Session 14B: Transcribing Words and Directing Voice

UIST '20, October 20-23, 2020, Virtual Event, USA

Multi-Modal Repairs of Conversational Breakdowns in
Task-Oriented Dialogs

Toby Jia-Jun Li', Jingya Chen!, Haijun Xia?, Tom M. Mitchell', Brad A. Myers'
ICarnegie Mellon University, 2UC San Diego
{tobyli, tom.mitchell, bam} @cs.cmu.edu, jingyach@andrew.cmu.edu, haijunxia@ucsd.edu

ABSTRACT

A major problem in task-oriented conversational agents is the
lack of support for the repair of conversational breakdowns.
Prior studies have shown that current repair strategies for these
kinds of errors are often ineffective due to: (1) the lack of
transparency about the state of the system’s understanding of
the user’s utterance; and (2) the system’s limited capabilities to
understand the user’s verbal attempts to repair natural language
understanding errors. This paper introduces SOVITE, a ney
multi-modal (speech plus direct manipulation) interface the
helps users discover, identify the causes of, and recover fror
conversational breakdowns using the resources of existin
mobile app GUIs for grounding. SOVITE displays the system’.
understanding of user intents using GUI screenshots, allows
users to refer to third-party apps and their GUI screens in
conversations as inputs for intent disambiguation, and enables
users to repair breakdowns using direct manipulation on these
screenshots. The results from a remote user study with 10
users using SOVITE in 7 scenarios suggested that SOVITE’s
approach is usable and effective.

Author Keywords

Conversational interfaces; conversational breakdown;
chatbots; grounding in communication; breakdown repair;
disambiguation; instructable agents; GUI semantics

INTRODUCTION

Conversational user interfaces have become increasingly pop-
ular and ubiquitous in our everyday lives, assisting users with
tasks from diverse domains. However, despite the advances
in their natural language understanding capabilities, prevail-
ing conversational systems are still far from being able to
understand the wide range of flexible user utterances and en-
gage in complex dialog flows [22]. These agents employ rigid
communication patterns, requiring that users adapt their com-
munication patterns to the needs of the system instead of the
other way around [5,27]. As a result, conversational break-
downs, defined as failures of the system to correctly understand

(SO

This work is licensed under a Creative Commons Attribution International 4.0 License.

UIST’20, October 20-23, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7514-6/20/10.
DOI: https://doi.org/10.1145/3379337.3415820

1094

the intended meaning of the user’s communication, often oc-
cur. Conversational breakdowns decrease users’ satisfaction,
trust, and willingness to continue using a conversational sys-
tem [6, 16, 25,26, 44], and may cause users to abandon the
current task [3]. In this paper, we study repair strategies for
such conversational breakdowns, specifically in the context
of spoken task-oriented conversations with a mobile device,
erounded in the anps and the display of that mobile device.

’air methods in human-agent conversa-

sed only the natural language modality.

, which refers to the act of adjusting the

.commodate the listener [5] in the con-
text of conversational agents, is commonly found in users’
breakdown repair attempts. Many repair strategies are used
in these adjustments, depending on the user’s understanding
of the cause of the breakdown [5,48]. For example, when the
user suspects that the system has misheard the utterance, they
might apply prosodic changes (adjust the rhythm or cadence of
speech), overarticulation (exaggerating sounds), increased vol-
ume, or simply repetitions of the original utterance [5]. They
might make syntactical adjustments to the original utterance
if they thought the system did not understand its syntactic
structure [5]. Similarly, they might perform semantic adjust-
ments and modifications, such as replacing a word with its
synonym, defining a concept, or breaking down a procedure,
if they suspected the incorrect semantic understanding to be
the cause of the breakdown [5,48].

However, these strategies are often ineffective for two reasons:
First, users often lack an accurate understanding of the cause
of the breakdown because current conversational agents do
not provide sufficient transparency into the system’s state of
understanding [5]. Understanding why a breakdown happens
is crucial for the user to repair it [3]. In current agents, break-
downs are often discovered by users only after the system has
acted incorrectly based on its misunderstanding (i.e., perform-
ing the wrong action) or from a generic error response (e.g.,
"Sorry I don’t understand") [5]. Thus, little useful information
is available for users to infer the cause of the breakdown. The
system will provide a task-specific clarification response only
in the small portion of cases where a developer has explic-
itly programmed an error handling conversation flow for the
specific breakdown scenario.

Second, even when users correctly identify the causes of the
breakdowns, their repairs in natural language are often in-
effective [5]. This is especially problematic in breakdowns

https://doi.org/10.1145/3379337.3415820
mailto:haijunxia@ucsd.edu
mailto:jingyach@andrew.cmu.edu
mailto:bam}@cs.cmu.edu
https://creativecommons.org/licenses/by/4.0/

Session 14B: Transcribing Words and Directing Voice

I

o Hi I'm Sovite bot! How can | help you?

UIST '20, October 20-23, 2020, Virtual Event, USA

The user can provide an app name

tonight?

G 1 will buy an [Espre
G Is this correct?

from starbucks.

v

drink type

. Iced Espresso
ooppia

Hi, Sugilite

° % What app should I use to find a place for &

0 I'm searching for intents that use
Booking.com.

0 For the Booking.com app, | know how to book
a hotel room.

Search Destination/ Property Name

9
Expedia

I'm searching for intents that use Expedia

% o
sooirs R I IR S N
. O

Can you show me which screen in Expedia
is more relevant to the task *find a place for
tonight"?

fiEz20Aaxz0m MmM¥Londeu g
X Hotels -

The user can drag the
highlight overlay to select

a different slot value

The user can show a relevant
app screen by demonstration

Figure 1. The interface of SOVITE: (a) SOVITE shows a app GUI screenshot to communicates its state of understanding. The yellow highlight overlay
specifies the task slot value. The user can drag the overlay to fix slot value errors. (b) To fix intent detection errors, the user can refer to an app that
represents their desired task. SOVITE will match the utterance to an app on the phone (with its icon shown), and look for intents that use or are relevant
to this app. (c) If the intent is still ambiguous after referring to an app, the user can show a specific app screen relevant to the desired task.

caused by natural language understanding errors, where the
user needs to make semantic and syntactic adjustments such as
verbally defining a keyword, explaining a procedure, replacing
a word with its synonym, or restructuring the sentence instead
of simply repeating the utterances with exaggerating sounds.
The user usually needs to guess the right strategy to use due
to the lack of transparency into the system’s natural language
understanding models. Existing conversational systems also
often have problems understanding these repairs due to the
system’s limited capability of reasoning with natural language
instructions and common sense knowledge [39]. This is part of
the reason why commercial systems like Siri and Alexa rarely
ask users to try to repair the conversation, but just immediately
perform generic fallback actions such as searching the web.

Visualizing the agent’s understanding of user intent is a promis-
ing way to address these challenges. Some existing agents sup-
port displaying visual responses (known as cards' in Google
Assistant) within natural language conversations. These cards
allow the user to see the agent’s state, and to interact with the
agent visually to complement speech commands. However,
these cards must be hard-coded by the developers, require
significant effort to create, and therefore have limited adop-
tion across task domains. In this paper, we propose a new
approach to address these challenges leveraging the graphical
user interfaces (GUIs) of existing apps. This approach can
be applied on devices with screens and access to app GUIs,
such as smartphones and smart display devices (e.g., Amazon
Echo Show, Google Home Hub). Our approach helps the user

Thttps://developers.google.com/assistant/conversational/rich-
responses

1095

discover breakdowns and identify their causes by showing the
system’s state of understanding using GUI screenshots of the
underlying apps for the task domain. It subsequently allows
the users to repair the breakdowns by using direct manipula-
tion on the screenshots and by making references to relevant
apps and screens in the conversation.

The use of app GUIs has many advantages. GUIs and conver-
sational agents are two different types of interfaces to mostly
the same set of underlying computing services, since most, if
not all, supported task domains in task-oriented conversational
agents have corresponding mobile apps. The GUIs of these
apps encapsulate rich knowledge about the flows of the tasks
and the properties and relations of relevant entities [40]. The
majority of users are also familiar with the app GUIs, the way
to interact with them, and their general design patterns [36],
which makes them ideal mediums through which the agent
and the user can communicate in a supplementary modality
during natural language conversations.

This paper introduces SOVITE?, a new interface that helps
users discover, identify the causes of, and recover from con-
versational breakdowns in task-oriented agents using this app-
grounded multi-modal approach (Figure 1). A remote user
study of 10 participants using SOVITE in 7 conversational
breakdown scenarios showed that end users were able to suc-
cessfully use SOVITE to fix common types of breakdowns
caused by natural language understanding errors. The partici-
pants also found SOVITE easy and natural to use.

2SOVITE is named after a type of rock. It is also an acronym for
System for Optimizing Voice Interfaces to Tackle Errors.

Session 14B: Transcribing Words and Directing Voice

This paper makes the following contributions:

1. A new multi-modal approach that allows users to discover,
identify the causes of, and repair conversational breakdowns
caused by natural language understanding errors in task-
oriented agents using the GUIs of existing mobile apps.

