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Abstract—In computer architecture, significant innovation fre-
quently comes from industry. However, the simulation tools used
by industry are often not released for open use, and even when
they are, the exact details of industrial designs are not disclosed.
As a result, research in the architecture space must ensure that
assumptions about contemporary processor design remain true.

To help bridge the gap between opaque industrial innovation
and public research, we introduce three mechanisms that make
it much easier for GPU simulators to keep up with industry.
First, we introduce a new GPU simulator frontend that minimizes
the effort required to simulate different machine ISAs through
trace-driven simulation of NVIDIA’s native machine ISA, while
still supporting execution-driven simulation of the virtual ISA.
Second, we extensively update GPGPU-Sim’s performance model
to increase its level of detail, configurability and accuracy. Finally,
surrounding the new frontend and flexible performance model is
an infrastructure that enables quick, detailed validation. A com-
prehensive set of microbenchmarks and automated correlation
plotting ease the modeling process.

We use these three new mechanisms to build Accel-Sim, a
detailed simulation framework that decreases cycle error 79
percentage points, over a wide range of 80 workloads, consisting
of 1,945 kernel instances. We further demonstrate that Accel-Sim
is able to simulate benchmark suites that no other open-source
simulator can. In particular, we use Accel-sim to simulate an
additional 60 workloads, comprised of 11,440 kernel instances,
from the machine learning benchmark suite Deepbench. Deep-
bench makes use of closed-source, hand-tuned kernels with no
virtual ISA implementation. Using a rigorous counter-by-counter
analysis, we validate Accel-Sim against contemporary GPUs.

Finally, to highlight the effects of falling behind industry, this
paper presents two case-studies that demonstrate how incorrect
baseline assumptions can hide new areas of opportunity and lead
to potentially incorrect design decisions.

Index Terms—GPGPU, Modeling and Simulation

I. INTRODUCTION

Research cannot look ahead, if its baseline assumptions
are too far behind. To keep up with industry, state-of-the-
art academic and public research must both be aware of and
adapt to changes in contemporary designs. In the computer
architecture space, keeping up with proprietary industrial ma-
chines is a challenge. This is a problem in all segments of
the processor industry, but perhaps a more acute challenge in
the programmable accelerator space, where the rapid scaling
of parallelism, introduction of new processing pipelines (i.e.
Tensor Cores [10]) and undocumented changes to both the
microarchitecture and Instruction Set Architecture (ISA) are
commonplace in each new product generation. GPU architec-
tures have widely embraced the use of a virtual ISA (VISA),
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which provides hardware vendors with tremendous flexibility
to make machine ISA (mISA) changes while still maintaining
binary compatibility. Vendors like NVIDIA keep the operation
of these ISAs private, while others like AMD document each
new machine ISA, but freely make drastic changes which
open-source simulators must then implement.

This situation presents three separate, but related challenges:
(1) How do academic researchers quickly simulate a new, often
undocumented ISA every year and a half? (2) Once func-
tionally correct, how are changes to the architecture detected
and modeled? (3) What is a sustainable, rigorous validation
mechanism to ensure that new baselines are still tracking
industrial designs? We present a new simulation framework,
Accel-Sim, that is designed to address all three challenges.

Accel-Sim introduces a flexible frontend, that enables it to
operate in either trace- or execution-driven mode. Accel-Sim
includes a trace-generation tool (built using the NVBit [70]
binary instrumentation tool), that produces machine ISA in-
struction traces from any CUDA binary, including those that
use closed-source libraries, like cuDNN [43]. These machine
ISA traces are then converted into an ISA-independent in-
termediate representation that is input to the performance
model. The trace-driven frontend allows Accel-Sim to simulate
the machine ISA in new cards without implementing the
ISA’s functional model and increases the accuracy of the
simulator over executing the virtual ISA. However, trace-based
simulation has its drawbacks. Evaluating new designs that
rely on the data values stored in registers or memory [72]
and global synchronization mechanisms [63] are either not
possible or very difficult to study without emulation-based
execution-driven simulation. Since Accel-Sim is based on an
ISA-independent performance model, it is also capable of
running emulation-based execution-driven simulations using
NVIDIA’s relatively stable, well documented virtual ISA,
PTX. Accel-Sim is the first academic simulation framework
to support contemporary CUDA applications, modern Source
and ASSembly (SASS) machine ISAs and simulate hand-tuned
assembly in closed-source GPU binaries.

Table I presents a survey of the open-source GPU simulation
space. Over the last decade, several GPU simulators have been
developed, each serving a different purpose. MacSim [28] is
an early GPU simulator that performs trace-based simulation
of NVIDIA’s virtual ISA and includes a Fermi-like microar-
chitecture model. Recent work on MacSim has extended the



TABLE I: Landscape of open-source GPU simulation. Accuracy numbers are taken from each simulator’s respective publication.
GPGPU- Gem5- MGPU- MacSim Multi2- Accel-Sim
Sim 3.x [5] APU [6], [18] Sim [67] [14], [28] Sim [15], [69]
SA VISA + VISA + VISA + vsas | MSAE VISA +
mISA GT200 AMD mISA AMD mISA | Intel mISA P NVBit-generated [70] mISA
mISA AMD
Front-end Execution Execution Execution Trace Execution Trace- and Execution-driven
Validated perf. model Fermi AMD AMD Fermi Kepler Kepler, Pascal, Volta, Turing
Validated Workloads 14 10 7 N/A 24 80
Reported Accuracy (error %) 35% [1] 42% [18] 5.5% [67] N/A 19% [15] 15%
. . j 12.5 (Trace-driven mode)
Simulation rate (KIPS) 3 N/A 28 [67] N/A 0.8 [67] 6 (Exec-driven mode)
Multi-threaded simulation X X v X X X
Hand-tuned NVIDIA libraries
(ie. Volta cuDNN) 4 u u u 4 /

simulator to execute traces for Intel GPUs [14]. Multi2-Sim is
a versatile GPU simulator that has emulation-based functional
simulation for both the virtual ISA and a subset of older
machine ISAs from both AMD and NVIDIA. GPGPU-Sim [5]
is a CUDA-centric simulator capable of functionally executing
NVIDIA’s virtual ISA and a subset of an older machine ISA.
More recently, Gem5 has been augmented to support an APU
performance model for AMD’s virtual and machine ISAs [6].
MGPU-Sim [67] is a parallel GPU simulator for AMD’s
virtual and machine ISAs. One of the primary drawbacks with
all the simulators that support execution-driven machine ISAs
is the challenge of keeping up with changes to the mISAs
functional model. As a result, only a limited subset of the
instruction set (and hence applications) are ever fully sup-
ported. This is especially important for supporting optimized
libraries that often use exotic, hand-tuned machine code to
improve performance, such as NVIDIA’s cuDNN. Although
recent work has augmented GPGPU-Sim [31] to enable virtual
ISA execution of these libraries, the functionality only works
in pre-Volta GPUs. For Volta and Turing, cuDNN executes
hand-tuned SASS kernels for which there is no virtual ISA
implementation. Accel-Sim’s support for machine ISA traces
bypasses all of these issues. In addition, existing GPU simu-
lation frameworks lack a systematic methodology to validate
and model new architectural designs quickly.

Shifting the focus from implementing an undocumented
functional model enables Accel-Sim to focus on the perfor-
mance model. We extensively modify GPGPU-Sim’s perfor-
mance model (which we release as part of GPGPU-Sim 4.0)
to increase its level of detail, configurability and accuracy. To
facilitate rigorous validation, the performance model outputs
a set of counters that have 1:1 equivalents with hardware
data emitted by NVIDIA profilers, in addition to the de-
tailed statistics that can only be provided by simulation.
These counter values are then fed into an automated tuning
framework that generates correlation plots and modifies the
simulator’s configuration files, making it easier to create a
validated performance model for a new GPU.

Using our new frontend and validation infrastructure, we
perform an extensive modeling effort that builds on GPGPU-
Sim’s [5] performance model to create a more flexible, ex-
tensible GPU simulator. Through careful counter-by-counter
validation, we expose several changes to contemporary GPU
hardware. We demonstrate Accel-Sim’s flexibility and accu-
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racy by validating it against four generations of NVIDIA
GPUs ranging from Kepler to Turing, performing an extensive
side-by-side comparison of Accel-Sim and GPGPU-Sim 3.x
modeling a Volta V100 [46].

During the course of this analysis we uncover a number of
interesting insights into how contemporary hardware works.
We utilized every publicly available resource to construct the
performance model, capturing the details of what others have
either disclosed or discovered [26], [34], [37], [73]. In the
process of correlating the memory system we discover and
model several undocumented features, such as: details of the
streaming, adaptive L1 data cache, sectoring of both the L1
and L2, a sub-warp, sector-centric memory coalescing policy,
and an L2 write policy that conserves memory bandwidth in
the presence of sub-sector reads.

