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ABSTRACT 
Representing the semantics of GUI screens and components is cru-
cial to data-driven computational methods for modeling user-GUI 
interactions and mining GUI designs. Existing GUI semantic repre-
sentations are limited to encoding either the textual content, the 
visual design and layout patterns, or the app contexts. Many repre-
sentation techniques also require signifcant manual data annota-
tion eforts. This paper presents Screen2Vec, a new self-supervised 
technique for generating representations in embedding vectors of 
GUI screens and components that encode all of the above GUI fea-
tures without requiring manual annotation using the context of 
user interaction traces. Screen2Vec is inspired by the word embed-
ding method Word2Vec, but uses a new two-layer pipeline informed 
by the structure of GUIs and interaction traces and incorporates 
screen- and app-specifc metadata. Through several sample down-
stream tasks, we demonstrate Screen2Vec’s key useful properties: 
representing between-screen similarity through nearest neighbors, 
composability, and capability to represent user tasks. 

CCS CONCEPTS 
• Human-centered computing → Smartphones; User interface 
design; Graphical user interfaces; • Computing methodolo-
gies → Neural networks. 
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1 INTRODUCTION 
With the rise of data-driven computational methods for modeling 
user interactions with graphical user interfaces (GUIs), the GUI 
screens have become not only interfaces for human users to inter-
act with the underlying computing services, but also valuable data 
sources that encode the underlying task fow, the supported user 
interactions, and the design patterns of the corresponding apps, 
which have proven useful for AI-powered applications. For exam-
ple, programming-by-demonstration (PBD) intelligent agents such 
as [20, 25, 40] use task-relevant entities and hierarchical structures 
extracted from GUIs to parameterize, disambiguate, and handle 
errors in user-demonstrated task automation scripts. Erica [10] 
mines a large repository of mobile app GUIs to enable user interface 
(UI) designers to search for example design patterns to inform their 
own design. Kite [26] extracts task fows from mobile app GUIs to 
bootstrap conversational agents. 

Semantic representations of GUI screens and components, where 
each screen and component is encoded as a vector (known as the 
embedding), are highly useful in these applications. The representa-
tions of GUI screens and components can be used to also represent 
other entities of interest. For example, a task in an app can be 
modeled as a sequence of GUI actions, where each action can be 
represented as a GUI screen, a type of interaction (e.g., click), and 
the component that is interacted with on the screen. An app can 
be modeled as a collection of all its screens, or a large collection of 
user interaction traces of using the app. Voice shortcuts in mobile 
app deep links [2] can be modeled as matching the user’s intent 
expressed in natural language to the target GUI screens. The repre-
sentation of the screen that the user is viewing or has previously 
viewed can also be used as the context to help infer the user’s in-
tents and activities in predictive intelligent interfaces. The semantic 
embedding approach represents GUI screens and components in 
a distributed form [4] (i.e., an item is represented across multiple 
dimensions) as continuous-valued vectors, making it especially 
suitable for use in popular machine learning models. 

However, existing approaches of representing GUI screens and 
components are limited. One type of approach solely focuses on 
capturing the text on the screen, treating the screen as a bag of 
words or phrases. For example, Sugilite [20] uses exact matches 
of text labels on the screen to generalize the user demonstrated 
tasks. Sovite [22] uses the average of individual word embedding 
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vectors for all the text labels on the screen to represent the screen 
for retrieving relevant task intents. This approach can capture the 
semantics of the screen’s textual content, but misses out on using 
the information encoded in the layout and the design pattern of 
the screen and the task context encoded in the interactivity and 
meta-data of the screen components. 

Another type of approach focuses on the visual design pat-
terns and GUI layouts. Erica [10] uses an unsupervised clustering 
method to create semantic clusters of visually similar GUI com-
ponents. Liu et al.’s approach [30] leverages the hierarchical GUI 
structures, the class names of GUI components, and the visual clas-
sifcations of graphical icons to annotate the design semantics of 
GUIs. This type of approach has been shown to be able to deter-
mine the category of a GUI component (e.g., list items, tab labels, 
navigation buttons), the “UX concept” semantics of buttons (e.g., 
“back”, “delete”, “save”, and “share”), and the overall type of task 
fow of screens (e.g., “searching”, “promoting”, and “onboarding”). 
However, it does not capture the content in the GUIs—two struc-
turally and visually similar screens with diferent content (e.g., the 
search results screen in a restaurant app and a hotel booking app) 
will yield similar results. 

There have been prior approaches that combine the textual con-
tent and the visual design patterns [28, 36]. However, these ap-
proaches use supervised learning with large datasets for very spe-
cifc task objectives. Therefore they require signifcant task-specifc 
manual data labeling eforts, and their resulting models cannot 
be used in diferent downstream tasks. For example, Pasupat et 
al. [36] create a embedding-based model that can map the user’s 
natural language commands to web GUI elements based on the 
text content, attributes, and spatial context of the GUI elements. 
Li et al.’s work [28] describes a model that predicts sequences of 
mobile GUI action sequences based on step-by-step natural lan-
guage descriptions of actions. Both models are trained using large 
manually-annotated corpora of natural language utterances and 
the corresponding GUI actions. 

We present a new self-supervised technique (i.e., the type of ma-
chine learning approach that trains a model without human-labeled 
data by withholding some part of the data, and tasking the net-
work with predicting it) Screen2Vec for generating more compre-
hensive semantic representations of GUI screens and components. 
Screen2Vec uses the screens’ textual content, visual design and lay-
out patterns, and app context meta-data. Screen2Vec’s approach 
is inspired by the popular word embedding method Word2Vec [32], 
where the embedding vector representations of GUI screens and 
components are generated through the process of training a pre-
diction model. However, unlike Word2Vec, Screen2Vec uses a two-
layer pipeline informed by the structures of GUIs and GUI interac-
tion traces and incorporates screen- and app-specifc metadata. 

The embedding vector representations produced by Screen2Vec 
can be used in a variety of useful downstream tasks such as nearest 
neighbor retrieval, composability-based retrieval, and representing 
mobile tasks. The self-supervised nature of Screen2Vec allows its 
model to be trained without any manual data labeling eforts—it 
can be trained with a large collection of GUI screens and the user 
interaction traces on these screens such as the Rico [9] dataset. 

Along with this paper, we also release the open-source1 code of 
Screen2Vec as well as a pre-computed Screen2Vec model trained 
on the Rico dataset [9] (more in Section 2.1). The pre-computed 
model can encode the GUI screens of Android apps into embedding 
vectors of-the-shelf. The open-source code can be used to train 
models for other platforms given the appropriate dataset of user 
interaction traces. 

Screen2Vec addresses an important gap in prior work about 
computational HCI research. The lack of comprehensive semantic 
representations of GUI screens and components has been iden-
tifed as a major limitation in prior work in GUI-based interac-
tive task learning (e.g., [25, 40]), intelligent suggestive interfaces 
(e.g., [7]), assistive tools (e.g., [5]), and GUI design aids (e.g., [17, 41]). 
Screen2Vec embeddings can encode the semantics, contexts, lay-
outs, and patterns of GUIs, providing representations of these types 
of information in a form that can be easily and efectively incorpo-
rated into popular modern machine learning models. 

This paper makes the following contributions: 
(1) Screen2Vec: a new self-supervised technique for generating 

more comprehensive semantic embeddings of GUI screens 
and components using their textual content, visual design 
and layout patterns, and app meta-data. 

(2) An open-sourced GUI embedding model trained using the 
Screen2Vec technique on the Rico [9] dataset that can be 
used of-the-shelf. 

(3) Several sample downstream tasks that showcase the model’s 
usefulness. 

2 OUR APPROACH 
Figure 1 illustrates the architecture of Screen2Vec. Overall, the 
pipeline of Screen2Vec consists of two levels: the GUI component 
level (shown in the gray shade) and the GUI screen level. We will 
frst describe the approach at a high-level here, and then explain 
the details in Section 2.2. 

