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SUMMARY

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years,
representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an
annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR)
markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR ar-
rays not found in reference databases. We identified 4,246 known species of urban microorganisms and a
consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms.
Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxo-
nomic signatures that were driven by climate and geographic differences. These results constitute a high-
resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential
public health and forensic applications, and provides a culture-independent view of AMR burden in cities.

INTRODUCTION areas or small villages. In the last two decades, the situation

has reversed; 55% of the world’s population now lives in urban
The high-density urban environment has historically been home areas (Ritchie and Roser, 2020; United Nations, 2018). Since
to only a fraction of all people, with the majority living in rural  the introduction of germ theory and John Snow’s work on
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cholera, it has been clear that people in cities interact with mi-
crobes in ways that can be markedly different than in rural areas
(Neiderud, 2015). Microbes in the built environment have been
implicated as a possible source of contagion (Cooley et al.,
1998) and certain syndromes, such as allergies, are associated
with increasing urbanization (Nicolaou et al., 2005). It is now
apparent that cities, in general, have an impact on human health,
though the mechanisms of this impact are broadly variable and
often little understood. Indeed, our understanding of microbial
dynamics in the urban environment outside of pandemics has
only just begun (Gilbert and Stephens, 2018).

(Affiliations continued on next page)

Technological advances in next-generation sequencing (NGS)
and metagenomics have created an unprecedented opportunity
for rapid, global studies of microorganisms and their hosts,
providing researchers, clinicians, and policymakers with a
more comprehensive view of the functional dynamics of microor-
ganisms in a city. NGS facilitates culture-independent sampling
of the microorganisms in an area with the potential for both taxo-
nomic and functional annotation; this is particularly important for
surveillance of microorganisms as they acquire antimicrobial
resistance (AMR) (Afshinnekoo et al., 2021; Fresia et al., 2019).
Metagenomic methods enable nearly real-time monitoring of
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organisms, AMR genes, and pathogens as they emerge within a
given geographical location and have the potential to reveal hid-
den microbial reservoirs and detect microbial transmission
routes as they spread around the world (Zhu et al., 2017). There
are several different drivers and sources for AMR, including agri-
culture, farming, and livestock in rural and suburban areas;
household and industrial sewage; usage of antimicrobials, hard
metals, and biocides; as well as human and animal waste. All
these factors contribute to the complexity of AMR transmission
(Allen et al., 2009; Martinez, 2008; Singer et al., 2016; Thanner
et al., 2016; Venter et al., 2017). A molecular map of urban envi-
ronments will enable significant new research on the impact of
urban microbiomes on human health.

Urban transit systems—including subways and buses—are a
daily contact interface for billions of people who live in cities. Ur-
ban travelers bring their commensal microorganisms with them
as they travel and come into contact with organisms and mobile
elements present in the environment. The study of the urban mi-
crobiome and the microbiome of the built environment spans
several different projects and initiatives, including work focused
on transit systems (Afshinnekoo et al., 2015; Hsu et al., 2016;
Kang et al., 2018; Leung et al., 2014; MetaSUB International
Consortium et al., 2016), hospitals (Brooks et al., 2017; Lax
et al., 2017), soil (Hoch et al., 2019; Joyner et al., 2019), and
sewage (Fresia et al., 2019; Maritz et al., 2019), among others.
For the most part, these efforts have only studied a few select cit-
ies on a limited number of occasions. This leaves a gap in scien-
tific knowledge about a microbial ecosystem with which the
global human population readily interacts. Human commensal
microbiomes have also been found to vary based on culture,
and thus geographically isolated studies are limited and may
miss key differences (Brito et al., 2016). Moreover, data on urban
microbes and AMR genes are urgently needed in developing na-
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tions, where antimicrobial drug consumption is expected to rise
by 67% by 2030 (United Nations, 2016; Van Boeckel et al., 2015),
both from changes in consumer demand for livestock products
and expanding use of antimicrobials—both of which can alter
AMR profiles of these cities.

The International Metagenomics and Metadesign of Subways
and Urban Biomes (MetaSUB) Consortium was launched in 2015
to address this gap in knowledge on the density, types, and dy-
namics of urban metagenomes and AMR profiles. Since then, we
have developed standardized collection and sequencing proto-
cols to process 4,728 samples across 60 cities worldwide (Table
S1). Sampling took place at three major time points: a pilot study
in 2015-2016 and two global city sampling days (June 21st) in
2016 and 2017. Each sample was sequenced with 5-7 million
125bp paired-end reads using lllumina NGS sequencers (see
STAR Methods). To deal with the challenging analysis of our
large dataset, we generated an open-source analysis pipeline
(MetaSUB Core Analysis Pipeline, CAP), which includes a
comprehensive set of state-of-the-art, peer-reviewed, metage-
nomic tools for taxonomic identification, k-mer analysis, AMR
gene prediction, functional profiling, de novo assembly, taxon
annotation, and geospatial mapping. To our knowledge, this
study represents the first extensive global metagenomic study
of urban microbiomes. This study reveals a consistent “core” ur-
ban microbiome across all cities, as well as distinct geographic
variation that may reflect the epidemiological variation and that
enables a new forensic, city-specific source-tracking. Our data
demonstrate a significant fraction of the urban microbiome re-
mains to be characterized. Though 1,000 samples are sufficient
to discover roughly 80% of the observed taxa and AMR markers,
we continued to observe taxa and genes not found in other sam-
ples. This genetic variation is affected by environmental factors
(e.g., climate, surface type, latitude, etc.), and samples show
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Table 1. Sample counts

Region Pilot CSD16 CSD17  Other Total
North America 28 284 371 276 959
East Asia 34 26 1,297 0 1,357
Europe 177 310 939 1 1,427
Sub-Saharan Africa 0 116 192 0 308
South America 20 44 199 68 331
Middle East 0 100 15 0 115
Oceania 0 94 32 0 126
Background control 0 40 0 40
Lab control 0 20 6 26
Positive control 0 0 33 6 39
Total 259 974 3,138 357 4,728

The number of samples collected from each region.

greater diversity near the equator. Sequences associated with
AMR markers are widespread, though not necessarily abundant,
and show geographic specificity. Here, we present the results of
our global analyses and a set of tools developed to access and
analyze this extensive atlas, including two interactive map-
based visualizations for samples (metasub.org/map) and AMRs
(resistanceopen.org), an indexed search tool over raw sequence
data (https://metagraph.ethz.ch/search), a Git repository for all
analytical pipelines and figures, and application programming in-
terfaces (APIs) for computationally accessing results (https://
github.com/metasub/metasub_utils).

RESULTS

We collected 4,728 samples from the mass transit systems of 60
cities around the world (Table 1; Table S1). These samples were
collected from at least three common surfaces in each mass
transit system (railings, benches, and ticket kiosks), with addi-
tional optional surfaces also collected in each city, and all were
subjected to shotgun metagenomic sequencing (125 x 125 PE
reads, see STAR Methods). We use the microbiome of mass
transit systems as a proxy for the urban microbiome as a whole
and present our key findings here.

A core urban microbiome centers global diversity

We first investigated the distribution of microbial species across
the global urban environment. Specifically, we asked whether
the urban environment represents a singular type of microbial
ecosystem or a set of related but distinct communities, espe-
cially in terms of biodiversity. We observed a bimodal distribution
of taxa prevalence across our dataset, which we used to define
two separate sets of taxa based on the inflection points of the
distribution: the putative “sub-core” set of urban microbial spe-
cies that are consistently observed (>70% of samples) and the
less common “peripheral” (<25% of samples) species. We
also defined a set of true “core” taxa, which occur in essentially
all samples (>97% of samples) (Figure 1A). Applying these
thresholds, we identified 1,145 microbial species (Figure 1B),
as defined by the NCBI annotation in KrakenUniq, that make

¢? CellPress

up the sub-core urban microbiome with 31 species in the true
core microbiome (Figure 1A). Core and sub-core taxa classifica-
tions were further evaluated for sequence complexity and
genome coverage on a subset of samples. Of the sub-core spe-
cies, 69 were flagged as being low-quality classifications (see
STAR Methods). The sub-core microbiome was principally bac-
terial, with just one high-confidence eukaryote identified:
Saccharomyces cerevisiae. Notably, no archaea or viruses
were identified in the group of sub-core microorganisms. For vi-
ruses in particular, this may be affected by the DNA extraction
methods used, limitations in sequencing depth, or missing anno-
tations in reference databases used for classification. The three
most common bacterial phyla across the world’s cities ordered
by the number of species observed were Proteobacteria, Actino-
bacteria, and Firmicutes.

Despite their global prevalence, the core taxa were not uni-
formly abundant across all cities. Many species exhibited a
high standard deviation and kurtosis (Fisher’s definition) relative
to other species (Figure 1C). Some species showed distinctly
high mean abundance, often higher than core species, but
more heterogeneous global prevalence. For example, Salmo-
nella enterica was identified in <50% of samples but was the
12th most abundant species based on the fraction of DNA
ascribed to it. The most relatively abundant microbial species
was Cutibacterium acnes (Figure 1D), which had a comparatively
stable distribution of abundance across all samples, and is a
known human skin commensal. To correct for bias arising from
uneven geographic sampling, we measured the relative abun-
dance of each taxon by calculating the fraction of reads classi-
fied to each taxon and compared the raw distribution to the dis-
tribution of median abundances within each city; the two
measures closely aligned. An examination of the positive and
negative controls indicates that these results are not likely due
to contamination or batch effect (see STAR Methods). In total,
we observed 31 core taxa (>97% prevalence), 1,145 sub-core
taxa (70%-97% prevalence), 2,466 peripheral taxa (<25% prev-
alence), and 4,424 taxa across all samples. We term the set of all
high-confidence taxa observed in the urban panmicrobiome.

To estimate the number of taxa present in our samples but that
may have been missed by our methods (e.g., sampling type and
sequencing depth), we performed a rarefaction analysis on the
taxa that were identified. By estimating the number of taxa iden-
tified for different numbers of samples as a function of the num-
ber of reads, we see a diminishing trend (Figure 1D), which indi-
cates that at some point, the species in every new sample were
likely already identified in a previous one. Our rarefaction curve
did not reach a plateau, and even after including all samples, it
still showed a marginal discovery rate of roughly one new spe-
cies for every 10 samples added to the study. For clarity, we
note that this analysis only considers taxa already present in
reference databases, not newly discovered taxa (below). Despite
the remaining unidentified taxa, we estimate that most (80%) of
the classifiable taxa in the urban microbiome could be identified
with roughly 1,000 samples.

Since humans are a major part of the urban environment, the
DNA in our samples could be expected to resemble commensal
human microbiomes. To investigate this, we compared non-hu-
man DNA fragments from our samples to 50 randomly selected
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samples from five commensal microbiome sites (stool, skin,
airway, gastrointestinal tract, urogenital tract; 10 samples of
each type) in the Human Microbiome Project (HMP) (Consortium
etal., 2012). We used MASH to perform a k-mer-based compar-
ison of our samples versus the selected HMP samples, which
showed a roughly uniform dissimilarity between MetaSUB sam-
ples and those from different human body sites (Figures 1E and
S1A). Samples taken from surfaces that were likely to have been
touched more often by human skin, such as doorknobs, buttons,
railings, and touchscreens, were indeed more similar to the hu-
man skin microbiomes than surfaces like bollards, windows,
and the floor. For example, doorknobs were significantly more
similar to skin than windows (t test, p < 2e-16).