Finally, this paper performs two case-studies to highlight
new research opportunities on contemporary GPUs and to
demonstrate pitfalls that are alleviated by having a simu-
lation infrastructure that is easier to validate. In particular,
we demonstrate that out-of-order memory access scheduling,
which appears relatively ineffective using an older model,
yields a significant performance improvement when the level
of detail in the memory system is increased to more closely
match hardware. We also demonstrate that the L1 cache
throughput bottleneck present in GPUs no longer exists in
contemporary hardware, decreasing the effectiveness of tech-
niques that selectively bypass the L1 for throughput reasons.

This paper makes the following contributions:

« It introduces Accel-Sim, a simulation framework explic-
itly designed to make modeling and validating future
GPUs easier. By utilizing a flexible frontend, capable of
switching between execution-driven vISA simulation and
trace-driven mISA simulation, we are able to simulate
hand-tuned machine code from NVIDIA binaries without
giving up the option to perform execution-driven sim-
ulation when appropriate. We demonstrate Accel-Sim’s
flexibility by modeling GPUs from Kepler to Turing.

o It performs a rigorous, counter-by-counter comparison
of our new performance model against state-of-the-art
simulation when modeling an NVIDIA Volta card, reduc-
ing error by 79 percentage points. Through this analysis,
we uncover and model several previously undocumented
architectural features in contemporary GPUs.
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Fig. 1: Accel-Sim’s end-to-end flow.

o It introduces a comprehensive set of validation infras-
tructure that includes: a set of targeted GPU microbench-
marks, an automated parameter tuner and an automatic
correlation visualizer, useful for adapting Accel-Sim to
model new designs quickly.

It performs a set of case-studies to concretely demonstrate
the effects of falling behind industry and uses Accel-Sim
to suggest future areas of new research for GPUs.

II. ACCEL-SIM SIMULATION FRAMEWORK

Figure 1 depicts an overview of our new simulation frame-
work. Accel-Sim is composed of: (1) a flexible frontend
that supports execution-driven simulation of NVIDIA’s virtual
ISA and trace-driven simulation of contemporary machine
ISAs, (2) a flexible and detailed performance model, (3) a
correlation generation tool, and (4) a microbenchmarks-based
configuration tuner. Together, the four components reduce the
effort required to model contemporary and future GPUs.

A. Flexible frontend

Our new frontend supports both VISA (PTX) execution-
driven and mISA (SASS) trace-driven simulation. In trace-
driven mode, mISA traces are converted into an ISA-
independent intermediate representation, that has a 1:1 cor-
respondence to the original SASS instructions. Table II de-
picts an example of how SASS instructions from different
machine generations and the virtual instructions from PTX
are translated into the ISA-independent representation used by
the performance model. The intermediate format is integrated
into GPGPU-Sim 4.0 and represents the interface between the
frontend and the performance model. The format includes all
the information necessary to perform timing simulation, in
particular: (1) the instruction’s control flow (PC and active
mask), (2) the instruction’s datapath information (registers
accessed and execution unit) and (3) memory addresses for
1d/st instructions. In execution-driven mode, the active mask
and memory addresses are computed by emulating the PTX
instructions, whereas these values are embedded in the trace
when executing the machine ISA.

We generate the traces from NVIDIA GPUs using Accel-
Sim’s tracer tool that is built on top of NVbit [70]. We use
base+stride compression for the memory traces to keep the
trace sizes within an acceptable range. When a new SASS
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Fig. 2: Updated GPGPU-Sim 4.0 performance model.

ISA is released, users provide the frontend with an ISA Def
file that specifies where each instruction should be executed.
This is a relatively simple mapping that can be derived from
publicly available information on NVIDIA’s machine ISA [42].

By not emulating hundreds of scalar threads each cycle,
Accel-Sim’s trace-driven mode improves simulation speed
versus execution-driven mode. Prior work [18], [22] demon-
strates that executing GPU vISAs may not be an accurate
representation of some workloads. The mISA representation
of the program includes register allocation and other compiler
optimizations, whereas the VISA assumes an infinite register
space and has naive instruction scheduling. Further, supporting
SASS gives researchers the ability to simulate closed-source,
optimized libraries, such as cuDNN [43], which are written in
hand-tuned SASS.

B. Flexible and detailed performance model

To accurately model contemporary GPUs, we make exten-
sive modifications to GPGPU-Sim 3.x’s performance model.
This new performance model is released as part of GPGPU-
Sim 4.0 and can be used, independent of Accel-Sim, for PTX
simulation. Accel-Sim utilizes our GPGPU-Sim 4.0 perfor-
mance model, interfacing with it through the ISA-independent
instruction representation.

Figure 2 depicts an overview of the performance model.
Streaming multiprocessors (SMs) are composed of multiple
warp schedulers. Each warp scheduler has a dedicated register
file (RF) and its own execution units (EUs). A warp scheduler
with its dedicated RF and EUs is called a sub-core [10],
[55]. Sub-cores are isolated, sharing only the instruction cache
and the memory subsystem. The memory coalescing unit is
designed to support sub-warp coalescing on every consecutive
group of N threads. Our performance model is capable of
simulating both separate and unified L1D cache and shared
memory scratchpad [45]. Contemporary GPU architectures
make use of an adaptive cache mechanism, in which the device
driver transparently configures the shared memory capacity
and L1D capacity on a per-kernel basis. Using the adaptive
cache, if a kernel does not utilize shared memory, all the on-
chip storage will be assigned to the L1D cache [50].



TABLE II: Example demonstrating how mISA instruction traces and VISA instructions translate into the ISA-independent
intermediate representation used by the performance model. In traces, the mapping between opcode and execution unit is
provided by the ISA def file in Figure 1.* indicates these values

are computed using emulation.

Execution Mode Example Instruction - - }SA-mdependem representation
PC Active Reg info: Exec. unit Memory Memory scope
mask (dsts, srcs) . addresses, width
[Trace] Kepler mISA LD.E R4, [R6] 0x78 OxFFFF R4, R6 Memory unit 0x2000,..., 4 global, L1 cached
[Trace] Volta mISA LDG.E.U32.SYS R4, [R6] 0x32 | OxOOFF R4, R6 Memory unit | 0x4000,..., 4 global, L1 cached
[Trace] Pascal mISA TADD.X R7,R7,R0 0x12 | OxO0EF | R7, RO INT unit - -
[Exec] PTX vISA Id.global.cg.b32 rl, [r0]; * * R1, RO Memory unit * global, L2 cached

With the slowing growth of Moore’s law, domain-specific
processing pipelines continue to be introduced in GPUs (i.e.
Tensor cores in Volta [46]). To ensure extensibility with this
trend, Accel-Sim supports adding simple execution units from
the configuration file, without the need to update the codebase.
To add a new specialized unit, the user declares the new unit
in the configuration file and maps the machine ISA op codes
that use this unit in the ISA def file, as described in Figure 1.
If execution-driven PTX support is required, then the user
must also implement the code to emulate the new instruction’s
functionality. To determine the latency and throughput of the
new unit, the user specifies a sequence of instructions that
can be measured by the microbenchmark tuning framework
(described in Section II-C). We follow this process to model
Volta and Turing’s Tensor Cores.

Our GPU cache model supports a throughput-oriented,
banked, and sectored cache design [32], [62]. The cache is
flexible enough to model GPUs from Kepler through Turing.
We also model the CPU-GPU memory copy engine, since
all DRAM accesses go through the L2, including CPU-GPU
memory copies [53]. To reduce unbalanced memory accesses
across L2 memory partitions, which we refer to as partition
camping [3], [33], we add advanced partition indexing that
xors the L2 bank bits with randomly selected bits from the
page row bits using a Galois-based irreducible polynomial
(IPOLY) interleaving mechanism [56]. Partition camping is
a major problem in contemporary GPUs that have 2" memory
partitions, like High Bandwidth Memory (HBM) [24] which
has 8 channels per stack [33], [51]. IPOLY hashing is guaran-
teed to be conflict-free for all 2" strides, which are common in
GPGPU applications, and also shows reasonable, deterministic
performance for other strides [56].

In the memory system, we model new advances in HBM
and GDDRG6 [24], [51]. This includes the dual-bus interface to
launch row and column commands simultaneously, increasing
bank parallelism [51], and detailed HBM timing. Further, we
implement well-known memory optimization techniques such
as advanced xor-based bank indexing and separate read/write
buffers, to reduce memory bank conflicts and read-write inter-
ference [8], [30], [66].

