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Permafrost is warming globally which leads to widespread permafrost thaw. Particularly ice-rich permafrost is
vulnerable to rapid thaw and erosion, impacting whole landscapes and ecosystems. Retrogressive thaw slumps
(RTS) are abrupt permafrost disturbances that expand by several meters each year and lead to an increased soil
organic carbon release. Local Remote Sensing studies identified increasing RTS activity in the last two decades by
increasing number of RTS or heightened RTS growth rates. However, a large-scale assessment across diverse
permafrost regions and at high temporal resolution allowing to further determine RTS thaw dynamics and its
main drivers is still lacking.

In this study we apply the disturbance detection algorithm LandTrendr for automated large-scale RTS mapping
and high temporal thaw dynamic assessment to North Siberia (8.1 x 10%km?). We adapted and parametrised the

temporal segmentation algorithm for abrupt disturbance detection to incorporate Landsat+Sentinel-2 mosaics,
conducted spectral filtering, spatial masking and filtering, and a binary machine-learning object classification of
the disturbance output to separate between RTS and false positives (F1 score: 0.609). Ground truth data for
calibration and validation of the workflow was collected from 9 known RTS cluster sites using very high-
resolution RapidEye and PlanetScope imagery.

Our study presents the first automated detection and assessment of RTS and their temporal dynamics at large-
scale for 2001-2019. We identified 50,895 RTS and a steady increase in RTS-affected area from 2001 to 2019
across North Siberia, with a more abrupt increase from 2016 onward. Overall the RTS-affected area increased by
331% compared to 2000 (2000: 20,158 ha, 2001-2019: 66,699 ha). Contrary to this, 5 focus sites show spatio-
temporal variability in their annual RTS dynamics, with alternating periods of increased and decreased RTS
development, indicating a close relationship to thaw drivers. The majority of identified RTS was active from
2000 onward and only a small proportion initiated during the assessment period, indicating that the increase in
RTS-affected area was mainly caused by enlarging existing RTS and not by new RTS. The detected increase in
RTS dynamics suggests advancing permafrost thaw and underlines the importance of assessing abrupt permafrost
disturbances with high spatial and temporal resolution at large-scales. Obtaining such consistent disturbance
products will help to parametrise regional and global climate change models.

1. Introduction

Permafrost is warming globally and experiences intensifying rates of
degradation (Biskaborn et al., 2019; Vasiliev et al., 2020; Farquharson
etal., 2019). As permafrost is defined by the thermal state of the ground,
with a temperature at or below 0 °C degrees for at least two consecutive
years, the state and extent of permafrost is highly dependent on the
prevailing thermal regime of the land surface (Brown et al., 1997). Key
indicators of Arctic climate change such as increasing air temperatures,

intensifying precipitation events, declining sea ice thickness and spring
snow cover extent impact the state of permafrost (Box et al., 2019),
ultimately leading to increased permafrost temperatures and inducing
widespread permafrost thaw (Biskaborn et al., 2019). Near-surface
permafrost loss impacts whole landscapes (Jorgenson and Grosse,
2016), ecosystems (Schuur and Mack, 2018), hydrological systems
(Liljedahl et al., 2016), urban infrastructure (Hjort et al., 2018) and soil
carbon accumulation and decomposition (Hicks Pries et al., 2015;
Walter Anthony et al., 2018), resulting in increased rates of soil organic
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carbon release (Schuur and Abbott, 2011; Turetsky et al., 2019).

Remote sensing cannot directly observe permafrost as it is a sub-
surface phenomenon defined by ground temperature only, but it can
give estimations on the distribution, magnitude and impact of perma-
frost thaw by detecting landforms and processes associated with melt of
excess ground ice. Given the remoteness and vast extent of permafrost
regions (about 21 x 10%m? (Obu et al., 201 9)), remote sensing-based
data and techniques are the only tools to detect, monitor and assess
permafrost disturbances at regional to continental scales covering
diverse and heterogeneous permafrost landscapes with spatial and
temporal consistency. Open image archives and newly available
cloud-computing possibilities led to an expanded development of
remote sensing-based time series and disturbance detection algorithms
(Zhu, 2017). Especially the Landsat archive, containing the longest
continuous data set comprising nearly 50 years of multi-spectral high
resolution (30 m) images acquired with a 16-day revisit cycle, has been
used for large-scale time series assessments (Wulder et al., 2019).
Prominent examples are the annual global forest maps (Hansen et al.,
2013) and global surface water changes (Pekel et al., 2016). Advanced
disturbance algorithms differ in targeted observed change (gradual vs.
abrupt), temporal input data frequency, and whether they detect past
changes or conduct near real-time monitoring (Zhu, 2017). The existing
algorithms provide diverse assessment options. However, change and
disturbance detection in northern high latitudes are still challenging as
time series studies with optical remote sensing are restricted due to
frequent cloud cover, short summer periods, and low illumination an-
gles. This confines data availability drastically and limits algorithm
applications that require high temporal input data. Yet, the combination
of imagery from similar sensors, such as Landsat and Sentinel-2, in-
creases data availability in the northern high latitudes strongly and
permits change and disturbance detection at high temporal resolution
(Runge and Grosse, 2019, 2020).