The GUI component level model encodes the textual content 
and the class type of a GUI component into a 768-dimensional2 

embedding vector to represent the GUI component (e.g., a button, 
a textbox, a list entry etc.). This GUI component embedding vector 
is computed with two inputs: (1) a 768-dimensional embedding 
vector of the text label of the GUI component, encoded using a 
pre-trained Sentence-BERT [39] model; and (2) a 6-dimensional 
class embedding vector that represents the class type of the GUI 
component, which we will discuss in detail later in Section 2.2. The 
two embedding vectors are combined using a linear layer, resulting 
in the 768-dimensional GUI component embedding vector that 
represents the GUI component. The class embeddings in the class 
type embedder and the weights in the linear layer are optimized 
through training a Continuous Bag-of-Words (CBOW) prediction 
task: for each GUI component on each screen, the task predicts the 
current GUI component using its context (i.e., all the other GUI 
components on the same screen). The training process optimizes 

1A pre-trained model and the Screen2Vec source code are available at: https://github. 
com/tobyli/screen2vec
2We decided to produce 768-dimensional vectors so that they can be directly used 
with the 768-dimensional vectors produced by the pre-trained Sentence-BERT model 
with its default settings [39] 

https://github.com/tobyli/screen2vec
https://github.com/tobyli/screen2vec
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Figure 1: The two-level architecture of Screen2Vec for generating GUI component and screen embeddings. The weights for the 
steps in teal color are optimized during the training process. 

the weights in the class embeddings and the weights in the linear 
layer for combining the text embedding and the class embedding. 

The GUI screen level model encodes the textual content, visual 
design and layout patterns, and app context of a GUI screen into an 
1536-dimensional embedding vector. This GUI screen embedding 
vector is computed using three inputs: (1) the collection of the GUI 
component embedding vectors for all the GUI components on the 
screen (as described in the last paragraph), combined into a 768-
dimension vector using a recurrent neural network model (RNN), 
which we will discuss more in Section 2.2; (2) a 64-dimensional 
layout embedding vector that encodes the screen’s visual layout 
(details later in Section 2.2); and (3) a 768-dimensional embedding 
vector of the textual App Store description for the underlying app, 
encoded with a pre-trained Sentence-BERT [39] model. These GUI 
and layout vectors are combined using a linear layer, resulting in a 
768-dimensional vector. After training, the description embedding 
vector is concatenated on, resulting in the 1536-dimensional GUI 
screen embedding vector (if included in the training, the descrip-
tion dominates the entire embedding, overshadowing information 
specifc to that screen within the app). The weights in the RNN 
layer for combining GUI component embeddings and the weights 
in the linear layer for producing the fnal output vector are similarly 
trained on a CBOW prediction task on a large number of interac-
tion traces (each represented as a sequence of screens). For each 
trace, a sliding window moves over the sequence of screens. The 
model tries to use the representation of the context (the surround-
ing screens) to predict the screen in the middle. See Section 2.2 for 
more details. 

However, unlike the GUI component level embedding model, the 
GUI screen level model is trained on a screen prediction task in the 
user interaction traces of using the apps. Within each trace, the 

training task tries to predict the current screen using other screens 
in the same trace. 

2.1 Dataset 
We trained Screen2Vec on the open-sourced Rico3 dataset [9]. 
The Rico dataset contains interaction traces on 66,261 unique GUI 
screens from 9,384 free Android apps collected using a hybrid crowd-
sourcing plus automated discovery approach. For each GUI screen, 
the Rico dataset includes a screenshot image (that we did not use 
in Screen2Vec), and the screen’s “view hierarchy” in a JSON fle. 
The view hierarchy is structurally similar to a DOM tree in HTML; 
it starts with a root view, and contains all its descents in a tree. The 
node for each view includes the class type of this GUI component, 
its textual content (if any), its location as the bounding box on the 
screen, and various other properties such as whether it is clickable, 
focused, or scrollable, etc. Each interaction trace is represented as 
a sequence of GUI screens, as well as information about which (x, 
y) screen location was clicked or swiped on to transit from the 
previous screen to the current screen. 

2.2 Models 
This section explains the implementation details of each key step 
in the pipeline shown in Figure 1. 

GUI Class Type Embeddings. To represent the class types of GUI 
components, we trained a class embedder to encode the class types 
into the vector space. We used a total of 26 class categories: the 
22 categories that were present in [30], one layout category, list 
and drawer categories, and an “Other” category. We classifed the 
GUI component classes based on the classes of their className 
properties and, sometimes, other simple heuristic rules (see Table 1). 

3Available at: http://interactionmining.org/rico 

http://interactionmining.org/rico
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For example, if a GUI component is an instance of EditText (i.e., 
its className property is either EditText, or a class that inherits 
EditText), then it is classifed as an Input. There are two exceptions: 
the Drawer and the List Item categories look at the className of the 
parent of the current GUI component instead of the className of 
itself. A standard PyTorch embedder (torch.nn.Embedding4) maps 
each of these 26 discrete categories into a continuous 6-dimensional 
vector. The embedding vector value for each category is optimized 
during the training process for the GUI component prediction tasks 
so that GUI components categories that are semantically similar to 
each other are closer together in the vector space. 

GUI Component Context. As discussed earlier, Screen2Vec uses a 
Continuous Bag-of-Words (CBOW) prediction task [32] for training 
the weights in the model, where for each GUI component, the 
model tries to predict it using its context. In Screen2Vec, we defne 
the context of a GUI component as its 16 nearest components. 
The size 16 is chosen to balance the model performance and the 
computational cost. 

Inspired by prior work on the correlation between the semantic 
relatedness of entities and the spatial distance between them [27]. 
We tried using two diferent measures of screen distance for deter-
mining GUI component context in our model: EUCLIDEAN, which 
is the straight-line minimal distance on the screen (measured in 
pixels) between the bounding boxes of the two GUI components; 
and HIERARCHICAL, which is the distance between the two GUI 
components on the hierarchical GUI view tree. For example, a GUI 
component has a distance of 1 to its parent and children and a 
distance of 2 to its direct siblings. 

Linear Layers. At the end of each of the two levels in the pipeline, 
a linear layer is used to combine multiple vectors and shrink the 
combined vector into a lower-dimension vector that contains the 
relevant semantic content of each input. For example, in the GUI 
component embedding process, the model frst concatenates the 
768-dimensional text embedding with the 6-dimensional class em-
bedding. The linear layer then shrinks the GUI component em-
bedding back down to 768 dimensions. The linear layer works by 
creating 774 × 768 weights: one per pair of input dimension and 
output dimension. These weights are optimized along with other pa-
rameters during the training process, so as to minimize the overall 
total loss (loss function detail in Section 2.3). 

In the screen embedding process, a linear layer is similarly used 
for combining the 768-dimensional layout embedding vector with 
the 64-dimensional GUI content embedding vector to produce a new 
768-dimensional embedding vector that encodes both the screen 
content and the screen layout. 

Text Embeddings. We use a pre-trained Sentence-BERT language 
model [39] to encode the text labels on each GUI component and 
the Google Play store description for each app into 768-dimensional 
embedding vectors. This Sentence-BERT model, which is a modifed 
BERT network [11], was pre-trained on the SNLI [6] dataset and 
the Multi-Genre NLI [43] dataset with a mean-pooling strategy, as 
described in [39]. This pre-trained model has been shown to per-
form well in deriving semantically meaningful sentence and phrase 

4https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html 

embeddings where semantically similar sentences and phrases are 
close to each other in the vector space [39]. 

Layout Embeddings. Another important step in the pipeline is to 
encode the visual layout pattern of each screen. We use the layout 
embedding technique from [9], where we frst extract the layout 
of a screen from its screenshot using the bounding boxes of all 
the leaf GUI components in the hierarchical GUI tree, diferenti-
ating between text and non-text GUI components using diferent 
colors (Figure 2). This layout image represents the layout of the 
GUI screen while abstracting away its content and visual specifcs. 
We then use an image autoencoder to encode each image into a 
64-dimensional embedding vector. The autoencoder is trained using 
a typical encoder-decoder architecture, that is, the weights of the 
network are optimized to produce the 64-dimensional vector from 
the original input image that can produce the best reconstructed 
image when decoded. 

The encoder has input dimension of 11,200, and then two hidden 
layers of size 2,048 and 256, with output dimension of size 64; 
this means three linear layers of sizes 11, 200 → 2, 048, 2, 048 → 
256, and 256 → 64. These layers have the Rectifed Linear Unit 
(ReLU) [34] applied, so the output of each linear layer is put through 
an activation function which transforms any negative input to 0. 
The decoder has the reverse architecture (three linear layers with 
ReLU 64 → 256, 256 → 2, 048, and 2, 048 → 11, 200). The layout 
autoencoder is trained on the process of reconstructing the input 
image when it is run through the encoder and the decoder; the loss 
is determined by the mean squared error (MSE) between the input 
of the encoder and the output of the decoder. 