C. Tuner and targeted microbenchmarks

Accel-Sim includes a microbenchmark suite to pinpoint
latency, bandwidth and geometry changes to known hardware
structures from one generation to another. When new hardware
is released, the user provides a hardware def header file to
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#define ITERS 32768
#include <HW_def.h> //L1_ARRAY_SIZE is defined in this header based on HW

__global__ void I11_lat(uint32_t *startClk, uint32_t *stopClk, uint64_t *data) {
// initialize the pointer-chasing array and warm up L1 cache
for (uint32_ti=0; i<(L1_ARRAY_SIZE-1); i++)

datali] = (uint64_t)(data + i+ 1);

uint64_t * ptr0 = data, ptrl = NULL;
// start timing
startClk = clock();

// pointer-chasing for ITERS times SASS

// use ca modifier to cache the load in L1 LDG.E.64 R12, [R10

for (uint32_ti=0; i<ITERS; ++i){ LDG.E.64 R12, [R12
asm volatile ("Id.global.ca.u64 ptri, [ptr0];"); LDG.E.64 R14, [R12

} LDG.E.64 R16,
LDG.E.64 R16,

[R10]
[R12]
[R12]
ptr0 = ptrl; //swap the register for the next load LDG.E.64 R14, [R14];
[R14]
[R16]

// stop timing
stopClk = clock();
}

11_lat<<<1,1>>>(startClk , stopClk , data);
printf("L1 Latency = %12.4f cycles\n", (float)(stopClk-startClk) / ITERS);

Fig. 3: L1 latency microbenchmark

the tuner, as shown in Figure 1. The file is used by the
microbenchamrks to help discover non-public configuration
parameters. The def file enumerates a minimal amount of
information (such as number of SMs, warp size, etc.) that can
be derived from publicly available documents [46].

In total, we have 38 microbenchmarks that span from
L1/L2/shared memory latency and attained bandwidth, cache
write policy, cache configuration, access/sector granularity,
number of cache banks, memory coalescing policy, cache
streaming behavior, execution unit latency/throughput and
DRAM latency/bandwidth for different data elements: float,
double and 128-bit vector. To illustrate the general configura-
tion of the microbenchmarks, Figure 3 lists the code for our
L1 latency microbenchmark that uses pointer chasing [34],
[60] to create data dependencies with minimal overhead. The
microbenchmark is written such that the kernel’s execution
time is dominated by the L1 latency. After execution, the
tuner reads the microbenchmark’s output and generates a
configuration file for the performance model.

For other parameters that cannot be directly determined
by our microbenchmarks (such as warp scheduling, memory
scheduling, the L2 cache interleaving granularity and the L2
cache hashing function), Accel-Sim simulates each possible
combination of these four parameters on a set of memory



bandwidth microbenchmarks (11-bw, 12-bw, shd-bw and mem-
bw). The combination with the highest average hardware
correlation is chosen by the tuner.

D. Correlator

An automated configuration tuner does not capture more
drastic architectural changes in different generations. Manual
effort is required to model such changes. However, the mag-
nitude of the effort can be lessened with quickly generated,
targeted information on inaccuracy. Accel-Sim’s correlation
tool automates the process of generating counter-by-counter
correlation data for different architectures. The tool generates
graphs and data that serve as correlation guidance to pin-
point workloads and metrics where the simulator is not well
correlated to hardware. Using insights from the correlation
of various performance counters over different realistic work-
loads and microbenchmarks, performance bugs or misrepre-
sentations in the simulator are identified and corrected.

E. Simulation rate

Adding detail and flexibility to a performance model often
comes at the expense of increased simulation time. Although
Accel-Sim is not multithreaded, we take steps to improve
its speed. With our improvements, Accel-Sim in trace-driven
mode is able to perform 12.5 kilo warp instructions per
second, a 4.3x simulation time improvement over GPGPU-
Sim 3.x. Half of our speed improvement comes from the
fact that trace-driven mode avoids functional execution. The
second half comes from a simulation optimization strategy
we call simulation-gating, which is a trade-off between event-
driven and cycle-driven simulation. GPU simulations involve
thousands of in-flight memory requests and hundreds of active
threads. Thus, there will always be something to simulate each
cycle. Similar to GPGPU-Sim 3.x, the updated performance
model is cycle-driven, ticking all the components every cycle.
However, we observe that the simulator ticks many empty
components and spends a significant amount of time doing
non-useful work. To overcome this issue, we keep a status
state for each component (core, execution unit, cache, dram
channel), then the simulator only ticks active components
every cycle and skips unnecessary code and loop iterations
when there is no useful work in the pipeline. Finally, in
trace-driven mode, the user can set kernel-based checkpointing
to select the desired hotspot kernels to simulate and avoid
executing long running initialization kernels, which can further
improve simulation speed.

III. WORKLOADS

To validate Accel-Sim and perform a detailed comparative
analysis against prior work, we use a wide range of applica-
tions from different domains and benchmark suites. With the
exception of a handful of applications with trace-size issues,
we run all the applications found in Rodinia 3.1 [9], the CUDA
SDK [40], Parboil [65], Polybench [16], CUTLASS [47],
our microbenchmark suite, and cutting-edge machine learning
workloads from the Deepbench benchmark suite [35]. The
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TABLE III: Workloads used in our study. Table VIII lists the
hardware cycles for each workload.

Benchmark Suite ‘Workloads Trace Size [Compressed]

Rodinia 3.1 [9] b+tree, backprob, bfs, hotspot,
srad-vl, sc, nn, needle, dwt2d, lud,

lavaMD, kmeans, myocyte

302 GB [15 GB]

CUDA SDK [40] sp, blk, vec-add, traspose, conv, 18 GB [1.2 GB]
scan, sorting-net, walsh-transform,

histo, mergesort

Parboil [65] sad, sgemm, stencil, cutcp, mri-q, 250 GB [12 GB]

histo, spmv, bfs

Polybench [16] 2dconv, 3dconv, 2mm, 3mm, mvt, 743 GB [33 GB]

atax, bicg, gesummv, gemm, syrk

Microbenchamrks 11-lat, 11-bw, shd-lat, shd-bw,
12-lat, 12-bw, mem-lat, mem-bw,

maxflops

3 GB [94 MB]

CUTLASS [47] SGEMM  with tensor  cores
WMMA (10 different input) and
SGEMM with normal floating

point (10 different input)

25 1B [125 GB]

Deepbench [35] GEMM_bench (10 train, 10 infer-
ence), CONV_bench (10 train, 10
inference), RNN_bench (10 train,

10 inference)

2.6 TB [130 GB]

sum total is 140 workloads from the applications listed in
Table III. The applications cfd, heartwall, hotspot3D, huffiman,
leukocyte, srad_v2 from Rodinia, /bm and tpacf from Parboil,
corr, cover, fdtd2d and gram-shm from Polybench are omit-
ted since their trace sizes are prohibitively large. We leave
developing trace compression techniques and gradual trace
creation to support these workloads as future work. We note
that without traces, Accel-Sim is still able to execute these
apps in execution-driven mode. The total disk size required
for all the traces we simulate is 6.2 TB uncompressed (317
GB compressed) for each card generation. Table III lists the
trace size for all the benchmark suites. Generating all 6.2 TB
worth of traces takes approximately 48 hours using one GPU.

All the workloads are compiled with CUDA 10, using the
compute capability of their respective architecture (i.e. sm_70
in the case of Volta). We run the workloads with the input
sizes provided by each benchmark suite. Since deep learning
performance is highly sensitive to input size, we run Deep-
bench with multiple inputs, 10 inputs for training and 10 inputs
for inference. For the Volta and Turing cards, we execute two
versions of the CUTLASS matrix-multiply apps, one that uses
tensor cores and one that uses 32-bit floating point operations.
For CUTLASS, the input sizes from DeepBench’s matrix
multiply kernels are used. Hardware counters are collected
using the nvprof [44] and nsight [49] command-line profilers
from CUDA 10. We collect the timing data on a per-kernel
basis by running the applications several times and averaging
the results.

IV. MODELING DIFFERENT GPU GENERATIONS

To demonstrate Accel-Sim’s flexibility, we model four dif-
ferent NVIDIA GPU generations (Kepler, Pascal, Volta and
Turing). First, we generate the traces for all the benchmarks
using Accel-Sim’s tracing tool on each card'. Second, we pro-
vide the ISA def and HW Def files for each card from publicly
available documents [42], [46] to the Accel-Sim frontend and

'We use the Volta (sm_70) traces to simulate Turing (sm_75), as NVBit
support for Turing is not expected until Summer 2020.



TABLE IV: Accel-Sim modeling properties across four different GPU generations. SPU: Single-Precision Floating Point Unit.

DPU: Double-Precision Unit. SFU: Special Function Unit.

