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Abstract
Background: Cancer progression reconstruction is an important development
stemming from the phylogenetics field. In this context, the reconstruction of the
phylogeny representing the evolutionary history presents some peculiar aspects that
depend on the technology used to obtain the data to analyze: Single Cell DNA
Sequencing data have great specificity, but are affected by moderate false negative
and missing value rates. Moreover, there has been some recent evidence of back
mutations in cancer: this phenomenon is currently widely ignored.

Results: We present a new tool, gpps, that reconstructs a tumor phylogeny from
Single Cell Sequencing data, allowing each mutation to be lost at most a fixed number
of times. The General Parsimony Phylogeny from Single cell (gpps) tool is open source
and available at https://github.com/AlgoLab/gpps.

Conclusions: gpps provides new insights to the analysis of intra-tumor
heterogeneity by proposing a new progression model to the field of cancer phylogeny
reconstruction on Single Cell data.

Keywords: Integer linear programming, Hill climbing, Phylogeny, Single cell
sequencing

Background
Phylogenetics is the field which studies how to reconstruct the evolutionary histo-
ries of species, and it has a rich literature [1]. However, phylogenetics has focused
on inferring histories from data coming from extant species or individuals, under the
assumption that data for ancestor species/individuals are impossible or difficult to
obtain.
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This is an important difference from cancer progression reconstruction, as in this case,
we usually have data from all possible species (or better, from the conceptual analogs of
species, that is clones). The clonal theory of cancer [2] postulates that a cancer consists
of several clones, that is families of cells carrying the same mutations, that are subject to
selective pressure resulting in clonal expansions. In this case, clones play the same role as
species in classical phylogenetics.
The easiest way to obtain cancer data from a patient is via a biopsy, where samples

from a tumor are extracted, typically using bulk DNA sequencing. This procedure is fairly
cheap, but the samples obtained are not very specific: the cells in a bulk-sequencing sam-
ple usually belong to several clones. Moreover, we do not know the composition of a
sample in terms of clones. Still, by aligning reads extracted from a sample we can obtain
(approximately), for each mutation, the fraction of cells in a sample carrying such muta-
tion. Recently, many computational approaches have been developed for the analysis of
bulk-sequencing data with the purpose of inferring tumoral subclonal decomposition and
reconstructing tumor phylogenies (trees) [3–12], but almost all of them model a tumor
progression as the accumulation of mutations under the Infinite Sites Assumption, that is
recurrent mutations and mutation losses are not allowed. Notice that, since the coverage
of the reads is not perfectly uniform, the fractions that we obtain are only an approxima-
tion of the true value. At the same time, given a sufficiently large coverage, the error is
small, and the procedure to obtain the data is standard and quite cheap.
An alternative technique is Single Cell DNA Sequencing (SCS): in this case for each cell

examined we are able to get the set of mutations it carries. However, this technique is
currently expensive and not very reliable, since it produces datasets with a high amount
of noise that include allelic dropout (false negatives) and missing values, due to lack of
read coverage, as well as false positive calls — although this event is much rarer. Another
source of noise is due to doublets, that is signals originating from two separate cells which
are erroneously inferred to originate from a single cell: we point out this latter problem is
fading away and can be tackled computationally. Still, we need efficient methods that are
able to cope with the kind of data that SCS techniques are currently producing, by taming
the difficulties due to the noise in data.
Various methods have been developed for this purpose [13–15], some of them intro-

ducing a hybrid approach of combining both SCS and VAF data [16–19]. As stated before,
most of these methods rely on the Infinite Sites Assumption (ISA) [20], which states that
a mutation is acquired at most once in the phylogeny and is never lost. This simplifying
assumption also leads to a computationally tractable model of evolution called the perfect
phylogeny [21]. However, some recent studies focused on cancer data are finding hints
suggesting that the ISA does not always hold [22–24], and so we may need to abandon the
strict ISA in this setting. In [23], the authors find that large deletions on several branches
of a tree can span a shared locus, thus a given mutation may be deleted independently
multiple times. In [24], the authors show that in certain cases, homozygous deletions in
cancer genomes can even provide a selective growth advantage. Each (independent) dele-
tion of an acquired mutation takes us further away from the ISA. Some recent methods
such as TRaIT [16] and SiFit [15] allow deletions of mutations.
The Dollo model [25] of evolution is designed exactly for some of the cases where a