We performed an analogous comparison to a set of 28 meta-
genomic soil samples (Bahram et al., 2018). Our samples were
more dissimilar from the soil samples (Figure 1F) than they
were to human skin microbiomes. This suggests that unclassi-
fied DNA in our samples may represent uncharacterized taxa
that are not known commensal or soil species.

We next estimated the fraction of sequences in our data that did
not resemble sequences in known reference databases. We took a
subset of 10,000 reads from each sample and aligned these reads
to four large-scale sequence databases using BLASTn (Altschul
et al., 1990). We identified reads that mapped at 80%, 90%, and
95% average nucleotide identity (ANI) (Figure 1G) to sequences
in the RefSeq reference database, NCBI's NT Environmental data-
base, a large set of Metagenome Assembled Genomes (MAGs)
from Pasolli et al. (2019), and MAGs from MetaSUB itself (see
widespread observation of biology not in reference databases).
At 80% ANI, the most permissive threshold, we observed that
34.6% of reads did not map to any database, while 47.3% of reads
did not map to any database except MAGs from MetaSUB itself.
This mirrors results seen by previous urban microbiome works (Af-
shinnekoo et al., 2015; Hsu et al., 2016). When we broke alignment
rates down by region, we found that samples from Europe had the
highest fraction of unaligned reads, followed by the Middle East,
while samples from Sub-Saharan Africa had the smallest fraction
of unaligned reads (Figure S1B).

Previous ecological studies have observed a decrease in taxo-
nomic diversity as the distance from the equator increases
(O’Hara et al., 2017). Our data recapitulated this result and iden-
tify a significant decrease in taxonomic diversity (though with sig-
nificant noise, p < 2e16, R2 = 0.06915) as a function of absolute
latitude; samples are estimated to lose 6.97 species for each de-
gree of latitude away from the equator (Figure S1C). While this is
an observation consistent with ecological theory, we note that
our samples are somewhat clustered in specific latitudes.
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Global diversity varies according to key covariates
Despite the core urban microbiome present in almost all sam-
ples, there was nonetheless a wide range of variation in taxon-
omy and localization across all the cities. To quantify this, we
calculated the Jaccard distance between samples based on
the presence and absence of all panmicrobiome species and
performed a dimensionality reduction of the data using UMAP
(uniform manifold approximation and projection, Mclnnes
etal., 2018) for visualization (Figure 2A). In principle, Jaccard dis-
tance could be influenced by read depth, where low abundance
species drop below the detection threshold. However, we
expect this issue to be minor as Jaccard distance of taxonomic
profiles correlated with k-mer-based distances (Figures S2A and
S2B) and because the total number of species identified stabi-
lized at roughly 100,000 reads (with no sharp quality drop-off;
Figures S2C and S2D) compared to an average of 6.01 million
reads per sample.

Since taxonomic profiles from North America and Europe were
distinct from those collected in East Asia (with smaller clusters
for other regions), we next examined variation as function of
functional classification, climate, surface type, and year of sam-
pling. Subclusters identified by UMAP of taxonomic profiles
roughly corresponded to climate but not surface type (Figures
S3A and S3B). Similar to taxonomy, dimensionality reduction
of functional metabolic profiles showed a geospatial difference
between regions (Figure S3C), indicating stratification of the
metagenomes at both the functional and genus/species levels.
These findings confirm and extend earlier analyses performed
on a fraction of the MetaSUB data, which were run as a part of
CAMDA Challenges (camda.info). To gauge the impact of time,
we also compared variation in matched sites from cities with
two consecutive years of sampling on the summer solstice
(June 21). While taxonomic change within a city between 2016
and 2017 was usually less than the difference between cities
(Figure S3D), this may become a more important factor over
longer time periods.

We next quantified the degree to which metadata covariates
influence the taxonomic composition of our samples using MAV-
RIC, a statistical tool to estimate the sources of variation in a
count-based dataset (Moskowitz and Greenleaf, 2018) accord-
ing to each samples’ metadata of city, population density,
average temperature in June, region, elevation above sea level,
surface type, surface material, elevation above or below ground,
and proximity to the coast. The most important factor (19% of
the variation) was the city from which a sample was taken, fol-
lowed by the world’s overall region (11%). The other four factors
accounted for 2% to 7% of the possible variation in taxonomy

Figure 1. The core microbiome

(A) Taxonomic tree showing 31 core taxa, annotated according to gram stain, ability to form biofilms, and whether the bacteria is a human commensal species.
(B) Distribution of species prevalence from all samples and normalized by cities. Vertical lines show defined group cutoffs.
(C) Prevalence and distribution of relative abundances of the 75 most abundant taxa. Mean relative abundance, standard deviation, and kurtosis of the abun-

dance distribution are shown.

(D) Rarefaction analysis showing the number of species detected in randomly chosen sets of samples.

(E) MASH (k-mer-based) similarity between MetaSUB samples and HMP skin microbiome samples by continent.
(F) MASH (k-mer based) similarity between MetaSUB samples and soil microbiome samples by continent.

(G) Fraction of reads aligned (via BLAST) to different databases at different average nucleotide identities.

See also Figure S1.
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Figure 2. Differences at global scale

(A) UMAP of taxonomic profiles based on Jaccard distance between samples. Colored by the region of origin for each sample. Axes are arbitrary and without

meaningful scale. The color key is shared with (B).

(B) Association of the first 25 principal components of sample taxonomy with climate, continent, and surface material.

(C) Distribution of ma1joOr phyla, sorted by hierarchical clustering of all samples and grouped by continent.

(D) Distribution of high-level groups of functional pathways, using the same order as taxa (C).

(E) Distribution of AMR genes by drug class (as defined in MegaRes), using the same order as taxa (C). Note that MLS is macrolide-lincosamide-streptogramin.

See also Figure S3.

(Table S2). We note that many of the factors were confounded
with one another, so they can explain less diversity than their
sum. Of note, the population density of the sampled city had
no significant effect on taxonomic variation.

Given this strong signal from each city, we performed a prin-
cipal component analysis (PCA) on our taxonomic data, normal-
ized by the proportion of identified principal components (PCs)
that were associated with a metadata covariate (positive or
negative). We hypothesized that some principle covariates,
such as climate, continent, and surface material, might be prom-
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inent factors driving the taxonomic composition of a given sam-
ple. We found that the two most prominent absolute PCs asso-
ciated strongly with the city climate (representing 28.0% and
15.7% of the variance of the original data, respectively), while
the continent and surface material associated less strongly (Fig-
ure 2B); the same trend held for the variation of AMR genes (Fig-
ures S3E-S3G) as well.

We tested if samples that were close together in cities were
more similar to one another. For pairs of samples taken in the
same city, the geographic distance between samples was
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crudely predictive of the Jensen-Shannon distance between
taxonomic profiles. Every increase of 1 km in distance between
two samples represented an increase of 0.056% in divergence
(p < 2e16, R2 = 0.01073; Figure S1D). To reduce potential bias
from samples taken from the same object, we excluded all pairs
of samples within 1 km of one another. This suggests a “neigh-
borhood effect” for sample similarity analogous to the effect
described by Meyer et al. (2018), albeit a very minor one.

At a global level, we examined the prevalence and abundance
of taxa and their functional profiles between cities and conti-
nents. These data showed that most samples contained species
from four phyla: Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria, but that the relative abundance of these phyla
varied (Figure 2C). Certain archetypes appear to be continental
to an extent; for example, the Middle East and Oceania are
showing a higher proportion of Firmicutes than other regions.
In contrast to taxonomic variation, functional pathways were
much more stable across continents, showing relatively slight
variation in the abundance of high-level categories (Figure 2D).
This pattern may also be due to the more limited range of
pathway classes and their essential role in cellular function, in
contrast to the much more wide-ranging taxonomic distributions
examined across metagenomes. Classes of antimicrobial resis-
tance were observed to vary by continent, as well as to occur in
groups of taxonomically similar samples (Figure 2E) but were
generally much sparser and more variable than the taxonomic
gradients. We compared the distribution of pairwise distances
between samples’ taxonomic profiles and their functional pro-
files (both equivalently normalized). Taxonomic profiles showed
a mean pairwise Jensen-Shannon divergence (JSD) of 0.61,
while pathways have a mean JSD of 0.099, which was signifi-
cantly different (Welch’s t test, unequal variances, p < 2e16).
This observation is consistent with data from the HMP, where
the metabolic function varied less than taxonomic composition
(Consortium et al., 2012; Lloyd-Price et al., 2017) within samples
from a given body site.

Microbial signatures reveal urban characteristics

To facilitate more straightforward mapping and comparison of
sequences, we created GeoDNA and MetaGraph (https://
metagraph.ethz.ch/search), a high-level web interface (Fig-
ure 3A) to search raw sequences against the MetaSUB dataset.
Users can submit sequences to be processed against a k-mer
graph-based representation of the MetaSUB data and other
sequence databases (e.g., SRA). Query sequences are mapped
to samples and collection metadata, and then a set of likely sam-
ple hits from around the world is returned to the user. This inter-
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face allows researchers to probe the diversity in this dataset and
rapidly identify related genetic sequences, as well as the discov-
ery of city-defining k-mers and sequences that might have
forensic implications.

To test this idea of a sample’s predictive capacity for mapping
to its city of origin, we trained a Random Forest classifier (RFC)
from the taxonomic profile of each metagenome. Specifically,
we trained an RFC with 100 estimators on 90% of the samples
in our dataset and evaluated its classification accuracy on the re-
maining 10%. We repeated this procedure with multiple sub-
samples of our data at various sizes (with five replicates per
size) to show how performance varied with the amount of input
data (Figure 3B). The RFC achieved 88% on held-out data, which
compares favorably to the 7.01% that would be achieved by a
randomized classifier. Of note, we obtained similar results
even with lower numbers of estimators (e.g., 10 estimators
showed an accuracy of 78.9%). These results from our RFC
demonstrate that city-specific taxonomic signatures and k-
mers can be predictive for a sample’s origin.

We next expanded our analysis of environmental taxonomic
signatures to the prediction of features in cities not present in
our training set, including population, surface material, elevation,
proximity to the coast, population density, region, average June
temperature, and Koppen climate classification. We trained an
RFC to predict each feature based on all samples that were
not taken from a given city, then used the relevant RFC to predict
the feature for samples from the held-out city and recorded the
classification accuracy (Figure 3D). While not all features and cit-
ies were equally predictable (in particular, features for several
British cities were roughly similar and could be predicted effec-
tively), in general, the predictions exceeded random chance by
a significant margin (Figure S4A). The successful geographic
classification of samples demonstrates distinct city-specific
trends in the detected taxa and city metadata that may enable
future forensic biogeographical capacities.

However, these city-specific taxa are not uniformly distributed
across the world (Figure 3B). To quantify this “metagenome
uniqueness” for each city, we developed a score to reflect how
endemic a given taxon is within a city, which reflects the forensic
usefulness of a taxon. We defined the endemicity score (ES) of a
taxa as term-frequency inverse document frequency, where the
“document” consists of samples from a group such as a city or
region. This score is designed to simultaneously reflect the
chance that a taxon would be useful to identify a given city. A
high ES for a taxon in a city could be evidence of an evolutionary
advantage in that city or neutral evolutionary drift, and the ES
alone does not distinguish between the two. The distribution of

Figure 3. Microbial signatures

(A) Schematic of GeoDNA representation generation. Raw sequences of individual samples for all cities are transformed into lists of unique k-mers (left). After
filtration, the k-mers are assembled into a graph index database. Each k-mer is then associated with its respective city label and other informative metadata, such
as geo-location and sampling information (top middle). Arbitrary input sequences (top right) can then be efficiently queried against the index, returning a ranked
list of matching paths in the graph together with metadata and a score indicating the percentage of k-mer identity (bottom right). The geo-information of each
sample is used to highlight the locations of samples that contain sequences identical or close to the queried sequence (middle right).