GUI Embedding Combining Layer. To combine the embedding 
vectors of multiple GUI components on a screen into a single fxed-
length embedding vector, we use an Recurrent Neural Network 
(RNN): The RNN operates similarly to the linear layer mentioned 
earlier, except it deals with sequential data (thus the “recurrent” 
in the name). The RNN we used was a sequence of linear layers 
with the additional input of a hidden state. The GUI component 
embeddings are fed into the RNN in the pre-order traversal order 
of the GUI hierarchy tree. For the frst input of GUI component 
embedding, the hidden state was all zeros, but for the second input, 
the output from the frst serves as the hidden state, and so on, so 
that the nth input is fed into a linear layer along with (n − 1)th 

output. The overall output is the output for the fnal GUI component 
in the sequence, which encodes parts of all of the GUI components, 
since the hidden states could pass on that information. This allows 
screens with diferent numbers of GUI components to have vector 
representations that both take all GUI components into account 
and are of the same size. This RNN is trained along with all other 
parameters in the screen embedding model, optimizing for the loss 
function (detail in Section 2.3) in the GUI screen prediction task. 

2.3 Training Confgurations 
In the training process, we use 90% of the data for training and 
save the other 10% for validation. The models are trained on a 
cross entropy loss function with an Adam optimizer [15], which 
is an adaptive learning gradient-based optimization algorithm of 

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
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GUI Component Associated Class Type GUI Component Associated Class Type 
Advertisement 

Bottom Navigation 
Card 
Drawer (Parent) 
Image 

Input 

Map View 
Number Stepper 
Pager Indicator 

Slider 
Tool Bar 
Web View 

List Item 

AdView, HtmlBannerWebView, AdContainer 

BottomTabGroupView, BottomBar 
CardView 
DrawyerLayout 
ImageView 

EditText, SearchBoxView, 
AppCompatAutoCompleteTextView, TextViewa 

MapView 
NumberPicker 
ViewPagerIndicatorDots, PageIndicator, 
CircileIndicator, PagerIndicator 
SeekBar 
ToolBar, TitleBar, ActionBar 
WebView 

Others category and ancestor is 
List(Parent) 

Layouts 

Button Bar 
CheckBox 
Date Picker 
Image Button 

List Item (Parent) 

Multi-Tab 
On/Of Switch 
RadioButton 

TextButton 
Video 
Drawer Item 

Others 

LinearLayout, AppBarLayout, FrameLayout, 
RelativeLayout, TableLayout 
ButtonBar 
CheckBox, CheckedTextView 
DatePicker 
ImageButton, GlyphView, AppCompatButton, 
AppCompatImageButton, ActionMenuItemView, 
ActionMenuItemPresenter 
ListView, RecyclerView, ListPopupWindow, 
TabItem, GridView 
SlidingTab 
Switch 
RadioButton, CheckedTextView 

Buttonb , TextViewc 

VideoView 
Others category and ancestor is 
Drawer(Parent) 
... 

a The property editable needs to be TRUE. 
b The GUI component needs to have a non-empty text property. 
The property clickable needs to be TRUE. 

Table 1: The 26 categories (including the “Others” category) of GUI class types we used in Screen2Vec and their associated base 
class names. Some categories have additional heuristics, as shown in the notes. This categorization is adapted from [30]. 

Figure 2: Screen2Vec extracts the layout of a GUI screen as a bitmap, and encodes this bitmap into a 64-dimensional vector 
using a standard autoencoder architecture where the autoencoder is trained on the loss of the output of the decoder [9]. 

stochastic objective functions. For both stages, we use an initial with 2 NVIDIA Tesla K80 GPUs can train the GUI component embed-
learning rate of 0.001 and a batch size of 256. ding model in about 72 hours, and train the GUI screen embedding 

The GUI component embedding model takes about 120 epochs to model in about 6-8 hours. 
train, while the GUI screen embedding model takes 80–120 epochs We used PyTorch’s implementation of the CrossEntropyLoss 
depending on which version is being trained5. A virtual machine function6 to calculate the prediction loss. The CrossEntropyLoss 

function combines negative log likelihood loss (NLL Loss) with the 
log softmax function: 

5The version without spatial information takes 80 epochs; and the one with spatial 
information takes 120. 6https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html 

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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CrossEntropyLoss(x , class) = NLL_Loss(loдSo f tmax(x), class)) 
exp(x[class])

= −loд( Í )
c exp(x[c])Õ 

= −x[class] + loд exp(x[c])
c 

In the case of the GUI component embedding model, the total 
loss is the sum of the cross entropy loss for the text prediction and 
the cross entropy loss for the class type prediction. In calculating 
the cross entropy loss, each text prediction was compared to every 
possible text embedding in the vocabulary, and each class prediction 
was compared to all possible class embeddings. 

In the case of the GUI screen embedding model, the loss is ex-
clusively for screen predictions. However, the vector x does not 
contain the similarity between the correct prediction and every 
screen in the dataset. Instead we use negative sampling [31, 32] 
so that we do not have to recalculate and update every screen’s 
embedding on every training iteration, which is computationally 
expensive and prone to over-ftting. In each iteration, the prediction 
is compared to the correct screen and a sample of negative data that 
consists of: a random sampling of size 128 of other screens, the 
other screens in the batch, and the screens in the same trace as the 
correct screen, used in the prediction task. We specifcally include 
the screens in the same trace to promote screen-specifc learning 
in this process: This way, we can disincentive screen embeddings 
that are based solely on the app7, and emphasize having the model 
learn to diferentiate the diferent screens within the same app. 

2.4 Baselines 
We compared Screen2Vec to the following three baseline models: 

Text Embedding Only. The TextOnly model replicates the screen 
embedding method used in Sovite [22]. It only looks at the textual 
content on the screen: the screen embedding vector is computed by 
averaging the text embedding vectors for all the text found on the 
screen. The pre-trained Sentence-BERT model [39] calculates the 
text embedding vector for each text. With the the TextOnly model, 
screens with semantically similar textual contexts will have similar 
embedding vectors. 

Layout Embedding Only. The LayoutOnly model replicates the 
screen embedding method used in the original Rico paper [9]. It 
only looks at the visual layout of the screen: It uses the layout 
embedding vector computed by the layout autoencoder to represent 
the screen, as discussed in Section 2.2. With the LayoutOnly model, 
screens with similar layouts will have similar embedding vectors. 

Visual Embedding Only. The VisualOnly model encodes the 
visual look of a screen by applying an autoencoder (described in 
Section 2.2) directly on its screenshot image bitmap instead of 
the layout bitmap. This baseline is inspired by the visual-based 
approach used in GUI task automation systems such as VASTA [40], 
Sikuli [44], and HILC [14]. With the VisualOnly model, screens 
that are visually similar will have similar embedding vectors. 

7Since the next screen is always within the same app and therefore shares an app 
description embedding, the prediction task favors having information about the specifc 
app (i.e., app store description embedding) dominate the embedding. 

2.5 Prediction Task Results 
We report the performance on the GUI component and GUI screen 
prediction tasks of the Screen2Vec model, as well as the GUI screen 
prediction performance for the baseline models described above. 

Table 2 shows the top-1 accuracy (i.e., the top predicted GUI 
component matches the correct one), the top-0.01% accuracy (i.e., 
the correct GUI component is among the top 0.01% in the predic-
tion result), the top-0.1% accuracy, and the top-1% accuracy of the 
two variations of the Screen2Vec model on the GUI component 
prediction task, where the model tries to predict the text content 
for each GUI component in all the GUI screens in the Rico dataset 
using its context (the other GUI components around it) among the 
collection of all the GUI components in the Rico dataset. 

Similarly, Table 3 reports the accuracy of the Screen2Vec model 
and the baseline models (TextOnly, LayoutOnly, and VisualOnly) 
on the task of predicting GUI screens, where each model tries to 
predict each GUI screen in all the GUI interaction traces in the Rico 
dataset using its context (the other GUI screens around it in the 
trace) among the collection of all the GUI screens in the Rico dataset. 
For the Screen2Vec model, we compare three versions: one that 
encodes the locations of GUI components and the screen layouts 
and uses the EUCLIDEAN distance measure, one that uses such spatial 
information and the HIERARCHICAL distance measure, and one that 
uses the EUCLIDEAN distance measure without considering spatial 
information. A higher accuracy indicates that that the model is 
better at predicting the correct screen. 