2. The SOVITE system: an implementation of the above ap-
proach, along with a user study evaluating its effectiveness
and usability.

PROBLEM SETTING

Frame-Based Task-Oriented Conversational Agents
SOVITE is designed for handling natural language understand-
ing errors in task-oriented conversational agents that use the
frame-based architecture for dialog management [8]. This is
the most popular architecture used by the majority of existing
commercial task-oriented agents [29]. It is based on a set of
frames (also known as intents). Each frame represents a kind
of intent that the system can extract from user utterances. A
frame often contains slots whose values are needed for ful-
filling the underlying task intent. For a user utterance, the
system first determines the frame to use (e.g., finding a flight),
and then tries to fill the slots (e.g., date, departure airport and
arrival airport) through the dialog. Frames can ensure the
necessary structures and constraints for task completion [29],
which are lacking in statistical dialog approaches (e.g., deep
reinforcement learning for response generation [33,34,57] and
information retrieval-based structures [66]) often used in so-
cial chatbots that converse with human users on open domain
topics without explicit task completion goals.

A typical pipeline for a frame-based dialog architecture con-
sists of multiple steps, including: (1) speech recognition, (2)
natural language understanding, (3) natural language gener-
ation, and (4) speech synthesis [29]. Among those, (2) natu-
ral language understanding causes most of the critical break-
downs, as reported in Myers et al.’s study [48] on how users
overcome obstacles in voice user interfaces. For the (1) speech
recognition step, state-of-art algorithms have reached human
parity [67]. For screen-based systems like what we use, the
user can easily read and edit the transcription from the speech
recognition step. Further, users’ natural repair strategies such
as repetition, prosodic changes, and overarticulation are effec-
tive for speech recognition errors [5]. The (3) natural language
generation step in frame-based agents is typically rule-based
with manually created templates, therefore less prone to errors
compared with statistical approaches commonly used in so-
cial chatbots. Finally, the latest techniques for the (4) speech
synthesis step reliably produce clear and easy-to-understand
synthetic speech from text.

Problem Scope

This work therefore focuses on the breakdowns caused by
(2) natural language understanding errors. There are two key
components in the natural language understanding step: intent
detection and slot value extraction. Intent detection errors are
those where the system misrecognizes the intent in the user’s
utterance, and subsequently invokes the wrong dialog frame
(e.g., responding “what kind of cuisine would you like” for
the command “find me a place in Chicago tonight” when the

1096

UIST '20, October 20-23, 2020, Virtual Event, USA

user intends to book a hotel room.) In slot value extraction
errors, the system either extracts the wrong parts in the input
as slot values (e.g., extracting “Singapore” as the departure
city in “Show me Singapore Airlines flights to London.") or
links the extracted phrase to incorrect entities (e.g., resolving
“apple” in “What’s the price of an apple?" to the entity “Apple
company” and therefore incorrectly invoking the stock price
lookup frame). As illustrated in the examples, slot value
extraction errors can cause either the wrong slot match in the
dialog frame (the airline example) or the wrong dialog frame
(the apple example).

Note that there are other types of breakdowns in task-oriented
agents that SOVITE does not handle. It does not address (1)
speech recognition errors, as discussed previously. It also does
not address breakdowns caused by errors in task fulfillment
(i.e., exceptions when executing the task), errors in generating
agent response ((3) and (4)), or the user’s lack of familiarity
with intents (e.g., the user does not know what intents the
system can support).

Instructable Agents

An instructable agent is a promising new type of frame-based
agent that can learn intents for new tasks interactively from
the end user’s natural language instructions [4,37,61] and/or
demonstrations [1,35,39,47]. It allows users to use agents for
personalized tasks and tasks in “long-tail” domains, addressing
the “out-of-domain” errors in human-agent conversations [37].

However, supporting effective breakdown repair is even more
challenging for instructable agents. The user-instructed task
domains have many fewer example utterances (usually only
one) for training the underlying natural language understand-
ing model. As aresult, breakdowns caused by natural language
understanding errors occur more frequently.

Further, when encountering breakdowns, the instructable
agents seldom have task-specific error handling mechanisms
for user-instructed task domains. In agents with professionally-
developed task domains, developers can explicitly program
error handling conversation flows for domain-specific break-
downs [2,46]. However, end users with little programming
expertise seldom create such error handlers for user-taught
tasks due to the lack of tool support, and more importantly,
the lack of expertise to consider and to handle possible future
breakdown situations in advance.

We support instructable agents in SOVITE by (1) supporting
user-instructed task domains by not requiring existing domain
knowledge, hard-coded error handling mechanisms, or large
corpus in the task domains, and (2) supporting the easy tran-
sition to user instruction when a breakdown turns out to be
caused by out-of domain errors rather than natural language
understanding errors.

Design Goals
We have the following design goals:

1. The system should enable users to effectively discover, iden-
tify the causes of, and repair conversational breakdowns in
intent detection and slot value extraction of frame-based
task-oriented conversational agents.

Session 14B: Transcribing Words and Directing Voice

2. The system should handle conversational breakdowns in var-
ious task domains, including user-instructed ones, without
requiring existing domain knowledge or manually-created
domain-specific error handling mechanisms.

RELATED WORK

Studies of Breakdowns in Conversational Interfaces

The design of SOVITE is informed by insights from previous
studies of breakdowns in conversational agents. As reported in
Beneteau et al.’s 2019 deployment study [5] of Alexa, all study
participants experienced breakdowns when conversing with
the agent. The participants used a variety of repair strategies
based on their understandings of the causes of the breakdowns,
but those repairs were often not effective since their under-
standings were frequently inaccurate. Repairing breakdowns
caused by natural language understanding errors (compared
with speech recognition errors) was particularly problematic,
as the natural repair strategies used by users such as seman-
tic adjustments and defining unclear concepts were not well-
supported by the agents. Other studies [3,9, 14,27, 48, 54]
reported similar findings of the types of breakdowns encoun-
tered by users and the common repair strategies.

In a 2020 study conducted by Cho et al. [14], more than half of
the responses given by Google Home in a user study with five
information-seeking tasks were “cannot help” error responses
(40%) or “unrelated” responses (24%) that were not useful for
the user’s request. In most cases, the “cannot help” messages
did not provide useful information about the causes of the
breakdowns to help the users with breakdown repairs. The
participants were sometimes able to infer the causes of the
breakdowns from “unrelated” responses, but this process was
often unreliable and confusing. The 2018 study by Myers
et al. [48] identified “Rely on GUI” as a strategy that users
naturally use when they encounter obstacles in conversational
interfaces, where they looked at the corresponding app’s GUIs
to look for cues on what to say for task intents.

Motivated by the these insights, SOVITE helps the users iden-
tify the causes of breakdowns by visualizing the system’s state
of understanding of user intent using the app GUI screenshots.

Assisting Conversational Breakdown Repairing

Some previous approaches have been proposed to assist users
with discovering, identifying, and repairing conversational
breakdowns. In a taxonomy of conversational breakdown
repair strategies by Ashktorab et al. [3], repair strategies can be
categorized into dimensions of: (1) whether there is evidence
of breakdown (i.e., whether the system makes users aware
of the breakdown); (2) whether the system attempts to repair
(e.g., provide options of potential intents), and (3) whether
assistance is provided for user self-repair (e.g., highlight the
keywords that contribute to the intent classifier’s decision).

In the results from that paper [3], the most preferred option
by the users was to have the system attempt to help with the
repair by providing options of potential intents. However, as
discussed earlier, this approach requires domain-specific “deep
knowledge” about the task and error handling flows manually
programmed by the developers [2,46], and therefore is not

1097

UIST '20, October 20-23, 2020, Virtual Event, USA

practical for user-instructed tasks. In fact, even agents with
professionally developed conversational skills such as Alexa
and Google Assistant often only provide generic error mes-
sages (e.g., “I didn’t understand.”) with no transparency into
the states of understanding in the system and no mechanism
for further interactions [14, 54]. In comparison, SOVITE does
not require any additional efforts from the developers. It only
requires “‘shallow knowledge” in a domain-general generic
language model to map user intents to the corresponding app
screens (details in the Implementation section).

The second most preferred strategy in [3] was for the system
to provide more transparency into the cause of the breakdown,
such as highlighting the keywords that contribute to the in-
tent detection results. This approach is also relevant to work
in explainable machine learning (e.g., [62]), which seeks to
help users understand the results from intelligent systems and
therefore provide more effective inputs. However, these ap-
proaches usually require users to verbally clarify or define
these keywords. A previous study [39] found that when users
tried to verbally explain a concept unknown to the system,
they often introduced even more unknown concepts in their
explanations. The agents also have problems understanding
such explanations due to their limited capability of reasoning
with natural language instructions and domain knowledge.

