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This paper presents the development of a magnetic resonance imaging (MRI)-conditional needle positioning robot designed for
spinal cellular injection. High-accuracy targeting performance is achieved by the combination of a high precision, parallel-plane,
needle-orientation mechanism utilizing linear piezoelectric actuators with an iterative super-resolution (SR) visual navigation
algorithm using multi-planar MR imaging. In previous work, the authors have developed an MRI conditional robot with positioning
performance exceeding the standard resolution of MRI, rendering the MRI resolution the limit for navigation. This paper further
explores the application of SR to images for robot guidance, evaluating positioning performance through simulations and experi-

mentally in benchtop and MRI experiments.
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1. Introduction

Treatment of degenerative neurological conditions such
as spinal cord injury, spinal muscular atrophy, multiple
sclerosis, and amyotrophic lateral sclerosis (ALS or Lou
Gehrig's disease) has shown promising results using
stem cells to provide neural protection, axonal regener-
ation, and re-myelination (enabling nerve impulses to
travel faster). Based on small animal models and limited
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human trials, the best outcomes are observed when the
cells are directly delivered via injection to specific loca-
tions within the spinal cord, for example, targeting the
ventral horn [1, 2].

Open surgery is the current standard approach which
requires invasive removal of the lamina, and the exposure
of the spinal cord and injection site for visual location by
the surgeon. MRI-based injection is preferable to open
surgery because it enables accurate location of injection
sites in a minimally invasive manner [1]. However, in the
current paradigm, the patient is inserted into the MRI
scanner and multi-planar images of the spine along with
the device are taken. The patient is removed, the device is
manually adjusted to move the needle closer to the target
pose, and then the patient is re-inserted and re-imaged.
This process is repeated multiple times before final
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needle delivery, such that the patient insert-remove
iterations add upwards of 90 min (about one-quarter of
the total procedure time) to the cell injection procedure.
This manual approach in MRI may lead to significant
trauma to the region around the spinal cord and to ex-
cessive MRI scanner and operating room time. In addition,
the highly manual procedure can lead to inaccurate de-
livery of cells to the targeted locations.

Recent work in cellular therapeutics has indicated
that the ventral horn of the spinal cord is a potentially
valuable primary target in the mitigation of many con-
ditions. It is critical that the cellular material is delivered
directly to the site, with minimal targeting error, as cells
injected into white matter are likely ineffective [3]. Al-
though the spinal cord is approximately 12 mm in di-
ameter [4], the ventral horn is much smaller, with a cross
sectional area near 1 mm?. To target such a small area
effectively with the needle tip, the distal needle posing
accuracy requirement must exceed 1 mm (i.e. be better
than 1 mm precision), which is comparable to the reso-
lution of most clinical MR imaging.

To achieve MRI guided intraspinal injection, the pre-
vious research of the authors has developed a direct
drive parallel plane piezoelectric needle positioning
robot named the Automated Spinal Precision Injection
Needle positioning robot (AutoSPINe) [5, 6]. The pro-
posed MRI visual feedback schematic is shown in Fig. 1.
The ability to accurately position and orient the needle
by using an automated device within the MRI scanner
would have clear clinical benefits. The MRI modality
enables simultaneous visualization of both internal ana-
tomical structures as well as contrasting landmarks
(fiducials) placed on a robot. Robotic needle positioning
in an MRI setting, when compared to manual methods,
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can potentially lead to significant reductions in the total
injection procedure time.

The MRI scanner environment presents two major
challenges for the robotic solution to overcome: (1)
mechanical design and (2) image-guided navigation. In
[5], the design, fabrication, and initial evaluation of
needle positioning performance of the AutoSPINe robot
have been presented. The robot adopted linear piezo-
electric motors to directly drive a parallel plane posi-
tioning mechanism. Both accuracy and repeatability of
the robot were characterized. It was reported that
AutoSPINe was capable of repeatability below 51 ym.
Needle endpoint error was limited by imaging modality,
but is validated to 156 um. In [6], the application of
super resolution (SR) technique was first proposed for
image resolution enhancement. Unlike common MRI SR
techniques that usually seek to improve human inter-
pretation of image data for diagnostics, the proposed SR
concept aims to improve the positioning performance of
the AutoSPINe.

