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Abstract— Soft isoperimetric truss robots have demonstrated
an ability to grasp and manipulate objects using the members
of their structure. The compliance of the members affords
large contact areas with even force distribution, allowing for
successful grasping even with imprecise open-loop control. In
this work we present methods of analyzing and controlling
isoperimetric truss robots in the context of grasping and manip-
ulating objects. We use a direct stiffness model to characterize
the structural properties of the robot and its interactions with
external objects. With this approach we can estimate grasp
forces and stiffnesses with limited computation compared to
higher fidelity finite elements methods, which, given the many
degrees-of-freedom of truss robots, are prohibitively expensive
to run on-board. In conjunction with the structural model, we
build upon a literature of differential kinematics for truss robots
and apply it to the task of manipulating an object within the
robot’s workspace.

I. INTRODUCTION

Truss robots are composed of a number of identical linear
actuators that are arranged in a truss-like structure and con-
nected by universal joints. Truss robots have inspired a wide
array of research, with applications in planetary exploration
[1]–[3], formation of dynamic structures [4], shoring of
rubble [5], [6], burrowing [7], shape and information displays
[8], [9], and as the building block of modular robotic systems
[10], [11]. The coordinated deformation of the individual
linear actuators enables complex shape change of the global
structure. Leveraging its dynamic shape enables such a robot
to adapt to the surroundings, traverse unstructured terrain,
store and deploy easily, and intelligently distribute external
loads among its members.

Soft isoperimetric truss robots are a recently proposed
variation of truss robots that are comprised of inflated inex-
tensible tubes that are manipulated into a truss-like structure
by a collective of robotic roller modules [12]. The inflated
tubes are the primary structural elements and the members
of the truss structure. Each joint in the tubing is formed
by a roller module that pinches the tube between cylindrical
rollers, locally reducing the bending stiffness of the tube (Fig.
1a). An electric motor drives these rollers, causing the pinch
point to translate. The roller modules can be connected by
3 degree-of-freedom universal joints to neighboring modules
to form complex structures. Note, isoperimetric truss robots
are space frames, not true truss structures.

The compliance of isoperimetric truss robots enables new
modes of interaction with the outside world compared to
conventional rigid truss robots. One compelling interaction
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Fig. 1. (a) CAD model of a roller module of the isoperimetric truss robot.
(b) The nodes and members used to describe each roller module and the
adjacent segments of tube within the structural model.

is grasping and manipulating objects. The robot can change
shape to engulf an object, grasp it between two members,
and manipulate it in the robot’s environment. Similar to soft
grippers, the compliance of the structure affords large contact
areas with even force distribution, allowing for successful
grasping with imprecise open-loop control [13]–[18]. In
order to leverage these techniques, we explore methods of
analyzing and controlling isoperimetric truss robots in the
context of grasping and manipulating objects.

An important precursor to an intelligent grasping con-
troller is the analysis of the forces imparted on an object
by the robot. Because the isoperimetric truss robot uses its
own structure as a gripper, the structural behavior of the
robot is highly intertwined with the grasping statics. In this
work, we present a direct stiffness model of the isoperimetric
truss robot and apply it in the context of grasping. We
develop this model with the eventual goal of using it within
a grasp optimization wherein properties of the grasp may
be specified. Given the computational burden of searching
the high-dimensional state-space of truss robots, we prefer
models that can be computed quickly even if they only
provide approximations of the grasp statics. This approach
is distinct from higher fidelity finite element methods for
inflatable structures, which are necessary for highly flexi-
ble and stretchable robots [19], [20]. However, due to the
flexible and inextensible membrane structure, the tubes in
the isoperimetric robot demonstrate an approximately linear
force-displacement behavior at small displacements [12].
Therefore, we propose using a limited set of elements within
our direct stiffness model.

In conjunction with grasping objects, we also want the
robot to manipulate the objects within its environment. The
differential kinematics describing the relationship between
actuator inputs and robot shape have been described for
linear actuator truss robots in [21] and applied to locomotion
across flat terrain and in the presence of obstacles [22]–[25].



