplet breakup inside

 medium. We  could not experimentally track each droplet
ansition into the CU. Therefore, we considered the com-
ciency of the generation and transition processes in terms
t polydispersity index (PDI) defined as �/d (where � rep-
he standard deviation of the droplet diameters and d is
ge diameter of the generated drops). It can be seen that
with narrower distribution can be obtained at lower ReG ,
wider distribution is observed as the ReG increases. Distri-

 the drops represent a PDI of less than 5% at lower values of
60) and up to 20% at higher ReG values (ReG>100). Hence,

 increasing the ReG results in smaller size droplets, it may
ribute to polydisperse generation. This attribute is highly
r precise control of reaction stoichiometry inside individ-
et volumes and improvement of the accuracy of the results
plications. Furthermore, generation of microparticles and
sules for drug delivery systems also requires precise and
le volumes of the drug into the body which necessitate
iform droplets with very low variations in size.
ition to the flow conditions, microfluidic generation of

in confined microstructures highly depends on the geom-
e system. Planar flow-focusing configurations provide a
scheme with multiple geometrical parameters to control
ration process for obtaining the desired droplet size and
n rate [74]. In the present study, we  do not intend to inves-

 detailed role of the geometry on the droplet formation.
of this section is to enhance the performance metrics of
o create smaller yet monodisperse droplets. In confined
dic channels, droplet sizes are scaled with the microchan-
nsions. In the case of a continuous liquid phase, since
rate of each stream is controlled, reducing the dimen-

he outlet channel leads to higher fluid velocities which
igher tangential stresses on the dispersed liquid thread
nction. Consequently, smaller threads are formed from
aller droplets will be emitted. The same argument also
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Fig. 6. Distribution of the collected droplet sizes under different ReG . Highly monodisperse droplets can be obtained at moderate ReG . Increasing the ReG causes satellite
droplet generation which adversely affects the monodispersity.
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 the forces involved in the breakup process. Introducing
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croscopic images of the collected droplets for each configuration under

drop across the emerging droplet which facilitates droplet
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igher hydrodynamic pressure force exerted on the liquid
hich creates smaller threads and resultant droplets. Each
tion and the resultant droplet population collected in the
own in Fig. 7. Droplet size and generation frequency are

d for two  designs with 180 �m (Design I) and 120 �m out-

gn II) in Fig. 8. Reducing the channel width proportionally
he size of the generated droplets in the GU.  Consequently,

 product of droplet volume and generation frequency
ds to the dispersed liquid flow rate, for the same liq-
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parison of the performance metrics for the two  microfluidic chip designs. Design 

e microchannel dimensions facilitates generating smaller uniform droplets and co

onditions, generation frequency increases. We  were able
 highly monodisperse droplets with a mean diameter of

 more than a kilohertz formation rate by modifying the
nnel geometry. It should be noted that, while decreas-
icrochannel dimensions results in better performance, it
bstantially increase the required gas pressure to flow the
e system which is experimentally challenging to control
nnel. Moreover, reducing the channel width also reduces
etween the side walls and droplets which increases the
y of microchannel wetting. We  observed that the gener-
lets under such high pressures (Pair > 15psig) in smaller
izes (80 �m)  showed highly-unpredictable behaviors and
cases formed a liquid spray inside the channel. Under
ssures in microscale dimensions, noticeable compress-
nno flow) effects are highly possible which add further
ty in the interactions of the flows.

let harvesting

the collection chamber features miliscale dimensions
lds a prefilled oil solution (1–5 mL), droplets population
ery small droplet-to-oil volume fractions. Conventionally,
are collected in an off-chip reservoir and re-injected into
microchannels for subsequent processing and screening
s. However, such procedures are prone to human errors
ation issues which reduce the efficacy of the entire pro-
efore, automated handling of droplets in conjunction with
ation and collection steps is necessary for creating an inte-
C platform. By having the droplets collected inside the

 we implement a pressure-driven microfluidic scheme for
n of the droplets from the CU and drawing off a controlled
f the oil phase from the emulsion. A key factor in the design
rmance of the HU is the size of the unit entrance. Using
licas are prone to a number of drawbacks arising from the
f the material. Stability of the PDMS structures is a com-
ern which has been previously reported in the literature

 to the elastic nature of the PDMS, recessed microchannel
s undergo natural deformation of the top wall commonly