SoVITE further explores the design space of improving system
transparency—it visualizes the intent detection and slot value
extraction results with app GUI screenshots. It also allows the
users to easily repair the breakdowns using references to app
GUI contents and direct manipulation on the screenshots.

Multi-Modal Mixed-Initiative Disambiguation Interfaces

SOVITE uses a multi-modal approach [51] that visually dis-
plays the system states and enables direct manipulation in-
puts from users in addition to spoken instructions to repair
breakdowns, unlike prior systems that use only the natural
language inputs and outputs [2,3,46]. SOVITE’s design uses
the mutual disambiguation pattern [50], where inputs from
one modality are used to disambiguate inputs for the same
concept from a different modality. Similar patterns have been
previously used for handling errors in other recognition-based
interfaces [45], such as speech recognition [63] and pen-based
handwriting [31]. Visually-grounded language instructions
were also used in interactive task learning for robots [59] and
performing web tasks [1,56]. SOVITE, to our best knowledge,
is the first system to use this pattern to handle natural language
understanding errors for task-oriented dialogs with app GUIs.

The design of SOVITE also applies the principles of mixed-
initiative interfaces [23]. Specifically, it considers breakdown
repairing as a human-agent collaboration process, where the
user’s goals and inputs come with uncertainty. The system
shows guesses of user goals, assists the user to provide more
effective inputs, and engages in multi-turn dialogs with the
user to resolve any uncertainties and ambiguities. This com-
bination of multi-modal and mixed-initiative approaches has
been previously applied in the interactive task learning process
in systems such as [1,30,36,39]. SOVITE bridges an important
gap in these systems, as they focus on the ambiguities, uncer-
tainties, and vagueness embedded in the user instructions of

Session 14B: Transcribing Words and Directing Voice

new tasks, while SOVITE addresses the conversational break-
downs caused by the natural language understanding problems
when users invoke already-supported tasks.

In terms of the technique used, SOVITE extracts the semantics
of app GUIs [13,43] for grounding natural language conver-
sations. Compared with the previous systems that used the
semantics of app GUIs for learning new tasks [36, 38, 58],
extracting task flows [40], and supporting invoking individual
GUI widgets with voice commands [64], a new idea in SO-
VITE is that it encodes app GUISs into the same vector space
as natural language utterances, allowing the system to look
up semantically relevant task intents when the user refers to
apps and app GUI screens in the dialogues for repairing intent
detection errors (details in the Implementation section).

THE DESIGN OF SOVITE

Communicating System State with App GUI Screenshots
The first step for SOVITE in supporting the users in repairing
conversational breakdowns is to provide transparency into the
state of understanding in the system, allowing the users to dis-
cover breakdowns and identify their causes. SOVITE leverages
the GUI screenshots of mobile apps for this purpose. As shown
in Figure 1a, for the user command, SOVITE displays one or
more (when there are multiple slots spanning many screens)
screenshots from an app that corresponds to the detected user
intent (details of how SOVITE extracts the screenshots and cre-
ates the highlight overlays are discussed in the Implementation
section). For intents with slots, it shows screens that contain
the GUI widgets corresponding to where the slots would be
filled if the task was performed manually using the app GUI
SOVITE also adds a highlight overlay, shown in yellow in
Figures la and 2, on top of the app’s GUI, which indicates the
current slot value. If the slot represents selecting an item from
a menu in the GUI, then the corresponding menu item will
be highlighted on the screenshot. For an intent without a slot,
SOVITE displays the last GUI screen from the procedure of
performing the task manually, which usually shows the result
of the task. After displaying the screenshot(s), SOVITE asks
the user to confirm if this is indeed the correct understanding
of the user’s intent by asking, "I will... [the task], is this
correct?", to which the user can verbally respond.

For example, as shown in Figure 1a, SOVITE uses the screen-
shot of the “Order” screen in Starbucks app to represent the
detected intent “buy a [drink type] from Starbucks", and
highlights the value “Espresso” for the slot drink type on
the screenshot.

Design Rationale

SOVITE’s references to app GUIs help with grounding in
human-agent interactions. In communication theory, the con-
cept of grounding describes conversation as a form of collab-
orative action to come up with common ground or mutual
knowledge [15]. For conversations with computing systems,
when the user provides an utterance, the system should pro-
vide evidence of understanding so that the user can evaluate
the progress toward their goal [10]. As described in the gulf of
evaluation and gulf of execution framework [24,49] and shown
in prior studies of conversational agents [3, 5], execution and

1098

UIST '20, October 20-23, 2020, Virtual Event, USA

evaluation are interdependent—in order to choose an effective
strategy for repairing a conversational breakdown, the user
needs to first know the current state of understanding in the
system and be able to understand the cause of the breakdown.

The app GUI screenshots can be ideal mediums for commu-
nicating the state of understanding of the system. They show
users the evidence of grounding [14] through their familiar
app GUIs. This approach highlights that the agent performs
tasks on the user’s behalf, showing the key steps of navigating
app screens, selecting menu items, and entering text through
GUIs based on slot values as if a human agent was to perform
the task using the underlying app. We believe this approach
should help users to more effectively identify the understand-
ing errors because it provides better closeness of mapping [21]
to how the user would naturally approach this task. Prior stud-
ies showed that references to existing app GUIs were effective
in other aspects of conversational interface designs, such as
enabling users to explain unknown concepts [39] and helping
users come up with the language to use to invoke app function-
alities [48]. Showing the screenshots of GUIs is also a useful
way to present the context of a piece of information, making
the content easier to understand [42].

Intent Detection Repair with App GUI References

When an intent detection result is incorrect, as evidenced by
the wrong app or the wrong functionality of app shown in a
confirmation screenshot, or when the agent fails to detect an
intent from the user’s initial utterance at all (i.e., the system
responds “I don’t understand the command.”), the user can fix
the error by indicating the correct apps and app screens for
their desired task.

References to Apps

After the user says that the detected intent is incorrect after
seeing the app GUI screenshots, or when the system fails to
detect an intent, SOVITE asks the user "What app should I use
to perform. .. [the task]?", for which the user can say the
name of an app for the intended task (shown in Figure 1b).
SOVITE looks up the collection of all supported task intents
for not only the intents that use this underlying app, but also in-
tents that are semantically related to the supplied app (we will
discuss how SOVITE finds semantically relevant task intents
in the Implementation section).

For example, suppose the agent displays the screenshots of
the OpenTable app for the utterance “find a place for tonight”
because it classifies the intent as “book restaurant” when the
user’s actual intent is book hotel”. The user notices that the
app is wrong from the screenshot and responds “No” when
the agent asks, “Is this correct?”” The agent then asks which
app to use instead, to which the user answers “Booking.com”,
which is an app for booking hotel rooms. If there was indeed a
supported “book a hotel room” intent using the Booking.com
app, SOVITE would respond “OK, I know how to book a hotel
room using Booking.com”, and then show the screenshots of
booking hotel rooms in Booking.com for confirmation. If no
such intent was available, but there was an intent semantically
related to the Booking.com app, such as a ‘book a hotel room”
intent using the Hilton app, SOVITE would respond “I don’t
know how to find a place for tonight in Booking.com, but I

http:Booking.com
http:Booking.com
http:Booking.com
http:Booking.com
http:Booking.com
http:Booking.com

Session 14B: Transcribing Words and Directing Voice

know how to book a hotel room using Hilton” and show the
corresponding screenshots. The user can verbally confirm per-
forming the task using the Hilton app instead, or indicate that
they still wish to use the Booking.com app and teach the agent
how to perform this task using Booking.com by demonstration
(if the underlying agent supports the user instruction of new
tasks; details discussed below).

References to App Screens

In certain situations, the user’s intent can still be ambiguous
after the user indicates the name of an app; there can be mul-
tiple intents associated with the app (for example, if the user
specifies “Expedia” which can be used for booking flights,
cruises, or rental cars), or there can be no supported task in-
tent in the user-provided app and no intent that meets the
threshold of being sufficiently “related” to the user-provided
app. In these situations, SOVITE will ask the user a follow-up
question “Can you show me which screen in... [the app]]
is most relevant to... [the task]?” (shown in Figure Ic).
SOVITE then launches the app and asks the user to navigate to
the target screen in the app. (The user may also say “no” and
start over.) After the user reaches the target screen, they can
click on a floating SOVITE icon to provide this screen as an
input to SOVITE. SOVITE then finds intents that are the most
semantically related to this app screen among the ambiguous
ones (technical details in the Implementation section), or asks
the user to teach it a new one by demonstration.

Ease of Transition to Out-of-Domain Task Instructions

An important advantage of SOVITE’s intent disambiguation ap-
proach is that it supports the easy transition to the user instruc-
tion of a new task if the intent disambiguation attempt fails
when the user’s intended task is out of scope (i.e., there is no
existing intent that supports the task). An effective approach
to support handling out-of-scope errors is programming-by-
demonstration (PBD) [37]. The state-of-the-art PBD systems
(e.g., [35,39,58]) can learn new tasks from the user’s demon-
strations on third-party app GUIs. SOVITE’s approach can
directly connect to the user instruction mode in these systems.
Since at this point in the overall process, SOVITE already
knows the most relevant app and app screen for the user’s in-
tended task and how to navigate to this screen in the app, it can
simply ask the user “Can you teach me how to... [the task]
using. .. [the app] in this screen”, switch back to this screen,
and have the user to continue demonstrating the intended task
to teach the agent how to fulfill the previously out-of-scope
task intent. The user may also start over and demonstrate from
scratch if they do not want to start the instruction from this
screen.