(B) Classification accuracy of a random forest model for assigning city labels to samples as a function of the size of the training set.

(C) Distribution of endemicity scores (term frequency inverse document frequency) for taxa in each region.

(D) Prediction accuracy of a random forest model for a given feature (rows) in samples from a city (columns) that were not present in the training set. Rows and
columns are sorted by average accuracy. Continuous features (e.g., population) were discretized.

See also Figure S4.
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ES shows a bimodal distribution for regions and cities (Fig-
ure 3C), with some outlier cities. Each region possesses a num-
ber of taxa with ES scores close to 1 and a slightly larger number
close to 0 (note, ES is not bounded in [0, 1]). Some cities, such as
Offa (Nigeria), host many taxa with high ES while others, such as
Zurich (Switzerland), host fewer. High ES could indicate
geographic sampling bias; however, some cities from well-
sampled continents (e.g., Lisbon, Hong Kong) host many
endemic species, suggesting that ES may indicate interchange-
ability and local niches of microbiome variation.

Antimicrobial resistance genes form distinct clusters
Quantification of antimicrobial diversity and AMRs are key com-
ponents of global antibiotic stewardship. Yet, predicting anti-
biotic resistance from genetic sequences alone is challenging,
and detection accuracy depends on the class of antibiotics
(i.e., some AMR genes are associated with main metabolic path-
ways, while others are uniquely used to metabolize antibiotics).
As a first step toward a global survey of antibiotic resistance in
urban environments, we mapped reads to known antibiotic
resistance genes, using the MegaRES ontology and alignment
software. We quantified their relative abundance using reads/
kilobase/million mapped reads (RPKM) for 20 classes of anti-
biotic resistance genes detected in our samples (Figures 4A
and 4B). 2,210 samples had some sequences aligning to an
AMR gene, but no consistent core set of AMR genes was iden-
tified. The most common classes of antibiotic resistance genes
were for macrolides, lincosamides, streptogamines (MLS), and
beta-lactams, yet the most common class of antibiotic resis-
tance genes, MLS, was found in only 56% of the samples where
AMR sequence was identified. We also quantified the likely
mechanisms of identified antibiotic resistance genes. The three
most prevalent resistance mechanisms are EF-Tu inhibition,
23S rRNA methyltransferases, and multi-drug efflux pumps.
However, none of these are found in more than 25% of samples
(abundance and prevalence of AMR mechanisms (Figures S5A
and S5B).

Indeed, antibiotic resistance genes were universally in low
abundance compared to functional genes, with RPKM values
for resistance classes typically ranging from 0.1 to 1 compared
to values of 10 to 100 for typical housekeeping genes (AMR clas-
ses contain many genes, so RPKM values may be lower than
they would be for individual genes). Despite the low abundance
of the genes themselves, some samples contained sequences
from hundreds of distinct AMR genes. Clusters of high AMR di-
versity were not evenly distributed across cities (Figure 4C).
Some cities had more resistance genes identified on average
(15-20x) than others (e.g., Bogota), while other cities had
bimodal distributions (e.g., San Francisco); some samples had
hundreds of genes, while others were very few. We note that
99% of the cases where we detected AMR genes showed an
average depth of 2.7 X, indicating that our overall global distribu-
tion would not dramatically change with altered read depth
(Figure S5E).

Since taxa could be used to classify a sample’s city of origin,
we next examined if AMR genes exhibited the same stratification.
Arandom forest model was trained (as above) to predict city clas-
sification based on the mapped antimicrobial resistance genes.

¢ CellP’ress

While this model achieved 37.6% accuracy on held out test
data (Figure S4B), showing that it is better than random chance
(7.0%), the AMR profile was much less accurate than the taxo-
nomic predictor (88.0%). Since AMR genes are more likely to
be mobile, this is not surprising and likely indicates that they
represent weaker (but possible) city-specific signatures.

Prior studies have shown that numerous AMR genes can be
carried on a single plasmid, and ecological competition may
cause multiple taxa in the same sample to develop antimicrobial
resistance, but little is known in urban environments. To examine
these phenomena, we identified clusters of AMR genes that co-
occurred in the same samples (Figure 4D). We measured the
Jaccard distance between all pairs of AMR genes found in at
least 1% of samples and performed agglomerative clustering
on the resulting distance matrix. We identified three large clus-
ters of genes and numerous smaller clusters. Of note, these clus-
ters often consist of genes from multiple classes of resistance,
and the large clusters contain far more genes than are typically
found on plasmids.

Next, we performed a rarefaction analysis on the set of all
resistance genes in the dataset, which we call the “panresis-
tome” (Figure S5D). Similar to the rate of detected species, the
panresistome also shows an open slope with an expected rate
of discovery of 1 new AMR gene per 10 samples. Given that
AMR gene databases are rapidly expanding, and that no AMR
genes were found in some samples, it is likely that future ana-
lyses will identify many more resistance genes in these data.
Additionally, AMR genes showed a “neighborhood” effect within
samples that are geographically proximal, analogous to the ef-
fect was seen for taxonomic composition (Figure S5C).
Excluding samples where no AMR genes were detected, the
Jaccard distance between sets of AMR genes increases with
distance for pairs of samples in the same city. As with taxonomic
composition, the overall effect is weak and noisy but nonetheless
significant.

Widespread observation of biology not in reference
databases

To examine these samples for large genetic elements, we
created metagenome-assembled genomes (MAGs) with meta-
SPAdes to look for viral, bacterial, and archaeal genomes and
for CRISPR arrays (see assembly methods). These MAGs
comprised 1,304 total high-quality genomes, of which 748 did
not match any known reference genome within 95% ANI.
1,302 of the genomes were classified as bacteria and 2 as
archaea. Bacterial genomes came predominantly from four
phyla: the Proteobacteria, Actinobacteria, Firmicutes, and Bac-
teroidota. Bacterial genomes that did not match any reference
were evenly spread across these phyla (Figure 5A), and assem-
bled bacterial genomes were often identified in multiple samples.
Several of the most prevalent bacterial genomes were species
with no known reference genome with >95% average nucleotide
identity (Figure 5B).

Some assembled genomes showed regional specificity, while
others were globally distributed. Overall, the taxonomic compo-
sition of identifiable genomes roughly matched the composition
of the core urban microbiome (see a core urban microbiome cen-
ters global diversity), with the number of identified bacterial

Cell 184, 3376-3393, June 24, 2021 3385




¢? CellPress

OPEN ACCESS

>
Prevalence

o

10

0.1

RPKM, Excluding Zeros

0.001

MLS

betalactams

Multi-drug resistance

Aminoglycosides
Rifampin
Sulfonamides
Tetracyclines

MLS
Betalactams

Unknown
Tetracyclines

Phenicol

Fluoroquinolones
Trimethoprim

Aminocoumarins

AMR Class

Fluoroquinolones |

Aminocoumarins |
Lipopeptides
Bacitracin

rimethoprim
Sulfonamides
Phenicol

Figure 4. Antimicrobial resistance genes
(A) Prevalence of AMR genes with resistance to particular drug classes.
(B) Abundance of AMR gene classes when detected, by drug class.
(C) Number of detected AMR genes by city.
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See also Figure S5.
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match known reference genomes. Bacterial MAGs were roughly
evenly distributed geographically, with the notable exception of
Offa, Nigeria, which had dramatically more bacterial species
than other cities that did not match references.

MAGs somewhat related to read depth (hnumber of reads corre-
lated with the number of OTUs in sample with R =0.4, p < 2e 16
Pearson’s correlation), indicating additional sampling and
sequencing will continue to discover more MAGs that do not
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We then examined the assembled contigs for viruses using
Joint Genome Institute’s (JGI’s) uncultivated viral genomes
(UViGs) mapping method (Paez-Espino et al., 2019). This anal-
ysis revealed a set of 16,584 total UViGs. Taxonomic analysis
of the predicted UViGS vyielded 2,009 viral clusters, containing
a total of 6,979 UViGs and 9,605 singleton UViGs for a total of
11,614 predicted viral species. Predicted viral species from sam-
ples collected within 10, 100, and 1,000 km of one another were
agglomerated to examine their planetary distribution at different
scales (Figure 5B). At any scale, most viral clusters appear to be
weakly cosmopolitan; the majority of their members are found at
or near one location, with a few exceptions.

We compared the MAG-derived viruses to known viral se-
quences in the Integrated Microbial Genome and Viral database
(IMG/VR) at JGI, which contains viral genomes from isolates, a
curated set of prophages, and 730,000 viral MAGs from other
studies. Of the 11,614 species discovered in the MetaSUB
MAGs, 94.1% did not match any viral sequence in IMG/VR
(Paez-Espino et al., 2019) at the species level for a total of
10,928 viruses that did not match known species. We note that
this number was obtained using a conservative pipeline
(99.6% precision) and corresponded well with our identified
CRISPR arrays (below). This suggests that urban microbiomes
contain a large, untapped amount of viral diversity not previously
observed in other environments.

Next, we attempted to identify possible bacterial and eu-
karyotic hosts for our predicted viral MAGs. For the 686 spe-
cies with similar sequences in IMG/VR, we projected known
host information onto 2,064 MetaSUB viral MAGs. Additionally,
we used CRISPR-Cas spacer matches in the Integrated Mi-
crobial Genomes and Microbiomes (IMG/M) system to assign
possible hosts to a further 1,915 predicted viral species.
Finally, we used a database of 20 million metagenome-derived
CRISPR spacers to provide further rough taxonomic assign-
ments. Our predicted viral hosts aligned with our taxonomic
profiles; 41% of species in the core microbiome (see a core
urban microbiome centers global diversity) had predicted
viral-host interactions. Many of our viral MAGs were found in
multiple locations (Figure 5D). Many viruses were found in
South America, North America, and Africa, and viral MAGs
in Japan often corresponded to those in Europe and North
America.

From these MAGs, we identified 838,532 CRISPR arrays, of
which 3,245 could be annotated for specific CRISPR systems.
The annotated CRISPR arrays were mostly type 1-E and 1-F,
but a number of type Il and lll systems were identified as
well (Figures 5E and 5F), and some arrays had unclear (ambig-
uous) type assignment. Critically, when we aligned spacers to
both our viral MAGs and all viral sequences in RefSeq, the
spacers in our identified CRISPR arrays closely matched our
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predicted MAG-derived viruses. Moreover, while the total frac-
tion of spacers that could be mapped to our virus-containing
MAGS and RefSeq was similar (32.2% to our data versus
36.8% for RefSeq), the mapping rate to our viral MAGs
dramatically exceeded the mapping rate to RefSeq (Figure 5C),
which provides additional evidence supporting the veracity of
urban viruses.

DISCUSSION

MetaSUB is a global network of scientists and clinicians devel-
oping knowledge of urban microbiomes by studying mass transit
systems, the built environment, and hospitals. We collected and
sequenced 4,728 samples from 60 cities worldwide (Table 1; Ta-
ble S1), constituting the first large-scale metagenomic study of
the urban metagenome. We conclude that there is a consistent
urban microbiome core (Figures 1 and 2), which is supplemented
by geographic variation (Figure 2) and microbial signatures
based on the specific attributes of a city (Figure 3). Our data
also show that taxa remain to be discovered in these and future
data (Figure 5), environmental factors (e.g., climate) significantly
affect the microbial variation, and sequences associated with
AMR genes are globally widespread but not necessarily abun-
dant (Figure 4). In addition to these results, we present several
ways to access and analyze our data including interactive
web-based visualizations, search tools over raw sequence
data, and high-level interfaces to computationally access
results.