Although promising results were presented in [5, 6],
factors limiting the performance were not clearly iso-
lated. SR based on open-loop sub-pixel shifts does not
increase the imaging resolution of the target (ventral
horn). Nevertheless, the overall injection performance is
expected to improve compared with the use of native
resolution images for both the robot and target. This
issue will be quantified and evaluated in a parameter
study. In addition, limited mechanical tolerances of the
needle guide would reduce the end-point precision;
however, MR imaging resolution was insufficient to in-
vestigate this issue. In this paper, to imitate the MRI
procedure in the laboratory, a new experimental set-up is
developed with imaging systems capable of higher
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Needle injection procedure in MRI. (a) shows robot in MRI bore, (b) shows robot dimensions, (c) shows example MRI image

with plotted trajectory, (d) shows robot mounted on patient diagram and (e) shows control procedures.
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resolution than typical clinical MRI, and sensors that
exceed the resolution of the imaging systems.

This paper is organized as follows: Sec. 2 provides an
overview of SR-based robot guidance and its challenges.
Section 3 describes the design and kinematics of the
AutoSPINe. Section 4 explains the concept of SR visual
navigation of the AutoSPINe in detail. Simulation results
verify the improvement of positioning performance using
SR imaging of the marker on the robot. Section 5 evalu-
ates the full four DOF positioning capabilities of the
AutoSPINe using a new experimental set-up and com-
pares the results with needle puncture results in MRIL
Section 6 discusses findings, limitations and future work.
Section 7 provides concluding remarks.

2. Super Resolution of MR Imaging for Robot
Guidance

Super resolution enhancement of images was first de-
veloped by using several frames of a video sequence [7].
Since then it has become an increasingly popular area of
research with many different algorithms being devel-
oped, including more recently the use of deep learning
models [8]. The goal of SR is to regain some of the in-
formation lost in the image capturing process. There
exist interpolation and deep learning based methods for
single images, as well as methods for multiple images
with known differences. These algorithms have been
used for improving the visual quality of images for visual
inspection, as well as for robotic applications via object
detection [9].

SR algorithms have been particularly of interest in
medical imaging due to the limited resolution of the
imaging sensors compared to RGB cameras, and the need
to visualize small features. Imaging parameters such as
resolution and speed can often be adjusted to balance
clinical factors such as the size of the tissue of interest
and available system time. Depending on the imaging
method, the resolution can be adjusted based on several
factors to balance speed and resolution requirements.
For example, a higher MRI resolution can be obtained
with a longer scan time, but the longer scan time on a
moving tissue can lead to image artifacts. SR has also
been applied to images where a fast acquisition time is
needed to minimize the image artifact [10]. Though these
applications are usually used for visual inspection of
features in the image, such as identifying tumors, white
matter, and nerves [11, 12], locating desired features
with a higher fidelity is also beneficial for surgical pro-
cedures [13].

Robots designed for use in medical imaging environ-
ments need to adhere to the constraints placed by the
imaging system. MR images can suffer distortions and
reduced SNR from the presence of certain metals in the
area. To retain image quality, the workflow must be

designed so that the robot is used outside of the MRI, or
the robot must be designed to be MRI safe/conditional
and minimize interference with the image acquisition.
Workarounds include shielding electronics and wires,
using only MRI safe materials, using actuators that can be
positioned remotely but transfer the movement to the
imaged area via cables or pneumatic systems, and the
use of MRI safe actuators. Because of these design con-
straints, there are limited number of MRI safe robots
with positioning capability past resolution of MRI [14].
However, in previous work the authors developed an
MRI conditional robot with positioning capability ex-
ceeding MRI resolution [5], opening the possibility of
application of SR algorithms by controlled physical shifts.

In previous work, the authors used the developed
robot to introduce known sub pixel spatial shifts for SR
reconstruction of images. The SR images were used for 2-
axis guidance of the robot to a desired target position
denoted in the image. Comparison between repeatability
of guidance using NR (native resolution) images and
super resolution images in both the MRI setting and
bench top setting demonstrated improvement of about
30% in both cases. Having proven this method to be
effective for improving positioning performance, this
paper seeks to explore how to implement SR robot
guidance for four DOF positioning of the robot and to
quantify the improvement in four DOF positioning
through numerical and experimental methods.