Here, we build on this work in differential kinematics and
apply it to the task of manipulating a grasped object. The
result is a set of actuator inputs that produces a specified
instantaneous motion of the grasped object. Integrated within
an online controller, this kinematic solution enables the robot
to follow arbitrary trajectories.

This paper is organized as follows. We describe our grasp
analysis model in Section II and evaluate it in Section III. We
then shift to manipulation kinematics in Section IV. Finally,
we summarize the results and future directions.

II. GRASP MODELING

A. Structural Model

We use a direct stiffness model to describe the bulk me-
chanical properties of the isoperimetric truss robot [26]–[28].
While this can only be expected to give us approximations of
structural behavior, the low computational demands of this
approach are attractive for use in online optimizations. The
robot is represented as a set of m members interconnected
at n nodes. Each member of the structure has a linearized
stiffness matrix which maps member-end deflections to
member-end forces. Each member-end is either pinned (only
forces are transmitted) or fixed (forces and moments are
transmitted) to one node. The individual member stiffness
matrices and node deflections can be aggregated together,
leading to the expression:

F = S(x)u (1)

where F is a vector of the external forces and moments,
S(x) is the aggregated stiffness matrix, and u is a vector
of node displacements. Below, we describe how we identify
the members and nodes of the robot model and express the
member stiffness matrices in more detail. Note, in this work
we only consider the 2D case for simplicity.

The isoperimetric truss robot is comprised of roller mod-
ules and inflated tubes. Each module pinches the tube at
two points separated by a distance to prevent the tube from
colliding with itself [12]. The module has two guide rings,
which physically enforce a kinematic constraint. The guide
rings are mechanically coupled such that the angle between
them is bisected by the axis of the connection rod. At
the end of this connection rod, the module can connect to
other modules through a universal joint. The modules can be
described by a set of nodes and members as shown in Fig.
1b. Node A is point where modules connect to each other.
Nodes B and C are placed where the tube is pinched. Nodes
D and E are placed where the tube passes through the guide
rings. Nodes D’ and E’ belong to neighboring modules not
shown. The members that constitute the module are shown
in black in Fig. 1b. Roller module members BC and DE
are pinned at both ends. Member BC is fixed at both ends.
Member AB and AC are pinned at A and fixed at B and C,
respectively.

The members comprising the segments of tube adjacent to
the roller module are shown in red in Fig. 1b. Tube members
BD and CE are pinned at B and C, respectively, modeling
the low stiffness joint created by the pinch point. These tube

Fig. 2. The modes the members of the structure can deflect in and the
loads these deflections produce.

members are fixed at D and E, which describes the lack of a
joint at that location. However, by including these nodes, the
module can exert forces on the tube at these points. Members
DD’ and EE’ are the long segments of tube that connect
to neighboring roller modules. Note, the module rollers are
non-backdrivable, so we can analyze the structure quasi-
statically without incorporating the stiffness characteristics
of the motor and transmission.

In our model, each member in the structure can deflect in
ways depicted in Fig. 2. Each member-end can deflect in the
axial direction (δx), the transverse direction (δy), and rotate
in the plane (δθ). These deflections result in member loads
P , V , and M , respectively. The force-displacement equation
for a member can be expressed as
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The rigid components of the roller modules are constructed
of isotropic materials and can be described simply as Euler
beams [27]. The nominal length of these components does
not change as the robot changes configuration. The stiffness
of the inflated tubes (red members BD, CE, DD’ and EE’
in Fig. 1), however, cannot be described by Euler beam
equations. In this work we measured these stiffness values
empirically and fit simple models to them. This is described
in more detail in Section III. Describing the stiffness of the
tubes like Hookean springs with linear force-displacement
behavior is a significant simplification of reality and we
should expect to see significant error at large displacements.