perfect phylogeny does not represent the actual data. More precisely, the Dollo model
requires each mutation to be acquired exactly once in the entire history analyzed, while
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removing all restrictions on the number of times that a mutation can be lost. The Dollo
model as well as the Dollo(k) variants, where each mutation can be lost at most k times,
has been introduced recently in the literature on algorithmic approaches for tumor pro-
gression inference [12, 26]. Since finding a perfect phylogeny on a complete binary matrix
can be solved in linear time [21], several tools have incorporated this model to reduce the
running time [27] — but single cell data present a large portion of missing data, which
makes the problem much harder.
When the input is an incomplete matrix M, the problem of determining if there exists

a directed rooted phylogeny T obeying the Dollo(1) model and explaining M is NP-
complete [28] — the proof in that paper is actually on a restriction of directed perfect
phylogeny on generalized characters, but it is immediate to notice that those general-
ized characters correspond to finding a directed Dollo(1) phylogeny from an incomplete
binary matrix. On the other hand, when considering standard binary characters, allowing
only character gains, and exactly one gain for each character, the problem of find-
ing a directed perfect phylogeny can solved in polynomial time even for incomplete
matrices [29].
Moreover, we focus on the Dollo model, which is more general and more computa-

tionally expensive than perfect phylogeny model (Dollo(0) is perfect phylogeny), hence
requiring even more sophisticated algorithms.
In this paper we propose gpps, an approach which combines Integer Linear Program-

ming (ILP) with a Hill Climbing approach to infer a tumor progression that can include
a limited amount of mutation losses, from single cell DNA sequencing data. A contem-
porary and independent approach for the problem is presented in [30] where the authors
propose an ILP formulation and a cutting plane strategy to resolve the problem.

Results
Results on real cancer data

Wetested gpps on ER+ breast cancer data from [31], consisting of 40 somatic muta-
tions over 47 cells with an estimated false negative rate of 9.73%, a false positive rate of
1.24 × 10−6 and a missing rate of 13.83% (based on the known error rates of the SCS
technologies from which this data was obtained); on JAK2-Negative Myeloproliferative
Neoplasm data from [32], consisting of 18 mutations over 58 cells, with an estimated false
negative rate of 7.63%, a false positive rate of 2.02 × 10−5 and missing rate of 44.82%.
Finally we tested gpps on childhood acute lymphoblastic leukemia data of Patient 4 from
[33], consisting of 77 somatic mutations across 142 cells, with an estimated false negative
rate less than 30% and a zero missing rate. Since the trees proposed in the sequencing
papers are manually curated and of high quality, we consider it a good benchmark.
Figure 1 shows the tree inferred by gpps for ER+ breast cancer patient, where the tree

structure assumed in the study is correctly inferred as well as the placement of the driver
mutations FBN2, CAPS3 and PIK3C; gpps detected 7 losses, all placed as leaves. Figure 2
shows the tree inferred for a JAK2-Negative Myeloproliferative Neoplasm patient, where
similarly to the previous dataset gpps correctly infers the clonal structure and correctly
places the driver mutations SESN2, TOP1MT and ST13. As in the previous case it infers
8 losses as leaves. Finally, Fig. 3 shows the tree inferred for childhood acute lymphoblastic
leukemia. Once again gpps correctly infers the clonal history proposed in the sequecing
study; furthermore it correctly infers the placement of the driver mutations of the four
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Fig. 1 Tree inferred by gpps for ER+ breast cancer patient from [31]. The red-colored nodes indicate
deletions of mutations, while mutations highlighted in bold are the mutations indicated as driver in the
original sequencing study. Linear paths in the tree have been collapsed for space constraints

subclonal populations, highlighted in bold in the figure. It also infers 4 mutation losses of
which 3 are placed as leaves and one, ANP32A-IT1, is placed as intermediary step in two
different subclones.
The solutions were found assuming a Dollo(1) phylogeny model. Furthermore, in the

last dataset we forced the solution to have at most 5 losses, while no such restriction was
applied to the other two.