Kepler TITAN [39]

Pascal TITAN X [41]

Volta QV100 [46]

Turing RTX 2060 [48]

Machine ISA sm_35 sm_62 sm_70 sm_75
Core Model shared model sub_core model sub_core model sub_core model
Inst Dispatch/Issue dual-issue dual-issue single-issue single-issue
Execution units SPUs, SFUs SPUs, SFUs, DPUs SPUs, SFUs, Tensor Cores SPUs, SFUs, Tensor Cores

L1 Configuration

128B line, 1 bank , 96-way,
128B/cycle, 42 cycles

32B sector, 2 banks,
48-way, 64B/cycle, 80 cycles

32B sector, adaptive, 4 banks,
256-way, 128B/cycle, 28 cycles

32B sector, 4 banks,
96-way, 28 cycles

L2 Configuration

32B sector, 24 banks,
190 cycles

32B sector, 24 banks,
238 cycles

32B sector, 64 banks,
212 cycles, IPOLY hashing

32B sector, 24 banks,
226 cycles

DRAM Configuration GDDR5

GDDR5

HBM GDDR6

TABLE V: Accel-Sim cycle error and correlation factor across
four different GPU generations.

Kepler [39] Pascal [41] Volta [46] Turing [48]
TITAN TITAN X QV100 RTX 2060
MAE Corr. MAE Corr. MAE Corr. MAE Corr.
PTX
Exec 28% 0.99 53% 0.97 34% 0.98 32% 0.99
SASS
Trace 25% 0.99 30% 0.97 15% 1.00 25% 0.99

tuner respectively, as illustrated in Section II. Third, we run
our microbenchmark suite and automated tuner on each card
to configure the performance model’s parameters for the card
in question. Fourth, using Accel-Sim’s correlation tool, we
generate a set of graphs for performance counters to validate
and improve correlation accuracy. Table IV shows the machine
ISA version and modeling parameters obtained using Accel-
Sim’s tuner to model each GPU generation. These correlation
results drive the development of our performance model and
enable us to uncover a number of interesting insights into
contemporary hardware in different GPU generations. Three
significant aspects are:

Sub-Warp, Sectored Memory Coalescer: We find that in
Pascal, Volta and Turing, both the L1 and L2 caches have 32B
sectors [27], with 128B cache lines. This sub-line fetching
behavior has a significant impact on irregular applications
running with the L1 cache enabled. To support an access gran-
ularity of 32B into the cache, the memory coalescer operates
across sub-warps of eight threads, as opposed to grouping 32
threads into a wide 128B access, as other contemporary GPU
simulators do when the L1 cache is enabled. We speculate
that the caches have been sectored to: (1) mitigate the memory
over-fetching for uncoalesced accesses [57], and (2) reduce the
cache tag overhead, especially the high power consumption as-
sociated with the large content-address memory [52] structures
required for 4x more tag comparisons if a 32B line is used as
opposed to a 128B with 32B sectors. Our experiments suggest
that Kepler does not support such a coalescing mechanism.
Accel-Sim’s flexibility allows it to model either the legacy
Kepler configuration or the Pascal/Volta/Turing configurations
with reasonable accuracy.

Improved L1 throughput: The L1 cache in Volta and Pascal
is a streaming cache [10], [45], which allows many cache
misses to be in flight, regardless of how many cache lines
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are allocated from the unified scratchpad + L1 (in Volta) or
the relatively limited 24kB L1 cache (in Pascal). By running
a microbenchmark, similar to [37], we evaluate miss-status
holding register [68] (MSHR) throughput and find that the
number of MSHR entries has increased substantially. Also,
we notice that, independent of L1 configured size, the MSHR
throughput is the same, even if more of the on-chip SRAM
storage is devoted to shared memory.

Write-Aware Cache Design: Using Accel-Sim’s detailed
correlation plots, our initial experiments found that hardware
conserves memory bandwidth much more than expected when
running write-intense GPU workloads. To understand the be-
haviour, we developed an L2 write policy microbenchmark to
confirm that the L2 is write-back with a write-allocate policy.
Interestingly, we also observed additional behaviour on write
misses. Historically, there are two different write allocation
policies [27], fetch-on-write and write-validate. Using Accel-
Sim, we find that the L2 cache in all four generations applies
a version of write-validate that handles the varying granularity
of GPU read/write requests. L2 reads have a minimum gran-
ularity of 32B, but writes can be sub-32B. When a write to
a single byte is received, it writes the byte to the sector, sets
a corresponding write bit in a byte-level write mask and sets
the sector as valid and modified. When a sector read request
is received to a modified sector, it first checks if the sector
write-mask is complete, i.e. all the bytes have been written to
and the line is fully readable. If so, it reads the sector, avoiding
a DRAM access. If the sector is not fully written, it generates
a read request for this sector and merges it with the modified
bytes. Applying this write policy saves DRAM bandwidth that
can be wasted by read-write interference at the DRAM when
sub-sector writes are received at the L2 cache.

To demonstrate Accel-Sim’s ability to model different ISAs
and hardware generations in both SASS and PTX simulation,
Table V presents the Mean Absolute Error (MAE) and the
Karl Pearson Coefficient of dispersion (Correl) for simulated
cycles across four different GPU cards. Correl is the ratio of
the standard deviation to the mean and indicates how closely
the trends in both the simulator data and the hardware data
match. Table V demonstrates that correlation is > 0.97 in all
instances and error is <= 30% for all SASS simulations. The
accuracy gained by executing the machine ISA over the virtual
ISA can be as much 2, depending on the generation. The one
outlier with the greatest error is Pascal in PTX mode. In Pascal,



TABLE VI: Volta GPU configuration for GPGPU-Sim 3.x vs Accel-Sim. INT: Integer operation unit.

GPGPU-Sim 3.x

Accel-Sim (SASS + GPGPU-Sim 4.0)

Front End Execution-driven PTX 2.0

Trace-driven SASS 7.0

#SMs 80

80

Warps per SM = 64, #Schedulers per SM = 4,

SM Configuration #Warps per Sched = 16, RF per SM = 64 KB

+Subcore model, warp scheduler isolation

#Exec Units 4 SPUs, 4 SFUs, 4 WMMA Tensors cores [55]

+ 4 DPUs, 4 INTs, 8 HMMA Tensor cores

Memory Unit Fermi coalescer (32 thread coalescer)

sub-warp (8 thread) coalescer + Fair memory issue

Shared Memory Programmable-specified up to 96 KB

Adaptive (up to 96 KB), latency = 20 cycles

L1 cache 32KB, 128B line, 4 sets, write-evict

+32B sector, adaptive cache (up to 128 KB),
Str cache, banked, latency = 28 cycles

6 MB, 64 banks, 128B line, 32 sets, Write Back,

L2 cache Naive write policy, LRU, latency=100 cycles

+32B sector, subsector write policy, memory copy engine model, +pseudo-
random irreducible polynomial L2 hashing with IPOLY(67)

Interconnection 80x64 crossbar, 32B flit

Memory Model GDDRS5 model, BW=850 GB/sec, latency=100ns

HBM Model, dual-bus interface, Read/Write buffers, advanced bank
indexing

the L1D and texture cache are merged and L1D caching is
disabled by default. Without the L1D as a bandwidth filter, L2
throughput is more important in Pascal. The poor instruction
scheduling in PTX results in a 53% error that is reduced to
30% when SASS instruction scheduling is used.

V. A DETAILED CORRELATION ANALYSIS

In this section, we perform a quantitative analysis to
demonstrate how our new performance model can be used to
simulate an NVIDIA Quadro V100 [10]. We compare Accel-
Sim against the state-of-the-art NVIDIA simulation model
from GPGPU-Sim 3.x [1], [5]. The GPGPU-sim 3.x model is
a best-effort attempt to model the Volta card using GPGPU-
Sim 3.x without the modeling updates described in this paper.
Table VI details the configuration parameters used to model
the architecture. The left column of the table details the config-
uration of GPGPU-sim 3.x, obtained by scaling resources. The
right column lists changes made possible using Accel-Sim and
our updated GPGPU-Sim 4.0 performance model. For the sake
of brevity, we refer to GPGPU-Sim 3.x as ‘GPGPU-Sim’ and
Accel-Sim with GPGPU-Sim 4.0 as ‘Accel-Sim’. Note that
both simulators are capable of executing NVIDIA’s Tensor
Core instructions. GPGPU-sim uses the PTX-level WMMA
tensor core instruction. Based on the analysis from Raihan
et al. [55], Accel-Sim models the fine-grained, SASS-level
HMMA instruction. Since Accel-Sim is capable of both SASS-
trace and PTX-execution driven simulation, we refer to them
as Accel-Sim and Accel-Sim [PTX Mode] respectively.

In this section, we demonstrate the accuracy of our more
flexible performance model and the effect of being able
to simulate SASS traces. The correlation figures presented
throughout this section plot hardware results from the NVIDIA
profilers nvprof [44] and nsight-cli [49] on the x-axis and the
simulation results on the y-axis. Depending on the statistic,
there are up to 80 datapoints on each graph (80 applications,
without the Deepbench workloads). The blue x represents the
GPGPU-Sim result and the circles represent Accel-Sim. Each
plot also lists the Correl and error for the statistic. We use two
different aggregation techniques for error. Intuitively, the Mean
Absolute Error (MAE) makes the most sense since it provides
a percentage error and is resistant to outliers. However, cal-
culating MAE is not possible if the reference counter is zero
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TABLE VII: Error and correlation rates of GPGPU-Sim 3.x
versus Accel-Sim when modeling an NVIDIA Volta.