Design Rationale

The main design rationale of supporting intent detection re-
pairs with app GUI references is to make SOVITE’s mechanism
of fixing intent detection errors consistent with how users dis-
cover the errors from SOVITE’s display of intent detection
results. When users discover the intent detection errors by
seeing the wrong apps or the wrong screens displayed in the
confirmation screenshots, the most intuitive way for them to
fix these errors is to indicate the correct apps and screens that
should be used for the intended tasks. Their references to

1099

UIST '20, October 20-23, 2020, Virtual Event, USA

the apps and the screens also allow SOVITE to extract richer
semantic context (e.g., the app store descriptions and the text
labels found on app GUI screens) than having the user simply
rephrase their utterances, helping with finding semantically
related task intents (technical details in the Implementation
section).

Slot Value Extraction Repair with Direct Manipulation

If the user finds that the intent is correct (i.e., the displayed
app and app screen correctly match the user’s intended task),
but there are errors in the extracted task slot values (i.e., the
highlighted textboxes, the values in the highlighted textboxes,
or the highlighted menu items on the confirmation screen-
shots are wrong), the user can fix these errors using direct
manipulation on the screenshots.

All the highlight overlays for task slots can be dragged-and-
dropped (Figures la and 2). For slots represented by GUI
menu selections, the user can simply drag the highlight overlay
to select a different item. For example, assuming the agent
incorrectly selects the item "Espresso” for the utterance "order
a cold espresso” due to an error in entity recognition, as shown
in Figure 1a, the user can drag the highlight overlay to "Iced
Espresso"” on the screenshot to specify a different slot value.
(If the user’s desired slot value is not on the screen, the user can
say “no” and indicate the correct screen to use, as discussed
in the previous section.) The same interaction technique also
works for fixing mismatches in the text-input type slot values.
For example, if the agent swaps the order between starting
location and destination in a “requesting Uber ride” intent,
the user can drag these overlays with location names to move
them to the right fields in the app GUI screenshot (Figure 2).
When a field is dragged to another field that already has a
value, SOVITE performs a swap rather than a replace so as not
to lose any user-supplied data.

Alternatively, when the value for a text-input type slot is in-
correct, the user can repair it using the popup dialog shown
in Figure 2. After the user clicks on the highlight overlay
for a text-input slot, a dialog will pop up, showing the slot’s
current value in the user’s original utterance. The user can
adjust the text selection by dragging the highlight boundaries
in the identified entities (e.g., the system recognizes the slot
value as "The Lego" when the user says "find showtimes for
The Lego Movie.") The same dialog alternatively allows the
user to just enter a new slot value by speech or typing.

Design Rationale

We believe these direct manipulation interactions in SOVITE
are intuitive to the users—this is also supported by the results
reported in the User Study section. The positions and the
contents of the highlight overlays represent where and what
slot values would be entered if the task was performed using
the GUI of the corresponding app. Therefore, if what SOVITE
identified does not match what the users would do for the
intended task, the users can directly fix these inconsistencies
through simple physical actions such as drag-and-drop and
text selection gestures, and see immediate feedback on the
screenshots, which are major advantages of direct manipula-
tion [60].

http:Booking.com
http:Booking.com

Session 14B: Transcribing Words and Directing Voice

() fiao EXT Y PR
« @ rove ~

+ fairport____ |
fforme 1 aHpPOrt

Set the Parameter Value

find a ride to Airport from
home |]

ination Airport &

CANCEL oK

Figure 2. SOVITE provides multiple ways to fix text-input slot value
errors: LEFT: the user can click the corresponding highlight overlay
and change its value by adjusting the selection in the original utterance,
speaking a new value, or just typing in a new value. RIGHT: the user
can drag the overlays on the screenshot to move a value to a new slot, or
swap the values between two slots.

IMPLEMENTATION

We implemented SOVITE in Java as an Android app. SOVITE
was developed and tested on a Google Pixel 2 XL phone
running Android 8.0. It does not require the root access to
the phone, and should run on any phone with Android 6.0 or
higher. SOVITE is open-sourced on GitHub?.

The current implementation of SOVITE builds on our open-
sourced SUGILITE system [35]. SUGILITE is an instructable
agent that allows end users without significant programming
expertise to teach new tasks by demonstrating on the GUIs of
existing third-party Android apps.

SUGILITE uses a standard frame-based dialog management
architecture with intents, slots, and slot values. Its natural lan-
guage model uses a SEMPRE [7]-based Floating Parser [53]
that can parse the user’s utterance into a corresponding expres-
sion that invokes an intent and sets the respective slot values.
The model was trained on the lexical (e.g., unigrams, bigrams,
skip-grams), syntactic (e.g., part-of-speech tags, named-entity
tags), and semantic (e.g., word embeddings) features extracted
from the training utterances for each task intent, including
when users teach new tasks for an utterance (detail in [36,39]).
Because the task fulfillment in SUGILITE is instructed by end
users, there are usually only a very small number of sample
training utterances (often only one) for each task intent. As a
result, conversational breakdowns are common in SUGILITE’S
interaction with users when they use utterances with diverse
vocabulary, structures, or expressions that are not covered in
the training corpus.

While we implemented SOVITE with our SUGILITE agent,
we believe the approach used in SOVITE should generalize
to other frame-based task-oriented conversational agents as
well. The only major part of SOVITE’s implementation that is
specific to SUGILITE is its mechanism for generating app GUI
screenshot confirmations. However, there are other practical
ways to generate these app GUI screenshot confirmations
without relying on the programming by demonstration scripts
in SUGILITE (details in next section).

3https://github.com/tobyli/Sugilite_development

1100

UIST '20, October 20-23, 2020, Virtual Event, USA

Generating the App GUI Screenshot Confirmations

In SUGILITE, each supported task intent corresponds to an
automation script created from user demonstrations of per-
forming the task manually using the GUIs of the underlying
app. Therefore, SOVITE can extract app GUI screenshots for
these intents by instrumenting the demonstration process.

When the user starts demonstrating a task, SOVITE creates a
virtual display device in the background that mirrors the main
display that the user sees for capturing the screenshots. For
each GUI action demonstrated by the user, SOVITE takes a
screenshot that captures this action. At the end of the demon-
stration process, SOVITE compares the task slot values with
the demonstrated actions to identify actions that correspond to
the task slots and saves these screenshots to be used as the con-
firmation for this demonstration’s underlying task intent. For
example, assuming the user’s demonstration for the task “order
an Espresso” contains an action “click on the item ‘Espresso”™
from a menu on the GUI of Starbucks app, SOVITE will use
the screenshot taken from the user demonstrating this action as
a confirmation for the intent. The same mechanism also works
for slot values from text inputs (e.g., the user demonstrates
typing “Chicago” into a textbox for a command “book a hotel
room in Chicago”).

Although the implementation of generating app GUI screen-
shot confirmations used in SOVITE, as described above, only
applies to programming-by-demonstration instructable agents
such as SUGILITE [35], PLow [1], and VASTA [58], there are
other feasible approaches for generating app GUI screenshot
confirmations in other types of agents. For example, recent
advances in machine learning have been shown to support
directly matching natural language commands to specific GUI
elements [52] and generating semantic labels for GUI elements
from screenshots [13]. For agents that use web API calls to
fulfill the task intents, it is also feasible to compare the agent
API calls to the API calls made by apps by analyzing the code
of the apps (e.g., CHABADA [20]), or to the network traffic
collected from the apps (e.g., MobiPurpose [28]). These tech-
niques should allow associating slots with their corresponding
app GUI widgets without relying on user demonstrations.

Finding Relevant Intents from Apps and App Screens
When the user refers to an app name or an app screen for
their desired task for disambiguating task intents, SOVITE first
looks for intents that use exactly this app or this app screen. If
none of the supported task intents uses the exact app or app
screen that the user refers to, SOVITE can recommend relevant
task intents. For example, if the user refers to the app "Book-
ing.com" or the page for "List hotels near [location]]" in
Google Maps to explain the utterance "find a place for tonight",
SOVITE can prompt "I know how to book a hotel room using
the Hilton app, is this what you want to do?"