Permafrost warming is observed to cause widespread gradual active
layer deepening across the pan-arctic permafrost region (Park et al.,
2016). Ice-rich permafrost is particularly vulnerable to rapid thaw and
erosion as high ground ice contents may accelerate degradation by
thermokarst (Kokelj and Jorgenson, 2013) and thermo-erosion pro-
cesses (Are, 1988). These processes are often driven by disturbances
such as strong warming or precipitation events, hydrological changes,
fires, or direct anthropogenic impacts on the soil thermal regime (Grosse
et al, 2011). Resulting degradational landforms include
thermo-erosional gullies and valleys (Morgenstern et al, 2021),
degrading ice wedge polygons (Liljedahl et al., 2016), thermokarst lakes
(Grosse et al., 2013), steep permafrost coastal bluff erosion (Giinther
et al., 2013), active layer detachment slides (Lewkowicz, 2007), and
retrogressive thaw slumps (Burn and Lewkowicz, 1990), all which
change and impact landscapes more drastically and much faster than
gradual top-down thaw by active layer deepening (Turetsky et al.,
2020). Despite this, large-scale assessments at high temporal resolution
are still lacking for abrupt permafrost disturbances although under-
standing abrupt thaw is of high concern (Turetsky et al., 2019).

In this study we focus on the development of a remote sensing
method to automatically identify and map retrogressive thaw slumps
(RTS) across large-scale regions. RTS are abrupt permafrost disturbances
that result from slope failure after thawing of ice-rich permafrost which
is found either in ice-rich Yedoma regions (Strauss et al., 2017) or
formerly glaciated areas that still contain permafrost-preserved buried
glacial ice (Kokelj et al., 2017). Initiated by fluvial processes,
thermo-erosion or mass wasting following heavy precipitation events
and the exposure of ice-rich permafrost, RTS expand successively into
the landscape with retrogressive growth of a steep headwall and the
increase of a slump floor, rapidly and irreversibly changing the land-
scape (Ardelean et al., 2020; Kokelj and Jorgenson, 2013; Séjourné
et al., 2015). RTS vary in size, ranging from under 0.15 ha to mega
slumps of 52 ha and more (Ramage et al., 2017; Kokelj et al., 2015;
Lacelle et al., 2015; Giinther et al., 2015). Individual RTS are local,
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small-scale disturbances but often occur in regional clusters that then
impact the surrounding landscape drastically by affecting topographic
gradients and sediment transport (Kokelj et al., 2013; Mu et al., 2020),
water quality (Kokelj et al., 2005), coastal erosion (Lantuit and Pollard,
2008; Ramage et al., 2017) and carbon cycling (Cassidy et al., 2017;
Turetsky et al., 2020). Commonly observed RTS growth rates range from
meters to tens of meters per year (Kokelj and Jorgenson, 2013).
Increasing permafrost thaw due to climate change is predicted to
intensify their thaw dynamics (Lantuit and Pollard, 2008; Segal et al.,
2016; Lantz and Kokelj, 2008). Their combined impact on landscapes
and biogeochemical cycling and the abruptness of their rapid develop-
ment make RTS a highly important permafrost disturbance feature that
require better monitoring and prediction capabilities.