3. AutoSPINe
3.1. Design

To achieve both a large range of motion and high degree-
of-freedom (DOF) positioning, serial-link mechanisms
with a rotary actuator placed at each of the revolute
joints are widely used. However; this type of serial chain
structure in general tends to lose rigidity and accumulate
joint-level positioning errors towards the end-point,
resulting in large mechanisms. Backlash and play in
gears to drive revolute joints are common issues [15].
Cable-driven mechanisms [16] can place actuators on a
base structure and make the link mechanism lighter and
more compact, but flexibility of cables limits end-point
positioning precision.

In this paper, a direct-drive parallel plane mechanism
(D?P*) was adopted as shown in Fig. 2(a) [17]. Each
plane is a planar x-y positioning mechanism, positioning
a ball joint at the center of the stage, driven by orthog-
onally located linear piezoelectric actuators (PIEZO LEGS,
Micromo, Clearwater FL, USA) as shown in Fig. 2(b). The
upper and lower ball joints can move independently,
controlling fourth DOF of the needle guide. The fifth DOF,
i.e. needle depth, is controlled by the surgeon inserting
the needle into the cannula. The sixth DOF, i.e. needle
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Fig. 2. The AutoSPINe Robot. (a) CAD drawing of the direct-drive parallel plane mechanism and (b) X-Y linear stage driven by
linear piezoelectric actuators. The bottom x-y stage is functionally identical to the upper stage.

rotation, is controlled by the surgeon as well, but the
needle angle is irrelevant for this procedure. Because the
actual distance between the ball joints is dependent on
the orientation, the cannula is fixed in the lower joint,
while the upper joint allows the cannula to slide through
the center of the ball joint. MRI viability of this robot was
verified and reported in [17].

Forward kinematics is presented to represent the
needle guide position in the absolute coordinate frame
using ball joint positions in the planar coordinate frames
fixed to individual x-y stages. Let ‘pgr = [;’] be the ball

t
position of the top x-y stage with respect to the coordi-
nate frame fixed to it as shown in Fig. 3. Similarity, let

"prs = [;b] be the ball position of the bottom x-y stage.
b

'p ‘p
Defining ‘Pyp = [ IBT] and tPpp = [ IBB], homoge-

neous transformation, °Pyp = °T,'Pgr and °Pgy = °T,!
Py provides the ball positions with respect to the base
coordinate frame Y, where °T, and °T, are homoge-
neous transformation matrices. Note that without the
loss of generality, the x-y planes of > ; and >, can be

\\_pri\’t Robot top plane
/
/
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Fig. 3. AutoSPINe kinematics.

assumed parallel to each other to simplify the kinematic
representation.

3.2. Measurement of fiducial markers and needle
positioning

Imaging of two fiducial markers attached to the needle
guide enables detection of the four DOF position and
orientation. The spherical exterior of the fiducial markers
makes their outer diameter appear as circles in the MRI
regardless of their orientation image slice. Running a
circle detection algorithm on an image slice with the fi-
ducial marker visible returns the location of the fiducial
marker in the image. The four DOF position and orien-
tation can then be calculated from the location of the two
markers. Measurement of °Pg; and °Pp; determines the
line along with the needle guide. The intersection be-
tween this line and each of the x-y planes of } ; and >,
determines the ball joint position. In Fig. 2(a), fiducials
are placed next to the ball joint, which requires the
transformation from the guide rod to the fiducial to be
known. Note that for the benchtop experiments, the ball
joints themselves are used as the fiducial markers, which
are concentric with the center of the needle trajectory.
Image Jacobians relate small actuator displacements,
Ax;, Ay, Axy, Ay, and resultant ball joint displacements
expressed in the global coordinate frame, A°Py; and
A°Pyg. Matching °Pgp and °Pgp with the ones of the
desired needle position, °Pyp; and °Pgp,, solves the in-
verse kinematics. Note that the X-Y stages can be op-
erated independently from each other. The solution is
unique as long as °Py; and OPg exist, i.e. unless the
needle is not completely orthogonal to the parallel
planes. Note the robot has no encoders to measure the
position of the robot through forward kinematics, and
instead the loop is closed through visual feedback. Use of
image Jacobians allow for the control and kinematics to
solely be done in the global frame defined by the imaging
modality. In general, image-guided needle positioning is
performed in an iterative fashion as illustrated in Fig. 4.
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Fig. 4. SR MRI guided needle positioning system diagram.