We also report the normalized root mean square error (RMSE) of 
the predicted screen embedding vector for each model, normalized 
by the mean length of the actual screen embedding vectors. A 
smaller RMSE indicates that the top prediction screen generated by 
the model is, on average, more similar to the correct screen. 

From the results in Table 3, we can see that the Screen2Vec mod-
els perform better than the baseline models in top-1 and top-k pre-
diction accuracy. Among the diferent versions of Screen2Vec, the 
versions that encode locations of GUI components and the screen 
layouts performs better than the one without spatial information, 
suggesting that such spatial information is useful. The model that 
uses the HIERARCHICAL distance performs similarly to the one that 
uses the EUCLIDEAN distance in GUI component prediction, but per-
forms worse in screen prediction. In the Sample Downstream Tasks 
section below, we will use the Screen2Vec-EUCLIDEAN-spatial 
info version of the Screen2Vec model. 

As we can see, adding spatial information dramatically improves 
the Top-1 accuracy and the Top-0.01% accuracy. However, the im-
provements in Top 0.1% accuracy, Top 1% accuracy, and normalized 
RMSE are smaller. We think the main reason is that aggregating the 
textual information, GUI class types, and app descriptions is useful 
for representing the high-level “topic” of a screen (e.g., a screen 
is about hotel booking because its text and app descriptions talk 
about hotels, cities, dates, rooms etc.), hence the good top 0.1% and 
1% accuracy and normalized RMSE for the“no spatial info” model. 
But these types of information are not sufcient for reliably difer-
entiating the diferent types of screens needed (e.g., search, room 
details, order confrmation) in the hotel booking process because all 

https://Top-0.01
https://top-0.01
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Model Top-1 Accu- Top 0.01% Top 0.1% Ac- Top 1% Ac- Top 5% Ac- Top 10% Ac-
racy Accuracy curacy curacy curacy curacy 

Screen2Vec-EUCLIDEAN-text 0.443 0.619 0.783 0.856 0.885 0.901 
Screen2Vec-HIERARCHICAL-text 0.588 0.687 0.798 0.849 0.878 0.894 

Table 2: The GUI component prediction performance of the two variations of the Screen2Vec model with two diferent distance 
measures (EUCLIDEAN and HIERARCHICAL). 

these screens in the same app and task domain would contain “se-
mantically similar” text. This is why the adding spatial information 
is helpful in identifying the top-1 and top-0.01% results. 

Interestingly, the baseline models beat the “no spatial info” ver-
sion of Screen2Vec in normalized RMSE: i.e., although the base-
line models are less likely to predict the correct screen, their pre-
dicted screens are, on average, more similar to the correct screen. A 
likely explanation to this phenomenon is that both baseline models 
use, by nature, similarity-based measures, while the Screen2Vec 
model is trained on a prediction-focused loss function. Therefore 
Screen2Vec does not emphasize making more similar predictions 
when then prediction is incorrect. However, we can see that the 
spatial info versions of Screen2Vec perform better than the 
baseline models on both the prediction accuracy and the similarity 
measure. 

3 SAMPLE DOWNSTREAM TASKS 
Note that while the accuracy measures are indicative of how much 
the model has learned about GUI screens and components, the main 
purpose of the Screen2Vec model is not to predict GUI components 
or screens, but to produce distributed vector representations for 
them that encode useful semantic, layout, and design properties. 
Therefore this section presents several sample downstream tasks to 
illustrate important properties of the Screen2Vec representations 
and the usefulness of our approach. 

3.1 Nearest Neighbors 
The nearest neighbor task is useful for data-driven design, where 
the designers want to fnd examples for inspiration and for un-
derstanding the possible design solutions [9]. The task focuses on 
the similarity between GUI screen embeddings: for a given screen, 
what are the top-N most similar screens in the dataset? The simi-
lar technique can also be used for unsupervised clustering in the 
dataset to infer diferent types of GUI screens. In our context, this 
task also helps demonstrate the diferent characteristics between 
Screen2Vec and the three baseline models. 

We conducted a Mechanical Turk study to compare the similarity 
between the nearest neighbor results generated by the diferent 
models. We selected 50 screens from apps and app domains that 
most users are familiar with. We did not select random apps from 
the Rico dataset, as many apps in the dataset would be obscure to 
Mechanical Turk workers so they might not understand them and 
therefore might not be able to judge the similarity of the results. 
For each screen, we retrieved the top-5 most similar screens using 
each of the 3 models. Therefore, each of the 50 screens had up to 3 

(models) × 5 (screen each) = 15 similar screens, but many had fewer 
since diferent models may select the same screens. 

79 Mechanical Turk workers participated in this study8. In total, 
they labeled the similarity between 5,608 pairs of screens. Each 
worker was paid $2 for each batch of 5 sets of source screens they 
labeled. A batch on average takes around 10 minutes to complete. 
In each batch, a worker went through a sample of 5 source screens 
from the 50 source screens in random order, where for each source 
screen, the worker saw the union of the top-5 most similar screens 
to the source screen generated by the 3 models in random order. For 
each screen, we also showed the worker the app it came from and a 
short description of the app from the Google Play Store, but we did 
not show them which model produced the screen. The worker was 
asked to rate the similarity of each screen to the original source 
screen on a scale of 1 to 5 (Figure 3). We asked the workers to 
consider 3 aspects in measuring similarity: (1) app similarity (how 
similar are the two apps); (2) screen type similarity (how similar are 
the types of the two screens e.g., if they are both sign up screens, 
search results, settings menu etc.); and (3) content similarity (how 
similar are the content on the two screens). 

Table 4 shows the mean screen similarity rated by the Mechan-
ical Turk workers for the top-5 nearest neighbor results of the 
sample source screens generated by the 3 models. The Mechan-
ical Turk workers rated the nearest neighbor screens generated 
by the Screen2Vec model to be, on average, more similar to their 
source screens than the nearest neighbor screens generated by the 
baseline TextOnly and LayoutOnly models. Tested with a non-
parametric Mann-Whitney U test (because the ratings are not 
normally distributed), the diferences between the mean ratings 
of the Screen2Vec model and both the TextOnly model and the 
LayoutOnly model are signifcant (p < 0.0001). 

Subjectively, when looking at the nearest neighbor results, we 
can see the diferent aspects of the GUI screens that each difer-
ent model captures. Screen2Vec can create more comprehensive 
representations that encode the textual content, visual design and 
layout patterns, and app contexts of the screen compared with the 
baseline models, which only capture one or two aspects. For exam-
ple, Figure 4 shows the example nearest neighbor results for the 
“request ride” screen in the Lyft app. Screen2Vec model retrives 
the “get direction” screen in the Uber Driver app, “select naviga-
tion type” screen in the Waze app, and “request ride” screen in the 
Free Now (My Taxi) app. Considering the Visual and component 
layout aspects, the result screens all feature a menu/information 
card at the bottom 1/3 to 1/4 of the screen, with a MapView taking 
the majority of the screen space. Considering the content and app 

8The protocol was approved by the IRB at our institution. 
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Model Top-1 Accu- Top 0.01% Top 0.1% Ac- Top 1% Ac- Top 5% Ac- Normalized 
racy Accuracy curacy curacy curacy RMSE 

Screen2Vec-EUCLIDEAN-spatial info 
Screen2Vec-HIERARCHICAL-spatial info 
Screen2Vec-EUCLIDEAN-no spatial info 
TextOnly 
LayoutOnly 
VisualOnly 

0.061 0.258 0.969 0.998 1.00 0.853 
0.052 0.178 0.646 0.924 0.990 0.997 
0.0065 0.116 0.896 0.986 0.999 1.723 
0.012 0.055 0.196 0.439 0.643 1.241 
0.0041 0.024 0.091 0.222 0.395 1.135 
0.0060 0.026 0.121 0.252 0.603 1.543 

Table 3: The GUI screen prediction performance of the three variations of the Screen2Vec model and the baseline models 
(TextOnly, LayoutOnly, and VisualOnly). 

Figure 3: The interface shown to the Mechanical Turk workers for rating the similarities for the nearest neighbor results 
generated by diferent models. 