The technical challenge here is to identify semantically rele-
vant task intents based on the user-provided app names and
app screens. An effective way to match the user’s task intent
with natural language descriptions of goals (e.g., book hotel)
to apps (e.g., Booking.com) is to leverage the app descriptions
in the app stores. For example, MessageOnTap [12] uses word
embeddings to represent the semantic meanings of individual

http:Booking.com

Session 14B: Transcribing Words and Directing Voice

words in the user utterances and app store descriptions, and
calculates the cosine similarity between the word embedding
centroids of each app description and the conversation to rec-
ommend relevant apps in human-human conversations (e.g.,
recommending the Calendar app and the OpenTable app when
one party in the conversation says “let’s schedule a dinner.”)
SOVITE uses a similar approach but recommends task intents
from the user references to apps instead of recommending apps
from the user expressions of task intents as in MessageOnTap.

Specifically, for each app reference made by the user, a re-
mote SOVITE server retrieves its description from the Google
Play store, and calculates the sentence embeddings for the app
store description and the sample utterances of each supported
task intent using a state-of-art pre-trained Sentence-BERT
model [55], which is a modified BERT network [19] that can
derive semantically meaningful sentence embeddings for cal-
culating semantic relatedness. SOVITE is then able to identify
the most relevant task intent for the app by finding the task
intent whose centroid of sentence embeddings of all its sample
utterances has the highest cosine similarity with the sentence
embedding of the target app’s app store description. All this
can be done in real-time as the user is interacting with SOVITE.

When the user refers to a specific app screen, SOVITE uses
a similar technique for finding semantically relevant task in-
tents. The only difference is that instead of using the sentence
embeddings of app store descriptions, it uses the embeddings
of all the text labels shown on the screen, and computes their
semantic relatedness with each supported task intent to find
the most relevant one.

USER STUDY
We conducted a remote user study* to evaluate SOVITE. The
study examined the following two research questions:

RQ1: Can users understand and use SOVITE’s new features
for identifying and repairing conversational breakdowns?

RQ2: Is SOVITE effective for fixing conversational break-
downs caused by natural language understanding errors in
task-oriented agents?

Participants

We recruited 10 participants (2 women, 8 men, ages 25-41)
for our study. 5 participants were graduate students in two
local universities, and the other 5 worked at different technical,
administrative, or managerial jobs. All of our participants
were experienced smartphone users with more than 3 years
of experience of using smartphones. 8 of the 10 participants
(80%) were active users of intelligent conversational agents
such as Alexa, Siri, or Google Assistant. Each participant was
compensated $15 for their time.

Study Design

The remote study session with each participant lasted 30-40
minutes. After agreeing to the consent form presented online
and filling out a demographic survey, each participant received
a short tutorial of SOVITE, which showed the SOVITE fea-
tures discussed above. The participant was then presented

4The study protocol was approved by the IRB at our institution.

1101

UIST '20, October 20-23, 2020, Virtual Event, USA

with the 7 tasks in random order. In each task, the participant
saw an example conversation scenario that contained a user
voice command and SOVITE’s response (i.e., each scenario
tells the participant “Assume you have said [utterance],
and here is the agent’s response. You need to identify whether
the system’s understanding of the intent was correct and fix
the breakdown using SOVITE when the understanding was
incorrect”). The 7 tasks include one “no error” scenario (Sce-
nario 1), and 6 breakdown scenarios that cover different types
of intent detection and slot value extraction errors (Table 1).
The participant then filled out a post-study questionnaire about
their experiences with SOVITE, and ended the study with a
short interview with the experimenter.

The study was performed remotely using the Zoom video con-
ference software. SOVITE ran on a Pixel 2 XL phone running
Android 8.0 with relevant third party apps pre-installed. We
streamed the screen display of the phone through a camera
pointing at its screen, so that the remote participant could see
and hear the output of the phone. The participant was able
to control the phone indirectly through the relay of the exper-
imenter: the participant could point to a GUI widget on the
phone screencast with the mouse cursor, and ask the experi-
menter to click on the widget or enter text into the widget on
their behalf. The participant could also ask the experimenter
to say something by speech to the phone, and the experimenter
repeated the participant’s utterance exactly. Since speech
recognition errors were not a concern for this study, repeating
the utterance was not a confound.

Impact of the COVID-19 Pandemic

This study was conducted in April 2020 in the midst of the
COVID-19 global pandemic. Due to health concerns, we
were unable to conduct an in-person lab study as originally
planned. Although in the remote study, the participants were
not able to directly control and speak to SOVITE, we believe
the results were still valid for the two research questions we
asked. Specifically, the study measured whether the users
could come up with what to do in SOVITE when presented with
breakdown situations, and whether these inputs were effective
for breakdown repairs. We tried a few third-party software
tools for directly screencasting and remote controlling Android
phones but ran into stability and performance issues with them
when sharing with remote participants; therefore we used the
camera method described above.

Note that this is not a Wizard-of-Oz study because the system
was actually operating on the participants’ utterances and
actions—the experimenter just served as an intermediary since
we could not have the participants use the actual phone.

Results

Among the 70 scenario instances (10 participants x 7 sce-
narios), including 10 “no error” scenarios, the participants
correctly identified all 10 “no error” scenarios and discovered
57 out of 60 errors (95%). Among the discovered errors, they
successfully fixed all of them using SOVITE. The participants
failed to notice the error in two instances of Scenario 7 and
one instance of Scenario 6. When asked to reflect upon their
experience, the participants attributed all of these failure cases

Session 14B: Transcribing Words and Directing Voice

UIST '20, October 20-23, 2020, Virtual Event, USA

Breakdown Type

Example Scenario

User Repair Method with SOVITE

No error

Intent: no intent matched (did not understand the
command)

Intent: wrong app used

Intent: correct app, wrong screen used

Slot: wrong item selected in a menu

Slot: wrong value extracted for text input

Slot: slot value mismatched

Make a call to Amazon (in the Phone app)

Find something to eat (should order food for de-
livery in Doordash)

Find a place for tonight (recognized as using
OpenTable for restaurant booking instead of us-
ing Hilton for hotel booking

Book a ticket to New York (recognized as book-
ing a hotel room in Expedia instead of booking a
flight)

Buy an Iced Espresso from Starbucks (the slot
value recognized as “Espresso”)
Find the showtimes of The Lego Movie (the slot
value recognized as “The Lego”)

Book an Uber ride to airport from home (the
starting location and the destination are swapped)

Not applicable

Provide a reference to the correct app to use (and
the screen if needed)

Provide a reference to the correct app to use (and
the screen if needed)

Provide a reference to the correct screen in Expe-
dia to use

Drag the highlight on the screenshot to select the
correct item

Click on the highlight on the screenshot to modify
the slot value

Drag the highlight on the screenshot to swap slot
values

Table 1. The 6 breakdown types and a ''no error'' type covered in the user study, an example scenario for each type, and their corresponding user repair

methods using SOVITE. All participants saw all 7 in random order.

to the “expectation of capabilities” problem, which we will
describe in the Discussion section below.

Subjective Results

In a questionnaire after the study, we asked each participant
to rate statements about SOVITE’s usability and usefulness on
a 7-point Likert scale from “strongly disagree” to “strongly
agree”. SOVITE scored on average 6.1 (SD = 0.83) on ““/
find SOVITE helpful for fixing understanding errors in con-
versational agents”, 6.4 (SD = 0.8) on “I feel SOVITE is easy
to use”, and 6.3 (SD = 0.9) on “I’'m satisfied with my expe-
rience with SOVITE” Specifically for SOVITE’s individual
features, the participants rated 6.5 (SD = 0.81) on “The high-
lights on screenshots for task parameter values are clear” and
6.2 (SD = 1.54) on “Dragging the highlights to fix parameter
errors is natural.” These results suggest that our participants
were positive about the usability and usefulness of SOVITE.

DISCUSSION

We observed some confusion over the highlight overlays in
screenshot confirmations in the participants’ interactions with
SOVITE. A few participants tried to interact with the other
GUI components on the screenshots when they first encoun-
tered them. For example, in Scenario 4, P1 tried to use the
back button on the screenshot to switch to the “book flight”
page. In Scenario 7, P2 was looking for a “swap” button on
the screenshot. However, after trying to interact with these
GUI components and receiving no response, they quickly re-
alized that only the highlight overlays were interactive on the
screenshots and successfully repaired the breakdowns there-
after. The overlay is not a common metaphor in interfaces—
users are more familiar with static screenshots where nothing
is interactive, and actual GUIs where every element can be di-
rectly interacted with. The overlay (also known as interaction
proxy [68]) sits in between, where the user can specify actions
about an underlying GUI element (e.g., the value that should
go info a textbox or the menu item that should be selected)
using direct manipulation, but not directly interact with these
GUI elements. A future direction is to explore the design
space of overlay interfaces to make them more intuitive to use.