4. Visual Robot Guidance with Super-Resolution
MRI

4.1. Generating sub-pixel spatial shifts in MRI
SR imaging technique processes multiple images with
known sub-pixel spatial shifts, typically introduced by
moving the camera or the object of interest in the scene,
and reconstructs a new image that has a higher resolu-
tion than that of the original images. Usually a super-
resolution image is produced by numerically solving a
cost optimization problem [7]. When it comes to reso-
lution enhancement of MRI images, there is a technical
barrier to introduction of sub-pixel displacements in the
target object. This requires highly precise positioning
usable in a MRI scanner. Note that given the specific ar-
chitecture of MRI, moving the image acquisition compo-
nent is not an option. The FOV of the MRI image can be
changed, and FOV shifts have been used to enhance
resolution in the inter-slice direction [18], but in-plane
super resolution is generally regarded to be fundamen-
tally impossible without introducing physical shifts of
objects in the scene [19]. Natural movement of imaged
subject has been used as the spatial shifts by estimating
the motion [10], but registration accuracy of this move-
ment is crucial to quality of the SR reconstruction [20].
Performance metrics for the improvement of SR
images are usually obtained by comparing an SR image
created from simulated low resolution images to the
original “ground truth” image the low resolution images
were generated from [21]. This is the case because the
goal of SR is to regain some of the information lost in the
image capturing process, so by simulating that process to
generate lower resolution images, and then using SR to
reconstruct an image the same size as the original, the SR
image can be directly compared to the original image.

Measures such as signal to noise ratio and mean square
error are used to determine the similarity to the ground
truth image, and the reduction of noise in the image. By
these methods, the improvement in image quality past
the native resolution of the imaging sensor cannot be
evaluated by comparison because the original images do
not have more information about the ground truth. In
this case, we need to compare with more accurate mea-
surements of the scene or metrics specific to the appli-
cation of the images. For example, In [9], edge and corner
detection is evaluated between the NR and SR images
because it is the desirable factor for self-localization.
Therefore, the method by which to evaluate the im-
provement of SR algorithms must be designed dependent
on the use of the images, and the need for a ground truth
image to compare can be eliminated as well.

The application this paper explores is robot posi-
tioning in MRI to a desired target position denoted by a
clinician. The target position and trajectory are deter-
mined by the clinician from the native resolution MRI
images, and the fiducial markers on the robot are used to
obtain robot position and guide the robot. SR images of
the robot will be used to improve the spatial knowledge
of the robot for improved positioning, so the key metric
is the accuracy of locating the fiducial markers on the
robot. Fiducial markers on the robot in MRI are spherical
and appear as circles in the image, so the ability to dis-
cern the center point location of the circle in the SR
images will be tested.

AutoSPINe operates its needle guide and displaces its
fiducial markers at resolutions far better than currently
possible MRI imaging resolutions [17]. The sub-pixel
shifted MRI images are processed to determine the
marker positions beyond MRI resolution and navigate
the robot toward the target. The displacements are
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introduced by operating one or multiple of the PIEZO
LEG actuators. Forward kinematics computes resultant
small displacements in the fiducial markers. Note that
this operation must be performed in an open-loop fash-
ion as sub-pixel movements are essentially not visible in
MRI. An arbitrary trajectory may be used to acquire a set
of raw images as long as the displacements are known.

4.2. Specific imaging procedure

To compute the image Jacobian five points were used, a
central origin point, A 1000 step (about 15 mm) move-
ment in the top x-axis, a 1000 step movement in the y-
axis, a 1000 step movement in the bottom x-axis, and a
1000 step movement in the bottom y-axis. These points
were chosen to isolate each of the top and bottom x and y
actuator movements of the robot. For the SR image tar-
geting, it was determined that repeating the Jacobian
procedure with the larger resolution images yielded the
same result as scaling the native resolution Jacobian.

To determine the spatial shifts for image reconstruc-
tion, coordinate points are generated randomly ranging
from —1 to 1 pixels. The first point is where the first
image is taken and is considered the origin point for the
following coordinates. The movement in steps required
to reach each of the random points is calculated by
subtracting each point from the previous point and
multiplying the difference by the inverse of the image
Jacobian. The generated shifts will be stored in the offset
matrix M for each of N images (k=1,...,N).

The SR image is reconstructed using gradient descent
optimization to minimize the error between the native
resolution images, I} (k =1,...,N), and the current best
guess of the SR image to iteratively update the best guess
of the SR image:

ISSN: 2424-905X

where B is the blur matrix and Dy is the down-sampling
matrix. This reconstruction was performed by an exam-
ple code based on the IBP algorithm [22]. Stopping
criterion is 100 iterations or when mean square error
is below 0.01% of the mean square error before
optimization.