Screen2Vec TextOnly LayoutOnly 

Mean Rating Std. Dev. Mean Rating Std. Dev. Mean Rating Std. Dev. 
3.295* 1.238 3.014* 1.321 2.410* 1.360 

Table 4: The mean screen similarity rated by the Mechanical Turk workers for the top-5 nearest neighbor results of the sample 
source screens generated by the 3 models: Screen2Vec, TextOnly, and LayoutOnly (*p<0.0001). 
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Figure 4: The example nearest neighbor results for the Lyft “request ride” screen generated by the Screen2Vec, TextOnly, and 
LayoutOnly models. 

domain aspects, all of these screens are from transportation-related 
apps that allow the user to confgure a trip. In comparison, the 
TextOnly model retrieves the “request ride” screen from the zTrip 
app, the “main menu” screen from the Hailo app (both zTrip and 
Hailo are taxi hailing apps), and the home screen of the Paytm app 
(a mobile payment app in India). The commonality of these screens 
is that they all include text strings that are semantically similar to 
“payment” (e.g., add payment type, wallet, pay, add money), and 
strings that are semantically similar to “destination” and “trips” 
(e.g., drop of location, trips, bus, fights). But the model did not 
consider the visual layout and design patterns of the screens nor the 

app context. Therefore the result contains the “main menu” (a quite 
diferent type of screen) in the Hailo app and the “home screen” in 
the Paytm app (a quite diferent type of screen in a diferent type 
of app). The LayoutOnly model, on the other hand, retrieves the 
“exercise logging” screens from the Map My Walk app and the Map 
My Ride app, and the tutorial screen from the Clever Dialer app. We 
can see that the content and app-context similarity of the result of 
the LayoutOnly model is quite lower than those of the Screen2Vec 
and TextOnly models. However, the result screens all share similar 
layout features as the source screen, such as the menu/information 
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card at the bottom of the screen and the screen-wide button at the 
bottom of the menu. 

3.2 Embedding Composability 
A useful property of embeddings is that they are composable— 
meaning that we can add, subtract, and average embeddings to form 
a meaningful new one. This property is commonly used in word 
embeddings. For example, in Word2Vec, analogies such as “man 
is to woman as brother is to sister” is refected in that the vector 
(man − woman) is similar to the vector (brother − sister ). Besides 
representing analogies, this embedding composability can also be 
utilized for generative purposes—for example, (brother − man + 
woman) results in an embedding vector that represents “sister”. 

This property is also useful in screen embeddings. For example, 
we can run a nearest neighbor query on the composite embedding of 
(Marriott app ’s “hotel booking” screen + (Cheapoair app’s “search 
result” screen − Cheapoair app’s “hotel booking” screen)). The top 
result is the “search result” screen in the Marriott app (see Figure 5). 
When we flter the result to focus on screens from apps other than 
Marriott, we get screens that show list results of items from other 
travel-related mobile apps such as Booking, Last Minute Travel, 
and Caesars Rewards. 

The composability can make Screen2Vec particularly useful for 
GUI design purposes—the designer can leverage the composability 
to fnd inspiring examples of GUI designs and layouts. We will 
discuss more about its potential applications in Section 4. 

3.3 Screen Embedding Sequences for 
Representing Mobile Tasks 

GUI screens are not only useful data sources individually on their 
own, but also as building blocks to represent a user’s task. A task in 
an app, or across multiple apps, can be represented as a sequence 
of GUI screens that makes up the user interaction trace for per-
forming this task using app GUIs. In this section, we conduct a 
preliminary evaluation on the efectiveness of embedding mobile 
tasks as sequences of Screen2Vec screen embedding vectors. 

Similar to GUI screens and components, the goal of embedding 
mobile tasks is to represent them in a vector space where more simi-
lar tasks are closer to each other. To test this, we recorded the scripts 
of completing 10 common smartphone tasks, each with two varia-
tions that use diferent apps, using our open-sourced Sugilite [20] 
system on a Pixel 2 XL phone running Android 8.0. Each script 
consists of a sequence of “perform action X (e.g., click, long click) 
on the GUI component Y in the GUI screen Z”. In this preliminary 
evaluation, we only used the screen context: we represented each 
task as the average of the Screen2Vec screen embedding vectors 
for all the screens in the task sequence. 

Table 5 shows the 10 tasks we tested on, the two apps used for 
each task, and the number of unique GUI screens in each trace used 
for task embedding. We queried for the nearest neighbor within 
the 20 task variations for each task variation, and checked if the 
model could correctly identify the similar task that used a diferent 
app. The Screen2Vec model achieved a 18/20 (90%) accuracy in this 
test. In comparison, when we used the TextOnly model for task 
embedding, the accuracy was 14/20 (70%). 

While the task embedding method we explored in this section is 
quite primitive, it illustrates that the Screen2Vec technique can be 
used to efectively encode mobile tasks into the vector space where 
semantically similar tasks are close to each other. For the next steps, 
we plan to further explore this direction. For example, the current 
method of averaging all the screen embedding vectors does not 
consider the order of the screens in the sequence. In the future, 
we may collect a dataset of human annotations of task similarity, 
and use techniques that can encode the sequences of items, such 
as recurrent neural networks (RNN) and long short-term memory 
(LSTM) networks, to create the task embeddings from sequences 
of screen embeddings. We may also incorporate the Screen2Vec 
embeddings of the GUI components that were interacted with (e.g., 
the button that was clicked on) to initiate the screen change into 
the pipeline for embedding tasks. 

4 POTENTIAL APPLICATIONS 
This section describes several potential applications where the new 
Screen2Vec technique can be useful based on the downstream 
tasks described in Section 3. 

Screen2Vec can enable new GUI design aids that take advantage 
of the nearest neighbor similarity and composability of Screen2Vec 
embeddings. Prior work [9, 13, 16] has shown that data-driven tools 
that enable designers to curate design examples are useful for inter-
face designers. Unlike [9], which uses a content-agnostic approach 
that focuses on the visual and layout similarities, Screen2Vec con-
siders the textual content and app meta-data in addition to the 
visual and layout patterns, often leading to diferent nearest neigh-
bor results as discussed in Section 3.1. This new type of similarity 
results will also be useful when focusing on interface design beyond 
just visual and layout issues, as the results enable designers to query 
for example designs that display similar content or screens that are 
used in apps in a similar domain. The composability in Screen2Vec 
embeddings enables querying for design examples at a fner granu-
larity. For example, suppose a designer wishes to fnd examples for 
inspiring the design of a new checkout page for app A. They may 
query for the nearest neighbors of the synthesized embedding App 
A’s order page + (App B’s checkout page − App B’s order page). 
Compared with only querying for the nearest neighbors of App 
B’s checkout page, this synthesized query encodes the interaction 
context (i.e., the desired page should be the checkout page for App 
A’s order page) in addition to the “checkout” semantics. 

The Screen2Vec embeddings can also be useful in generative 
GUI models. Recent models such as the neural design network 
(NDN) [18] and LayoutGAN [19] can generate realistic GUI lay-
outs based on user-specifed constraints (e.g., alignments, relative 
positions between GUI components). Screen2Vec can be used in 
these generative approaches to incorporate the semantics of GUIs 
and the contexts of how each GUI screen and component gets used 
in user interactions. For example, the GUI component prediction 
model can estimate the likelihood of each GUI component given 
the context of the other components in a generated screen, provid-
ing a heuristic of how likely the GUI components would ft well 
with each other. Similarly, the GUI screen prediction model may be 
used as a heuristic to synthesize GUI screens that would better ft 
with the other screens in the planned user interaction fows. Since 
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Figure 5: An example showing the composability of Screen2Vec embeddings: running the nearest neighbor query on the com-
posite embedding of Marriott app’s hotel booking page + Cheapoair app’s hotel booking page − Cheapoair app’s search result 
page can match the Marriott app’s search result page and the similar pages of a few other travel apps. 

Task Description App 1 Screen Count App 2 Screen Count 

Request a cab 
Book a fight 
Make a hotel reservation 
Buy a movie ticket 
Check the account balance 
Check sports scores 
Look up the hourly weather 
Find a restaurant 
Order an iced cofee 
Order takeout food 

Lyft 3 Uber 2 
Fly Delta 4 United Airlines 4 
Booking.com 7 Expedia 7 
AMC Theaters 3 Cinemark 4 
Chase 4 American Express 3 
ESPN 4 Yahoo! Sports 4 
AccuWeather 3 Yahoo! Weather 3 
Yelp 3 Zagat 4 
Starbucks 7 Dunkin’ Donuts 8 
GrubHub 4 Uber Eats 3 

Table 5: A list of 10 tasks we used for the preliminary evaluation of using Screen2Vec for task embedding, along with the apps 
used and the count of screens used in the task embedding for each variation. 
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Screen2Vec has been shown efective in representing mobile tasks 
in Section 3.3, where similar tasks will yield similar embeddings, 
one may also use the task embeddings of performing the same 
task on an existing app to inform the generation of new screen 
designs. The embedding vector form of Screen2Vec representa-
tions would make them particularly suitable for use in the recent 
neural-network based generative models. 