 “sagging” [76,77]. As the width-to-height aspect ratio of
 section increases, this deformation can lead to complete
f the channel at the central regions. Moreover, since the
ing operation of the syringes induces a suction inside the

ard flow-induced deformation can also act as a drawback
lling of PDMS networks when exposed to certain solvents
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represen
ains a narrower junction and outlet channel in comparison to Design I.
ently increasing the rate of the generation for the same flow inputs.

cially in the middle regions of the entrance. Consequently,
 droplets are mostly extracted from the narrow openings
ide walls. This led to shear-induced droplet splitting at the
ntrance due to high velocities and shear stresses expe-

n the small opening of the entrance. We  experimentally
te the optimal size of the entrance channel to reduce the
y of droplet breakup during the extraction process. To mit-
swelling, we  also adopted some of the previously-reported
s, namely reducing the ratio of the PDMS to curing agent as
ermal treatments [81]. Three channel widths (4700 �m,

,  400 �m)  are fabricated separately for the HU entrance.
rmance of extraction process is assessed in terms of the

n efficiency (�extraction) which is defined as:

= 1 − NB

NT
(2)

T represents the total number of the extracted droplets
rtain amount of time and NB is the number of drops that
ken into smaller compartments after entering the HU.
ws the change in the extraction efficiency over time as
f gradual collapsing of the microchannel. Since the effi-
ows a time-dependent behavior, we believe microchannel
has the major contribution for this particular extraction
. By reducing the width of the entrance however, the

of collapsing becomes less and almost no droplet split-
rs during the extraction (See Multimedia Component 3

pplementary data). It is worth mentioning that we found
 amount of sagging beneficial for the extraction process.
rence in the channel height due to the wall deformation

 cross section where droplets are only able to enter the
rom the sides, whereas the oil carrier is allowed to enter

 center of the entrance that has smaller height. There-
re-separation of the droplets and the oil medium can
ed during the extraction process by forming a chain of
on the side walls, which facilitated subsequent droplet
g.
ifferent entrance configurations are compared in terms of
xtraction rate from the CU. The extraction rate (fextraction)
y calculated by manual counting of the entered droplets
ific time interval. Fig. 10 shows the performance of the
ems as a function of Qextraction which is the sum of the
ced flows from the syringes. In the first case, a single

 similar to the previous section with maximum �extraction
he second configuration features six equally-sized paral-

ce units. Both devices are connected to a pair of outlets

ainage and droplet harvesting and are tested under same
s. The negative values used for the flow rates in the plot
t the withdrawal nature of the extraction. The results of
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Fig. 9. Experimental data comparing the impact of the entrance channel size on the extraction efficiency (�extraction) for (A) 400 �m entrance, (B) 1200 �m entrance, and (C)
4700 �m entrance. �extraction is defined as the ratio of the number of droplets that are extracted without splitting at the entrance, to the total number of the droplets that
enter the HU. The collected droplets for all the three cases are generated under the same water and air flow rates, and thus, have the same average size before entering HU
(≈100  �m).  However, in wider entrances (case B and C), due to high deformation of the PDMS channe
split into many smaller satellite droplets. By reducing the entrance size, the amount of channel defo
extraction. As such, extraction efficiency can be kept at it maximum over time (�extraction ≈ 100%).

Fig. 10. Comparison of the extraction rate (fextraction) between two different entrance
configurations.  Qextraction is the total volumetric flow rate at which the emulsions
(carrier  oil and the collected droplets) are extracted from CU and enter the HU. Due
to the withdrawal nature of the extraction process, the flow rates are shown in
negative va
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the six-ch
extractio
the flow i
tion, high
avoided.

In the
designed
and retain
pillars wa
harvestin
the avera
ing of the
main cha
harvestin
droplet h

for the ha
is defined

�harvesting

where  N
mirochan
the HU w
to the dif
extractio
total num
a certain
function 

From  

harvestin
In fact, in
droplets 

droplets 

between 

more dro
(NH↑), th
directs th
nel which
attract th
point for 

timedia C
d in �
nter

ped 

 pre
ld be
esting
gher

Amm

pplic
ction

 proo
t com
etection [82]. The dispersed water phase is mixed with 50%
lues. By increasing the number of entrances, droplets enter the HU in a
nner which result in higher fextraction .

annel entrance demonstrate an increase of 300% in the
n rate in comparison to a single entrance. Moreover, since
s divided between six channels, for the same flow condi-

 shear stresses at the entrance of a single channel can be

 main section of the HU a cross-flow configuration is
 to separate the continuous oil carrier from the emulsion

 the droplets. A microfilter array composed of microscale
s designed right behind the intersection of the two  side
g channels. The spacing between each pair is smaller than
ge range of the droplets’ diameters to prevent the bypass-

 droplets. The flow in this region is divided between the

tren
the e
trap
illary
shou
�harv
to hi

3.3. 