As the structure deforms, the members BD and CE rotate
such that the angle between them is bisected by the line
between node A and the midpoint of BC. This imposes a
constraint for each roller module which we express as

atan2
(
‖v1 × v2‖ , vT1 · v2

)
= atan2

(
‖v1 × v3‖ , vT1 · v3

)
(3)

where v1 is a vector pointing from A to the midpoint of BC
and v2 and v3 are vectors aligned with members BC and DE,
respectively. We take the derivative of the constraint in (3)
with respect to x and insert the result into the matrix A(x).
We combine these constraint equations together with the



force-displacement equations to result in our final description
of the system. [

F
0

]
=

[
S(x)
A(x)

]
u = ST (x)u (4)

Solving the above equation for u requires the inverse of
ST . If ST ∈ Rlxl, the computational complexity of the
inverse is O(l3) with the Gauss-Jordan elimination method.
Therefore, using a minimal set of nodes to describe the
structure, as we have done, can have a large impact on
computation time.

B. Grasp Analysis

If an object interferes with the tube as shown in Fig. 3,
we would like to estimate the forces exerted on the object
and the size of the contact region. In this work, we consider
cylindrical objects. The first step is to create a number of
new nodes in the vicinity of the object that may be in
contact, breaking the single member into a number of smaller
segments. These nodes are fixed to the member-ends that
connect to them. When the member deflects, a portion of
these nodes will be in contact with the object. The gap
between any node, i, and the closest point on the surface
of the object must be nonnegative (Fig. 3c). The gap, gni, is
defined as

gni = (xi − xci)T êni ≥ 0 (5)

where xi is the position of the ith node, xci is the nearest
point on the surface of the object, and êni is a unit vector
normal to the object surface at xci. If a node is in contact
with the object, then gni = 0 and there could be a contact
force, Fc, acting at that node (Fig. 3c)

FTci êni ≥ 0 if gni = 0 (6)

Although surface friction is an important aspect of force
closure in grasping, we ignore surface friction effects in the
computation of the normal contact forces. This assumption
is valid because, in most cases, the object is grasped without
a tangential relative velocity with respect to the grasping
members. Therefore,

FTci êti = 0 (7)

where êti is a unit vector tangent to the object surface at xci.

Fig. 3. An object (grey) in interference with a member (red). A number
of nodes (black and blue) are added to the member in the vicinity of the
object. Nodes in contact with the object (blue) exert a normal force. Nodes
not in contact (black) have a positive gap size to the nearest point on the
object.

Our task is to find a set of contact forces, Fc, which act
on the contact candidates subject to the constraints above.
Formally,

find Fc
subject to
gni ≥ 0 FTci êti = 0
FTci êni ≥ 0 Fc = Su
FTci ênigni = 0 x = x0 + u

(8)

This problem can be solved in a number of ways. Here we
employ a discrete dynamic equation of Fc that converges to-
wards a solution that satisfies all of the constraint equations.
The dynamic equation is

F p+1
ci = F pci +K1ReLU(−gni)êni

−K2F
T
ci êtiêti −K3ReLU(gni)F

p
ci

(9)

The first term increases the force at a node if it is inside
the object, the second term drives tangential forces to zero,
and the third term drives node forces to zero if the node
is not in contact with the object. These dynamics are run
iteratively until the constraints of (8) are satisfied to within
a specified tolerance. Given the linearity of the model, this
approach converges quickly, however, the gains K1, K2, and
K3 must be tuned manually. The result is identification of
the nodes that are in contact with the object and the normal
forces acting on the object at those nodes.

Having calculated the normal contact forces in (8), we now
check if they satisfy force closure. In most cases the resultant
force will push the object away from the robot. Therefore, we
check if there is a set of contact friction forces, Ff , that can
balance the resultant force and any externally applied wrench
while respecting friction limits [29]. This problem can be
stated as an inequality constrained least squares optimization

min
Ff

‖DFf −R‖22

subject to − µFci ≤ Ffi ≤ µFci ∀ i
(10)

where D maps friction forces to wrenches on the object, R
is the resultant wrench applied on the object by the normal
contact forces and any externally applied wrench, and µ is
the coefficient of friction. If the residual of this optimization
is zero, then there is a set of friction forces that satisfy force
closure.