For the experimental validation presented in later
sections, four images (N = 4) were collected to double
the resolution of the original images. Figure 5 shows the
four images acquired with a vector arrow representing
the spatial shift applied in each image with respect to the
first image. After the fourth image is taken, the Auto-
SPINe is returned to the first point and the SR image is
reconstructed.

4.3. Simulation

In clinical situations targeting the ventral horn of the
spinal cord, the target object cannot be shifted by the
robot, therefore while the information collected of
the controlled robot can be improved, the target is lim-
ited by the typical MRI resolution. A simulation study
was designed to test the hypothesis that using SR images
of the robot will still lead to improved positioning de-
spite using low/native resolution images of target.

To simulate the loss of information in the image
capturing process, an image of a circle was created at a
very high resolution (5000 x 5000 pixels) with a known
center point as the ground truth. To create the lower
resolution images, a Gaussian blur was applied, the
image was down scaled to desired resolution, and noise
was added. As shown in Fig. 6, This process allows us to
generate different size images from the same data loss
model, allowing us to compare SR images to natively
higher resolution images that have lost less information

N from the image capturing process compared to the
o : 2 . . . . . .
X = argmin Z IDiBM X — Ii||5 |, (1) smaller images. The image sizes used in the simulation
X k=1 and their labels are outlined in Table 1. MATLAB circle
(@) (b) @]
= Upper Stage |MRI pixel size
Subpixel open—loop shifts ¥ —
H r LowerStage Subpb(—eTshifts
—
reconstruction
(d)
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T e T T 1
i Native D " i Bl {
i | Resolution —»| Offset Matrix —s ~O"" ar.np ing u't ‘ SR Image 1
! Matrix Matrix i
[ Images !
:

Fig. 5.

SR image process in MRI. (a) shows representation of robot in MRI, (b) shows position of ball joints in slices of MRI image,

(c) shows subpixel shifts in four images and (d) represents the SR reconstruction algorithm.
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Fig. 6. Generation of different image categories for simulation.
All pictures relatively scaled except GTR. “Processing” repre-
sents down scaling, blur, and noise. Note that generation of 4
NR images for SR requires 4 separate GTR images (not shown).

Table 1. Size definitions.
Label Size (pixels)
Native Resolution (NR) 128 x 128
Super Resolution (SR) 256 X 256
High Resolution (HR) 256 X 256
Double High Resolution (HR2) 512 x 512
Ground Truth Resolution (GTR) 5000 x 5000

finding function, imfindcircles, which uses hough trans-
forms method, was used to detect markers in images and
MRI image slices. The center point position and radius of
the markers were retrieved from this method.

Repeating this process several times yields a slightly
different image due to the generation of noise. Figure 7
shows the calculated centroid of the circle across 50
images generated at the same center point for NR, SR,
and HR images. SR outperformed NR by 61% (MSE 3.12
and 8.01, p < 0.0001) and performed 7% better than HR
(MSE 3.12 and 3.37, p < 1).

NR, SR, HR, HR2, and GTR images of a circle in an
arbitrary position were created to represent the con-
trolled robot, with multiple shifted images generated for
the SR cases. Standard image processing methods for
improving recognition of shapes was applied, namely,

binarizing the images through value thresholding, dila-
tion, and erosion. Circle detection was then performed by
calculating the centroid of the circles to find the esti-
mated target center point position and robot center point
position. The error between the detected current robot
position and detected target position was added to the
detected current robot position to determine the desired
update position. An image of a circle at the desired up-
date position in the respective resolution was generated
mimicking the robot movement after an update to the
target position. This process was repeated until the norm
of error was below 1 pixel (in the respective resolution),
and final error was calculated from ground truth position
of target center point. This procedure for the SR case is
outlined in Table 2.

For the SR, HR, HR2, and GTR cases, the center point
of the “native resolution” target image was scaled to
correspond to equivalent value in the respective pixel
coordinates for each different resolution. For the GTR
case the images used to represent the robot were gen-
erated with the same process as the NR, HR, and HR2
images but without down scaling.