A
dete
As a
mos
nia d
nnel (Qmain) which passes through the filters, and the side
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arvesting, we define and consider an efficiency and rate
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mixture, 
l wall, the entrance area is substantially blocked and as a result, droplets
rmation is minimized and unwanted droplet splitting is reduced during

rvesting process as well. Harvesting efficiency (�harvesting)
 as:

= NH

NC
(3)

H is the number of droplets that enter the harvesting
nels and NC is the total number of droplets that entered
ithout splitting at the entrance. Therefore, NC is equal

ference between NT and NB (NC = NT − NB ≈ NT ) from the
n process. The harvesting rate (fharvesting) is defined as the
ber of drops that enter the two  harvesting channels over

 period. In Fig. 11 �harvesting and fharvesting are plotted as a
Qmain and Qharvesting .
the plots we can see that Qmain plays a twofold role in the
g rate. Upon initiating Qmain the harvesting rate increases.
creasing Qmain increases the total number of incoming

(NC ≈ NT ) which also increases the concentration of the
present in the HU. Since the flow streamlines are divided
the main and harvesting channels, upon increasing NC ,
plets will follow the streamlines to the side channels
us, fharvesting initially increases. Further increase in Qmain

e majority of the flow streamlines towards the main chan-
 creates a competing situation between the two  paths to
e droplets. As a result, in the plots there is an optimum
Qmain to obtain the maximum value of fharvesting (see Mul-
omponent 4 in the supplementary data). The decreasing
harvesting also demonstrates the fact that smaller portion of
ed droplets are harvested at higher Qmain. At higher Qmain

droplets behind the microfilters can overcome the cap-
ssure in the gap and squeeze through the micropillars. It

 noted that although increasing Qharvesting results in higher
and fharvesting , the droplets packing fraction is reduced due

 oil fractions that enter the side microchannels.

onia vapor digital sampling

ation of liquid-in-gas droplets is demonstrated here for
 and analysis of vaporized ammonia in a gaseous sample.
f-of-concept we picked Nessler’s reaction which is the
mon coloration reaction for spectrophotometry ammo-
of Nessler’s Reagent (NR). A mixture of gaseous ammonia
ed as the continuous phase. Upon exposure to the gaseous
a rust orange precipitate is produced within the droplets
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Fig. 11. Experimental data illustrating the harvesting efficiency (�harvesting) and harvesting rate (fharvesting ) for different Qmain and Qharvesting . Since the harvesting process involves
withdrawing  the liquid carrier, the values are shown as negative numbers. �harvesting is defined as the ratio of the number droplets entering the side Harvesting Microchannels
over the total number of the droplets that enter the HU, and fharvesting represents the rate at which the harvesting takes place. Increasing Qharvesting has a favorable effect on
�harvesting and fharvesting as it always increases both the efficiency and the rate of harvesting. By increa
the HU. However, this may  also lead to losing more droplets as they bypass the microfilters at highe
increasing Qmain while fharvesting shows a tradeoff representing an optimal point for handling the max

Fig. 12. Color change of the droplets upon exposure to the gaseous ammonia mix-
ture. Here, the inert gas phase is premixed with vaporized ammonia. The mixture is
then used as the continuous phase for droplet generation in the GU. Liquid droplets
are also mixed with the Nessler’s Reagent (NR). During generation and entrainment
process,  droplets are exposed to the ammonia which chemically react with NR and
results in an orange precipitate inside the droplets. (For interpretation of the refer-
ences to col
article.)
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 the presented liquid-in-gas droplet microfluidic system
a multitude of features that make it very intriguing for

 and analysis of air-based targets. The architecture of this
allows a gas-phase species to interact with the free surface
r droplets. Throughout the exposure of the droplets to the
ow, from the generation stage and subsequent movement
e GU until their transition into the CU, an airborne target
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sing Qmain more droplets are extracted from the CU and transferred into
r values of Qmain . We can see that �harvesting consistently decreases with

imum number of the droplets per second for a given value of Qharvesting .