III. EXPERIMENTS AND RESULTS OF GRASP MODELING

A. Inflated Tube Stiffness

A number of experiments were performed on inflated tubes
to determine the stiffness relationships in (2). In each of
these experiments, a tube of diameter 10.2 cm was deformed
by one of the deflection modes depicted in Fig. 2 and the
corresponding load was measured. On the robot, the ends
of each tube segment are tapered due to the way the rollers
pinch the tube. This geometry has a dramatic effect on the
axial stiffness of the beam; therefore, the axial stiffness was
measured when the tube was pinched between two roller
modules. For the other tests, the tube was supported by
guide rings on either side, mimicking the guide rings on the



TABLE I
INFLATED TUBE STIFFNESS

Model C b R2
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L
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Fig. 4. Example force-displacement relationships for inflated tubes under
various deflection modes. Experimental data is shown as blue dots. Linear
model predictions shown in black, dashed lines.

roller modules. In tests where a member-end is translated,
the member-end was secured to a freely-moving carriage on
a linear track with a linear encoder to measure deflection.
In tests where a member-end was rotated, the member-end
was secured to a platform that rotated along with the linear
travel of a carriage on the linear track. Member-end loads
were measured by a Mark-10 force sensor. Each experiment
was conducted over a range of three internal pressures
(17.2, 34.5, and 51.7 kPa) and three undeflected member
lengths (25.4, 50.8, and 76.2 cm). All permutations were
repeated 5 times. A simple model was fit to the experimental
data relating the member stiffness to internal pressure and
member length. These models are shown in Table I. Example
force-displacement curves are shown in Fig. 4.

B. Structural Stiffness

To validate the direct stiffness method for structures, we
measured the force-displacement relationship of a triangular
isoperimetric truss robot in three different configurations. A
schematic of this robot is shown in the inset in Fig. 5. The
roller module at the top of the triangle was free to move
along a track in the vertical direction (y in Fig. 5). The two
base modules were pinned at one of their kinematic nodes
and positioned symmetrically about the linear track. A Mark-
10 force sensor was pushed into the roller module along the
linear track until the tubes buckle and the test was concluded.
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Fig. 5. Force-displacement behavior of a single triangle in three different
configurations. The three configurations are obtuse triangle (edge lengths
of l1 = l2 = 89 cm and l3 = 128 cm), equilateral triangle (edge lengths of
102 cm), and acute triangle (edge lengths of l1 = l2 = 121 cm, and l3 = 64
cm). Experimental data is shown in colored, solid lines. Model predictions
are shown in black, dashed lines.

The tube diameter was 10.2 cm and the internal pressure
was 34.5 kPa. The results are presented in Fig. 5. The
relative relationship between the three configurations follows
a similar trend to the experimental results. By repeating this
test in different configurations, we show that the structural
stiffness is dependent on the configuration.

C. Grasp Analysis

To validate the grasp force estimation, we conducted
experiments wherein cylinders of varying diameters, d (2.54,
10.2, and 20.3 cm), were pressed into a tube at various
positions along the length of the tube (Fig. 6 inset). The
tube had a diameter of 10.2 cm, a length of 76.2 cm,
and an internal pressure of 34.5 kPa. The objects were
fixed to a Mark-10 force sensor that moved along the
linear track. The linear track was positioned perpendicular
to the inflated beam, and the Mark-10 measured the forces
exerted along the track’s direction. We use the measured
force and displacement to calculate stiffness values for each
trial. Averaged stiffness measurements are shown in Fig. 6
along with model predictions. In the model, we used object
diameters of 12.7 cm, 20.3 cm, and 30.5 cm to account for
the tube diameter. The model does a good job of estimating
stiffness when d is small. However, the model is not sensitive
to changes in d. This is because the model does not account
for volume and pressure change of the inflated tube. Larger
objects will have larger contact areas with the tube which
results in a larger volume change within the tube. This
volume change drives up the internal pressure and results in
more force applied to the object for larger diameter objects.