The results of this simulation for 1000 trials are
shown in Fig. 8, with all errors scaled to GTR pixel sizes,
and show the GTR method performs best, with a RMS
final error across 20 trials of 0.28 pixels. The mean final
errors are plotted in Fig. 8 for visibility. The SR method
performed 62% better than the NR method, with an RMS
of 2.64 and 7.02, respectively (p < 0.0001). The SR
method also performed 10% better than the High Res-
olution Images (RMS 2.64 and 2.96, p < 0.0001). As
expected the trend continues with the Double High
Resolution Trials exhibiting an RMS 50% better than the
High Resolution Trials (RMS 1.47 and 2.96, p < 0.0001).
These simulations clearly show that SR applied to the
robot images can be used to achieve better performance
than the native imaging resolution even when the target
images are NR. The results also show promise that SR
can achieve similar or even better performance than
images double the resolution of the native imaging res-
olution, and that the higher the resolution of the images
used, the better the positioning accuracy will be.

Y Position
2380 2400 2420

| |
| |
| \
| |

2380 2400 2420
X Position

(a)

2380 2400 2420
X Position

2380 2400 2420
X Position

(b) C]

Fig. 7. Detected center points of circle across 50 trials in (a) low resolution, (b) super resolution and (c) high resolution (in pixels).
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Table 2. Workflow of numerical analysis.

Step Description

il Create 5000 x 5000 pixel image of target circle.

2 Apply blur, downscale, and add noise to image for native
resolution target image.

3 Find center point of target circle in generated NR image.

4 Create 5000 x 5000 pixel image of robot circle.

5 Repeat step 2 for NR robot circle image.

6 Repeat steps 4 and 5 to create 3 NR Images.

7 Construct SR image from the 4 NR images and find
center point.

8 Scale target center point to equivalent SR size
coordinates.

9 Calculate error between robot and target center point.

10  Add error to robot center point for desired center point.

11 Repeat steps 4-7 to generate SR image of robot circle at
desired position.

12 Repeat steps 9-11 until norm of error is less than 1
pixel.

Y Error (# of pixels)
o

15

20 1 | bigs LS R J
-20-15-10 -5 0 S5 10 15 20
X Error (# of pixels)

(@)

9— . . .
8!
71
1%}
© 6]
x
o 5
[
o 4}
H*
3}
2
| L]
0 j——]
NR SR HR HR2 GTR
Image Size

(b)

Fig. 8. Final errors of NR, SR, HR, HR2, and GTR trials. (a)
shows the plot of all the final points and (b) shows the mean
final error for each trial. Pixel sizes are all in GTR size.

5. Experiments

5.1. Benchtop experiments

To measure the accuracy of robot positioning, the target
position must be known and measurable. The lack of

ISSN: 2424-905X

Camera

Camera

imitate MRI

Fig. 9. Benchtop experimental
procedure.

set-up to

high-resolution sensors compatible with MRI make it
difficult to measure robot position on the micron scale in
the MRI setting. However, improvements in positioning
accuracy due to the use of enhanced resolution images
outside of MRI should apply regardless of the image
capturing method.

A benchtop experimental set-up as shown in Fig. 9
was developed to measure the robot’s full four DOF po-
sitioning capabilities by the use of two PSDs (Position
Sensitive Detectors, Model S2044, Hamamatsu Corp)
positioned above and below the robot facing each other.
Fiducial markers were placed directly behind the center
of each sensor to mark the line formed between the two
sensors as the target position. The robot was mounted on
an elevated platform with an RGB camera (Intel Real-
sense) mounted both above and below the robot to grant
visibility of both ball joints and both PSDs. The addition
of a bottom camera allows for detection of fiducial
markers below the robot as if they were in separate
slices of a coronal view of an MRI image. Four fiducials
are needed (two for the robot position and two for the
target position) in these experiments to measure the 3D
position and orientation of the robot and the position
and orientation error from the desired position.

The measurement schematic is shown in Fig. 10. Note
that the Intel Realsense camera is designed to be capable
of measuring not only x and y positions of an object, but
also its depth (i.e. z position). Given the geometries of the
set-up and the resolution of the camera, the imaging
resolution of the markers was approximately 0.9 mm.
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Fig. 10. Side view of the benchtop experimental setup and blown up representation of the image seen by each camera.