Statistic Error Correlation
GPGPU- Accel- GPGPU- Accel-
Sim 3.x Sim Sim 3.x Sim
L1 Reqs NRMSE=3.04 | NRMSE=0.00 | 0.99 1.00
L1 Hit NRMSE=1.04 | NRMSE=0.76 | 0.69 0.87
Ratio
Occupancy NRMSE=0.12 | NRMSE=0.13 | 0.99 0.99
L2 Reads NRMSE=2.67 | NRMSE=0.03 | 0.95 1.00
L2 Read NRMSE=3.24 | NRMSE=0.47 | 0.82 0.99
Hits
DRAM NRMSE=5.69 | NRMSE=0.92 | 0.89 0.96
Reads
Instructions MAE=27% MAE=1% 0.87 1.00
Execution MAE=9%4% MAE=15% 0.87 1.00
Cycles

and creates the appearance of massive error when small values
deviate. As a result, we cannot use the MAE for counters
other than the number of cycles, instructions executed and
Instructions Per Cycle (IPC), which will always be non-zero
values. For the remaining counters, we use the Normalized
Root Mean Squared Error (NRMSE). Table VII summarizes
the error and correlation co-efficients for GPGPU-Sim versus
Accel-Sim, over a number of important performance metrics.

A. Overall system correlation

Figure 4 details a direct comparison of GPGPU-Sim to
Accel-Sim over a set of key simulation metrics. Figure 4a
plots the final number of cycles reported for each applica-
tion. Rounded to 2 significant digits, Accel-Sim has a 1.00
correlation with hardware, and a 15% mean absolute error.
In contrast, GPGPU-Sim has a correlation of 0.87 and 94%
error. Generally, GPGPU-sim’s values are above the x=y
line, meaning the simulator is over-estimating the number
of cycles for the workload. GPGPU-Sim is not modeling
the performance enhancements made to the memory system,
which Accel-Sim does.

Accel-Sim’s increased accuracy can be attributed to two
factors: the machine ISA representation and the updated
performance model. To understand the effect of the instruction
set, Figure 4b plots the number of warp instructions executed.
Since GPGPU-Sim operates on PTX, the correlation is rela-
tively low and shows a 27% error. In contrast, Accel-Sim has a
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Fig. 4: Correlation of key metrics from Accel-Sim versus GPGPU-Sim 3.x over the 80 workloads (comprised of 1945 kernel
instances) that can be executed in both the virtual ISA and the machine ISA. These workloads are listed in Table VIII.
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Fig. 6: Accel-Sim cycle correlation when executing deepbench
workloads, which cannot be executed by GPGPU-Sim 3.x or
Accel-Sim [PTX Mode]. 60 workloads (comprised of 11,440
kernel instances).

1.0 correlation and a 1% error. Accel-Sim’s small error occurs
because some applications execute a non-deterministic number
of instructions in hardware. Figure 4b demonstrates that PTX
generally executes a reasonable number of instructions. How-
ever, the ordering of the instructions is significantly different
in SASS, resulting in better instruction-level parallelism. To
quantify the difference between PTX and SASS more clearly,
Figure 5 shows the cycle correlation when using Accel-Sim
[PTX Mode] versus Accel-Sim. Figure 5 allows us to examine
the effect of SASS versus PTX on the same performance
model. On average, simulating SASS improves the mean
absolute error by 2x, reducing the error from 34% to 15%. To
provide additional insight on an app-by-app basis, Table VIII
enumerates the per-application cycle error for GPGPU-Sim,
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Accel-Sim [PTX Mode] and Accel-Sim. In many of the
CUTLASS sgemm and Rodinia workloads, the error is signifi-
cantly reduced by moving to SASS-based simulation. In these
workloads, capturing the improved instruction scheduling in
SASS is critical to simulator accuracy.

In addition to examining SASS versus PTX, Table VIII
demonstrates some interesting trends across benchmark suites.
In the CUDA SDK, many of the workloads are streaming
and sensitive to DRAM bandwidth. As such, our detailed
HBM model and SASS representation reduces the error in
these workloads, providing relatively low error. In the Ro-
dinia suite, which includes a number of workloads that have
cache-locality and more diverse, irregular behaviour, Accel-
Sim’s detailed cache model, combined with SASS instruction
scheduling helps to reduce the error. Although Accel-Sim’s
overall correlation and accuracy are greatly improved, there are
still several benchmarks with a high error. Further investigation
reveals that correctly modeling the L2 bandwidth is critical in
the Rodinia workloads. Our IPOLY indexing helps to alleviate
many L2 bank conflicts, however it does not exactly match the
hardware’s indexing function, as described in Section V-B.
The Polybench workloads are cache capacity sensitive [59].
GPGPU-sim employs a fixed capacity of 32KB in the LI,
whereas the adaptive, sectored cache in Accel-Sim allocates
the whole 128KB of Volta’s unified on-chip memory to the
L1D. The 4x greater cache capacity and more accurate 32B
fetch granularity reduces the error in atax, bicg, gesummy, syrk
and mvt from 400% to 20% on average.

For the CUTLASS sgemm workloads (without Tensor Core
instructions) the streaming L1 cache, advanced L2 hashing
and support for SASS all contribute to reducing the error in
Accel-Sim to less than 5%. Interestingly, Accel-Sim’s error for
CUTLASS gemm-wmma is higher than sgemm. In addition,
GPGPU-Sim’s error is generally much lower on gemm-wmma
than on sgemm. We find that the abstract WMMA PTX instruc-
tions are a good approximation for the SASS instructions. For
some input sizes, the abstract instructions are an even better
representation than Accel-Sim’s SASS model for HMMA. In
these instance, Accel-Sim [PTX Mode] demonstrates nearly
zero cycle error, since it benefits from both the memory system
updates and the accuracy of the abstract WMMA instructions.

We also plot the attained occupancy (Figure 4h) and IPC
(Figure 4g). The occupancy data tracks well for both GPGPU-
Sim and Accel-Sim, both models correctly estimate the initial
occupancy, deviation from hardware occurs in imbalanced ker-
nels where occupancy falls off at different rates. The purpose
of correlating IPC is to demonstrate how well the simulator
handles different rates of work. In order to avoid negatively
biasing GPGPU-Sim (which uses a different instruction set
than both Accel-Sim and hardware), we use the machine
instruction count as the numerator to calculate the IPC in both
simulators. Figure 4g follows from Figure 4a, where Accel-
Sim shows better correlation and less error. GPGPU-Sim’s [PC
error is less than its cycle error. Most of GPGPU-Sim’s error
occurs in long running apps, where the gap in cycles becomes
orders of magnitude larger.
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Finally, Figure 6 plots the Deepbench workloads that make
use of the closed-source cuDNN and cuBLAS libraries, that
include hand-tuned SASS code for which there is no PTX
representation. Only Accel-Sim is able to simulate these
workloads. Generally, Accel-Sim is well correlated, although
the overall error is higher than for the other workloads.
Further inspection reveals that the Deepbench workloads make
extensive use of texture memory and local loads, which could
require additional modeling to improve their accuracy. For
hardware occupancy, Accel-sim achieves 0.9 correlation and
0.16 NRMSE on the Deepbench workloads. Low occupancy
in RNN workloads has been observed by prior work [76] in
silicon GPUs, which we also observe in Accel-Sim. Accel-
Sim’s support of NVIDIA’s hand-tuned libraries enables new
architecture research into the performance of RNNs and other
deep learning networks on GPUs, which is not possible in any
other simulation framework.

B. Achieved bandwidth correlation

GPU workloads are highly sensitive to cache and memory
bandwidth, making them important factors for modeling GPUs
accurately. Significant effort has been expended to design con-
temporary GPUs to achieve the highest possible bandwidth.
To measure how much memory bandwidth can be saturated,
we design a set of microbenchmarks to saturate the memory
bandwidth of the L1, L2 and main memory. Figure 7 depicts
the cache and memory bandwidth attained for in the Volta
card, normalized to the theoretical bandwidth. In Volta [10],
[26], the theoretical bandwidth for both simulators have been
configured to supply, at most, the theoretical bandwidth of
each component.