nfined within each droplet volume, leading to a 100X and
rease in concentration on a mole-per-liter basis as com-
their initial gaseous state. The equilibrium concentration
eous analyte absorbed into the liquid droplets is related to
ow pressure in the GU, the partial pressure of the species
bundance in the gas phase. However, its absorption rate
ly proportional to the liquid diffusion length scale, and

 quite large in microdroplets due to their larger surface-
e ratios. Fast volumetric up-concentration is the primary
e of using microdroplets for gaseous sampling.
transfer between gas and liquid in a confined microchan-
n the present architecture involves several physical
na that can simultaneously play a role in the droplet

 as well as the absorption process. The amount of the
 target in the droplets is determined by the interplay of a
meter space, including the local gas pressure, flow veloci-
let size, and the residence time of each droplet in the GU,

 few. Precise control of all these experimental parameters
 impossible in practice. Fluctuations in the local pres-
ng the generation process will not only affect the final

ize but it would also change the equilibrium concentration
 the two  phases. Droplets can experience different resi-

es within the GU due to the variation of air drag force on
et which is also a function of Re. Conjugate mass transfer
droplet (i.e. droplet evaporation) when exposed to the gas
ld also be taken into account as it affects both the droplet

the absorption amount. Moreover, the interaction of the
nnel walls with the droplets in this system can compli-
ombinatory effect of all the mentioned factors. The final
f the absorbed target and the up-concentration factor is a
of all of these variables.
nd advantage of using microdroplets, as opposed to just
ous two-phase microflow sampling scheme, is the abil-
form sample partitioning. Due to inherent fluctuations in
s of the parameters involved in any experimental run, the
ined from a single or a very small droplet population will
ted to substantial error and uncertainty in its correlation
ncentration of the target, and might not even predict the

 of it. In other words, for a given experimental run, dif-
oplets produced in this system may  vary in the amount
sorbed target due to temporal variations in the experi-
onditions. By probing a large droplet population exposed
me experimental conditions, we can mitigate these fac-

ugh statistical analysis of the whole droplet library. This
t of the droplets’ intensities being dependent on a mul-

 process, as described above, and therefore normally
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Fig. 13. (A) Images of the collected droplets after exposure to ammonia in the gaseous mixture at (i) 1000 ppm, (ii) 2000 ppm, and (iii) 4000 ppm gaseous concentrations. (B)
Comparison of the quantified intensity distribution of each population. Each droplet in the image is assigned with a single intensity value based on the average intensity of
the  pixels that the droplet comprises. The intensity value is an 8-bit integer ranging from 0 (dark) to 255 (white). Unlike typical fluorescence-based signals, as more ammonia
is  absorbed into the droplet volume, due to higher amount of the precipitate, droplets become dimmer. Therefore, the intensity distribution shifts to left (lower intensity
values). (C) The mean intensity values for each distribution. Confidence intervals are calculated based on%99 confidence assuming a normal distribution for the intensities.
The confidence limit for a single data point is ±3� while this value for the mean is ±z*�/

√
N where z* for %99 confidence is 2.576 and N is the total population of the analyzed

droplet in each distribution. It is evident that a single data point alone cannot represent a robust measure of the quantified data, whereas considering the mean value of a large
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d as prescribed by the central limit theorem (CLT). Sam-
ioning of a gaseous analyte via a large library of generated
provides for three distinct but correlated means of more
concentration measurement: (1) reducing the variance by
g the sample size, (2) extracting additional information
ntiating the signals, and (3) digitizing the overall sig-

idea behind variance reduction is to increase the number
d reactions by using several droplets for gaseous target
n measurements, rather than analyzing a single droplet,

 a more accurate measurement of the concentration. This
s inherently more precise and, as will be shown in the
e average intensity of each droplet population is a more
easure of the concentration of the target in the gaseous

than a single droplet intensity measurement. Although
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mpler and more robust tool for absolute quantification of
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rformed gas sensing experiments at three different con-
ns of ammonia, 1000, 2000, and 4000 ppm. For each case,
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 the intensity distribution from the droplet population,
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stituting pixels. Experimental images of the populations
nt ammonia concentrations and their quantified inten-
ibutions are shown in Fig. 13. As a consequence of the
s in the experimental parameters, the outcoming inten-
e droplets’ population would be distributed over a range.