Results on simulated data and comparison with other approaches

We have tested our method on simulated data, where the ground truth is known. We
recall that it is possible, however, that a completely different tree achieves a better likeli-
hood than the one obtained via simulation. This problem is essentially unavoidable, since
generating a progression that is the unique solution for the corresponding SCS input
matrix requires adding artifacts to both the tree and the matrix. It is unlikely that the
resulting instance would satisfy even the basic assumptions on cancer progression.

Generation of simulated data

Given a fixed number of subclones S we generated a random tree of S nodes by adding
a new node as a child of a random pre-existing one. Each of the M mutations q1, . . . , qM
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Fig. 2 Tree inferred by gpps for JAK2-Negative Myeloproliferative Neoplasm patient from [32]. The
red-colored nodes indicate deletions of mutations, while mutations highlighted in bold are the mutations
indicated as driver in the original sequencing study. Linear paths in the tree have been collapsed for space
constraints

is then, uniformly at random, assigned to one of the si subclones. We allowed at most a
fixed number k of deletions in each clonal tree: therefore k new nodes are added to the
tree at random positions, following the procedure of [19, 27]. A deletion of a mutation
is then assigned to each of the k new nodes, by picking uniformly at random, one of the
mutations which is affecting the parent of the node andwhich has not been already chosen
as a deletion.
To obtain the genotype profile of the n cells, we randomly assigned each cell to a node

and derived its profile from the clonal tree (independently and uniformly with repeti-
tion). Finally, to simulate noise in the data, we flipped a 0 entry to 1 with probability β to
simulate false positives and a 1 entry to 0 with probability α to simulate false negatives.
Moreover, each entry has a probability γ to be a missing entry. All errors and missing
values are uniformly and independently distributed, without repetitions. We simulated a
dataset where the number of subclones was fixed to 9, the number of cells and mutations
to 100 and 30 respectively; such ratio of mutations over cells is similar to the ones used
in recent studies [19, 30]. Lastly, false negative, false positive and missing value rates were
0.1, 10−4 and 0.1. These three values where chosen based on the known error rates of the
SCS technology we are simulating. For each simulation, at most 5 mutations could be lost,
while gpps was run with a Dollo(1) model.

Evaluation on simulated data

Wemeasured the accuracy of gppswith two standard cancer progression measures used
in various studies [13, 17], defined as follows:
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Fig. 3 Tree inferred by gpps for childhood acute lymphoblastic leukemia patient 4 from [33]. The
red-colored nodes indicate deletions of mutations, while mutations highlighted in bold are the mutations
indicated as driver or clonal in the original sequencing study. Linear paths in the tree have been collapsed for
space constraints

• Ancestor-Descendant accuracy: This measure considers all pairs of mutations
(x, y) that are in an ancestor-descendant relationship in the ground truth tree T. For
each such pair we check whether the ancestor-descendant relationship is conserved
in the inferred tree I. The score is defined by the F-measure of the preserved
relationships in I.

• Different-Lineage accuracy: Similar to the previous measure, it considers all pairs
of mutations (x, y) that are not in an ancestor-descendant relationship, i.e., are in
different branches of T. The score is given by the F-measure of the preserved
relationship in I.

Note that none of the previousmetrics account for ISA violations.We decided to compare
our ILP (alone) and gpps against SCITE [13] and SiFit [15]. OncoNEM [14] was excluded
because it infers cell lineage progressions instead of mutational progression, therefore it is
not possible to compare our predictions with theirs; furthermore OncoNEM fails to run
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on datasets as large as the ones used in the simulations. All the tools were fed with the
correct values of false positive and false negatives rates.
Figure 4 shows the comparison of accuracy between the tools — on average gpps

slightly outperforms SCITE in both measures. On the other hand, SiFit achieves a lower
accuracy, which is possibly due to the tendency of branching in the model. While HC
improves only slightly the mean accuracy of the ILP, it handles outliers, especially in
the second measure. Furthermore, as seen in Fig. 5, the HC improves the values of the
log-likelihood of the solutions obtained. As already stated, none of the accuracy mea-
sures consider the presence of deletions, therefore methods that infer perfect phylogenies
are not penalized by these accuracy measures, even if they infer the wrong evolutionary
model.