As shown in Figure 7, GPGPU-Sim is only able to achieve
33% of the theoretical L1 bandwidth, whereas the Accel-
Sim’s streaming and banked L1 cache is able to attain 85%,
within 10% error of the attained hardware bandwidth. In L2
cache, thanks to our advanced Galios-based random hashing
and accurate interconnect bandwidth, Accel-Sim mitigates L2
partition camping, which has been exacerbated in contem-
porary GPUs with the introduction of HBM [3], [33], and
comes within 22% of hardware. We believe that the hashing
mechanism used in contemporary GPUs is highly tuned, and
eliminating the last 22% error would require extensive reverse-
engineering. We leave improving the L2 bandwidth for future

TABLE VIII: Cycle mean absolute error per workload in
GPGPU-sim 3.x, Accel-Sim [PTX Mode] and Accel-Sim

GPGPU- | Accel-Sim .
Workload HW Sim 3.x [PTX] | “ceel-Sim
cycles Error (%) | Error (%) Error (%)
CUDA SDK
blk 10214 -13 -11 -7
conv 327868 3 30 -11
fast-walsh-transform 731574 35 -6 4
merge-sort 52905 17 -15 2
scalar-prod 300811 -30 -30 -32
sorting-networks 85713 10 -13 -10
transpose 97339 -2 12 -19
vector-add 140161 -22 32 -17
scan 2659445 29 -16 -16
histo 61085 21 21 -9
CUDA SDK MAE - 13 16 9
Rodinia Suite
b+tree 167146 -7 -8 -19
backprop 63456 0 4 -14
bfs 1107676 61 -11 -31
dwt2d 35246 90 51 -3
hotspot 56101 63 58 16
lud 710043 9 48 -9
myocyte 4561278 51 42 22
neddle 3016000 151 43 -16
srad-v1 6031393 -7 42 0
SC 699593 82 -15 -8
kmeans 1437879 300 300 63
nn 7305 -59 -40 -11
lava-md 5017353 20 12 8
Rodinia MAE - 32 28 8
Parboil Suite
bfs 6396950 -23 -22 -47
histo 5590035 -56 -59 -39
mri-q 299165 220 207 9
sad 131272 4 9 -47
sgemm 362333 111 148 -16
spmv 3405773 38 -8 -7
stencil 4698755 -46 -17 -10
cutcp 5321758 75 75 39
Parboil MAE - 45 37 20
Polybench Suite
2dconv 269298 62 6 -15
2mm 62994676 8 0 0
3dconv 1788022 -26 -17 3
3mm 1766299 9 -12 -12
atax 3322009 432 -23 -23
bicg 3330876 604 -24 -23
gemm 587160 19 -12 -1
gesummyv 2661367 1700 -7 -7
mvt 3323425 445 -24 -23
syrk 15668564 658 -7 -7
Polybench MAE - 111 6 4
Microbenchmark Suite
maxflops 73152 39 3 3
11-bw 578838 134 9 -4
11-bw-unroll 237705 304 433 -6
11-lat 1177511 -65 -2 -8
shared-bw 4921085 -1 -3 -3
shared-lat 70231 6 12 12
12-bw 786881 202 31 44
12-lat 7184779 -33 -18 -19
mem-bw 382171 21 15 16
mem-lat 2389456 =71 10 -16
Microbenchmark MAE - 37 14 9
CUTLASS GEMM wmma Suite
wmma-2560x128x2560 1455597 11 -1 10
wmma-2560x16x2560 1325345 7 0 15
wmma-2560x32x2560 1338720 6 0 14
wmma-2560x64x2560 1376862 4 0 13
wmma-2560x7000x2560 19717874 12 0 16
wmma-4096x 128x4096 2231763 32 0 14
wmma-4096x16x4096 2055799 10 1 17
wmma-4096x32x4096 2060767 12 1 17
wmma-4096x64x4096 2103894 17 2 16
wmma-4096x7000x4096 48103472 21 0 -4
CUTLASS wmma MAE - 11 0.5 12




CUTLASS sgemm Suite
sgemm-2560x1024x2560 10525540 96 54 -3
sgemm-2560x128x2560 5272700 97 54 -3
sgemm-2560x16x2560 5199087 97 55 -2
sgemm-2560x2560x2560 26224856 95 55 -3
sgemm-2560x32x2560 5193979 97 55 -2
sgemm-2560x512x2560 5289253 97 54 -3
sgemm-2560x64x2560 5187370 98 55 -2
sgemm-4096x128x4096 8352408 113 55 -3
sgemm-4096x16x4096 8266794 97 55 -2
sgemm-4096x64x4096 8240064 100 56 -1
CUTLASS sgemm MAE | - 98 54 2

work. For memory bandwidth, our detailed HBM model with
a dual-bus interface, the random partition indexing and write
buffers employed in Accel-Sim achieves 82% of the theoretical
memory bandwidth and very close to the 85% attained in
hardware. In the GPGPU-Sim, read/write interference, low
bank-group level parallelism and naive L2 write policy waste
memory bandwidth leading it to attain only 62% bandwidth.

C. LI Cache Correlation

Figure 4f plots correlation for the post-coalescer accesses
received by the L1 cache. As Figure 4f shows, Accel-Sim
has a correlation co-efficient of 1.00 correlation and no error.
This is primarily due to the implementation of the subwarp
coalescer and the fact that the L1 cache is sectored. Figure 4i
plots the corresponding hit rate for the L1D cache. We note
that this statistic is particularly hard to correlate, given that the
warp scheduling policy, cache replacement policy and hit/miss
accounting decisions in the profiler can skew the results. For
example, through microbenchmarking, we determined that the
hardware profiler will count a sector miss on a cache line
whose tag is already present as a hit, but will still send the
sector access down to the L2. Effectively, the profiler appears
to be counting 128B line cache tag hits, even if the sector is
missed. Even with these variables, Accel-sim’s cache model
achieves only 0.77 NRMSE and a correlation co-efficient of
0.87. In the apps where pervasive error still exists, we believe
more detailed reverse engineering of the warp scheduling
policy and replacement policy will help.

GPGPU-sim have a high correlation, but an NRMSE of
3.06 in L1D read accesses. GPGPU-sim does not model a
sectored cache, thus one 128B access will count as four sector
accesses in the hardware. Completely divergent applications
show consistent behaviour with hardware since 32 unique
sectors are generated in hardware and 32 unique cache lines
are generated in GPGPU-sim.

D. L2 Cache Correlation

Although all L1D read misses are sent to L2 cache, Accel-
Sim’s L2 reads has higher correlation and less error compared
to the L1 hit rate. This result confirms our observation that the
profiler’s L1 hit/miss accounting decisions are different from
our assumption. As shown in Figure 4c, Accel-sim exhibits
1.00 correlation and normalized error reaching only 0.03. We
also collected information on write transactions, and noticed
similar behaviour.
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We attempted to correlate the L2 cache read hit rate with
simulation results, but found that the profiler gives inconsistent
results, some of which are greater than 100%. So instead,
we correlated with the number of L2 hits, which gave more
grounded readings. Figure 4d presents the L2 read hit corre-
lation. Overall, Accel-sim achieves 0.99 correlation and 0.47
normalized error. Again, at the L2, scheduling effects from
the order in which memory accesses reach the L2 will have
an effect on it’s hit rate.

E. DRAM Correlation

Finally, Figure 4e plots the correlation of DRAM read
accesses. The NRMSE is 0.93 and has a 0.96 correlation co-
efficient. The DRAM read correlation remains high and is
more accurate for larger kernels. However, Accel-sim shows
a high level of error for smaller workloads.

The results in GPGPU-sim are significantly worse than
those in Accel-Sim. Interestingly, the reason for the massive
error in the GPGPU-sim is due to its per-cacheline fetch on
write policy. The end result of that policy was that every
write to the writeback L2 fetched 4 32-byte memory values
from DRAM, which is why the DRAM reads of the GPGPU-
sim are consistently overestimated. Accel-sim has eliminated
this problem by sectoring the cache and implementing a more
accurate write policy, as explained in Section IV.

VI. CASE STUDIES

This section presents the effect of memory system simula-
tion detail on architectural design decisions. A less detailed
architecture model may lead to unrealistic issues or incorrect
conclusions that are not relevant to state-of-the-art designs
already being used in industry. This section demonstrates
how our more accurate GPU model removes the well-studied
bottleneck of cache throughput and opens up new research
opportunities in chip-wide memory issues.

L1 cache throughput: The L1 cache throughput bottleneck
for GPUs has been well explored in literature using cache
bypassing and warp throttling techniques [25], [29], [61].
Due to massive multithreading, GPGPU L1 caches can suffer
from severe resource contention (e.g. MSHRs and cache line
allocation [25]). However, contemporary GPUs are designed
such that the L1 cache is not a throughput bottleneck. Modern
GPUs employ advanced architecture techniques to improve
L1 cache throughput, such as sectored, banked, adaptive and
streaming L1 caches. These techniques shift the memory
bottleneck from the L1 cache to the lower levels of the memory
hierarchy. Figure 8 plots the L1 cache reservation fails per kilo
cycles for cache sensitive workloads for GPGPU-sim vs Accel-
Sim. The new L1 model eliminates reservation fails and the L1
cache is no longer a throughput bottleneck. Consequentially,
any design aimed at mitigating this L1 throughput bottleneck
is less effective on a contemporary GPU, which is reflected in
our new performance model.
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Fig. 9: FR_FCFS performance normalized to the FCFS in
Accel-Sim and GPGPU-sim 3.x for memory intensive work-
loads in Volta.