 concentrations of ammonia are introduced in the gaseous
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r, due to higher amounts of the absorbed ammonia, the
become darker on average. This happens because of the

ount of precipitate produced in the Nessler’s reaction,
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Fig. 14. Digital quantification of the concentration data. (A) The experimental images from the previous part are digitally analyzed with the green droplets representing a
strong  color change, and red droplets showing a weak color change. (B) By choosing an appropriate intensity threshold the intensity distribution plot can be divided into
a  digital ma ls (gre
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 measurement has a large amount of error proportional
andard deviation, �I. However, correlating the gaseous

 concentration to the averaged intensity signal of a parti-
mple contains a much lower uncertainty. In fact, the error

 to the mean value is determined by the standard error
ean (SEM) which is proportional to the standard devia-
e droplet population divided by the square root of the
f samples, �I/

√
N. Furthermore, by discretizing the inten-

ls through the use of multiple droplet partitions rather
ngle-partition liquid flow, we  also expand the informa-
ained in the signal through differentiation. This additional
ion from intensity signal differentiation is contained in the
the standard deviation of the droplet intensities, which
e correlated to the gaseous ammonia concentration (see

 to improve the accuracy as well as the precision of the
easurement.
se of droplets for sample partitioning also allows for
tification by means of digitizing the data. The idea of
on, which forms the basis of ddPCR technique for DNA
tion, is to provide a positive-negative (ON-OFF or 1/0) sys-
gnal quantification. By setting up a threshold to determine
a signal is considered positive or negative, we  can express
ous data from droplet distribution in the form of absolute
ation that only considers the droplet count. An example of
ntification is shown in Fig. 14. Here, an appropriate inten-
hold that clearly delineates whether a Nessler’s reaction

 place within a droplet is chosen on the intensity axis.

shold divides the distribution plot area in two  sides. The

 values above the set threshold (right side) are considered
ve signals which exhibit little or no trace of color change,
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 values lower than the threshold (the left side) are counted
e signals. This digitization approach lends itself to a cheap,
hip-based gas sensor implementation where a relatively
ive optical counter device with appropriately set thresh-
e integrated in the HU to count the positive droplets for
gaseous concentration values.
ould note that the duration of gas-liquid interaction is
ment affecting the amount of analyte up-concentration

 droplets, and is directly correlated to the residence time
plets inside the microchannel. Experimental observations
plet movement inside the GU show that the use of high-

 flow for droplet generation creates fast-moving droplets
 1 m/s) in comparison to typical water-in-oil emulsions

. The residence time of each droplet over the course of
 and subsequent movement before being transferred into

as therefore measured to be less than one second. With
nt architecture, we could detect ammonia concentra-
n to 500 ppm. The main focus of this work has been

ating the potential of implementing liquid-gas droplets
ical applications. Future studies of the flow dynamics and
phase interactions within confined microchannels is of
sequence as it allows for a better understanding of the
na that eventually determine the efficiency of the absorp-
consequential gas sensing capabilities of this system.

 some previous studies related to air pollution scaveng-
 liquid droplets, have considered the internal and external
mics of moving droplets in a gaseous medium and inves-
e mass transfer to and from the droplets [83–87], the

has been mainly considered for a falling droplet in an infi-
ir. Investigation of the mass transfer and fluid interactions
nfined gas-liquid environments when a train of droplets
ated and transferred in a microfluidic channel is a novel

 has not been previously addressed, and is open for fur-
stigations. Future studies in this regard may  be geared
nvestigating and manipulating the gas-liquid interactions
lling the flow conditions, and optimizing the microchan-
etry to improve the exposure and enhance the device’s
nce, especially towards lower detection limits.

usions

fluidic platforms for generation of uniform droplet
have become ubiquitous in a multitude of biochemical
ostic applications. In this study, we have demonstrated
roplet-based platform to generate and manipulate in-

 microreactors. The structure of this platform consists of
ts which are Generation Unit, Collection Unit, and Har-
nit. The hybrid framework of this technique allows for
iquid droplets to be generated in a gaseous medium facil-
nsport of an airborne target across the gas-liquid droplet

 Subsequently, droplets are transitioned and collected in a
y immiscible liquid solution where they are entrained and

 for any processing operations and signal detections. We
onstrated the practical use of this technique for detec-

mmonia compounds in a gaseous mixture through the
ion of Nessler’s Reagent into the droplets. The detec-
een performed by probing droplets’ population as their

ted due to the reaction of the gaseous ammonia with the
ontent. We  have tested three different concentrations in
, and correlated the gaseous ammonia concentrations to

sity signals obtained from the droplet library in each case.
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