Discussion
In this paper we have presented gpps: an accurate tool for inferring intra-tumor progres-
sion and subclonal composition from SCS data, explicitly incorporating the possibility
of mutation losses. The need for models which allow some losses has been established
recently [22], and the cases presented there show evidence only for a small number of
mutation losses, justifying our focus on the Dollo(1) model.
We have shown that gpps is able to slightly outperform all the other methods available.

At the same time, the currently available quality measures are biased against mutation
losses, therefore a more complete comparison is necessary before drawing definitive
conclusions.
Moreover, we have shown the usefulness of combining a Hill-Climbing step to an ILP

approach, since the combination was able to produce better results with fewer deletions,

Fig. 4 Accuracy results for the simulated data, described in the “Generation of simulated data” section. Our
ILP, gpps and SCITE are all relatively close in the Ancestor-Descendant and Different Lineages measures,
while SiFit achieves a lower accuracy. It is important to consider that all of these accuracy measures ignore
deletions. Finally, we also report runtimes of all tools
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Fig. 5 Comparison of the log-likelihood for the ILP and gpps on the simulated data. There is a clear
improvement of gpps over the results obtained by the ILP alone, as the likelihood values are overall higher
for the whole method

while removing outliers. An additional benefit of this pipeline is that ILP methods might
have some issues in scaling to large instances. We have performed some preliminary tests
on instances larger than what the current technologies can provide, and those tests did
not show any problem. Still, we have incorporated a timeout option in gpps, so that it is
able to compute a solution even if the ILP component gets stuck in some solution that is
highly suboptimal.
gpps seems to strike a good balance, hence a deeper investigation of this, and related

approaches is a worthwhile endeavor.
On real data, gpps performs well and it infers correctly the expected phylogeny tree

structures, as well as the driver mutations. In our opinion, the model underlying gpps

strikes a good balance, since it is quite simple — there are only two parameters α and β

which are respectively the false positive and false negative rates — while achieving good
results. Still, the actual value of the parameters α and β are usually unknown and affect the
overall solution computed by gpps. Therefore it is interesting to study new procedures
to infer the best prior values for α and β .

Conclusions
There are at least two possible directions for further work that generalize and extend
the model and the experimental part. First, we can compare the tools under more gen-
eral models, such as Dollo(k) for larger values of k — notice that such an investigation is
mainly of theoretical interest, as we have no evidence of such phenomena in nature. Sec-
ondly, we can extend the parameter space, for example allowing distinct false positive and
false negative rates for each cell and/or mutation. On one hand, it is straightforward to
adapt our ILP formulation to this case; on the other hand introducing too many param-
eters makes the model less informative. Therefore, we need to find a correct tradeoff
regarding which new parameters to introduce.

Methods
In the most abstract formulation, we can see the cancer progression reconstruction prob-
lem as a character-based phylogeny reconstruction problem [34] where each character
represents the presence/absence of a specific mutation in a cell.
The input to the problem is an incomplete binary matrix I, where the entry I[ c,m]= 0

indicates that the cell c does not have the mutationm, while I[ c,m]= 1 indicates that the
cell c has the mutation m. Finally, we denote with I[ c,m]= ? where there is not enough
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information on the presence/absence of mutation m in cell c. We recall that uncertainty
about the presence of a mutation in a cell is a consequence of insufficient coverage in the
sequencing, hence it is unavoidable.
However, uncertainty is not the only issue in the sequencing process: the input matrix

I also contains false positives and false negatives. We assume that these errors occur
independently and uniformly across all the (known) entries of I. Namely, E denotes the
predicted matrix, i.e., the binary matrix without missing values computed by the algo-
rithm. In this case, α denotes the false negative rate and β denotes the false positive rate.
In other words, for each pair (c,m),

• P(I[ c,m]= 0|E[ c,m]= 0) = 1 − β

• P(I[ c,m]= 1|E[ c,m]= 0) = β

• P(I[ c,m]= 1|E[ c,m]= 1) = 1 − α

• P(I[ c,m]= 0|E[ c,m]= 1) = α

Our goal is to find a matrix E that (1) corresponds to a phylogeny on the set of cells, and
(2) maximizes the likelihood