We apply our grasp analysis model in simulation to a nine-
member isoperimetric truss robot. Fig. 7 shows the robot
in different configurations grasping an object of constant
size and position. For each configuration, we can compute
contact forces, contact regions, grasp stiffness, and structural
deformation. The magnified view of one of the configurations
in Fig. 7 visualizes the contact region, forces, and structural
deflection. Grasp stiffness is calculated by displacing the
object and all contact points by a specified amount and
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Fig. 6. Interference stiffness for tube and cylinder interaction. Experiments
are shown with symbols and model predictions are shown in solid lines.

direction and then computing the resultant reaction forces at
the externally constrained nodes. Each grasp configuration
has a unique grasp stiffness, demonstrating that the grasp
stiffness can be tuned independently of the object position.

IV. MANIPULATION KINEMATICS

Once the robot has grasped an object, it will then need
to move that object around the local environment. In this
section, we will describe the kinematics necessary to control
the pose of a grasped object within the workspace of the
isoperimetric truss robot. Here, we make the assumptions that
the deformation of the structure is negligible, that the objects
are of cylindrical shape, and that the two grasping members
connect to the same roller module. These assumptions will be
relaxed in future work. Because of the neglect of structural
deformation, we can use a different set of nodes to define
the configuration of the roller modules. In Fig. 8 we can see
that nodes A, B, and C are the same as in Fig. 1, and nodes
D and E have been removed. Nodes B’ and C’ correspond
to nodes on neighboring roller modules. Note, the bisection
constraints in (3) are now formed with B’ and C’ in the place
of D and E.

To determine the actuation input required to affect a de-
sired motion of the grasped object, we solve an optimization
problem over the node velocities subject to constraints de-
fined by the robot’s construction and the task of manipulating
a grasped object. The approach builds off work finding node
velocities to move the center of mass of truss robots [21],
[22]. The optimization problem can be stated as

min
ẋ

J(ẋ)

subject to Aeqẋ = beq
(11)

where J can be an arbitrary cost function. Here, we use
J(ẋ) = ẋTRTtubeRtubeẋ which minimizes member length
change at each time step. The equality constraint, Aeqẋ =
beq , describes the kinematic constraints of the robot and the
grasped object. In the following sections we will describe
these constraints in detail.

A. Robot Kinematic Constraints

To begin, we will briefly summarize the isoperimetric
robot kinematics as described in [12]. These kinematics are

modified to apply to the 2D case. The forward kinematics
describing the relationship between member length change,
L̇, to the motion of the nodes, ẋ, can be expressed as

ẋ =


Rtube(x)
Rmodule(x)
Rbisect(x)

G


−1 [

L̇
0

]
(12)

where Rtube is a scaled version the rigidity matrix [30],
Rmodule represents the constraints that members AB, AC, and
BC are constant length, Rbisect represents the bisection con-
straints similar to those in (3), and G represents constraints
to the outside world like which nodes are in contact with the
ground.

Optimizing over node velocities, ẋ, requires the expression
of the constraint that the tube has a constant total length in
terms of node velocities. This can be written as

1T L̇ = 1TRtube(x)ẋ = 0 (13)

B. Manipulation Kinematic Constraints

The first manipulation constraint is to ensure that the robot
maintains the grasp. Therefore, we add a constraint that the
angle between the two grasping members remains constant.
This ensures these members stay in contact with the object.

constant = atan2
(
‖v1 × v2‖ , vT1 · v2

)
(14)

where v1 = (xB′ − xB) and v2 = (xC′ − xC).
To set a constraint on the desired velocity of the object’s

center, we must be able to describe the velocity of this
point in terms of node velocities. To do this, we establish
a reference frame within which the object is stationary. This
reference frame, depicted in Fig. 8, has xB as its origin and
is defined by unit vectors êx, which points to xB′ from xB ,
and êy , which is perpendicular to êx and ẑ. We define the
position of the object within this local reference frame xobj .
We can now relate the desired velocity of the object in the
global frame in terms of node velocities as