Memory scheduling sensitivity: Throughput-oriented
GPGPU workloads are often sensitive to memory bandwidth.
Thus, the DRAM memory access scheduler plays an
important role to efficiently utilize bandwidth and improve
the performance of memory-intensive workloads (i.e. those
that utilize > 50% of DRAM bandwidth). Figure 9 shows the
sensitivity of memory-intensive GPGPU workloads for two
memory scheduling policies: the naive first-come first-serve
scheduling (FCFS) and the advanced out-of-order First-
row-ready first-come first-serve scheduling (FR_FCES) [58].
FR_FCFS performance is normalized to FCFS in both
Accel-Sim and GPGPU-sim to demonstrate the performance
improvement from more advanced scheduling. In the GPGPU-
Sim, some workloads are insensitive or show little difference
between the two scheduling policies. On average, applying
FR_FCFS in GPGPU-sim increases performance by 20%.

In Accel-Sim, the memory scheduling policy is more criti-
cal. Applying FR_FCFS to Accel-Sim improves performance
by 2.5x on average. More detailed coalescing rules, improved
on-chip cache throughput, advanced L2 cache interleaving and
write allocation policies increase the likelihood of losing page
locality, which must be recaptured by out-of-order memory
access scheduling. Further, with the new features and capa-
bilities of the HBM such as dual-bus interface [51], pseudo-
independent accesses [23] and per-bank refresh command [24],
memory scheduling and the interaction with the L2 cache
indexing will become a more critical issue to investigate. This
experiment demonstrates how accurately modeling contempo-
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rary GPU hardware reveals performance issues obscured using
a less detailed simulation. We believe Accel-Sim opens up a
rich new design space in system-level GPU research where
core-level memory issues are alleviated and there is increased
sensitivity to chip-wide memory issues.

VII. RELATED WORK

As Table I illustrates, there has been extensive work done
in GPU simulation over the last decade. Xun et al. [15]
model GPU Kepler architecture [38] that is integrated with
the Multi2sim simulation infrastructure [69]. The new simu-
lator was validated using applications from the CUDA SDK.
Power et al. [54] propose the Gem5-GPU simulator which
models detailed CPU-GPU interaction. Beckmann et al. [6],
[18] introduce a Gem5 GPU model, that simulates AMD’s
GCN architecture. Barrio et al. [12] propose ATTILA, which
is a trace-driven GPU simulator that models the graphics
pipeline for the GT200 architecture. Gubran et al. [17] update
GPGPU-sim to execute graphics workloads. Sniper [7] is a
multithreaded CPU simulator that can execute in trace- or
execution-driven mode using PIN-based callbacks to simulate
instructions without emulation. In this vast landscape, Accel-
Sim is the only open-source framework, explicitly designed
for validation, that can simulate NVIDIA SASS instructions
and accurately model contemporary NVIDIA GPUs.

Stephenson et al. [64] introduce SASSI, a low-level
assembly-language instrumentation tool for GPUs. Many pre-
vious works [4], [20], [21], [71], [74], [75] aim to estimate
the execution time of GPGPU applications throughout source-
level analysis, however they do not perform detailed perfor-
mance modeling for architecture research. Nowatzki et al. [36]
show that GPGPU-Sim is inaccurate in modeling some in-
core parameters and connection delays. Hongwen et al. [11]
argue that GPGPU-Sim has a very weak L1 cache model
and they suggest enhancements to improve the L1 cache
throughput. Jain et al. [22] demonstrate a large gap in GPGPU-
Sim 3.x’s memory system when correlating against Pascal
hardware. Prior work [2], [13], [19] propose a methodology for
validating CPU simulation models against real hardware. Nu-
merous works have done micro-benchmarking to characterize
aspects of GPU architecture for Tesla GT200 [73], Fermi [37],
Maxwell [34], and recently Volta [26]. They demystified the
L1/L2 cache’s associativity and replacement policy. However,
none of these works have investigated the L1 streaming cache,
sectoring of the L1/L2 caches and the interaction of the
memory coalescer with caches or the cache write policy.

VIII. CONCLUSION

This paper introduces three innovative mechanisms to help
solve the problem of keeping simulators up-to-date with
contemporary designs. We propose a novel, ambidextrous
GPU frontend that translates both functionally executed vir-
tual instructions and machine instruction traces into an ISA-
independent format for simulation. Using the flexible frontend,
a detailed performance model is developed, which has the
ability to model contemporary GPUs and execute proprietary



binaries that no other open-source simulator can. We believe
that Accel-Sim is the most extensively validated open-source
GPU simulation framework to date. We demonstrate that
Accel-Sim decreases cycle error from 94% in state-of-the-art
simulation to 15%, on a comprehensive suite of workloads.

Accel-Sim’s ISA-independent performance model opens up
opportunities to simulate cards from a wide variety of vendors.
Work is currently underway to generate AMD GCN3 traces
from Gem5-APU [6] such that Accel-Sim can be used to
model and validate AMD GPUs. We believe that Accel-Sim
will reduce the accuracy gap between industrial and academic
simulators on an ongoing basis, increasing the potential impact
of accelerator research.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for feedback on early
versions of this paper, David Nellans, Oreste Villa and the
NVBit [70] developers for early access to the tool and bug
fixes that facilitated the creation of the Accel-Sim SASS
Tracer, and Akshay Jain and Syed Farooq for their help in the
early phases of the project. We would also like to recognize
all the researchers who have made contributions to GPGPU-
Sim since the last major release. This work was supported, in
part, by NSF CCF #1910924 and the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA.

REFERENCES
[1] T. M. Aamodt, W. W. Fung, I. Singh, A. El-Shafiey, J. Kwa, T. Hether-
ington, A. Gubran, A. Boktor, T. Rogers, and A. Bakhoda, “GPGPU-Sim
3. x manual,” http://gpgpu-sim.org/manual/index.php/Main_Page, 2016.
A. Adileh, C. Gonzilez-Alvarez, J. M. D. H. Ruiz, and L. Eeckhout,
“Racing to Hardware-Validated Simulation,” in /EEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
2019, pp. 58-67.
A. M. Aji, M. Daga, and W.-c. Feng, “Bounding the Effect of Partition
Camping in GPU Kernels,” in Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF), 2011, p. 27.
N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-
Architecture Performance Prediction (XAPP) Using CPU Code to
Predict GPU Performance,” in Proceedings of the 48th International
Symposium on Microarchitecture (MICRO), 2015, pp. 725-7317.
A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2009, pp. 163-174.
B. Beckmann and A. Gutierrez, “The AMD gem5 APU Simulator: Mod-
eling Heterogeneous Systems in gem5,” in Tutorial at the International
Symposium on Microarchitecture (MICRO), 2015.
T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-
Core Simulation,” in Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2011,
pp. 1-12.
N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasub-
ramonian, “Managing DRAM Latency Divergence in Irregular GPGPU
Applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2014,
pp. 128-139.
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of IEEE international symposium on workload
characterization (IISWC), 2009, pp. 44-54.
J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and Pro-
grammability,” IEEE Micro 2018, vol. 38, no. 2, pp. 42-52.

=

(91

[10

485

[11] H. Dai, C. Li, Z. Lin, and H. Zhou, “The Demand for a Sound
Baseline in GPU Memory Architecture Research,” in Proceedings of
the Workshop on Duplicating, Deconstructing and Debunking (WDDD),
2017.

V. M. Del Barrio, C. Gonzilez, J. Roca, A. Fernandez, and E. Espasa,
“ATTILA: A Cycle-Level Execution-Driven Simulator for Modern GPU
Architectures,” in IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), 2006, pp. 231-241.

R. Desikan, D. Burger, and S. W. Keckler, “Measuring Experimental
Error in Microprocessor Simulation,” in Proceedings of the 28th annual
International Symposium on Computer Architecture (ISCA), 2001, pp.
266-277.

P. Gera, H. Kim, H. Kim, S. Hong, V. George, and C.-K. C. Luk,
“Performance Characterisation and Simulation of Intel’s Integrated GPU
Architecture,” in IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), 2018, pp. 139-148.

X. Gong, R. Ubal, and D. Kaeli, “Multi2Sim Kepler: A Detailed
Architectural GPU Simulator,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2017, pp. 269—
278.

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a High-Level Language Targeted to GPU Codes,” in
Innovative Parallel Computing (InPar), 2012, pp. 1-10.