P(I|E) =
∏

c

∏

m
P(I[ c,m] |E[ c,m] ) (1)

of the observed matrix I [13]. In other words, we want to find the phylogeny, as expressed
by the matrix E, that maximizes the likelihood of the observed matrix I [13]. We point out
that the values of the unknown entries of the input matrix do not factor into the objective
function.
A phylogeny is a rooted labeled tree T, where the label set corresponds to the set of

mutation gains and losses. The state S(x) of a leaf x in T is defined as the set of mutations
that are acquired and not lost on the path from the root of T to x. We say that the tree T
encodes a matrix E if there exists a mapping σ of the rows of E to the leaves of T such that
for each row r of E, it follows that C(r) = S (σ (r)) where C(r) is the set of columns which
are 1 in r, and σ(r) denotes the leaf of T associated with r through σ . In other words, in
the tree T we assume that the cell c has been extracted from the subpopulation σ(c).
We can express the likelihood of the matrix E as in Eq. 1 — since the involved probabili-

ties are in [0,1] it is convenient to move to a (linear) log-likelihoodmaximization objective
function of the form:

max
∑

c

∑

m
logP (I[ c,m] |E[ c,m] ) (2)

Themodel of evolution

The Dollo parsimony rule can be interpreted as the impossibility of having an identical
mutation in the evolutionary trajectory. This rule can be translated in the phylogeny tree
model as the unique introduction of any single mutation but any number of deletions of
this mutation.
From an algorithmic point of view, phylogeny reconstruction with a Dollo evolution-

ary model is an NP-complete problem [35, 36]. A hierarchical chain of restricted versions
of the model can be obtained by bounding the number of deletions for each character.
We denote as Dollo(k) the evolutionary model in which each mutation can be acquired
exactly once and can be lost at most k times. In this way Dollo(0) and Dollo(1) corre-
spond to the perfect [21] and persistent [37–39] phylogeny models, respectively. In the
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tree generation process for the Dollo(k) model (k > 0) we are required to augment a per-
fect phylogeny representing the cancer progression by adding nodes which represent the
loss of a mutation, i.e., a node labeledm−

l , representing the potential losses. Observe that
losses can appear at any of the k copies mi, with 1 ≤ i ≤ k, of m and that the ordering of
the losses is not relevant. The state of the leaf x is the set of mutationsm that, on the path
from the root to x, have been acquired — the path has a vertex labeled m+ — but never
lost — the path has no vertex labeledm−

i . We stress that, when deletions are introduced,
the set of feasible phylogenies which represent a given solution is no longer unique as in
the case of perfect phylogeny — see Fig. 6 for an example.
An exact fixed-parameter algorithm, where the parameter is the number of characters,

for testing whether a binary matrix is a persistent model, i.e. a Dollo(1) model has been
proposed in [37], while some polynomial time solvable restrictions have been studied in
[40]. Testing if a binary matrix I has a phylogeny under the Dollo(k) model has been
attacked via ILP for k = 1 [41] and for general k [12]. Observe that the ILP in [41] is
based on a previous work on completing missing entries of a binary matrix via ILP to
get a perfect phylogeny [42]. We will exploit the latter formulation in [12], as well as its
extension to incomplete matrices [43], to describe an ILP approach for tumor phylogeny
reconstruction from single cell data.
We will exploit the latter formulation to describe an ILP approach for tumor phylogeny

reconstruction from single cell data.
First, we recall that a well known characterization of perfect phylogenies states that a

complete binary matrixM has a directed perfect phylogeny if and only if it has no conflict-
ing pair of columns — two columns are in conflict if they contain all three configurations
(0, 1), (1, 0), (1, 1) — inducing the so-called forbidden matrix [21].
The ILP formulation on incomplete matrices [42] essentially consists of introducing a

binary variable for eachmissing entry, and describing a set of constraints towards the goal
of minimizing the conflicting pairs.