1102

The “expectation of capabilities” problems [3,5,48] impacted
the user’s capability to discover errors in SOVITE in some
cases. For example, the visual clue for Scenario 7 was rather
subtle on the screenshot (i.e., the highlights for starting lo-
cation and destination in Uber were swapped, as shown in
Figure 2). P7 missed this error and went with “OK” when
SOVITE asked for confirmation. When asked about this in-
stance after the study, P7 said “I didn’t expect it [the system]
to make this error. .. I thought the original utterance was clear
so when I saw two highlights saying “home” and “airport”
I didn’t carefully check the order since I assumed that the
system would get it right. .. I was more looking at if this was
indeed the request ride screen in Uber.” Users may look more
carefully at places where they expect errors to appear, but
their expectations might not always match the system’s be-
haviors. However, with SOVITE, once the user discovers an
error, it is straightforward what the cause of error is and how
to fix it, which is a significant improvement from the prevail-
ing systems where the user needs to guess the cause of the
error (which is often inaccurate) and come up with the repair
strategy to use (which is often ineffective as a result) [5,48].

Efficiency wise, we did not measure the time-on-task in the
study due to the delays and overheads from running the study
remotely. But from our observations, while adding some
overhead to the conversation, using SOVITE should still be
more efficient than completing the tasks manually in most
cases. For example, completing the “order coffee task in
Starbucks requires up to 14 clicks on 8 screens. In comparison,
the user reads one GUI screenshot confirmation (and fixes the
errors, if any) in addition to speaking the initial utterance when
using SOVITE for the same task.

Design Implications

SOVITE illustrates the effectiveness of presenting the system’s
state of understanding in a way closely matched to how the
user would otherwise (i.e., not using speech) naturally ap-
proach the problem to help with error discovery. While speech
is a natural modality for interacting with task-oriented agents,
the technical limitations in natural language understanding
and reasoning capabilities limit its effectiveness in handling

Session 14B: Transcribing Words and Directing Voice

conversational breakdowns. App GUI screenshots can serve
as a good complement to natural language in this context.

An important underlying assumption in SOVITE’s strategy
of using app GUI screenshots is that users are familiar with
the app GUIs. This is also the assumption of many prior
interactive task learning systems like [1,32,35,58]. SOVITE
requires the user to have a mental model of “apps” so that
they understand how to complete their intended tasks through
existing app GUIs. Today, this assumption seems reasonable,
given the high adoption rate of smartphones [11]. Most app
GUIs are designed to be easy-to-use with common design
patterns [18], so users are likely able to understand the screens
even if they have never used the particular app before. Using
app GUIs is still by far the most common means through which
the users access computing services. However, it would be
interesting to think about how this may change for certain user
groups in some task domains in the future. For example, are
we going to see the conversational agents become “the native
interface” for some tasks and some user groups in the future,
just as how GUIs replaced command-line interfaces? In our
opinion, the app-GUI-based approach used in SOVITE can be
a stepping stone to a more integrated speech-oriented agent in
the future, which may eventually transcend the app-oriented
design of current smartphones.

SOVITE’s design highlights the importance of consistency
between how users fix the errors and how they discover the
errors. Once the users discover the errors (e.g., the wrong
app was used, the wrong screen was shown, the highlights
are at wrong places, the slot values use the wrong parts of
the initial utterances, etc.), the ways to fix them are rather
intuitive and obvious (e.g., saying the correct app, pointing
to the correct screen, dragging the highlights to the correct
places, and selecting the right parts of the initial utterances
to be used in the slot values). This was noticed and praised
by many participants in our study. With SOVITE, the user no
longer needs to guess the strategy to fix the error (e.g., explain
a word, replace words with synonyms, restructure the syntax)
like with prevailing systems when the error message was the
generic “Sorry I didn’t understand”.

LIMITATIONS AND FUTURE WORK

SOVITE currently does not handle task intents that span multi-
ple apps (even though the underlying SUGILITE system does).
Those intents are often higher-level intents that involve mul-
tiple smaller sub-intents within individual apps and informa-
tion exchange between them (e.g., “plan a dinner party” can
involve “find time availability for [people] in Calendar”,
“make a restaurant reservation at [time]”, and “notify the
[people] about the [reservation info]”. An interesting
future challenge is to design a new confirmation mechanism
to clearly show the system’s state of understanding for such
cross-domain intents with increased complexity.

As discussed previously in the Problem Scope section, SOVITE
only handles intent detection and slot value extraction errors in
natural language understanding. We hope to integrate SOVITE
with the existing mechanisms that handle other kinds of errors,
such as voice recognition errors, task execution errors, and
feedback generation errors.

1103

UIST '20, October 20-23, 2020, Virtual Event, USA

SOVITE currently displays the full app GUI screenshots as
a part of the conversation. As a result, the screenshots are
displayed in about half of their original size, making them
harder to read for the users. The highlight overlays for smaller
GUI elements are also prone to the “fat finger” problem. To
address this issue, one approach is to extend our model for
extracting app GUI screenshots so that it only displays parts of
the screens that are most relevant to the underlying task intents.
This might be feasible as we already have a mechanism to
determine the semantic relatedness between GUI screens and
task intents, but it risks making it harder for users to understand
the context of the displayed portions. Another approach is to
add support for zooming and panning using familiar gestures
such as pinch-to-zoom on the screenshots.

We plan to explore the challenge of better encoding the se-
mantics of app GUI screens for assisting natural language
understanding. SOVITE’s current mechanism only takes the
text labels shown on GUISs into consideration. In the future,
we plan to capture more comprehensive semantics of app GUI
screens by leveraging the GUI layouts (e.g., the distance be-
tween elements [41] and design patterns [18, 43]), control
flows among GUI screens [40], and large collections of user
interaction traces. The availability of large-scale GUI datasets
like RICO [17] makes future experiments in this area feasible.

Lastly, the user-provided repairs in SOVITE only apply locally
to the current dialog session. In the future, we plan to de-
velop mechanisms that allow the conversational agent to learn
from the user-provided repairs to improve its performance.
The user’s expression of the actual intent for their natural lan-
guage command collected through SOVITE can be a highly
valuable resource for applying online learning (a machine
learning approach that supports incremental learning using
small batches of data) to improve the accuracy of the agent’s
natural language understanding models on the fly.

CONCLUSION

Conversational breakdown repairing in task-oriented dialogues
is surprisingly little studied or handled by research or commer-
cial intelligent agents. The lack of effective and robust break-
down repair mechanisms significantly affects the adoption of
these agents. SOVITE shows an app-grounded multi-modal
approach that can effectively help users discover, identify the
causes of, and repair breakdowns caused by intent detection
errors and slot value extraction errors in certain contexts. We
look forward to future collaborations between HCI, behav-
ioral science, and AI/NLP researchers to address this issue in
human-agent interactions for all kinds of errors in all contexts.

ACKNOWLEDGMENTS

This research was supported in part by Verizon through the
InMind project, a J.P. Morgan Faculty Research Award, NSF
grant [IS-1814472, and AFOSR grant FA95501710218. Any
opinions, findings or recommendations expressed here are
those of the authors and do not necessarily reflect views of the
sponsors. We would like to thank our study participants, our
anonymous reviewers, and Michael Xieyang Liu, Haojian Jin,
and Forough Arabshahi for their helpful feedback.

Session 14B: Transcribing Words and Directing Voice UIST '20, October 20-23, 2020, Virtual Event, USA

REFERENCES
[1] James Allen, Nathanael Chambers, George Ferguson,

[12] Fanglin Chen, Kewei Xia, Karan Dhabalia, and Jason 1.
Hong. 2019. MessageOnTap: A Suggestive Interface to

[}

—_

[}

—_

—

Lucian Galescu, Hyuckchul Jung, Mary Swift, and
William Taysom. 2007. PLOW: A Collaborative Task
Learning Agent. In Proceedings of the 22nd National
Conference on Artificial Intelligence - Volume 2
(AAAI’07). AAAI Press, Vancouver, British Columbia,
Canada, 1514-1519.

Amazon. 2020. Alexa Design Guide. (2020).
https://developer.amazon.com/en-US/docs/alexa/
alexa-design/get-started.html

Zahra Ashktorab, Mohit Jain, Q Vera Liao, and Justin D
Weisz. 2019. Resilient Chatbots: Repair Strategy
Preferences for Conversational Breakdowns. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. ACM, 254.

Amos Azaria, Jayant Krishnamurthy, and Tom M.
Mitchell. 2016. Instructable Intelligent Personal Agent.
In Proc. The 30th AAAI Conference on Artificial
Intelligence (AAAI), Vol. 4.

Erin Beneteau, Olivia K. Richards, Mingrui Zhang,
Julie A. Kientz, Jason Yip, and Alexis Hiniker. 2019.
Communication Breakdowns Between Families and
Alexa. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI ’19). ACM,
New York, NY, USA, Article 243, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300473

Frank Bentley, Chris Luvogt, Max Silverman, Rushani
Wirasinghe, Brooke White, and Danielle Lottridge.
2018. Understanding the Long-Term Use of Smart
Speaker Assistants. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2, 3, Article Article 91 (Sept. 2018),
24 pages. DOI :http://dx.doi.org/10.1145/3264901

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing. 1533-1544.

Daniel G Bobrow, Ronald M Kaplan, Martin Kay,
Donald A Norman, Henry Thompson, and Terry
Winograd. 1977. GUS, a frame-driven dialog system.
Artificial intelligence 8,2 (1977), 155-173.