Together, these data suggest that urban microbiomes should
be treated as ecologically distinct from both surrounding soil mi-
crobiomes and human commensal microbiomes. Though these
microbiomes undoubtedly interact, they nonetheless represent
distinct ecological niches with different genetic profiles. While
our metadata covariates were associated with the principal vari-
ation in our samples, they do not explain a large proportion of the
observed variance. It remains to be determined whether the vari-
ation is essentially a stochastic process or if a deeper analysis of
our covariates proves more fruitful. In particular, analysis of cit-
ies’ greenspace, tourism, and waste management systems
may be fruitful to explain variation; a study by Reese et al.,
(2016) found that urban stress could impact microbial composi-
tion. We have observed that less important PCs (roughly PCs 10—
100) are generally less associated with metadata covariates but
that PCs 1-3 do not adequately describe the data alone. Thisis a
pattern that was observed in the human microbiome project as
well, where minor PCs (such as our Figure 2B) were required to
separate samples from closely related body sites.

Much of the urban microbiome likely represents previously un-
observed diversity, as our samples contain a significant propor-
tion of unclassified DNA. This finding is comparable to many

Figure 5. Newly observed genetic sequences

(A) Taxonomic tree for metagenome-assembled genomes (MAGs) found in the MetaSUB data. The outer black and white ring indicate if the MAG matches a

known species, and the inner ring indicates phyla of the MAG.

(B) Top: the number of samples where the most prevalent MAGs were found. Bottom: the regional breakdown of samples where the MAG was found.
(C) Mapping rate of CRISPR spacers from MetaSUB data to viral genomes in RefSeq and viral genomes found in MetaSUB data.

(D) Geographic distribution of viral genomes found in MetaSUB data.

(E and F) Fractional breakdowns of identifiable CRISPR systems found in the MetaSUB data.
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other metagenomic and microbiome studies including other
work is done in subway environments (Afshinnekoo et al.,
2015; Hsu et al., 2016), airborne microbiomes (Yooseph et al.,
2013), work done by the Earth Microbiome Project (Thompson
et al.,, 2017), and others. As noted in Figure 1, more sensitive
alignment methodology only marginally increases the proportion
of classified DNA. We consider the DNA that would not be clas-
sified by a sensitive technique to be truly unclassified DNA and
postulate that it may derive from genes or species not in refer-
ence databases. Given that our samples did not closely
resemble human commensal microbiomes or soil samples, it is
possible this represents DNA sequences specific to the urban
environment.

The fraction of predicted viral sequences that belonged to pre-
viously unobserved taxa was particularly high in our study
(94.1%); however, taxonomic associations of these viruses to
observed microbial hosts and associations with novel CRISPR
sequences suggest these results are not spurious. The discovery
of more taxa not in reference databases may help to reduce the
large fraction of DNA that cannot currently be classified. Our data
do not support the presence of any viruses in the core micro-
biome. However, this cannot be excluded and should be thor-
oughly addressed in the future with more in-depth sequencing,
sampling/extraction techniques, or long-read technologies.

Many of the identified taxa are frequently implicated as infec-
tious agents in a clinical setting including specific Staphylo-
coccus, Streptococcus, Corynebacterium, Klebsiella, and
Enterobacter species. However, there is no indication that the
species identified in the urban environments are pathogenic,
and further in-depth studies are necessary to determine the clin-
ical impact of urban microbiomes. This includes microbial cul-
ture studies, explicitly searching for virulence factors and per-
forming strain-level characterization to determine biological
functions carried by specific populations. Seasonal variation
also remains open to study as the majority of the samples
collected here were from two global city sampling days (June
21, 2016, and June 21, 2017). Further studies, some generating
novel data, will need to explore whether the core microbiome
shifts over the course of the year, with a particular interest in
the role of the microbiome in flu transmission (Caliz et al.,
2018; Korownyk et al., 2018).

The coronavirus disease 2019 crisis has thrown the need for
broad microbial surveillance into sharp relief. Microbial genetic
mapping of urban environments will give public health officials
tools to assess risk, map outbreaks, and genetically characterize
problematic species. This study identifies a large number of vi-
ruses in the environment as well as antimicrobial resistance
genes in bacteria, but they are only DNA based. Future shotgun
RNA studies (metatranscriptomics) and targeted RNA viral
studies that build on top of this infrastructure represent an impor-
tant starting point for tracking and potentially mitigating future
epidemics.

As metagenomics and next-generation sequencing becomes
more and more available for clinical (Wilson et al., 2019) and
municipal use (Hendriksen et al., 2019), it is essential to contex-
tualize the AMR markers or presence of species and strains
within a global and longitudinal context. We observed that the
microbial profile of cities can slightly shift year to year and that
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this may become a more pronounced effect over longer time
frames. The most common AMR genes were found for two clas-
ses of antibiotics: MLS and beta-lactams. Both of these are crit-
ical groups of antibiotics used to treat upper respiratory, skin,
soft tissue, and sexually transmitted infections and a wide array
of other infections. Antimicrobial resistance genes are thought to
spread from a variety of sources including hospitals, agriculture,
and water (Bougnom and Piddock, 2017; Klein et al., 2018). The
antimicrobial classes particularly impacted by resistance include
beta-lactams, glycopeptides, and fluoroquinolones (Rice, 2012),
all of which we found antimicrobial resistance genes across our
samples.

We found that there was an uneven distribution of AMR genes
across cities and that fewer AMR genes were identified in sam-
ples from Oceania and the Middle East. This could be the result
of different levels of antibiotic use, differences in the urban geog-
raphy between cities, or reflect the background microbiome in
different places in the world. Techniques to estimate antibiotic
resistance from sequencing data remain an area of intense
research as certain classes of AMR gene (i.e., fluoroquinolones)
are sensitive to small mutations, and methodological improve-
ments may refine our results. A companion study to this paper
by Chng et al. (2020) has examined the spread of AMRs in hos-
pital settings. Further research is needed to explore AMR genes
fully in the urban environment, especially in medical environ-
ments, including cultural studies that directly measure the
phenotype of resistance.

In summary, this study presents the first genetic atlas of urban
and mass-transit metagenomics from across the world. By facil-
itating large-scale epidemiological comparisons, it is a first crit-
ical step toward quantifying the distribution, types, and dy-
namics of environmental microbiomes, providing requisite data
for tracking changes in ecology or virulence. As more datasets
emerge from rural and suburban areas with livestock and farms,
sewage from cities (Fresia et al., 2019; Joseph et al., 2019), and
other public sources of AMR genes, a new international AMR
mapping paradigm is possible. Ideally, these data are compo-
nents of a global sentinel monitoring network of sequencers
that tracks AMR and other microbial changes (Singer et al.,
2016; Thanner et al., 2016), which can also help with clinical
interpretation and risk stratification (Afshinnekoo et al., 2017;
Gardy and Loman, 2018; Ladner et al., 2019). Indeed, a continu-
ally updated, global microbial genetic atlas has the potential to
aid physicians, public health departments, government officials,
and scientists in tracing, diagnosing, and predicting epidemio-
logical risks and trends. This, in turn, enables data-driven policy
and medical decisions in cities around the world, with the
sequencing data simultaneously providing a constant fountain
of discovery for new microbial biology.

Limitations of the study

There are three key limitations to this study. First, this study
exclusively measured DNA, meaning RNA viruses would be
excluded, as would evidence of transcriptional activity from Bac-
teria and Archaea. Second, this study is unable to identify a large
proportion of DNA collected. This is at least partly due to the
highly novel nature of urban microbiomes, and as more data
are generated, this proportion could be improved. Third, AMR
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genes are often difficult to distinguish from similar genes that do
not confer resistance (though we have removed genes that
require SNP-level verification), so our results likely have a degree
of noise.
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Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
e METHOD DETAILS
O Sample Collection and Preparation
DNA Extraction, Library Preparation, and Sequencing
Quality Control
Computational analysis of sequencing data
Identifying Bacteria and Archaea
GeoDNA Sequence Search
® QUANTIFICATION AND STATISTICAL ANALYSIS
o ADDITIONAL RESOURCES
Interactive visualizations and maps
BLAST-like sequence search tool
Raw and Analyzed Data Files
Collated Metadata
Jupyter notebooks used to generate the figures and
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and virus strains

ZymoBiOMICS Microbial Community standard Zymo Research Catalog #D6300
ZymoBIOMICS Microbial Community DNA Standard Zymo Research Catalog #D6305
Biological samples

Environmental samples from urban and built-in Participating Consortium N/A

structures members

Critical commercial assays

QIAGEN QIAseq FX DNA Library Kit QIAGEN ID: 180475
Promega DNA extraction Maxwell kit Blood Promega AS1400
Promega DNA extraction Maxwell kit Buccal Swab Promega AS1640

Zymo DNA/RNA shield Zymo Research R1100-250
MoBio PowerSoilR©DNA Isolation Kit MoBIO Cat.:12888-100
Agencourt AMPure XP Beckmann Coulter Cat.:A63881
Qubit® dsDNA HS Assay Thermofisher Q32854
QuantiFluor® ONE dsDNA System Promega E4871

Nextera Flex (Now known as lllumina DNA Prep) lllumina 20018705
Nextera DNA CD Indexes lllumina 20018708
Deposited data

NCBI/RefSeq Microbial ca. March 2017 NCBI https://www.ncbi.nlm.nih.gov/refseq/
Hg38 with Alternate Contigs UCLA https://hgdownload.cse.ucsc.edu/goldenPath/hg38

Human Microbiome Project

Microbe Directory

UniRef90

Integrated Gut Genomes v1.0
Genome Taxonomy Database
MetaSUB Sequencing Data

Human Microbiome Project
Consortium, 2012

Shaaban et al., 2018
Suzek et al., 2007
Nayfach et al., 2019
Parks et al., 2018
This paper

https://www.hmpdacc.org/hmp/resources/
download.php

https://microbe.directory
https://www.uniprot.org/downloads
https://github.com/snayfach/IGGdb
https://gtdb.ecogenomic.org/downloads
https://pngb.io/metasub-2021

Software and algorithms

AdapterRemoval v2.17
Bowtie2 v2.3.0

BLASTn

KrakenUniq v0.3.2
MASH v2.1.1
HUMANN2
DIAMOND v0.8.36
metaSPAdes v3.8.1
MegaRes v1.0.1
MetaBAT2 v2.12.1
CheckM v1.0.13
dnadiff v1.3
GTDB-Tk v1.0.2
FastTree v2.1.10
iTOL v5.5
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Schubert et al., 2016

Langmead and Salzberg,
2013

Altschul et al., 1990

Breitwieser et al., 2018
Ondov et al., 2016
Franzosa et al., 2018
Buchfink et al., 2015
Nurk et al., 2017