Screen2Vec’s capability of embedding tasks can also enhance 
interactive task learning systems. Specifcally, Screen2Vec may 
be used to enable more powerful procedure generalizations of the 
learned tasks. We have shown that the Screen2Vec model can efec-
tively predict screens in an interaction trace. Results in Section 3.3 
also indicated that Screen2Vec can embed mobile tasks so that the 
interaction traces of completing the same task in diferent apps will 
be similar to each other in the embedding vector space. Therefore, 
it is quite promising that Screen2Vec may be used to generalize a 
task learned from the user by demonstration in one app to another 
app in the same domain (e.g., generalizing the procedure of order-
ing cofee in the Starbucks app to the Dunkin’ Donut app). In the 
future, we plan to further explore this direction by incorporating 
Screen2Vec into open-sourced mobile interactive task learning 
agents such as our Sugilite system [20]. 

5 LIMITATIONS AND FUTURE WORK 
There are several limitations of our work in Screen2Vec. First, 
Screen2Vec has only been trained and tested on Android app GUIs. 
However, the approach used in Screen2Vec should apply to any 
GUI-based apps with hierarchical-based structures (e.g., view hier-
archies in iOS apps and hierarchical DOM structures in web apps). 
We expect embedding desktop GUIs to be more difcult than mobile 
ones, because individual screens in desktop GUIs are usually more 
complex with more heterogeneous design and layout patterns. 

Second, the Rico dataset we use only contains interaction traces 
within single apps. The approach used in Screen2Vec should gener-
alize to interaction traces across multiple apps. We plan to evaluate 
its prediction performance on cross-app traces in the future with an 
expanded dataset of GUI interaction traces. The Rico dataset also 
does not contain screens from paid apps, screens that require special 
accounts/privileges to access to (screens that require free accounts 
to access are included when the account registration is readily avail-
able in the app), or screens that require special hardware (e.g., in the 
companion apps for smart home devices) or specifc context (e.g., 
pages that are only shown during events) to access. This limitation 
of the Rico dataset might afect the performance of the pre-trained 
Screen2Vec model on these underrepresented types of app screens. 

A third limitation is that the current version of Screen2Vec does 
not encode the semantics of graphic icons that have no textual in-
formation. Accessibility-compliant apps all have alternative texts 
for their graphic icons, which Screen2Vec already encodes in its 
GUI screen and component embeddings as a part of the text em-
bedding. However, for non-accessible apps, computer vision-based 
(e.g., [8, 30]) or crowd-based (e.g., [45]) techniques can be helpful 
for generating textual annotations for graphic icons so that their 
semantics can be represented in Screen2Vec. Another potentially 
useful kind of information is the rules and examples in GUI design 
systems (e.g., Android Material Design, iOS Design Patterns). While 

Screen2Vec can, in some ways, “learn” these patterns from the train-
ing data, it will be interesting to explore a hybrid approach that can 
leverage their explicit notions. We will explore incorporating these 
techniques into the Screen2Vec pipeline in the future. 

6 RELATED WORK 
6.1 Distributed Representations of Natural 

Language 
The study of representing words, phrases, and documents as math-
ematical objects, often vectors, is central to natural language pro-
cessing (NLP) research [32, 42]. Conventional non-distributed word 
embedding methods represent a word using a one-hot representa-
tion where the vector length equals the size of the vocabulary, and 
only one dimension (that corresponds to the word) is on [42]. This 
representation does not encode the semantics of the words, as the 
vector for each word is perpendicular to the others. Documents 
represented using a one-hot word representation also sufer from 
the curse of dimensionality [3] as a result of the extreme sparsity 
in the representation. 

By contrast, a distributed representation of a word represents 
the word across multiple dimensions in a continuous-valued vector 
(word embedding) [4]. Such distributed representations can capture 
useful syntactic and semantic properties of the words, where syn-
tactically and semantically related words are similar in this vector 
space [42]. Modern word embedding approaches usually use the 
language modeling task. For example, Word2Vec [32] learns the 
embedding of a word by predicting it based on its context (i.e., 
surrounding words), or predicting the context of a word given the 
word itself. GloVe [37] is similar to Word2Vec on a high level, but 
focuses on the likelihood that each word appears in the context 
of other words with in the whole corpus of texts, as opposed to 
Word2Vec which uses local contexts. More recent work such as 
ELMo [38] and BERT [11] allowed contextualized embedding. That 
is, the representation of a phrase can vary depending on a word’s 
context to handle polysemy (i.e., the capacity for a word or phrase 
to have multiple meanings). For example, the word “bank” can have 
diferent meanings in “he withdrew money from the bank” versus 
“the river bank” 

While distributed representations are commonly used in natu-
ral language processing, to our best knowledge, the Screen2Vec 
approach presented in this paper is the frst to seek to encode the 
semantics, the contexts, and the design patterns of GUI screens and 
components using distributed representations. The Screen2Vec 
approach is conceptually similar to Word2Vec on a high level— 
like Word2Vec, Screen2Vec is trained using a predictive modeling 
task where the context of a target entity (words in Word2Vec, GUI 
components and screens in Screen2Vec) is used to predict the 
entity (known as the continuous bag of words (CBOW) model in 
Word2Vec). There are also other relevant Word2Vec-like approaches 
for embedding APIs based their usage in source code and software 
documentations (e.g., API2Vec [35]), and modeling the relation-
ships between user tasks, system commands, and natural language 
descriptions in the same vector space (e.g., CommandSpace [1]). 

Besides the domain diference between our Screen2Vec model 
and Word2Vec and its follow-up work, Screen2Vec uses both a 
(pre-trained) text embedding vector and a class type vector, and 
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combines them with a linear layer. It also incorporates external 
app-specifc meta-data such as the app store description. The hierar-
chical approach allows Screen2Vec to compute a screen embedding 
with the embeddings of the screen’s GUI components, as described 
in Section 2. In comparison, Word2Vec only computes word embed-
dings using word contexts without using any other meta-data [32]. 

6.2 Modeling GUI Interactions 
Screen2Vec is related to prior research on computationally mod-
eling app GUIs and the GUI interactions of users. The interaction 
mining approach [10] captures the static (UI layout, visual features) 
and dynamic (user fows) parts of an app’s design from a large 
corpus of user interaction traces with mobile apps, identifes 23 
common fow types (e.g., adding, searching, composing), and can 
classify the user’s GUI interactions into these fow types. A similar 
approach was also used to learn the design semantics of mobile 
apps, classifying GUI elements into 25 types of GUI components, 
197 types of text buttons, and 135 types of icon classes [30]. App-
stract [12] focused on the semantic entities (e.g., music, movie, 
places) instead, extracting entities, their properties, and relevant ac-
tions from mobile app GUIs. These approaches use a smaller number 
of discrete types of fows, GUI elements, and entities to represent 
GUI screens and their components, while our Screen2Vec uses 
continuous embedding in a vector space for screen representation. 

Some prior techniques specifcally focus on the visual aspect of 
GUIs. The Rico dataset [9] shows that it is feasible to train a GUI 
layout embedding with a large screen corpus, and retrieve screens 
with similar layouts using such embeddings. Chen et al.’s work [8] 
and Li et al.’s work [29] show that a model can predict semantically 
meaningful alt-text labels for GUI components based on their visual 
icon. Screen2Vec provides a more holistic representation of GUI 
screens by encoding textual content, GUI component class types, 
and app-specifc meta-data in addition to the visual layout. 

Another category of work in this area focuses on predicting GUI 
actions for completing a task objective. Pasupat et al.’s work [36] 
maps the user’s natural language commands to target elements on 
web GUIs. Li et al.’s work [28] goes a step further by generating 
sequences of actions based on natural language commands. These 
works use a supervised approach that requires a large amount 
of manually-annotated training data, which limits its utilization. 
In comparison, Screen2Vec uses a self-supervised approach that 
does not require any manual data annotation of user intents and 
tasks. Screen2Vec also does not require any annotations of the GUI 
screens themselves, unlike [46] which requires additional developer 
annotations as meta-data for GUI components. 