The cameras were used for robot positioning following
the procedures outlined in Table 3 with two images
needed for the robot position as shown in Fig. 11, and the
target position being the position that aligns with the two
markers mounted on the position sensors. When the
target position was achieved within the measurable limit
of the cameras, a laser beam was emitted from both ends
of the cannula so that it was received by both of the PSDs.
The PSDs measure position of a light beam in two axes by
calculating the relative intensity of light hitting each of
the four quadrants in the sensor. This position is the
error from the center of the PSD, which was used as the
target position. The two-dimensional errors from each
PSD were used to calculate position and orientation error
and accuracy. The PSDs used have position resolution
of 0.6 um, allowing us to characterize error with
much higher fidelity than the imaging method used for
navigation.

Two different desired needle configurations, 4 and B,
were used for evaluation as shown in Fig. 12. The needle

Table 3. Workflow of accuracy experiments.

Step Description

1 Take images of robot at Jacobian starting position.

2 Move robot and take images to calculate Image
Jacobian.

3 Take images of robot at Jacobian arbitrary position.

4 Detect center point of target markers in each image.

5 Calculate target position and orientation.

6 Detect center point of robot markers in each image.

7 Calculate robot position and orientation.

8 Calculate error between robot and target position and
orientation.

9 Move robot calculated error and take image(s).

10 Repeat steps 4-9 until norm of error is less than 1
pixel.

configurations were chosen to avoid visual occlusion that
is specific to this camera-based benchtop set-up. Note
that visual occlusion is not present in the MRI scanner.
For each of the configurations, the top and bottom PSDs
were placed such that the emitted laser would be re-
ceived in the center of the photosensitive area when the
needle was correctly positioned. Full four DOF repeat-
ability was evaluated targeting each one of the config-
urations starting at a configuration away from the
desired with a total of 10 trials. Observing positioning
errors less than one pixel was used as a stopping crite-
rion that was met in all the trials. Table 4 shows mean
and standard deviations of two-dimensional positioning
errors with respect to the desired position (i.e. the center
of the photosensitive area). Although the positioning
repeatability slightly varied between the needle config-
urations as reported in [5], both the accuracy and pre-
cision were comparable to the imaging resolution of the
system, indicating that imaging modality is the main
limiting factor.

Bottom
ball joint
L

=

o

(@) (b)

Fig. 11. Images acquired from top and bottom cameras. (a)
Top view, (b) bottom view. The world coordinate frame is de-
fined based on a transparent calibration board seen by the top
camera. The bottom camera sees the other side of the calibra-
tion board to use the same world coordinate frame.
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Fig. 12. Test needle configurations A and B for benchtop experiments.

Table 4. Results of Benchtop needle positioning experiments.
Ten trials were performed for each configuration. Mean (STD)
are shown in [mm].

Configuration Top PSD error Bottom PSD error

A 1.140 1.254
(1.332) (1.286)

B 1.288 1.220
(0.869) (0.874)

5.2. MRI validation

Experiments were carried out in a 3T MRI (Prisma-Fit,
Siemens) MRI to confirm the reproducibility of improved
positioning upon use of SR images. These experiments
were simplified from the procedure described in Sec. 5,
with the bottom stage of the robot kept static and only
the top plane actuated. A fiducial marker filled with vi-
tamin E was used to visualize the robot in the MRI image,
and only one slice of the MRI images was used to cal-
culate the center point of the fiducial in that plane. To
ensure the slice of the MRI image goes through the center
of the sphere, the slice where the radius of the fiducial is
the largest is selected. The fiducial used for this experi-
ment is shown in Fig. 2(a). When the robot reached the
desired position set as specific coordinates in the MRI
image, a pointed needle was pushed through the guide

1 (ﬂi 1 i
1 4
@ (b)

Fig. 13. Puncture distribution of MRI experiments, with the
origin as the mean of the points and the large circle repre-
senting the standard deviation. (a) shows the NR punctures and
(b) shows the SR punctures. Units in mm.

rod to make a puncture on a sheet of paper mounted
below the robot as the target.

The distribution of the punctures on the sheet of
paper made from several trials was used to measure the
standard deviation, representing the repeatability and
precision of the robot positioning. The distance of each
point to the group means were measured using a stereo
microscope (ModelS6D, Leica, Wetzlar, Germany). Three
punctures were made in the NR and SR experiments due
to scanner time restrictions precluding collection of a
statistically significant sample size. Distributions of
punctures are shown in Fig. 13. The standard deviation
of the puncture distribution of the SR group was
0.40 mm that was 33% smaller than 0.60 mm of the NR

group.