ẋdes =
d

dt
(xB + xobj) (15)

The angular velocity of the object has two components.
The first component is equivalent to the angular velocity of
the local reference frame, ωframe. This angular velocity can
be expressed as

ωframe =
d

dt

(
atan2

(
(xB′−xB) · ŷ, (xB′−xB) · x̂

))
(16)

It is also possible to rotate the object with respect to this
local reference frame by leveraging the fact that the members
are composed of continuous tubes that move relative to the
roller modules like a belt through pulleys. The object rolls
on the tube as it passes through the roller module, which can
enable to robot to perform in-hand manipulation [12]. This
angular velocity is expressed as

ωroll =
2φ̇i
d

(17)
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Fig. 7. Three different configuration the robot could attain to grasp an object of constant d and position. For each configuration, we can compute contact
forces, contact regions, grasp stiffness, and structural deformation. The magnified view of the configuration on the left shows total force and the length of
the contact region. The dashed green lines represents the robot members before the object deforms the robot.
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Fig. 8. The nodes (blue) and members (black) used to describe the robot
kinematics and the parameters that describe the motion of the grasped object.

where φ̇i is the velocity of the nearby roller module (Fig.
8). The final constraint for the desired angular velocity can
be written as

ωdes = ωframe + ωroll (18)

We take the derivative of (14) with respect to time and put
the result, along with the results from (15) and (18), into the
matrix M(x) and vector b such that

M(x)ẋ = b =
[
ẋdes ωdes 0

]T
(19)

We can now express the optimization equality constraint as

Aeqẋ =


1TRtube(x)
Rmodule(x)
Rbisect(x)

G
M

 ẋ =

[
0
b

]
= beq (20)

C. Kinematics Demonstration

We demonstrate the manipulation kinematics in Fig. 9 in
which a nine-member isoperimetric truss robot moves an
object around its environment in simulation. The object starts
in the position shown in Fig. 9a with an orientation indicated
with a green arrow. The object is first translated vertically
as seen in Fig. 9b. Fig. 9c shows the object’s pose after a
pure rotation. The path of the object during this translation is
shown in blue. Fig. 9d shows the object again after it moved
in a circular arc while the orientation remained normal to
the curve. This simulation demonstrates that the robot is
capable of performing useful tasks with a grasped object.
For example, the robot can hold and reposition a workpiece
during a human-robot collaborative assembly task.
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Fig. 9. A simulated isoperimetric robot moves a grasped object. The
object’s orientation is shown with a green arrow. The path of the object’s
center is shown in blue. (a) The starting configuration. (b) The object is
translated vertically. (c) The object is rotated in place. (d) The object moved
in a circular arc while the orientation remains normal to this curve.

V. CONCLUSION

Soft truss robots can leverage their compliance to grasp
objects with large contact areas and even force distribution.
In this paper, we have presented methods for analyzing and
controlling soft isoperimetric truss robots in the context of
grasping and manipulation. We developed a direct stiffness
model of a soft isoperimetric truss robot using empirically
determined stiffness properties of its primary structural ele-
ment and compared the approach against force-displacement
data taken from a simple robot. We applied this model in
the context of grasp analysis and validate the model against
empirical force-displacement data. In conjunction with this
structural and grasp analysis, we describe the differential
kinematics for truss robots manipulating a grasped object.
In future work, these methods will be used within a grasp
optimization that will find feasible robot grasping configu-
rations that meet specified behavior requirements. We will
investigate improvements to the model like replacing our
linearized stiffness with a piecewise-linearized stiffness or
other models with limited computational requirements like
the discrete elastic rods method [31]. Alternatively, the model
could be used in a two-tiered approach, wherein, the low-
fidelity model can quickly search the configuration space to
find an approximate optimum which is used to initialize a
second stage optimization using a high-fidelity model.
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