6.3 Interactive Task Learning 
Understanding and representing GUIs is a central challenge in GUI-
based interactive task learning (ITL). When the user demonstrates 
a task in an app, the system needs to understand the user’s action 
in the context of the underlying app GUIs so that it can general-
ize what it has learned to future task contexts [23]. For example, 
Sugilite represents each app screen as a graph where each GUI 
component is an entity [24]. Properties of GUI components, their hi-
erarchical relations, and the spatial layouts are represented as edges 
in the graph. This graph representation allows grounding natural 

language instructions to GUIs [23, 24] with graph queries, allow-
ing a more natural end user development experience [33]. It also 
supports personal information anonymization on GUIs [21]. How-
ever, this graph representation is difcult to aggregate or compare 
across diferent screens or apps. Its structure also does not easily 
ft into common machine learning techniques for computationally 
modeling the GUI tasks. As a result, the procedure generalization 
capability of systems like Sugilite is limited to parameters within 
the same app and the same set of screens. 

Some other interactive task learning systems such as Vasta [40], 
Sikuli [44], and Hilc [14] represent GUI screens visually. This ap-
proach performs segmentation and classifcation on the video of the 
user performing GUI actions to extract visual representations (e.g., 
screenshot segments/icons) of GUI components, allowing replay 
of actions by identifying target GUI components using computer 
vision object recognition techniques. This approach supports gen-
eralization based on visual similarity (e.g., perform an action on all 
PDF fles in a fle explorer because they all have visually similar 
icons). However, this visual approach is limited by its lack of seman-
tic understanding of the GUI components. For example, the icon of 
a full trash bin is quite diferent from an that of an empty one pixel 
count wise, but they should have the same meaning when the user 
intent is “open the trash bin”. The icon for a video fle can be similar 
to that of an audio fle (with the only diference being the tiny “mp3“ 
and “mp4“ at a corner), but the system should diferentiate them in 
intents like “select all the video fles”. 

The Screen2Vec representation presented in this paper encodes 
the textual content, visual layout and design patterns, and app-
specifc context of GUI screens in a distributed vector form that 
can be used across diferent apps and task domains. We think this 
representation can be quite useful in supplementing the existing 
graph and visual GUI representations in ITL systems. For example, 
as shown in Section 3.3, sequences of Screen2Vec screen embed-
ding can represent tasks in a way that allows the comparison and 
retrieval of similar tasks among diferent apps. The results in Sec-
tion 3.3 also suggest that the embedding can help an ITL agent 
transfer procedures learned from one app to another. 

7 CONCLUSION 
We have presented Screen2Vec, a new self-supervised technique 
for generating distributed semantic representations of GUI screens 
and components using their textual content, visual design and lay-
out patterns, and app meta-data. This new technique has been 
shown to be efective in downstream tasks such as nearest neighbor 
retrieval, composability-based retrieval, and representing mobile 
tasks. Screen2Vec addresses an important gap in computational 
HCI research, and could be utilized for enabling and enhancing 
interactive systems in task learning (e.g., [25, 40]), intelligent sug-
gestive interfaces (e.g., [7]), assistive tools (e.g., [5]), and GUI design 
aids (e.g., [17, 41]). 

ACKNOWLEDGMENTS 
This research was supported in part by Verizon through the Ya-
hoo! InMind project, a J.P. Morgan Faculty Research Award, Google 
Cloud Research Credits, NSF grant IIS-1814472, and AFOSR grant 
FA95501710218. Any opinions, fndings or recommendations ex-
pressed here are those of the authors and do not necessarily refect 



CHI ’21, May 8–13, 2021, Yokohama, Japan Toby Jia-Jun Li, Lindsay Popowski, Tom M. Mitchell, and Brad A. Myers 

views of the sponsors. We would like to thank our anonymous re-
viewers for their feedback and Ting-Hao (Kenneth) Huang, Monica 
Lam, Vanessa Hu, Michael Xieyang Liu, Haojian Jin, and Franklin 
Mingzhe Li for useful discussions. 

REFERENCES 
[1] Eytan Adar, Mira Dontcheva, and Gierad Laput. 2014. CommandSpace: Modeling 

the Relationships Between Tasks, Descriptions and Features. In Proceedings of the 
27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14). 
ACM, New York, NY, USA, 167–176. https://doi.org/10.1145/2642918.2647395 

[2] Tanzirul Azim, Oriana Riva, and Suman Nath. 2016. uLink: Enabling User-Defned 
Deep Linking to App Content. In Proceedings of the 14th Annual International 
Conference on Mobile Systems, Applications, and Services (MobiSys ’16). ACM, New 
York, NY, USA, 305–318. https://doi.org/10.1145/2906388.2906416 

[3] Richard Bellman. 1966. Dynamic Programming. Science 153, 3731 (1966), 34–37. 
https://doi.org/10.1126/science.153.3731.34 

[4] Yoshua Bengio. 2009. Learning deep architectures for AI. Now Publishers Inc. 
[5] Jefrey P. Bigham, Tessa Lau, and Jefrey Nichols. 2009. Trailblazer: Enabling Blind 

Users to Blaze Trails through the Web. In Proceedings of the 14th International 
Conference on Intelligent User Interfaces (Sanibel Island, Florida, USA) (IUI ’09). 
ACM, New York, NY, USA, 177–186. https://doi.org/10.1145/1502650.1502677 

[6] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. 2015. A large annotated corpus for learning natural language inference. 
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language 
Processing. ACL, Lisbon, Portugal, 632–642. https://doi.org/10.18653/v1/D15-1075 

[7] Fanglin Chen, Kewei Xia, Karan Dhabalia, and Jason I. Hong. 2019. MessageOn-
Tap: A Suggestive Interface to Facilitate Messaging-Related Tasks. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems (Glas-
gow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 575, 14 pages. 
https://doi.org/10.1145/3290605.3300805 

[8] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In Proceedings 
of the 42nd International Conference on Software Engineering (ICSE ’20). 

[9] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, 
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset 
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual 
ACM Symposium on User Interface Software and Technology (UIST ’17). ACM, New 
York, NY, USA, 845–854. https://doi.org/10.1145/3126594.3126651 

[10] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction Mining 
Mobile Apps. In Proceedings of the 29th Annual Symposium on User Interface 
Software and Technology (UIST ’16). ACM, New York, NY, USA, 767–776. https: 
//doi.org/10.1145/2984511.2984581 

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: 
Pre-training of Deep Bidirectional Transformers for Language Understanding. In 
Proceedings of the 2019 Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies, Volume 1 (Long 
and Short Papers). ACL, Minneapolis, Minnesota, 4171–4186. https://doi.org/10. 
18653/v1/N19-1423 

[12] Earlence Fernandes, Oriana Riva, and Suman Nath. 2016. Appstract: On-the-fy 
App Content Semantics with Better Privacy. In Proceedings of the 22Nd Annual 
International Conference on Mobile Computing and Networking (MobiCom ’16). 
ACM, New York, NY, USA, 361–374. https://doi.org/10.1145/2973750.2973770 

[13] Forrest Huang, John F. Canny, and Jefrey Nichols. 2019. Swire: Sketch-Based 
User Interface Retrieval. In Proceedings of the 2019 CHI Conference on Human 
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, 
NY, USA, 1–10. https://doi.org/10.1145/3290605.3300334 

[14] Thanapong Intharah, Daniyar Turmukhambetov, and Gabriel J. Brostow. 2019. 
HILC: Domain-Independent PbD System Via Computer Vision and Follow-Up 
Questions. ACM Trans. Interact. Intell. Syst. 9, 2-3, Article 16 (March 2019), 
27 pages. https://doi.org/10.1145/3234508 

[15] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015, 
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio 
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980 

[16] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad, 
Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeitgeist: Design Mining the 
Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 3083–3092. https: 
//doi.org/10.1145/2470654.2466420 

[17] Chunggi Lee, Sanghoon Kim, Dongyun Han, Hongjun Yang, Young-Woo Park, 
Bum Chul Kwon, and Sungahn Ko. 2020. GUIComp: A GUI Design Assistant with 
Real-Time, Multi-Faceted Feedback. In Proceedings of the 2020 CHI Conference on 
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). ACM, New 
York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376327 

[18] Hsin-Ying Lee, Weilong Yang, Lu Jiang, Madison Le, Irfan Essa, Haifeng Gong, 
and Ming-Hsuan Yang. 2020. Neural Design Network: Graphic Layout Generation 
with Constraints. European Conference on Computer Vision (ECCV) (2020). 

[19] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. 2019. 
LayoutGAN: Synthesizing Graphic Layouts with Vector-Wireframe Adversarial 
Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019). 