A. A. Gubran and T. M. Aamodt, “Emerald: Graphics Modeling for
SoC Systems,” in ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA), 2019, pp. 169-182.

A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-
matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. Sinclair,
M. Wyse, J. Yin, X. Zhang, A. Jain, and T. G. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), 2018, pp. 608-619.

A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi,
C. D. Emmons, M. Hayenga, and N. Paver, “Sources of Error in Full-
System Simulation,” in IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014, pp. 13-22.

S. Hong and H. Kim, “An Integrated GPU Power and Performance
Model,” in Proceedings of the 37th annual international symposium on
computer architecture (ISCA), 2010, pp. 280-289.

J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “GPUMech:
GPU Performance Modeling Technique based on Interval Analysis,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2014, pp. 268-279.

A. Jain, M. Khairy, and T. G. Rogers, “A Quantitative Evaluation of
Contemporary GPU Simulation Methodology,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems (SIGMETRICS),
vol. 2, no. 2, p. 35, 2018.

JEDEC Standard, “GDDR5X,” JESD232A, 2016.

——, “High bandwidth memory (HBM) DRAM,” JESD235, 2020.

W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory Request Prior-
itization for Massively Parallel Processors,” in IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), 2014,
pp. 272-283.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the NVIDIA Volta GPU Architecture via Microbenchmarking,” arXiv
preprint arXiv:1804.06826, 2018.

N. P. Jouppi, “Cache Write Policies and Performance,” in 20th Annual
International Symposium on Computer Architecture (ISCA), 1993, pp.
191-201.

H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“MacSim: A CPU-GPU Heterogeneous Simulation Framework User
Guide,” Technical Report, Georgia Institute of Technology, 2012.

G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access Pattern-
Aware Cache Management for Improving Data Utilization in GPU,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 307-319.

C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt,
“DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused
Interference in Memory Systems,” Technical Report, The University of
Texas at Austin, TR-HPS-2010-002, 2010.

J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers, and T. M. Aamodt, “Analyzing
Machine Learning Workloads Using a Detailed GPU Simulator,” in

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]



[32

[34]

[35]

[36]

[37]

[58]

IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019, pp. 151-152.

J. S. Liptay, “Structural Aspects of the System/360 Model 85, II: The
Cache,” IBM Systems Journal, vol. 7, no. 1, pp. 15-21, 1968.

Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and L. Eeckhout,
“Get Out of the Valley: Power-Efficient Address Mapping for GPUs,”
in ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 166-179.

X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy through
Microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 28, no. 1, pp. 72-86, 2017.

S. Narang and G. Diamos, “Baidu Deepbench,” https:/svail.github.io/
DeepBench, 2016.

T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, ““Architectural
Simulators Considered Harmful,” JEEE Micro, vol. 35, no. 6, pp. 4-12,
2015.

C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal, “A Detailed
GPU Cache Model Based on Reuse Distance Theory,” in IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), 2014, pp. 37-48.

NVIDIA, “Kepler Architecture,” https://www.nvidia.com/content/PDF/
kepler/NVIDIA-Kepler-GK110- Architecture- Whitepaper.pdf, 2012.
“GeForce GTX Titan,” https://www.geforce.com/hardware/
desktop- gpus/geforce- gtx-titan/specifications, 2013.

, “CUDA C/C++ SDK Code Samples,” http://developer.nvidia.com/
cuda-cc-sdk-code-samples, 2015.

, “NVIDIA TITAN X,” https://www.nvidia.com/en-us/geforce/
products/10series/titan-x-pascal/, 2016.
“CUDA Binary Utilities,”
cuda-binary-utilities/index.html, 2017.
, “CuDNN Devloper Guide,” https://docs.nvidia.com/deeplearning/
sdk/cudnn-developer-guide/index.html, 2017.

3 “Nvidia Profiler 8.0,” http://docs.nvidia.com/cuda/
profiler-users-guide/index.html, 2017.

,  “Volta Cache,” http://on-demand.gputechconf.com/gtc/2017/
presentation/s7798-1uke-durant-inside- volta.pdf, 2017.

, “Volta V100 White paper,” http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture- whitepaper.pdf, 2017.

, “CUTLASS: CUDA template library for dense linear algebra at
all levels and scales,” https:/github.com/NVIDIA/cutlass, 2018.

, “GeForce RTX 2060,” https://www.nvidia.com/en-us/geforce/
graphics-cards/rtx-2060/, 2019.

, “NVIDIA Nsight CLI,” https://docs.nvidia.com/nsight-compute/
NsightComputeCli/index.html, 2019.

3 “Programming Guide,” https://docs.nvidia.com/cuda/
cuda-c-programming- guide/index.html, 2019.

M. O’Connor, “Highlights of the High-Bandwidth Memory (HBM)
Standard,” in Memory Forum Workshop, Co-located with the 41st
International Symposium on Computer Architecture (ISCA), 2014.

K. Pagiamtzis and A. Sheikholeslami, “A Low-Power Content-
Addressable Memory (CAM) Using Pipelined Hierarchical Search
Scheme,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1512—
1519, 2004.

Paulius Micikevicius, “Kepler Architecture,”
/lon-demand.gputechconf.com/gtc/2013/presentations/
S$3466-Programming-Guidelines- GPU- Architecture.pdf, 2013.
J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood,
“gem5-gpu: A heterogeneous CPU-GPU Simulator,” [EEE Computer
Architecture Letters (CAL), vol. 14, no. 1, pp. 34-36, 2014.

M. A. Raihan, N. Goli, and T. M. Aamodt, “Modeling Deep Learning
Accelerator Enabled GPUs,” in [EEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2019, pp. 79—
92.

B. R. Rau, “Pseudo-Randomly Interleaved Memory,” in Proceedings
of the 18th Annual International Symposium on Computer Architecture
(ISCA), 1991, pp. 74-83.

M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A Locality-Aware Memory
Hierarchy for Energy-Efcient GPU Architectures,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2013, pp. 86-98.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA), 2000, pp.
128-138.

https://docs.nvidia.com/cuda/

http:

486

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2012, pp. 72—
83.

R. H. Saavedra-Barrera, “CPU Performance Evaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking,” Technical
Report No. UCB/CSD-92-684, University of California, Berkeley, 1993.
A. Sethia, D. A. Jamshidi, and S. Mahlke, “Mascar: Speeding up
GPU Warps by Reducing Memory Pitstops,” in IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015,
pp. 174-185.

A. Seznec, “Decoupled Sectored Caches: conciliating low tag imple-
mentation cost and low miss ratio,” in Proceedings of the 21st Annual
International Symposium on Computer Architecture (ISCA), 1994, pp.
384-393.

M. D. Sinclair, J. Alsop, and S. V. Adve, “Chasing Away RAts:
Semantics and Evaluation for Relaxed Atomics on Heterogeneous Sys-
tems,” in ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 161-174.

M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible Software Pro-
filing of GPU Architectures,” in ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015, pp. 185-197.

J. A. Stratton, C. Rodrigues, 1.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. Hwu, “Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput Computing,” Center for
Reliable and High-Performance Computing, vol. 127, 2012.

J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John,
“The Virtual Write Queue: Coordinating DRAM and Last-Level Cache
Policies,” in Proceedings of the 47th Annual International Symposium
on Computer Architecture (ISCA), 2010, pp. 72-82.

Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abelln, J. Kim, A. Joshi, and D. Kaeli, “MG-
PUSim: Enabling Multi-GPU Performance Modeling and Optimization,”
in Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), 2019, pp. 197-209.

J. Tuck, L. Ceze, and J. Torrellas, “Scalable Cache Miss Handling for
High Memory-Level Parallelism,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2006, pp. 409-422.

R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
Simulation Framework for CPU-GPU Computing,” in Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2012, pp. 335-344.

O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
Dynamic Binary Instrumentation Framework for NVIDIA GPUs,” in
Proceedings of the 52Nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2019, pp. 372-383.

X. Wang, K. Huang, A. Knoll, and X. Qian, “A Hybrid Framework
for Fast and Accurate GPU Performance Estimation through Source-
Level Analysis and Trace-Based Simulation,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 506-518.

D. Wong, N. S. Kim, and M. Annavaram, “Approximating Warps
with Intra-warp Operand Value Similarity,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016,

pp. 176-187.
H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU Microarchitecture through

Microbenchmarking,” in IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS), 2010, pp. 235-246.

G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU Performance and Power Estimation Using Machine Learning,”
in [EEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 564-576.

Y. Zhang and J. D. Owens, “A Quantitative Performance Analysis Model
for GPU Architectures,” in IEEE 17th International Symposium on High
Performance Computer Architecture (HPCA), 2011, pp. 382-393.

H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,
B. Schroeder, and G. Pekhimenko, “Benchmarking and Analyzing
Deep Neural Network Training,” in IEEE International Symposium on
Workload Characterization (IISWC), 2018, pp. 88—100.