Fig. 6 Example of two Dollo phylogenies that explain the same binary matrix. It is important to notice that
the ancestral order of mutations c, a and b is inverted but the two different trees can equally explain the
input binary matrix. In fact, in a Dollo phylogeny the order of two mutations can be inverted and, due to the
introduction of deletions, they could both be correct solutions for a given input
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To adapt this approach to persistent phylogenies [41] to our setting—Dollo(k), we need
a property (see Fig. 7 for an illustration):

Proposition 1 [12] Let M be an incomplete binary matrix. Let Me be the (incomplete)
extended binary matrix obtained from M as follows: for each entry M

[
i, j

]
we have the

entry Me
[
i, j+

]
and k entries Me

[
i, j−l

]
(for 1 ≤ l ≤ k) such that (1) if M

[
i, j

] = 1 then
Me

[
i, j+

] = 1 and Me
[
i, j−l

] = 0 for 1 ≤ l ≤ k, (2) if M
[
i, j

] = 0 or M
[
i, j

]
is miss-

ing, then the entries Me
[
i, j+

]
, Me

[
i, j−l

]
are all missing. Then M has a completion M∗

that has a Dollo(k) phylogeny if and only if Me has a completion M∗
e that has a per-

fect phylogeny such that M∗
e
[
i, j+

] − ∑
l≤k M∗

e
[
i, j−l

] = M
(
i, j

)
if M

(
i, j

) ∈ {0, 1} and
M∗

e
[
i, j+

] ≥ ∑
l≤k M∗

e
[
i, j−l

]
if M

(
i, j

)
is missing.

Our main contribution is combining the ILP formulation of [12] with the definition
of tumor perfect phylogeny reconstruction from single cell data, to obtain a new ILP
formulation, and then augmenting it with a Hill Climbing approach, for tumor phylogeny
reconstruction from single cell data that incorporates mutation losses in the model.

Fig. 7 An input matrixM (top left), a Dollo(2) completionM∗ (center left) and its corresponding phylogeny
tree T (top right). The corresponding extended matrixMe (bottom left) and a completionM∗

e (bottom right)
according to Proposition 1. In the tree, boldfaced characters correspond to changes between each node and
its parent
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The ILP formulation

In this section we present our ILP formulation for the tumor phylogeny reconstruction
from single cell data. We recall that the input of the problem is an incomplete matrix I
represented as a set of binary variables I(c,m) such that I(c,m) = 1 if cell c has (according
to the input data) the mutation m, while I(c,m) = 0 if cell c does not have (according to
the input data) the mutation m. Notice that the input data is incomplete, hence we can
have pairs (c,m) such that the variable I(c,m) does not exist.
The variables E

(
c,m+)

and E
(
c,m−

i
)
encode the extended matrix that we want to com-

pute and that will satisfy Proposition 1. Differently from the variable I (·, ·), for each pair
(c,m), all variables E

(
c,m+)

and E
(
c,m−

i
)
exist.

We introduce some auxiliary variables that help in making the ILP formulation easier
to read. The binary variables F(c,m) indicate if, in the predicted matrix, the cell c has the
mutation m. By Proposition 1, F(c,m) = 1 if and only if E

(
c,m+) = 1 and all E

(
c,m−

i
)

are equal to zero. Moreover, the real variables w(c,m) represent the probability of E(c,m)

given I(c,m) — the formula of the actual values depends on the possible cases, that is if
we have a true positive, a true negative, a false positive, and a false negative.
To establish if two columns are in conflict, we introduce the final binary variables

B(p, q, a, b), which are defined for each pair of columns (p, q) and for each possi-
ble pair of values (a, b) ∈ {(0, 1), (1, 0), (1, 1)}. More precisely, B(p, q, a, b) indicates if
for the pair (p, q) of columns there exists a cell c where E(c, p) = a and E(c, q) =
b. Notice that two columns p and q are conflicting iff B (p, q, 0, 1) + B(p, q, 1, 0) +
B(p, q, 1, 1) = 3. We are now ready to introduce our ILP formulation, where we use C
to denote the set of cells (i.e., the rows of the input matrix I), M to denote the muta-
tions (i.e., the columns of I), and M∗ to denote the set of possible mutation gains or
losses.
Finally, the objective function is the logarithm of the likelihood of the inferred matrix F

given the input matrix I — this allows to express the objective function as a summation,
instead of a product. Moreover, notice that Eq. (3) is a sum of logw(c,m) terms, which
apparently is not a linear function. But Eqs. (5) and (6) show that w(c,m) is actually a
linear function of F(c,m): since F(c,m) is a binary variable that can be only 0 or 1, a trivial
manipulation allows us to replace logw(c,m) with a linear function of F(c,m) — such
function is omitted for the sake of clarity.

max
∑

c∈C

∑

m∈M
logw(c,m), subject to (3)