[20] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating 
Multimodal Smartphone Automation by Demonstration. In Proceedings of the 
2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, 
New York, NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483 

[21] Toby Jia-Jun Li, Jingya Chen, Brandon Canfeld, and Brad A. Myers. 2020. Privacy-
Preserving Script Sharing in GUI-Based Programming-by-Demonstration Sys-
tems. Proc. ACM Hum.-Comput. Interact. 4, CSCW1, Article 060 (May 2020), 
23 pages. https://doi.org/10.1145/3392869 

[22] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers. 
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented 
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface 
Software and Technology (UIST 2020). ACM. https://doi.org/10.1145/3379337. 
3415820 

[23] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, 
Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A Multi-Modal Interface 
for Specifying Data Descriptions in Programming by Demonstration Using Verbal 
Instructions. In Proceedings of the 2018 IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC 2018). https://doi.org/10.1109/VLHCC.2018. 
8506506 

[24] Toby Jia-Jun Li, Tom Mitchell, and Brad Myers. 2020. Interactive Task Learning 
from GUI-Grounded Natural Language Instructions and Demonstrations. In 
Proceedings of the 58th Annual Meeting of the Association for Computational 
Linguistics: System Demonstrations. ACL, Online, 215–223. https://doi.org/10. 
18653/v1/2020.acl-demos.25 

[25] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell, 
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns Concepts 
and Conditionals from Natural Language and Demonstrations. In Proceedings 
of the 32nd Annual ACM Symposium on User Interface Software and Technology 
(UIST 2019). ACM. https://doi.org/10.1145/3332165.3347899 

[26] Toby Jia-Jun Li and Oriana Riva. 2018. KITE: Building conversational bots from 
mobile apps. In Proceedings of the 16th ACM International Conference on Mobile 
Systems, Applications, and Services (MobiSys 2018). ACM. https://doi.org/10.1145/ 
3210240.3210339 

[27] Toby Jia-Jun Li, Shilad Sen, and Brent Hecht. 2014. Leveraging Advances in Nat-
ural Language Processing to Better Understand Tobler’s First Law of Geography. 
In Proceedings of the 22Nd ACM SIGSPATIAL International Conference on Advances 
in Geographic Information Systems (SIGSPATIAL ’14). ACM, New York, NY, USA, 
513–516. https://doi.org/10.1145/2666310.2666493 

[28] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping 
Natural Language Instructions to Mobile UI Action Sequences. In Proceedings of 
the 58th Annual Meeting of the Association for Computational Linguistics. ACL, 
Online, 8198–8210. https://doi.org/10.18653/v1/2020.acl-main.729 

[29] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020. 
Widget Captioning: Generating Natural Language Description for Mobile User 
Interface Elements. In Proceedings of the 2020 Conference on Empirical Methods in 
Natural Language Processing (EMNLP). ACL, Online, 5495–5510. https://doi.org/ 
10.18653/v1/2020.emnlp-main.443 

[30] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha 
Kumar. 2018. Learning Design Semantics for Mobile Apps. In Proceedings of the 
31st Annual ACM Symposium on User Interface Software and Technology (Berlin, 
Germany) (UIST ’18). ACM, New York, NY, USA, 569–579. https://doi.org/10. 
1145/3242587.3242650 

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Efcient 
Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs] (Jan. 
2013). http://arxiv.org/abs/1301.3781 arXiv: 1301.3781. 

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jef Dean. 
2013. Distributed representations of words and phrases and their com-
positionality. In Advances in neural information processing systems. 3111– 
3119. http://papers.nips.cc/paper/5021-distributed-representations-of-words-
and-phrases-and-their-compositionality 

[33] Brad A. Myers, Amy J. Ko, Chris Scafdi, Stephen Oney, YoungSeok Yoon, Kerry 
Chang, Mary Beth Kery, and Toby Jia-Jun Li. 2017. Making End User Development 
More Natural. In New Perspectives in End-User Development. Springer, Cham, 
1–22. https://doi.org/10.1007/978-3-319-60291-2_1 

[34] Vinod Nair and Geofrey E. Hinton. 2010. Rectifed Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference 
on International Conference on Machine Learning (Haifa, Israel) (ICML’10). Omni-
press, Madison, WI, USA, 807–814. 

[35] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. 
2017. Exploring API Embedding for API Usages and Applications. In Proceed-
ings of the 39th International Conference on Software Engineering (Buenos Aires, 
Argentina) (ICSE ’17). IEEE, 438–449. https://doi.org/10.1109/ICSE.2017.47 

https://doi.org/10.1145/2642918.2647395
https://doi.org/10.1145/2906388.2906416
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1145/1502650.1502677
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1145/3290605.3300805
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2973750.2973770
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3234508
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/3313831.3376327
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3392869
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.18653/v1/2020.acl-demos.25
https://doi.org/10.18653/v1/2020.acl-demos.25
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/2666310.2666493
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.emnlp-main.443
https://doi.org/10.18653/v1/2020.emnlp-main.443
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650
http://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1109/ICSE.2017.47


Screen2Vec: Semantic Embedding of GUI Screens and GUI Components CHI ’21, May 8–13, 2021, Yokohama, Japan 

[36] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy Liang. 
2018. Mapping natural language commands to web elements. In Proceedings of 
the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 
’18). ACL, Brussels, Belgium, 4970–4976. https://doi.org/10.18653/v1/D18-1540 

[37] Jefrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: 
Global Vectors for Word Representation. In Proceedings of the 2014 Conference 
on Empirical Methods in Natural Language Processing (EMNLP ’14). ACL, Doha, 
Qatar, 1532–1543. https://doi.org/10.3115/v1/D14-1162 

[38] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, 
Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Repre-
sentations. In Proceedings of the 2018 Conference of the North American Chapter 
of the Association for Computational Linguistics: Human Language Technologies, 
Volume 1 (Long Papers) (NAACL ’18). ACL, New Orleans, Louisiana, 2227–2237. 
https://doi.org/10.18653/v1/N18-1202 

[39] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings 
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational 
Linguistics. http://arxiv.org/abs/1908.10084 

[40] Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb Phillips, Min-
fan Zhang, Afsaneh Fazly, and Iqbal Mohomed. 2020. VASTA: a vision and 
language-assisted smartphone task automation system. In Proceedings of the 25th 
International Conference on Intelligent User Interfaces (IUI ’20). 22–32. 

[41] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon, 
and Amy J. Ko. 2018. Rewire: Interface Design Assistance from Examples. In 
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems 

(Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, 1–12. https://doi. 
org/10.1145/3173574.3174078 

[42] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word Representations: A 
Simple and General Method for Semi-Supervised Learning. In Proceedings of the 
48th Annual Meeting of the Association for Computational Linguistics (Uppsala, 
Sweden) (ACL ’10). ACL, USA, 384–394. 

[43] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage 
Challenge Corpus for Sentence Understanding through Inference. In Proceedings 
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 
ACL, New Orleans, Louisiana, 1112–1122. https://doi.org/10.18653/v1/N18-1101 

[44] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI 
Screenshots for Search and Automation. In Proceedings of the 22Nd Annual ACM 
Symposium on User Interface Software and Technology (UIST ’09). ACM, New York, 
NY, USA, 183–192. https://doi.org/10.1145/1622176.1622213 

[45] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O. 
Wobbrock. 2017. Interaction Proxies for Runtime Repair and Enhancement 
of Mobile Application Accessibility. In Proceedings of the 2017 CHI Conference 
on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA, 
6024–6037. https://doi.org/10.1145/3025453.3025846 

[46] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annotation 
of Mobile Application Interfaces in Methods for Accessibility Repair and En-
hancement. In Proceedings of the 31st Annual ACM Symposium on User Interface 
Software and Technology. 

https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3173574.3174078
https://doi.org/10.1145/3173574.3174078
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/3025453.3025846

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Dataset
	2.2 Models
	2.3 Training Configurations
	2.4 Baselines
	2.5 Prediction Task Results

	3 Sample Downstream Tasks
	3.1 Nearest Neighbors
	3.2 Embedding Composability
	3.3 Screen Embedding Sequences for Representing Mobile Tasks

	4 Potential Applications
	5 Limitations and Future Work
	6 Related Work
	6.1 Distributed Representations of Natural Language
	6.2 Modeling GUI Interactions
	6.3 Interactive Task Learning

	7 Conclusion
	Acknowledgments
	References