Lakin et al., 2017
Kang et al., 2019
Parks et al., 2015
Kurtz et al. 2004
Chaumeil et al., 2019
Price et al., 2010
Letunic and Bork 2019

https://github.com/mikkelschubert/adapterremoval

https://sourceforge.net/projects/bowtie-bio/files/
bowtie2/2.3.0/

https://ftp.ncbi.nim.nih.gov/blast/executables/
blast+/LATEST/

https://github.com/fbreitwieser/krakenuniq
https://github.com/marbl/Mash
https://pypi.org/project/humann2/
https://github.com/bbuchfink/diamond
https://github.com/ablab/spades/releases/tag/v3.8.1
https://megares.meglab.org/download/index.php
https://anaconda.org/ursky/metabat2
https://github.com/Ecogenomics/CheckM
https://github.com/mummer4/mummer
https://github.com/jianshu93/GTDB_Tk
https://anaconda.org/bioconda/fasttree
https://itol.embl.de/
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REAGENT or RESOURCE SOURCE IDENTIFIER

CRISPRCasFinder Couvin et al., 2018 https://github.com/dcouvin/CRISPRCasFinder
SciPy Virtanen et al., 2020 https://www.scipy.org/

dendextend v1.12.0 Galili 2015 https://github.com/cran/dendextend
MUMmer v3.23 Kurtz et al., 2004 https://github.com/mummer4/mummer

ResistomeAnalyzer (commit 15a52dd)
MetaSUB Core Analysis Pipeline

Lakin et al., 2017
Danko and Mason 2020

https://github.com/cdeanj/resistomeanalyzer
https://github.com/MetaSUB/CAP2

CAPalyzer Danko and Mason 2020 https://github.com/dcdanko/capalyzer
Figure Generation Code This paper https://github.com/MetaSUB/main_paper_figures
Other

Copan Liquid Amies Elution Swab
Isohelix Swabs
2D Thermo Scientific Matrix

Copan Diagnostic
Isohelix
Thermo Scientific

Cat.:480C
Cat.:MS-02
3741-WP1D-BR

ZR BashingBead Lysis Tubes (0.1 & 0.5 mm) Zymo Research Cat# S6012-50

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Christopher Mason
(chm2042@med.cornell.edu).

Materials availability
This study did not generate any new materials.

Data and code availability

Materials, Methods, and Open-Source Code

To make our study fully reproducible, we released an open-source version-controlled pipeline called the MetaSUB Core Analysis
Pipeline (CAP) (Danko and Mason, 2020). This pipeline includes all steps from extracting data from raw sequence FASTQ files to pro-
ducing refined results like taxonomic and functional profiles. Every tool in the CAP is open source with a permissive license. The CAP
is available as a docker container for easier installation in some instances, and all databases used in the CAP are available for public
download. The CAP is versioned and includes all necessary databases, allowing researchers to replicate results and figures.

The MetaSUB dataset and CAP are built and organized for full accessibility to other researchers. This is consistent with the concept
of Open Science. Specifically, we built our study with the FAIR principles in mind: Findable, Accessible, Interoperable, and Reusable.
To make our results more reproducible and accessible, we have developed a program to merge the CAP’s output into a condensed
data-packet. This data packet contains results as a series of Tidy-style data tables with descriptions. The advantage of this set-up is
that result tables for an entire dataset can be parsed with a single command in most high level analysis languages like Python and R.
This package also contains Python utilities for parsing and analyzing data packets which streamline most of the boilerplate tasks of
data analysis. All development of the CAP and data packet builder (Capalyzer) package is open source and permissively licensed.

In addition to general-purpose data analysis tools, essentially all analysis in this paper is available as a series of Jupyter notebooks.
These notebooks allow researchers to reproduce our results, build upon our results in different contexts, and better understand pre-
cisely how we arrived at our conclusions. By providing the exact source used to generate our analyses and figures, users can quickly
incorporate new data or correct any bugs.

For less technical purposes, we also provide web-based interactive visualizations of our dataset (typically broken into city-specific
groups). These visualizations are intended to provide a quick reference for major results as well as an exploratory platform for gener-
ating novel hypotheses and serendipitous discovery. The web platform used, MetaGenScope, is open source, permissively licensed,
and can be run on a moderately powerful machine (though its output relies on results from the MetaSUB CAP).

Our hope is that by making our dataset open and easily accessible to other researchers the scientific community can more rapidly
generate and test hypotheses. One of the core goals of the MetaSUB consortium is to build a dataset that benefits public health. As
the project develops, we want to make our data easy to use and access for clinicians and public health officials who may not have
computational or microbiological expertise. We intend to continue to build tooling that supports these goals.

CAMDA
Since 2017, MetaSUB has partnered with the Critical Assessment of Massive Data Analysis (CAMDA) camda.info, a whole confer-
ence track at the Intelligent Systems for Molecular Biology (ISMB) Conference. At this venue, a subset of the MetaSUB data was
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released to the CAMDA community in the form of an annual challenge addressing the issue of geographically locating samples: ‘The
MetaSUB Inter-City Challenge’ in 2017 and ‘The MetaSUB Forensics Challenge’ in 2018 and 2019. In the latter challenge the
MetaSUB data has been complemented by data from EMP (Thompson et al., 2017) and other studies (Delgado-Baquerizo et al.,
2018; Hsu et al., 2016). This Open Science approach of CAMDA has generated multiple interesting results and concepts relating
to urban microbiomics, resulting in several publications https://biologydirect.biomedcentral.com/articles/collections/camdaproc
as well as perspective manuscript about moving toward metagenomics in the intelligence community (Mason-Buck et al., 2020).
The partnership is continued in 2020 with ‘The Metagenomic Geolocation Challenge’ where the MetaSUB data has been comple-
mented by the climate/weather data in order to construct multi-source microbiome fingerprints and predict the originating ecological
niche of the sample.

Accessions and Data Access

All data from this study including data tables that resulted from analyses may be found at https://pngb.io/metasub-2021. Additionally,
raw sequencing reads are uploaded to the SRA and may be found under the accession SRA ID: PRUNA732392.

METHOD DETAILS

Sample Collection and Preparation

To obtain a comprehensive picture of microbial communities within a sample, it is essential to choose a sampling method which ab-
sorbs and preserves biological materials during sampling, transport and storage until DNA extraction. The effectiveness of a swab
may be influenced by a number of factors, most importantly the material of the swab tip which can affect the rate at which bacteria are
collected during the sampling process. Furthermore, the design of the transport tube as well as the DNA preserving liquids can affect
the integrity of the material during transport. Finally, the amount of background contamination identified for different products should
be taken into account.

Sampling Materials

Surface samples were collected and preserved using a flocked swab with a storage tube containing a buffer that is optimized for DNA
preservation. Two different sets of materials were used for collection in 2016 and 2017.

In the first method of sample collection used a Copan Liquid Amies Elution Swab (ESwab, Copan Diagnostics, Cat.: 480C) paired
with a 1mL of Liquid Amies in a plastic, screw cap tube, hereafter referred to as a ‘Copan swab’. The Amies transport medium main-
tains the sample at pH 7.0 0.5 and contains sodium thioglycolate as well as calcium, magnesium, sodium, and potassium salts to
control the permeability of bacterial cells. Once the surface was sampled, the swab was immediately placed into the collection
tube and stored in a —80C freezer once returned to the laboratory.

The second method used an individually wrapped Isohelix Buccal Mini Swab (MS Mini DNA/RNA Swab, Isohelix, Cat.: MS-02)
paired with a barcoded storage tubes (2D Matrix V-Bottom ScrewTop Tubes, Thermo Scientific, Cat.: 3741-WP1D-BR/1.0mL), here-
after referred to as ‘matrix tubes’, prefilled with 400l of a transport and storage medium suitable for both DNA and RNA (DNA/RNA
Shield, Zymo Research, Cat.: R1100), hereafter referred to as ’Zymo Shield’. Once the surface was sampled, the swab was imme-
diately placed into a matrix tube containing Zymo Shield and stored in a —80C freezer until DNA extraction.

We assessed the absorption strength of both the Copan and Isohelix swabs for various biological and surface materials encoun-
tered when sampling metro stations. A single surface was selected for a designated sampling area to test the absorption strength.
Both swabs were moistened by submerging the swab for a few seconds in their preservative media. The area was then swabbed for
3 min, covering the selected surface. By moistening the swab prior to sampling, the swab matrix would take up more microflora
already saturated with the transport medium.

Sampling Protocol

A standard operating procedure (SOP) was developed for the sample collection to be followed by all members of the MetaSUB con-
sortium participating in CSD, and adapted from earlier work by Afshinnekoo et al. (2015). The aim was to standardize as much of the
sampling procedure in order to ensure high quality control across the various cities and sampling teams. Thus, it was recommended
that teams collect samples from high contact surfaces found in most metro and transit stations and systems around the world,
including ticket kiosks, turnstiles, railings, and seats or benches. Some cities had to adapt the sampling approach to better reflect
their city. For example, in cases where a city did not have a subway system, the most common form of public transit was studied
instead. While variation in the types of surfaces being sampled were allowed, modifications to the sampling procedure itself were
not. Moreover, a number of metadata were recorded for each sample during the process of collection to ensure as much contextual
information as possible was captured. Each city developed their own sampling and submitted them for review before sampling kits
were sent to them in order to ensure consistency across the various sites.

All principal investigators and MetaSUB city leaders were trained in the sampling protocol and this training was further dissemi-
nated to the respective sampling teams to ensure consistent and quality control sampling. Each participant was instructed to don
disposable latex or nitrile gloves prior to sample collection. The swab was dipped in the preservative medium for approximately
2 s before the swab was firmly dragged across the surface, using both sides and using different angles, for a total of 3 min to ensure
highest yield. Any other important notes or observations could be added to the metadata for each sample.

A sampling protocol video overview is included in the Supplemental information.
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Process Controls

To assess the quality of our sampling procedure, we created multiple controlled scenarios. As a positive laboratory control, a Copan
swab was introduced into a sterile urine cup with 30yl of a well-defined, accurately characterized microbial reference sample (Zymo-
BIOMICS Microbial Community Standard, Zymo Research, Cat.: D6300). A negative control was made by adding 50ul of the final
resuspension buffer from the DNA isolation step into a sterile urine cup before introducing a Copan swab. Furthermore, a laboratory
workbench was swabbed using our sampling procedure both before and after it was cleaned with a 10% bleach solution. To detect
background contamination due to biological material in the air in sample areas, a dampened Copan swab was held in the air for
approximately 3 min. Finally, to ensure there was no contamination could be due to the consumables we procured prior to sampling,
we also swabbed, in triplicate, the interior of a flow hood that had been sterilized with 10% bleach before wiping down with ethanol
and irradiating with ultraviolet light.

Metadata Collection and Aggregation

Metadata from individual cities was collected from a standardized form and set of data fields. The principal fields collected were the
location of sampling, the material of the object being sampled, the type of object being sampled, the elevation above or below sea
level, and the station or line where the sample was collected. However, several cities were unable to use the provided software appli-
cation for various reasons, and instead submitted their metadata as separate spreadsheets that could be added to the data repos-
itory. Additionally, certain metadata features, such as those related to sequencing and quality control, were added after initial sample
collection. To collate various metadata sources, we built a publicly available repository on Pangea (https://pngb.io/metasub-2021)
which assembled a large master spreadsheet with consistent sample universally unique identifiers (UUID). After assembling the orig-
inally collected data attributes we added normalized attributes based on the original metadata to account for surface material, control
status, and features of individual cities. A full description of ontologies used is provided as part of the collating program.

DNA Extraction, Library Preparation, and Sequencing

Samples stored at —80C were allowed to thaw to room temperature before performing a DNA extraction suitable to the transport and
preservation medium used with the Copan swabs and Isohelix swabs in 2016 and 2017, respectively. Initially, Copan swabs in liquid
Amies were processed using the PowerSoil DNA Isolation Kit (MoBio, Cat.: 12888-100), while Isohelix swabs were processed using
the ZymoBIOMICS 96 MagBead DNA Kit (Zymo Research, Cat.: D4308). Additional automation of sample processing for nucleic acid
extraction using the Maxwell RSC Instrument (Promega, Cat.: AS4500) began in 2017 using the Maxwell RSC Buccal Swab Kit (Prom-
ega, Cat.: AS1640).