F(c,m) = E
(
c,m+) −

∑

i≤k
E

(
c,m−

i
) ∀c ∈ C, m ∈ M (4)

w(c,m) = (1 − α) F(c,m) + β (1 − F(c,m)) ifI(c,m) = 1 (5)

w(c,m) = αF(c,m) + (1 − β) (1 − F(c,m)) ifI(c,m) = 0 (6)

B(p, q, 0, 1) ≥ E(c, q) − E(c, p) ∀c ∈ C, p, q ∈ M∗ (7)

B(p, q, 1, 0) ≥ E(c, p) − E(c, q) ∀c ∈ C, p, q ∈ M∗ (8)

B(p, q, 1, 1) ≥ E(c, p) + E(c, q) − 1 ∀c ∈ C, p, q ∈ M∗ (9)

B(p, q, 0, 1) + B(p, q, 1, 0) + B(p, q, 1, 1) ≤ 2 ∀p, q ∈ M∗ (10)

B (·, ·, ·, ·) , F (·, ·) ,E (·, ·) ∈ {0, 1}
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The total number of variables and constraints in the formulation are O
(
nm + m2) and

O
(
nm2) respectively.
Recent methods [44] assume that it is unrealistic to model false positives and false neg-

atives occurrences as independent with a fixed probability for all cells and thus propose
using different values for each. While this is not explored in our paper, we notice that it is
fairly trivial to extend the above ILP formulation to introduce non-uniform values (which
are still given as input): we change constraints (5) and (6) to use αc,m and βc,m instead
of α and β . Since the new values αc,m and βc,m would still be user-given constants the
formulation still holds identically.

Software implementation: gpps

Our approach has been implemented in Python, the resulting program called gpps. The
program generates the ILP formulation which is fed to an ILP solver in order to get the
optimal solution. In our experiments we have used Gurobi 8.0 as the ILP solver. Addition-
ally, we have introduced a timeout for a run, since the generated ILP problem could be
large and its resolution could require a considerable amount of time. We exploit the fact
that Gurobi can be halted at any time and it returns the best feasible solution computed
so far. Hence, imposing a timeout allows the ILP solver to compute a solution with a small
total error.
Since the solution produced by ILP with a timeout will be suboptimal, we used a local

search algorithm to continue the exploration of the solution space starting from the out-
put of the ILP. We implemented a variation of the standard Hill Climbing (HC) search —
which iteratively moves from a starting point to all the surrounding neighbors optimiz-
ing a given function. The best scoring neighbor is set as the new starting point and the
process continues until there is no new solution that improves the current best one.
In our case, we say that a tree T̃ is a neighbor of tree T if there exist two nodes u, v ∈ T

such that, by pruning the subtree rooted in u and by reattaching it as a child of v, we obtain
the tree T̃ — such operation is called Subtree Prune and Reattach, see Fig. 8. In moving
a subtree of T to another part of the tree, nodes representing the loss of a mutation may

Fig. 8 A tree (left) and its neighbor (right) via a Subtree Prune and Reattach operation where we prune the
subtree rooted in u and reattach it as a child of v. Note that this operation is not to be confused with the
well-known Subtree Prune and Regraft operation [45] for binary leaf-labeled trees
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no longer apply. However, in this case, all such nodes can simply be contracted, i.e., by
removing the node and adding an edge from its father to its child (which is necessarily
unique, if it has one). For example, if f in the tree on the left in Fig. 8 is instead the loss b−

of mutation b, this no longer applies in the subtree on the right after the Subtree Prune
and Reattach operation, because mutation b is no longer acquired above this subtree —
we simply remove this node b−. Note that since loss nodes are only removed, the Dollo(k)
property of a tree is preserved in performing this operation.
Since, according to the Subtree Prune and Reattach operation, the neighbors of a tree

are the set of trees generated by all possible pairs of nodes u, v ∈ T , the size of this neigh-
borhood is quadratic in the size ofT, which is not computationally feasible. For this reason
we modified the standard HC algorithm by generating N random neighbors of the start-
ing point at each iteration, instead of exploring all of the surrounding solutions, and then
stopping the algorithm after M iterations — where N and M are user-defined parame-
ters. The final result of this process is thus the best solution explored in this modified HC
phase.
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