Dan Bohus and Alexander I. Rudnicky. 2005. Sorry, I
didn’t catch that!-An investigation of non-understanding
errors and recovery strategies. In 6th SIGdial Workshop
on Discourse and Dialogue.

Susan E Brennan. 1998. The grounding problem in
conversations with and through computers. Social and
cognitive approaches to interpersonal communication
(1998), 201-225.

Pew Research Center. 2019. Demographics of Mobile
Device Ownership and Adoption in the United States.
(2019). https:

//www.pewresearch.org/internet/fact-sheet/mobile/

1104

—_—

—_

—

Facilitate Messaging-Related Tasks. In Proceedings of
the 2019 CHI Conference on Human Factors in
Computing Systems (CHI ’19). ACM, New York, NY,
USA, Article Paper 575, 14 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300805

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei
Xu, Liming Zhu, Guoqiang Li, and Jinshui Wang. 2020.
Unblind Your Apps: Predicting Natural-Language
Labels for Mobile GUI Components by Deep Learning.
In Proceedings of the 42nd International Conference on
Software Engineering (ICSE '20).

Janghee Cho and Emilee Rader. 2020. The Role of
Conversational Grounding in Supporting Symbiosis
Between People and Digital Assistants. Proc. ACM
Hum.-Comput. Interact. 4, CSCW1 (May 2020).

Herbert H. Clark and Susan E. Brennan. 1991.
Grounding in communication. In Perspectives on
socially shared cognition. APA, Washington, DC, US,
127-149. DOI :http://dx.doi.org/10.1037/10096-006

Benjamin R. Cowan, Nadia Pantidi, David Coyle, Kellie
Morrissey, Peter Clarke, Sara Al-Shehri, David Earley,
and Natasha Bandeira. 2017. "What Can I Help You
with?": Infrequent Users’ Experiences of Intelligent
Personal Assistants. In Proceedings of the 19th
International Conference on Human-Computer
Interaction with Mobile Devices and Services
(MobileHCI ’17). ACM, New York, NY, USA, Article
43, 12 pages. DOI:
http://dx.doi.org/10.1145/3098279.3098539

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 845-854. DOI:
http://dx.doi.org/10.1145/3126594.3126651

Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016.
ERICA: Interaction Mining Mobile Apps. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST '16). ACM,
New York, NY, USA, 767-776. DOI:
http://dx.doi.org/10.1145/2984511.2984581

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and
Andreas Zeller. 2014. Checking app behavior against
app descriptions. In Proceedings of the 36th
International Conference on Software Engineering
(ICSE ’14). 1025-1035.

Thomas RG Green. 1989. Cognitive dimensions of
notations. People and computers V (1989), 443-460.

https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
http://dx.doi.org/10.1145/3290605.3300473
http://dx.doi.org/10.1145/3264901
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
http://dx.doi.org/10.1145/3290605.3300805
http://dx.doi.org/10.1037/10096-006
http://dx.doi.org/10.1145/3098279.3098539
http://dx.doi.org/10.1145/3126594.3126651
http://dx.doi.org/10.1145/2984511.2984581

Session 14B: Transcribing Words and Directing Voice

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

Jonathan Grudin and Richard Jacques. 2019. Chatbots,
humbots, and the quest for artificial general intelligence.
In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1-11.

Eric Horvitz. 1999. Principles of Mixed-Initiative User
Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). ACM,
New York, NY, USA, 159-166. DOI:
http://dx.doi.org/10.1145/302979.303030

Edwin L Hutchins, James D Hollan, and Donald A
Norman. 1986. Direct manipulation interfaces. (1986).

Mohit Jain, Pratyush Kumar, Ishita Bhansali, Q Vera
Liao, Khai Truong, and Shwetak Patel. 2018a.
FarmChat: A Conversational Agent to Answer Farmer
Queries. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2, 4 (2018), 170.

Mohit Jain, Pratyush Kumar, Ramachandra Kota, and
Shwetak N Patel. 2018b. Evaluating and informing the
design of chatbots. In Proceedings of the 2018
Designing Interactive Systems Conference. ACM,
895-906.

Jiepu Jiang, Wei Jeng, and Daqing He. 2013. How do
users respond to voice input errors?: lexical and
phonetic query reformulation in voice search. In
Proceedings of the 36th international ACM SIGIR
conference on Research and development in information
retrieval. ACM, 143-152.

Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li,
Gaurav Srivastava, Matthew Fredrikson, Yuvraj
Agarwal, and Jason I Hong. 2018. Why Are They
Collecting My Data? Inferring the Purposes of Network
Traffic in Mobile Apps. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 4 (2018), 1-27.

Daniel Jurafsky and James H Martin. 2019. Dialogue
Systems and Chatbots. Speech and Language
Processing (2019).

James R. Kirk and John E. Laird. 2019. Learning
Hierarchical Symbolic Representations to Support
Interactive Task Learning and Knowledge Transfer. In
Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19.
6095-6102. DOI:
http://dx.doi.org/10.24963/ijcai.2019/844

Kazutaka Kurihara, Masataka Goto, Jun Ogata, and
Takeo Igarashi. 2006. Speech pen: predictive
handwriting based on ambient multimodal recognition.
In Proceedings of the SIGCHI conference on human
factors in computing systems (CHI *06). ACM, 851-860.

Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: Automating & Sharing How-to
Knowledge in the Enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI "08). ACM, New York, NY, USA,

1105

[33

[34

[35

[36

[37

[38

[39

[40

—

[}

—

—_

—

—_—

—

[t}

UIST '20, October 20-23, 2020, Virtual Event, USA

1719-1728. DOI:
http://dx.doi.org/10.1145/1357054.1357323

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep
reinforcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541 (2016).

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan
Ritter, and Dan Jurafsky. 2017. Adversarial Learning for
Neural Dialogue Generation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing. ACL, Copenhagen, Denmark, 2157-2169.
DOI:http://dx.doi.org/10.18653/v1/D17-1230

Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA,
6038-6049. DOI:
http://dx.doi.org/10.1145/3025453.3025483

Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li,
Xiaoyi Zhang, Wenze Shi, Tom M. Mitchell, and Brad A.
Myers. 2018a. APPINITE: A Multi-Modal Interface for
Specifying Data Descriptions in Programming by
Demonstration Using Verbal Instructions. In
Proceedings of the 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC
2018).DOI:
http://dx.doi.org/10.1109/VLHCC.2018.8506506

Toby Jia-Jun Li, Igor Labutov, Brad A. Myers, Amos
Azaria, Alexander I. Rudnicky, and Tom M. Mitchell.
2018b. Teaching Agents When They Fail: End User
Development in Goal-oriented Conversational Agents.
In Studies in Conversational UX Design. Springer. DOI:
http://dx.doi.org/10.1007/978-3-319-95579-7_6

Toby Jia-Jun Li, Tom Mitchell, and Brad Myers. 2020.
Interactive Task Learning from GUI-Grounded Natural
Language Instructions and Demonstrations. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations (ACL 2020). ACL, 215-223.
https://www.aclweb.org/anthology/2020.acl-demos.25

Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle
Singarajah, Tom M. Mitchell, and Brad A. Myers. 2019.
PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and
Demonstrations. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and
Technology (UIST 2019). ACM. DOI:
http://dx.doi.org/10.1145/3332165.3347899

Toby Jia-Jun Li and Oriana Riva. 2018. KITE: Building
conversational bots from mobile apps. In Proceedings of
the 16th ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys 2018).
ACM. DOI:http://dx.doi.org/16.1145/3210246.3210339

http://dx.doi.org/10.1145/302979.303030
http://dx.doi.org/10.24963/ijcai.2019/844
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.18653/v1/D17-1230
http://dx.doi.org/10.1145/3025453.3025483
http://dx.doi.org/10.1109/VLHCC.2018.8506506
http://dx.doi.org/10.1007/978-3-319-95579-7_6
https://www.aclweb.org/anthology/2020.acl-demos.25
http://dx.doi.org/10.1145/3332165.3347899
http://dx.doi.org/10.1145/3210240.3210339

Session 14B: Transcribing Words and Directing Voice

[41] Toby Jia-Jun Li, Shilad Sen, and Brent Hecht. 2014.
Leveraging Advances in Natural Language Processing to
Better Understand Tobler’s First Law of Geography. In
Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’14). ACM, New
York, NY, USA, 513-516. DOI:
http://dx.doi.org/10.1145/2666310.2666493

Michael Xieyang Liu, Jane Hsieh, Nathan Hahn,
Angelina Zhou, Emily Deng, Shaun Burley, Cynthia
Taylor, Aniket Kittur, and Brad A. Myers. 2019.
Unakite: Scaffolding Developers’ Decision-Making
Using the Web. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology
(UIST ’19). ACM, New York, NY, USA, 67-80. DOI:
http://dx.doi.org/10.1145/3332165.3347908

[43] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer,
Radomir Mech, and Ranjitha Kumar. 2018. Learning
Design Semantics for Mobile Apps. In Proceedings of
the 31st Annual ACM Symposium on User Interface
Software and Technology (UIST ’18). ACM, New York,
NY, USA, 569-579. DOI:
http://dx.doi.org/10.1145/3242587.3242650

[44] Ewa Luger and Abigail Sellen. 2016. "Like Having a
Really Bad PA": The Gulf Between User Expectation
and Experience of Conversational Agents. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 5286-5297. DOI:
http://dx.doi.org/10.1145/2858036.2858288

Jennifer Mankoff, Gregory D Abowd, and Scott E
Hudson. 2000. OOPS: a toolkit supporting mediation
techniques for resolving ambiguity in recognition-based
interfaces. Computers & Graphics 24, 6 (2000),
819-834.