DNA Extraction from Copan Swabs

After spinning down the tubes containing the Copan swab in Amies at 300rpm for 1 min, the swab pad was transferred to a MoBio
PowerBead Tube containing beads using sterile scissors, which we sterilized with 70% ethanol before passing them through a flame.
The remaining 400-500ul of Amies solution was transferred into an Eppendorf tube and centrifuged at high speed to collect bacteria
and debiris into a pellet. Once resuspended into a small volume of Amies, the pellet was transferred to the same MoBio PowerBead
Tube as its corresponding Copan swab. The MoBio PowerSoil DNA Isolation Kit was used according to manufacturer’s instructions
with the exception of the following modifications: both the swab and corresponding pellet were resuspended in 135ul of the C1
buffer. Sample homogenization was performed using either the TissueLyser Il (QIAGEN, Cat.: 85300) with 2 cycles of 3 min at
30Hz (https://bit.ly/3ub9tap) or using a Vortex-Genie 2 adaptor for 1.5 to 2mL tubes (Vortex Adaptor for 24 tubes, QIAGEN, Cat.:
13000-V1-24) at maximum speed for 10 min. The sequencing centers in Stockholm and Shanghai used different procedures for ho-
mogenization. Stockholm used a method based on MPI FASTPREP, while Shanghai added 0.6 g of 100-micron zirconium-silica
beads to 2ml tubes containing the swab pad and the media, followed by bead beating for 1 min. Following the MoBio protocol,
the eluted samples were additionally purified by introducing 1.8X of Agencourt AMPure XPmagnetic beads (Beckman Coulter,
Cat.:A63881), allowed to incubate at 25C for 15 min, and then placed on an Invitrogen magnetic separation rack (MagnaRack) for
5 min. A wash step using 700ul of 80% ethanol was added the samples while they remained on the MagnaRack before allowing
the samples to dry. The resulting purified samples were eluted into 12ul - 50ul of buffer. Subsequently, DNA was quantified using
a Qubit 2.0 fluorometer and (dsDNA HS Assay Kit, Invitrogen, Cat.: Q32854).

DNA Extraction from Isohelix Swabs

The entire 400ul volume of Zymo Shield, along with the Isohelix swab head, were transferred into a new tube containing a 0.6mL dry
volume of 0.5mm and 0.1mm lysis matrix (BashingBead Lysis Tubes, Zymo Research, Cat.: S6012-50), as well as an additional vol-
ume of 600ul of Zymo Shield. Mechanical lysis using bead beating was performed on 18 samples at a time using a Vortex-Genie 2
adaptor at maximum power for 40 min. A 400ul volume of the resulting lysate in each tube was transferred into a separate well of a
deep-well storage plate (Nunc 96-Well Polypropylene DeepWell Storage Plate, Thermo Scientific, Cat.: 278743). High-throughput
DNA extraction was carried out on an automated liquid handling platform (Microlab STAR Liquid Handling System, Hamilton,
Cat.: Microlab STAR) using the ZymoBIOMICS 96 MagBead DNA Kit (Zymo Research, Cat.: D4308) on the Hamilton Star according
to the manufacturer’s instructions. Purified samples were eluted into 50ul ZymoBIOMICS DNase/RNase Free Water.

DNA Extraction Using an Automated Platform

The Maxwell RSC was used as a high throughput means of processing samples that used either the Copan or Isohelix swab collection
method. To process the Copan swab samples, 300ul of Promega Maxwell Lysis buffer and 30ul of Promega Maxwell Proteinase K
was added to each collection tube, then allowed to incubate in a water bath at 54C for 20 min. Following lysis, Copan swab heads
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were cut off their stem using sterile scissors and transferred into a filter tube (ClickFit Microtube, Promega, Cat.: V4745). The filter
containing the swab was placed into a 2ml Eppendorf tube and spun down at full speed for 2min. This step is necessary since
the Copan swab material consists of a foam, which harbors the main liquid containing the extracted DNA. Next, the eluate was com-
bined with the corresponding sample tube media and added to a well of the Maxprep cartridge (Maxwell RSC Buccal Swab Kit,
Promega, Cat.: AS1640). Cartridges were processed using the Maxwell RSC Instrument following the manufacturer’s default instruc-
tions. Extracted DNA was eluted in 50ul Promega Elution Buffer and stored at —80C.

To process the Isohelix swabs, 300ul of Promega Maxwell Lysis buffer was added to each matrix tube before vortexing at full speed
for 1 min. The Isohelix swab head material is non-porous, which allows for easy collection of the lysate. The total lysate from each
matrix tube was moved to the added to a well of the Maxprep cartridge using a 3cc syringe syringe (Blunt fill needle with Luer-Lok tip
18-G x 1 1/2-in 3-mL syringe, BD, Cat.: 305060). The Maxwell RSC Instrument was run using the ‘Blood’ program according to man-
ufacturer’s instructions. Samples were subsequently eluted in 50ul Promega Elution Buffer and stored at —80C.

Library Preparation and Sequencing

Following DNA extraction, library preparation for lllumina NGS platforms was performed at HudsonAlpha Genome Center using the
QIAGEN Gene Reader DNA Library Prep Kit | (QIAGEN, Cat.: 180435) as was previously described in Afshinnekoo et al. (2015). Briefly,
this involved fragmenting with an LE Series Covaris sonicator (Woburn, MA) with a targeted average size of 500nt, a bead clean-up
step to remove fragments under 200nt, A-tailing, adaptor ligation, PCR amplification, bead-based library size selection, and a final
clean-up step. A BioAnalyzer 2100 (Agilent, Cat.: G2939BA) was used to ensure libraries fell within a range of 450-650bp. Pilot sam-
ples collected in Barcelona and Stockholm were prepared using the QIAGEN QIAseq FX DNA Library Kit. The resulting libraries were
sequenced on an lllumina HiSeq X Ten System (lllumina Inc., San Diego, CA) at HudsonAlpha Genome Center (Huntsville, Alabama)
using HiSeq X Reagent Kits according to the manufacturer’s instructions (https://www.illumina.com).

Quality Control

Evaluation of sequence quality

We measured sequencing quality based on 5 metrics: number of reads obtained from a sample, GC content, Shannon’s entropy of k-
mers, post PCR Qubit score, and recorded DNA concentration before PCR. The number of reads in each sample was counted both
before and after quality control, we used the number of reads after quality control for our results though the difference was slight. GC
content was estimated from 100,000 reads in each sample after low quality DNA and human reads had been removed. Shannon’s
entropy of k-mers was estimated from 10,000 reads taken from each samples. PCR Qubit score and DNA concentration are
described in the wet lab methods.

We observed good separation of negative and positive controls based on both PCR Qubit and k-mer entropy. Distributions of DNA
concentration and the number of reads were as expected (Figure S2G, H, I). GC content was broadly distributed for negative controls
while positive controls were tightly clustered, expected since positive controls have a consistent taxonomic profile. Comparing the
number of reads before and after quality control did not reveal any major outliers.

Identification of potential batch effects

Batch effects are a major concern for this low-biomass study and any large-scale study. The median flowcell used in our study con-
tained samples from 3 cities and 2 continents. However, two flowcells covered 18 cities from 5 or 6 continents respectively. When
samples from these flowcells were plotted using UMAP (see global diversity varies according to key covariates for details) the major
global trends we described were recapitulated (Figure S2F). Plots of the number of reads against region (Figure S2G) showed a stable
distribution of reads across cities. Analogous plots of PCR Qubit scores were less stable than the number of reads but showed a clear
drop for control samples (Figure S2H). These results led us to conclude that batch effects are likely to be minimal.

Identification of potential strain contamination

We used BLASTNn to align nucelotide assemblies from case samples to control samples. We used a threshold of 8,000 base pairs and
99.99% identity as a minimum to consider two sequences homologous. This threshold was chosen to be sensitive without solely
capturing conserved regions. We identified all connected groups of homologous sequences and found approximate taxonomic iden-
tifications by aligning contigs to NCBI-NT using BLASTn searching for 90% nucleotide identity over half the length of the longest con-
tig in each group.

Despite good separation of positive and negative controls (see STAR Methods) we identified several species in our negative
controls which were also identified as prominent taxa in the data-set as a whole (See a core urban microbiome centers global
diversity). Our dilemma was that a microbial species that is common in the urban environment might also reasonably be expected
to be common in the lab environment. In general, negative controls had lower k-mer complexity, fewer reads, and lower post PCR
Qubit scores than case samples and no major flowcell specific species were observed. Similarly, positive control samples were
not heavily contaminated. These results suggest samples are high quality but do not systematically exclude the possibility of
contamination.

Previous studies have reported that microbial species whose relative abundance is negatively correlated with DNA concentration
may be contaminants. We observed a number of species that were negatively correlated with DNA concentration but this distribution
followed the same shape as a null distribution of uniformly randomly generated relative abundances leading us to conclude that nega-
tive correlation may simply be a statistical artifact.
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We analyzed the total complexity of case samples in comparison to control samples. Case samples had a significantly higher taxo-
nomic diversity (Figure S21) than any type of negative control sample. We also compared the confidence of taxonomic assignments to
control assignments for prominent taxa using the number of unique marker k-mers to compare assignments. We found that case
samples had more and higher quality assignments than could be found in controls. In contrast, the taxonomic assignment of one
species, Bradyrhizobium sp. BTAi1, was not clearly more accurate in case samples than controls. Nevertheless, we were able to
assemble genomes for this species in several unique samples, so we feel the species is not definitively a negative control
contaminant.

Finally, we compared assemblies from negative controls to assemblies from our case samples searching for regions of high sim-
ilarity that could be from an identical microbial strain. We reasoned that uncontaminated samples may contain the same species as
negative controls but were less likely to contain identical strains. Only 137 case samples were observed to have any sequence with
high similarity to an assembled sequence from a negative control (8,000 base pairs minimum of 99.99% identity). The identified se-
quences were principally from Bradyrhizobium and Cutibacterium. Since these genera are core taxa (See a core urban microbiome
centers global diversity) observed in nearly every sample but high similarity was only identified in a few samples, we elected not to
remove species from these genera from case samples.

Comparison of taxonomic and k-mer based metrics to establish database quality

We generated 31-mer profiles for raw reads using Jellyfish. All k-mers that occurred at least twice in a given sample were retained. We
also generated MASH sketches from the non-human reads of each sample with 10 million unique minimizers per sketch. We calcu-
lated the Shannon’s entropy of k-mers by sampling 31-mers from a uniform 10,000 reads per sample.

We found clear correlations between k-mer based Jaccard distance (MASH) and taxonomic Jaccard distance (Figure S2A). We
also compared alpha diversity metrics (Figure S2B): Shannon entropy of k-mers, and Shannon entropy of taxonomic profiles. As
with pairwise distances these metrics were correlated though noise was present. This noise may reflect sub-species taxonomic vari-
ation in our samples.