5.3. MRI safety testing

MRI suitability of the AutoSPINe was assessed as the
image SNR reduction in a Nickel Sulfate solution cylin-
drical phantom in a 3 Tesla MRI (Siemens Prisma-Fit),
and previously reported [5]. Scans were performed
under two operating conditions, one with the robot
placed above the phantom and one with only the phan-
tom and RF coil in the scanner (control) as shown in
Fig. 14. SNRs were calculated to be 244.06 for the control
image, and 230.226 with the AutoSPINe. The SNR re-
duction of 5.7% is well within the 10% reduction criteria
for MRI compatibility [23]. Note that SNR during actual
motion was not measured as the robot positioning pro-
tocol does not necessitate simultaneous actuation and

(@ (b)

Fig. 14. MRI image quality test results. (a) Control and (b)
with the robot.
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imaging. To fully verify MRI conditionality, not only
image artifact, but also magnetically induced force/tor-
que and radio frequency-induced heating must be mea-
sured and evaluated.

6. Discussion

6.1. Improvement of positioning precision

with SR

The authors reported that the repeatability of the Auto-
SPINe was not limited by its mechanisms or motion
control algorithms, but was essentially limited by imag-
ing modality [5]. When a laser triangulation sensor was
used in another benchtop positioning experiments, the
AutoSPINe achieved a repeatability of 51 ym. Results in
Sec. 5.1 observed the same problem in the full four DOF
positioning experiments where the needle positioning
was limited by the resolution of the optical camera. The
top and bottom ball joints were positioned with errors
less than one pixel (approximately 0.9 mm and compa-
rable to general MR imaging resolution) as the stopping
criterion.

SR imaging of the needle guide and its sub-pixel po-
sitioning can be achieved fully taking advantage of the
AutoSPINe’s precision mechanism [6]. Section 4.3 con-
firmed that SR marker detection could improve the po-
sitioning precision without SR imaging of the target
tissue. To address the latter issue, another emerging SR
approach, called single image SR using machine learning
[24], may be used for SR imaging of the central horn
where the geometries are not fully known in advance.

SR technique enhances image resolution at the cost of
increased time of image acquisition. To address this
issue, time saving measures, such as using the SR tech-
nique only in the final settling phase, or integration with
motion control procedures, must be implemented prior
to use in a clinical setting.

Note that the needle and needle guide designs were
not optimized in this paper. Figure 13 observed in-
creased positioning errors compared with Table 4. This
implies that the rigidity and straightness of the needle as
well as the sliding tolerance between the needle and
needle guide appear to impact the end-point accuracy,
which should be addressed in future work.

6.2. Future cellular therapeutic injection study for
the treatment of ALS

If the proposed robot is successfully introduced into the
research of cellular therapeutics, in addition to time-
saving benefits, the precision system would facilitate ef-
fective usage of cultured cells and quantitative evaluation

of their spatial application. One of the most recently
concluded trials of stem cells in ALS patients reported
adverse effects, [2] primarily related to the required
laminectomy and exposure of the spinal cord. The use of
a minimally invasive approach would reduce complica-
tions and allow for greater patient enrollment, as strin-
gent inclusion criteria could be relaxed, thereby
increasing the pace of clinical developments.

In addition to the image time improvements that can
and should be made to increase the workflow speed,
other practical considerations exist. Patient mounting
and sterilization are typical challenges for any precision
medical device. Materials and clinical workflows should
be designed to enable sterilization of the device prior to
use with a patient. Although mounting of the device to
the patient is a challenge, the location of the target in-
jection site in the spinal cord is expected to mitigate the
motion caused by respiration. Because of the robot
guidance method employed, the robot and patient coor-
dinate frames are captured in each image, and patient
motion relative to the robot during respiration is
expected to be minimal when the robot is mounted to a
prone patient.

7. Conclusion

This paper has presented a concept to improve the po-
sitioning performance of MRI-guided navigation of a
needle positioning robot by applying in-plane super
resolution technique. The AutoSPINe robot designed for
novel cellular therapeutics was used as an experimental
platform. This particular device targets the ventral horn
with a cross sectional area near 1 mm? that is compa-
rable to the imaging resolution of MRI. Multiple marker
images were acquired with open-loop MRI sub-pixel
shifts to reconstruct an image with enhanced resolution
for needle navigation. Although the presented approach
utilized resolution-enhanced images for robot marker
imaging, not target tissue imaging, improved positioning
precision of 62% was observed in simulation, and 33%
in needle puncture experiments in MRI.
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