Michael McTear, Ian O’Neill, Philip Hanna, and
Xingkun Liu. 2005. Handling errors and determining
confirmation strategies—An object-based approach.
Speech Communication 45, 3 (2005), 249 — 269. DO :
http://dx.doi.org/10.1016/j.specom.2004.11.006
Special Issue on Error Handling in Spoken Dialogue
Systems.

[47] Brad A. Myers, Amy J. Ko, Chris Scaffidi, Stephen
Oney, YoungSeok Yoon, Kerry Chang, Mary Beth Kery,
and Toby Jia-Jun Li. 2017. Making End User
Development More Natural. In New Perspectives in
End-User Development. Springer, Cham, 1-22. DOTI:
http://dx.doi.org/10.1007/978-3-319-60291-2_1

[42

[}

[45

—_

[46

[t}

[48

—

Chelsea Myers, Anushay Furqan, Jessica Nebolsky,

Karina Caro, and Jichen Zhu. 2018. Patterns for how
users overcome obstacles in voice user interfaces. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1-7.

[49] Don Norman. 2013. The design of everyday things:
Revised and expanded edition. Basic books.

1106

UIST '20, October 20-23, 2020, Virtual Event, USA

[50] Sharon Oviatt. 1999a. Mutual disambiguation of
recognition errors in a multimodel architecture. In
Proceedings of the SIGCHI conference on Human
Factors in Computing Systems. ACM, 576-583.

[51] Sharon Oviatt. 1999b. Ten Myths of Multimodal
Interaction. Commun. ACM 42, 11 (Nov. 1999), 74-81.
DOI:http://dx.doi.org/16.1145/319382.319398

[52] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin
Guu, and Percy Liang. 2018. Mapping natural language
commands to web elements. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing. ACL, Brussels, Belgium, 4970-4976. DOI :
http://dx.doi.org/10.18653/v1/D18-1540

[53] Panupong Pasupat and Percy Liang. 2015.
Compositional Semantic Parsing on Semi-Structured
Tables. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (EMNLP ’15).
http://arxiv.org/abs/1508.00305 arXiv: 1508.00305.

[54] Martin Porcheron, Joel E. Fischer, Stuart Reeves, and
Sarah Sharples. 2018. Voice Interfaces in Everyday Life.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI "18). ACM, New
York, NY, USA, Article Paper 640, 12 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174214

[55

—_

Nils Reimers and Iryna Gurevych. 2019.
Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing.
ACL. http://arxiv.org/abs/1968.10084

Ritam Sarmah, Yunpeng Ding, Di Wang, Cheuk

Yin Phipson Lee, Toby Jia-Jun Li, and Xiang ’ Anthony
Chen. 2020. Geno: a Developer Tool for Authoring
Multimodal Interaction on Existing Web Applications.
In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology (UIST 2020).

[56

—_

>

[57

[}

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative
hierarchical neural network models. In The 30th AAAI
Conference on Artificial Intelligence (AAAI ’16).

Alborz Rezazadeh Sereshkeh, Gary Leung, Krish
Perumal, Caleb Phillips, Minfan Zhang, Afsaneh Fazly,
and Igbal Mohomed. 2020. VASTA: a vision and
language-assisted smartphone task automation system.
In Proceedings of the 25th International Conference on
Intelligent User Interfaces. 22-32.

[58

—

[59

—

Lanbo She and Joyce Chai. 2017. Interactive Learning
of Grounded Verb Semantics towards Human-Robot
Communication. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (ACL ’17). ACL,
Vancouver, Canada, 1634—-1644. DOI:
http://dx.doi.org/10.18653/v1/P17-1150

http://dx.doi.org/10.1145/2666310.2666493
http://dx.doi.org/10.1145/3332165.3347908
http://dx.doi.org/10.1145/3242587.3242650
http://dx.doi.org/10.1145/2858036.2858288
http://dx.doi.org/10.1016/j.specom.2004.11.006
http://dx.doi.org/10.1007/978-3-319-60291-2_1
http://dx.doi.org/10.1145/319382.319398
http://dx.doi.org/10.18653/v1/D18-1540
http://arxiv.org/abs/1508.00305
http://dx.doi.org/10.1145/3173574.3174214
http://arxiv.org/abs/1908.10084
http://dx.doi.org/10.18653/v1/P17-1150

Session 14B: Transcribing Words and Directing Voice

[60] Ben Shneiderman. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Computer 16, 8 (Aug.
1983), 57-69. DOI:
http://dx.doi.org/10.1109/MC.1983.1654471

[61

—_—

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2017. Joint concept learning and semantic parsing from
natural language explanations. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing. 1527-1536.

[62] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret
Burnett, Thomas Dietterich, Erin Sullivan, Russell
Drummond, and Jonathan Herlocker. 2007. Toward
Harnessing User Feedback for Machine Learning. In
Proceedings of the 12th International Conference on
Intelligent User Interfaces (IUI '07). ACM, New York,
NY, USA, 82-91. DOI:
http://dx.doi.org/10.1145/1216295.1216316

Bernhard Suhm, Brad Myers, and Alex Waibel. 2001.
Multimodal Error Correction for Speech User Interfaces.
ACM Trans. Comput.-Hum. Interact. 8, 1 (March 2001),
60-98. DOI :http://dx.doi.org/16.1145/371127.371166

[63

—_

[64

[}

Ahmad Bisher Tarakji, Jian Xu, Juan A. Colmenares,
and Igbal Mohomed. 2018. Voice Enabling Mobile
Applications with UI'Voice. In Proceedings of the 1st
International Workshop on Edge Systems, Analytics and
Networking (EdgeSys’18). ACM, New York, NY, USA,

1107

[65

—_—

[66]

[67]

[68]

UIST '20, October 20-23, 2020, Virtual Event, USA

49-54. DOI :http://dx.doi.org/10.1145/3213344.3213353

Geraldine P Wallach and Katharine G Butler. 1994.
Language learning disabilities in school-age children
and adolescents: Some principles and applications.
Allyn & Bacon.

Yu Wu, Wei Wu, Chen Xing, Can Xu, Zhoujun Li, and
Ming Zhou. 2019. A Sequential Matching Framework
for Multi-Turn Response Selection in Retrieval-Based
Chatbots. Computational Linguistics 45, 1 (March
2019), 163—197. DOI:
http://dx.doi.org/10.1162/coli_a_00345

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Michael L Seltzer, Andreas Stolcke, Dong Yu,
and Geoffrey Zweig. 2017. Toward human parity in
conversational speech recognition. IEEE/ACM
Transactions on Audio, Speech, and Language
Processing 25, 12 (2017), 2410-2423.

Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James
Fogarty, and Jacob O. Wobbrock. 2017. Interaction
Proxies for Runtime Repair and Enhancement of Mobile
Application Accessibility. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems (CHI "17). ACM, New York, NY, USA,
6024-6037. DOI:
http://dx.doi.org/10.1145/3025453.3025846

http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1145/1216295.1216316
http://dx.doi.org/10.1145/371127.371166
http://dx.doi.org/10.1145/3213344.3213353
http://dx.doi.org/10.1162/coli_a_00345
http://dx.doi.org/10.1145/3025453.3025846

	Introduction
	Problem Setting
	Frame-Based Task-Oriented Conversational Agents
	Problem Scope
	Instructable Agents

	Design Goals

	Related Work
	Studies of Breakdowns in Conversational Interfaces
	Assisting Conversational Breakdown Repairing
	Multi-Modal Mixed-Initiative Disambiguation Interfaces

	The Design of SOVITE
	Communicating System State with App GUI Screenshots
	Design Rationale

	Intent Detection Repair with App GUI References
	References to Apps
	References to App Screens
	Ease of Transition to Out-of-Domain Task Instructions
	Design Rationale

	Slot Value Extraction Repair with Direct Manipulation
	Design Rationale

	Implementation
	Generating the App GUI Screenshot Confirmations
	Finding Relevant Intents from Apps and App Screens

	User Study
	Participants
	Study Design
	Impact of the COVID-19 Pandemic

	Results
	Subjective Results

	Discussion
	Design Implications

	Limitations and Future Work
	Conclusion
	Acknowledgments
	References