Evaluation of unmapped DNA to establish aligner performance

A large proportion of the reads in our samples were not mapped to any reference sequence. There are three major reasons why a
fragment of DNA would not be classified in our analysis 1) The DNA originated from a non-human and non-microbial species which
would not be present in the databases we used for classification 2) Our classifier (KrakenUniq) failed to classify a DNA fragment
that was in the database due to slight mismatch 3) The DNA fragment is not represented in any existing database. Explanations (1)
and (2) are essentially drawbacks of the database and computational model used, and we can quantify them by mapping reads
using a more sensitive aligner to a larger database, such as BLASTn (Altschul et al., 1990), or ensemble methods for analysis
(Mclntyre et al., 2017). To estimate the proportion of reads which could be assigned, we took 10k read subsets from each sample
and mapped these to a set of large database using BLASTn (see a core urban microbiome centers global diversity for details). This
resulted in 34.6% reads which could not be mapped to any external database compared to 41.3% of reads mapped using our
approach with KrakenUnig. We note that our approach to estimate the fraction of reads that could be classified using BLASTn
does not account for hits to low quality taxa which would ultimately be discarded in our pipeline, and so represents a worst-
case comparison. Explanation (3) is altogether more interesting and we refer to this DNA as true unclassified DNA. In this analysis
we do not seek to quantify the origins of true unclassified DNA except to postulate that it may derive from previously unknown
species as have been identified in other similar studies.

Computational analysis of sequencing data

We processed raw reads from all samples into taxonomic, functional and AMR profiles for each sample using the MetaSUB Core
Analysis Pipeline (Danko and Mason, 2020) (v1.0.0). This pipeline includes a preprocessing stage followed by steps to evaluate
the taxonomic, functional, and k-mer profiles of metagenomic samples.

Sequence Preprocessing

Sequence data were processed with AdapterRemoval (v2.17, Schubert et al. (2016)) to remove low quality reads and reads with
ambiguous bases. Subsequently reads were aligned to the human genome (hg38, including alternate contigs) using Bowtie2
(v2.3.0, fast preset, Langmead and Salzberg (2013)). Read pairs where both ends mapped to the human genome were separated
from read pairs where neither mate mapped. Read pairs where only one mate mapped were discarded. Hereafter, we refer to the
read sets as human reads and non-human reads.

Generating taxonomic profiles for samples

We generated taxonomic profiles by processing non-human reads with KrakenUniq (v0.3.2 Breitwieser et al. (2018)) using a database
based on all draft and reference genomes in NCBI/RefSeq Microbial (bacteria/archaea, fungi and virus) ca. March 2017. KrakenUniq
was selected because its high performance, as it has been demonstrated to be comparable or having higher sensitivity than the best
tools identified in a recent benchmarking study (Mclintyre et al. (2017)) on the same comparative dataset. In addition, KrakenUniq
allows for tunable specificity and identifies k-mers that are unique to particular taxa in a database. Reads are broken into k-mers
and searched against this database. Finally, the taxonomic makeup of a sample is given by identifying the taxa with the greatest
leaf to ancestor weight.
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KrakenUniq reports the number of unique marker k-mers assigned to each taxon, as well as the total number of reads, the fraction
of available marker k-mers found, and the mean copy number of those k-mers. We found that requiring more k-mers to identify a
species resulted in a roughly log-linear decrease in the total number of species identified without a plateau or any other clear point
to set a threshold (Figure S2C).

At a minimum, for an initial taxonomic call, we required three reads assigned to a taxa with 64 unique marker k-mers. This setting
captures a group of taxa with low abundance but reasonable (10%-20%) coverage of the k-mers in their marker set (Figure S2E).
However, this also allows for a number of taxa with very high (105) duplication of the identified marker k-mers and very few k-
mers per read which we believe is biologically implausible. To remove these we filtered taxonomic calls further by requiring that
the number of reads not exceed 2 times the number of unique k-mers, unless the set of unique k-mers was saturated (> 90%
completeness). We include a full list of all taxonomic calls from all samples including diagnostic values for each call. We do not
attempt to classify reads below the species level in this study.

Evaluating taxonomic calls

We further evaluated prominent taxonomic classifications for sequence complexity and genome coverage. For each microbe eval-
uated we calculated two indices generated using a random subset of 152 samples: the average topological entropy of reads as-
signed to the microbe and the Gini-coefficient of read positions on the microbial genome. For brevity we refer to these as mean
sequence entropy (MSE) and coverage equality (CE). The formula for topological entropy of a DNA sequence is described by Ko-
slicki (2011). Values close to 0 correspond to low-complexity sequences and values near 1 are high complexity. In this work we
use a word size of 3 with an overall sequence length of 64 since this readily fits into our reads. To find the MSE of a microbial
classification we take the arithmetic mean of the topological entropy of all reads that map to a given microbial genome in a sam-
ple. The Gini-coefficient is a classic economic measure of income inequality. We repurpose it here to evaluate the evenness of
read coverage over a microbial classification. Reads mapping to a microbial genome are assigned to a contiguous 10kbp bin
and the Gini-coefficient of all bins is calculated. Like MSE, the Gini-coefficient is bounded in [0, 1]. Lower values indicate greater
inequality, very low values indicate that a taxon may be misidentified from conserved and near conserved regions. We down-
loaded one representative genome per species evaluated and mapped all reads from samples to using Bowtie2 (sensitive-local
preset). Indices were processed from alignments using a custom script. Species classifications with an average MSE less than
0.75 or CE less than 0.1 were flagged.

Estimating relative abundance of taxa

To determine relative abundance of taxa (where applicable) in each profile we sub-sampled each sample to 100,000 classified reads,
computed the proportion of reads assigned to each taxon, and took the distribution of values from all samples. This was the minimum
number of reads sufficient to maintain taxonomic richness (Figure S2D). We chose sub-sampling (sometimes referred to as rarefac-
tion in the literature) based on the study by Weiss et al. (2017), showing that sub-sampling effectively estimates relative abundance.
Note that we use the term prevalence to describe the fraction of samples where a given taxon is found at any abundance and we use
the term relative abundance to describe the fraction of DNA in a sample from a given taxon.

Contextualizing samples

We compared our samples to metagenomic samples from the Human Microbiome Project and a metagenomic study of European soil
samples using MASH (Ondov et al., 2016), a fast k-mer based comparison tool. We built MASH sketches from all samples with 10
million unique k-mers to ensure a sensitive and accurate comparison. We used MASH’s built-in Jaccard distance function to
generate distances between our samples and HMP samples. We then took the distribution of distances to soil and to each particular
human commensal community as a proxy for the actual similarity of our samples to the site.

We used the Microbe Directory (Shaaban et al., 2018) to annotate taxonomic calls. The Microbe Directory is a hand curated, ma-
chine readable, database of functional annotations for 5,000 microbial species.

Functional and metabolic analysis of samples

We analyzed the metabolic functions in each of our samples by processing non-human reads with HUMANN2 (Franzosa et al., 2018).
We aligned all reads to UniRef90 (Suzek et al., 2015) using DIAMOND (v0.8.36, (Buchfink et al., 2015)) and used HUMANN2 to pro-
duce estimate of pathway abundance and completeness. We filtered all pathways that were less than 50% covered in a given sample
but otherwise took the reported pathway abundance as is after relative abundance normalization (using HUMANNZ2’s attached script).

High level categories of functional pathways were found by grouping positively correlated pathways and manually annotating re-
sulting clusters.

Analysis of Antimicrobial Resistance Genes

We generated profiles of antimicrobial resistance genes using MegaRes (v1.0.1, Lakin et al. (2017)). To generate profiles from Mega-
Res, we mapped non-human reads to the MegaRes database using Bowtie2 (v2.3.0, very-sensitive presets, Langmead and Salzberg
(2013)). Subsequently, alignments were analyzed using ResistomeAnalyzer (commit 15a52dd https://github.com/cdeanj/
resistomeanalyzer) and normalized by total reads per sample and gene length to give RPKMs. MegaRes includes an ontology
grouping resistance genes into gene classes, AMR mechanisms, and gene groups. AMR detection remains a difficult problem
and we note that detection of a homologous sequence to a known AMR gene does not necessarily imply an equivalent resistance
in our samples. Currently, the gold standard for detecting AMR is via culturing.

Known AMR genes can come from gene families with homologous regions of sequence. To reduce spurious mapping from gene
homology we used BLASTn to align all MegaRes AMR genes against themselves. We considered any connected group of genes with
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an average nucleotide identity of 80% across 50% of the gene length as a set of potentially confounded genes. We collapsed all such
groups into a single pseudo-gene with the mean abundance of all constituent genes. Before clustering genes we removed all genes
which were annotated as requiring SNP verification to predict resistance.

Analysis of Alpha and Beta Diversity

Inter-sample (beta) diversity was measured by the Jaccard distances between the taxonomic and functional profiles of samples. Jac-
card distance does not use relative abundance information. Matrices of Jaccard distances were produced using built in SciPy (Vir-
tanen et al., 2020) functions treating all elements greater than 0 as present. Hierarchical clustering (average linkage) was performed
on the matrix of Jaccard distances using SciPy.

Dimensionality reduction of taxonomic and functional profiles was performed using UMAP (Mclnnes et al., 2018) on the matrix of
Jaccard distances with 100 neighbors (UMAP-learn package, random seed of 42). We did not use Principal Component Analysis as a
preprocessing step before UMAP as is sometimes done for high dimensional data.

Intra-sample (alpha) diversity was measured by using Species Richness and Shannon’s Entropy. We took species richness as the
total number of detected species in a sample after rarefaction to 1 million reads. Shannon’s entropy is defined as H = ajlog,a; where a;
is the relative abundance of taxon i in the sample. This formulation is robust to sample read depth and accounts for the relative size of
each group in diversity estimation. For alpha diversity based on k-mers or pathways, we simply substitute the relative abundance of a
species for the relative abundance of the relevant type of object.

Identifying Bacteria and Archaea

Metagenomic Assembly and Binning

All samples were assembled with metaSPAdes (v3.10.1 Nurk et al. (2017)) using the Bridges system at the Pittsburgh Supercomput-
ing Center (PSC) available through the Extreme Science and Engineering Discovery Environment (XSEDE) (Nystrom et al., 2015;
Towns et al., 2014); contigs with length < 1000nt were excluded from further analysis. We mapped reads back to the remaining con-
tigs via Bowtie2 (v2.3.4 Langmead and Salzberg (2013)) using the —very-sensitive-local preset to generate coverage metrics for each
contig. Contigs with coverage information were binned using MetaBAT2 (v2.12.1 Kang et al. (2019)) with default parameters, resulting
in 14,080 bins. Draft genome quality of each bin was assessed via CheckM (v1.0.13 Parks et al. (2015)) using the lineage_wf workflow
with default parameters. Using the strategy proposed by Parks et al. (2018) we filtered bins by quality score, defined as QS =
completeness - 5 * contamination; bins with QS < 50 were removed from consideration. The remaining 6,107 bins were labeled
by quality based on the MIMAG standard (Bowers et al. (2018)), with minor modification: 1,448 high quality (completeness > 90%,
contamination < 5%, strain heterogeneity < 0.5%) bins, 4,532 medium quality (completeness > 50%, contamination < 5%) bins,
all others low quality. Bins of at least medium quality were selected as acceptable Metagenome Assembled Genomes (MAGs)
(5,980 total). PSC Bridges and XSEDE were used in the processing of these assemblies (Nystrom et al. (2015), Towns et al. (2014)).
Identifying replicated MAGs

OTUs (representative MAGs from a cluster) were chosen with a two-step clustering strategy. Rough single-linkage clustering formed
primary clusters of MAGs based on Mash ANI (v2.1.1), with intra-cluster identity at 90%. Though Mash ANI can be inaccurate for
potentially incomplete genomes (Olm et al. (2017)), we can leverage the technique’s speed for the many pairwise comparisons
needed in this granular step. Within primary clusters, MAGs were compared pairwise by a more accurate whole-genome ANI
(9ANI) via dnadiff (v1.3) from MUMmer (v3.23 Kurtz et al. (2004)). Secondary, more refined clusters were grouped based n gANI using
average-linkage hierarchical clustering from the R package dendextend (v1.12.0 Galili (2015)). A gANI cut-off of 95% resulted in 1,304
representative OTUs.

Matching OTUs to Reference Genomes

OTUs were compared against reference genomes from RefSeq (release 96 from November 2019, complete bacterial and archaeal
genomes only, with “Exclude anomalous” and “Exclude derived from surveillance project” applied) as well as the full Integrated Gut
Genomes (IGG) dataset (v1.0 Nayfach et al. (2019); 23,790 representative genomes). A MinHash sketch was created for each refer-
ence genome via Mash (v2.1.1) with default parameters to find Mash distances and select candidate “best matches” from each refer-
ence database. Then, dnadiff (v1.3) was used to further quantify differences between each OTU and its best match from either data-
base. ANI between OTUs and their matches was found as “M-to-M Avgldentity” in the query report column (ANI 95% over 60% OTU
sequence qualified as a match).

OTU Taxonomic Assignment

OTUs were placed into a bacterial or archaeal reference tree (based on the Genome Database Taxonomy, GTDB Parks et al. (2020))
and then assigned taxonomic classifications using GTDB-Tk (v1.0.2 Chaumeil et al. (2019)). GTDB-Tk relies on 120 bacterial and 122
archaeal marker genes; domain assignment is chosen based on domain-specific marker content of the OTU sequence. Using the
GTDB-Tk placements, we built an OTU-only bacterial phylogeny with FastTree (v2.1.10 Price et al. (2010)). The tree was visualized
using iTOL (v5.5 Letunic and Bork (2019)).

Viral Discovery

We followed the protocol described by Paez-Espino et al. (2017). Briefly, we used an expanded and curated set of viral protein fam-
ilies (VPFs) as bait in combination with recommended filtering steps to identify 16,584 UViGs directly from all MetaSUB metagenomic
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assemblies greater than 5kb. Then, the UViGs were clustered with the content of the IMG/VR system (a total of over 730k viral se-
quences including isolate viruses, prophages, and UViGs from all kind of habitats). The clustering step relied on a sequence-based
classification framework (based on 95% sequence identity across 85% of the shortest sequence length) followed by the markov clus-
tering (mcl). This approach yielded 2,009 viral clusters (ranging from 2-611 members) and 9,605 singletons (or viral clusters of 1 mem-
ber), sequences that failed to cluster with any sequence from the dataset or the references from IMG/VR, resulting in a total of 11,614
vOTUs. We define viral species from vOTUs as sequences sharing at least 95% identity over 85% of their length. Out of this total
MetaSUB viral diversity, only 686 vOTUs clustered with any known viral sequence in IMG/VR.

Identifying Host Virus Interactions

We used two computational methods to reveal putative host-virus connections (Paez-Espino et al., 2016a). (1) For the 686 vOTUs that
clustered with viral sequences from the IMG/VR system, we projected the known host information to all the members of the group
(total of 2,064 MetaSUB UViGs). (2) We used bacterial/archaeal CRISPR-Cas spacer matches (from the IMG/M 1.1 million isolate
spacer database) to the UViGs (allowing only for 1 SNP over the whole spacer length) to assigned a host to 1,915 MetaSUB vOTUs.
Additionally, we also used a database of over 20 million CRISPR-Cas spacers identified from metagenomic contigs from the IMG/M
system with taxonomy assigned. Since some of these spacers may derive from short contigs these results should be interpreted with
caution.

CRISPR Array Detection and Annotation

Using CRISPRCasFinder (Couvin et al., 2018) the MetaSUB database was investigated to predict CRISPR arrays and annotate them
with their corresponding predicted type based on CRISPR-Cas genes in their vicinity. CRISPRCasFinder was run with default param-
eters, “-s0” and “-cas” options to identify cas genes. The precision and recall of the virus detection was 99.6% and 37.5% respec-
tively, as previously reported by (Paez-Espino et al., 2016).

CRISPR-Cas types were assigned to arrays based on detected cas genes within a 10 kilobases vicinity. Cases where CRISPRCas-
Finder associated several cas genes of contradicting CRISPR-Cas types with the same CRISPR array were regarded as unclear
annotation. This procedure yielded 838,532 predicted CRISPR arrays (with additional CRISPR arrays predicted with default param-
eters for PILER-CR), of which, 3,245 CRISPR arrays had unambiguous annotation, resulting in 43,656 unique spacers queried against
genomic databases using BLASTN.

Matching CRISPR Spacers to Organism Databases

In order to associate detected spacers within defined groups (plasmids, prophages, viruses) four different genomic databases were
aggregated to be searched with BLASTN. The aggregated database consisted of IMG/VR, PHASTER, and PLSDB alongside bac-
terial and archaeal genomic sequences from the National Center for Biotechnology Information (NCBI). All database downloads
were made on the 28th January 2020. Detected and annotated spacers were searched against the databases mentioned above using
BLASTN with the following additional arguments, which correspond to the default parameters of CRISPRTarget: word_size = 7,
evalue = 1, gapopen = 10, gapextend = 2, penalty = —1, reward = 1.

GeoDNA Sequence Search

For building the sequence graph index, each sample was processed with KMC (version 3, Kokot et al., 2017) to convert the reads in
FASTA format into lists of k-mer counts, using different values of k ranging from 13 to 19 in increments of 2. All k-mers that contained
the character “N” or occurred in a sample less than twice were removed. For each value of k, we built a separate index, consisting of a
labeled de Bruijn graph, using an implicit representation of the complete graph and a compressed label representation based on Mul-
tiary Binary Relation Wavelet Trees (Multi-BRWT). For further details, we refer to the manuscript (Karasikov et al., 2020). To build the
index, for each sample the KMC k-mer count lists were transformed into de Bruijn graphs, from which path covers in the form of con-
tig sets were extracted and stored as intermediate FASTA files. The contig sets of each sample were then transformed into annotation
columns (one column per sample) by mapping them onto an implicit complete de Bruijn graph of order k. All annotation columns were
then merged into a joint annotation matrix and transformed into Multi-BRWT format. Finally, the topology of the Multi-BRWT repre-
sentation was optimized by relaxing its internal tree arity constraints to allow for a maximum arity of 40.

QUANTIFICATION AND STATISTICAL ANALYSIS

For each statistical test in this manuscript, the type of test, the size (n) of the test, and statistical summaries or measures of dispersion
are clearly defined in the figure legends or in the accompanying text throughout the manuscript.

ADDITIONAL RESOURCES

Interactive visualizations and maps
https://pngb.io/metasub-maps

BLAST-like sequence search tool
https://dnaloc.ethz.ch
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Raw and Analyzed Data Files
https://pngb.io/metasub-2021

Collated Metadata
https://pngb.io/metasub-2021, https://github.com/MetaSUB/MetaSUB-metadata

Jupyter notebooks used to generate the figures and statistics in this study
https://www.github.com/MetaSUB/main_paper_figures

Cell 184, 3376-3393.e1-e10, June 24, 2021 e10


https://pngb.io/metasub-2021
https://pngb.io/metasub-2021
https://github.com/MetaSUB/MetaSUB-metadata
https://www.github.com/MetaSUB/main_paper_figures

9]
(99]
L
©)
&)
<
Z
I
o
@)

)
%)
&
@
o
L

Cell

Airways oral Urogenital Gastrointestinal

Skin

0.5

S ] S
(HSVW) @3ue)siq piedde(

Mmopuim

amsuIng
piejjog
pJeoqojuy

U23.4SYdn0L
101€[e353
jleipuet]
3lod

Asory g
uonng

qouy Jooq
pueH uewiny

amsuin]
piejjog
pJecqoyuy
Jeas
SISOy
ajqe

uijey
U93.125YdN0 L
Jojejeds3
JleipueH
2lod
3S0D) 219
uonng
qouy Joog
pueH uewny
Mmopuim
10014
abeqien
amsuing
piejjog
pieaqoju|
jeas
Ssory
3yqe

uijiey
ud3.125Y2N0L
Jojejedsy
j1eJpueH
2lod
sony ax1g
uonng
qouy Joog
pueH uewny
MopuIm
10013
2beqien
amsuin]
piejjog
paecqoyu

ajqe ]

Buliey
U93.125Y2N0 L.
Jojejeds3y
l1eJpuey
3j0d

>sory ax1g
uonng

qouy Joog
pueH uewiny

amswin]
piejjog
pJecqoyuy

uza.5Y2N0)
J101e[e353
JleIpueH
210d

Jsory axg
uoyng

qouy J0oq
pueH uewiny

Percent ANI

=S5ub Saharan Africa
=South America
=Middle East

= Oceania

=North America
=Nan

=East Asia
= Europe

ﬂ

i

5

I*

n
~
[=}

ul

pai

61|y speay jo uonoeiy

0

anselap 1o paubijeun

paubijeun

basyoy

6T0Z 'SOVI l|ossed

ALN-18ON

SOV NSRBI

aseqejeq Auy

100

10
Geographic Distance (KM)

0.0

Equator

60

40

20

3000

=}
s
S
[

S

0
Degrees of Latitude

-20

Figure S1. Core urban taxa and ecological trends, related to Figure 1

(A) Jaccard similarity of MASH indices to HMP samples for different surface types.

(B) Fraction of reads assigned at 80% ANI to different databases by BLAST for each region.

(C) Correlation between species richness and latitude. Richness decreases significantly with latitude.

(D) Neighborhood effect. Taxonomic distance weakly correlates with geographic distance within cities.
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Figure S2. Quality control and metrics, related to Figures 1 and 2

(A) Jaccard distance of taxonomic profiles versus MASH Jaccard distance of k-mers.

(B) Shannon’s Entropy of taxonomic profiles versus Shannon’s Entropy of k-mers.

(C) Number of species detected as k-mer threshold increases for 100 randomly selected samples.
(D) Number of species detected as number of sub-sampled reads increase.

(E) Number of reads by region.
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(F) PCR Qubit by surface material.

(G) Taxonomic Richness in Cases versus Types of Controls.

(H) Flowcells versus quality control metrics See also Methods.

(I) k-mer counts compared to number of reads for species level annotations in 100 randomly selected samples, colored by coverage of marker k-mer set.
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Figure S3. Diversity and variation, related to Figure 2
(A) UMAP of taxonomic profiles colored by climate classification.

(B) UMAP of taxonomic profiles colored by surface type.
(C) UMAP of functional profiles colored by region.
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Figure S5. Antimicrobial resistance in the urban environment, related to Figure 4

(A) Prevalence of AMR genes with a particular resistance mechanism.

(B) Abundance of AMR genes when categorized by resistance mechanism.

(C) Distribution of reads per gene (normalized by kilobases of gene length) for AMR gene calls. The vertical red line indicates that 99% of AMR genes have more
than 9.06 reads per kilobase and would still be called at a lower read depth.

(D) Rarefaction analysis of antimicrobial resistance genes. Curve does not flatten suggesting we would identify more AMR genes with more samples.

(E) Neighborhood effect. Jaccard distance of AMR genes weakly correlates with geographic distance within cities.

(F) Relationship of the number of AMR genes (richness) to the number of species (richness) in each sample. No clear correlation is observed.
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