Several local remote sensing studies found an acceleration of RTS
dynamics by increasing numbers of active RTS, increasing sizes of RTS,
and faster headwall retreat rates (Lewkowicz and Way, 2019; Ramage
et al., 2017; Ward Jones et al., 2019), developments indicating inten-
sified permafrost thaw and landscape degradation. Previous RTS studies
covered a range of local to regional spatial extents and annual to decadal
temporal resolutions. Commonly, RTS dynamics were estimated using
very high resolution remote sensing imagery for limited local spatial
extents from a selected number of points in time, restricted by avail-
ability of very high resolution imagery, allowing assessment of indi-
vidual or a cluster of few RTS (Ardelean et al., 2020; Balser et al., 2014;
Lantuit and Pollard, 2005, 2008; Lantz and Kokelj, 2008; Luo et al.,
2019; Segal et al., 2016; Séjourné et al., 2015; Mu et al., 2020). Based on
manually digitised RTS extents and limited fieldwork, these studies
found increasing rates of RTS activity for varying time periods. Manual
mapping using high resolution SPOT imagery provided a first regional
insight into RTS distribution across a 1.27 x 10%m? region in NW
Canada (Kokelj et al., 2017). Advancing these approaches, RTS distur-
bance trends were derived from multi-decadal Landsat image stacks,
which helped mapping the distribution of active RTS at regional scales
(Brooker et al., 2014; Kokelj et al., 2015; Nitze et al., 2018) or by
applying a deep learning algorithm to map RTS from very
high-resolution images in the Tibetan Plateau (Huang et al., 2020).
These first automated mapping approaches enabled assessments of RTS
dynamics at larger scales and results suggest that local permafrost dis-
turbances occurring in regional clusters may have a significant impact
on the landscape-scale. Ward Jones et al. (2019) and Lewkowicz and
Way (2019) conducted the first high temporal resolution RTS assess-
ments from annual input data. Their results indicate the increase in
occurrence and thaw dynamics of RTS at high temporal resolution from
manual RTS digitisation and image assessments and linked these to
climatic drivers. Despite this, it still remains unknown how high tem-
poral RTS dynamics are caused and may shift with climate change at a
larger scale, as both studies are restricted to local study sites in the High
Arctic. To achieve a better understanding of RTS temporal dynamics and
their potential contribution to the global carbon cycle, more represen-
tative, large-scale, high temporal RTS assessments are necessary.

The aim of this study is to combine two key elements from the pre-
vious RTS assessments: firstly, to apply an automated RTS mapping
approach for large-scale assessments, taking into account the diversity of
permafrost regions; secondly, to conduct a high temporal resolution
assessment, which captures the year-to-year dynamics of RTS. Our main
objective is to assess RTS disturbance dynamics at high temporal reso-
lution in North Siberia. For this, we developed an adaptation of Land-
Trendr, an algorithm for automated time series disturbance mapping
and analysis (Kennedy et al., 2010), and designed a tailored algorithm
parametrisation specifically for the assessment of RTS. The algorithm
captures abrupt disturbances from annual Landsat mosaics, enabling the
quantification and assessment of annual change. An annual resolution of
data is appropriate to detect RTS dynamics related to annual thaw cycles
and the 30 m spatial resolution is also sufficient to map RTS (Brooker
et al., 2014; Nitze et al., 2018). However, for an enhanced spatial and
temporal coverage at northern high latitude coastal areas we combine
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Landsat + Sentinel-2 mosaics as input data for LandTrendr, overcoming
some of the restrictions of optical remote sensing due to frequent cloud
cover in Arctic regions (Runge and Grosse, 2020). We assess the appli-
cability and accuracy of our method at local focus sites and derive
quantitative annual disturbance dynamics of RTS from 2000 to 2019.
Further, we upscale this method to an approximate 8.1 x 10%m? study
region to map the occurrence and distribution of RTS and determine
their annual disturbance dynamics for North Siberia.

2. Study area and methods
2.1. Study area

The study area covers the terrestrial northern high latitudes of
Siberia, Russia, ranging from Taymyr Peninsula in the West (80° E) to
Chukotka in the East (170° W) and roughly from 77° N to 55° N,
comprising an area of approximately 8.1 x 10%m?, here referred to as
North Siberia. The majority of this area is characterised by continuous
permafrost, discontinuous permafrost is found only in Chukotka as well
as along the southern margins of the study area, where permafrost extent
further declines to a sporadic or isolated coverage (Fig. 1). Unglaciated
areas experienced long-term syngenetic freezing and continuous sedi-
mentation during the Pleistocene, which led to the accumulation of ice-
rich periglacial deposits (Kanevskiy et al., 2011). Ground ice volume
varies across North Siberia but can reach more than 40% as in the
southern part of the Lena Delta or even up to 80% in the Yedoma ice
complex (Stolbovoi and McCallum, 2002; Strauss et al., 2017). The
climate regions are broadly defined by the Arctic and Boreal zones and
varying maritime and continental influences, resulting in a range of
sub-regional climatic characteristics (Sayre et al., 2020). Bioclimatic
zones in the region range from polar desert to tundra and taiga (Olson
et al.,, 2001). Furthermore, the study area is defined by interior and
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coastal lowlands and several mountain ranges such as the Central Si-
berian Plateau, Verkhoyansk and Cherskiy, as well as major river sys-
tems such as the Lena, Yana, and Kolyma (Fig. 1).

Nine focus sites are used for the methodological set-up, especially
calibration and validation, but also for in-depth result analysis. The
focus sites cover the extent of the study area and represent varying
geologic, geomorphologic, climatic and vegetational conditions, as
specified in Table 1. Therefore, the selected focus sites cover a wide
variability of ecosystems and represent the heterogeneous landscapes of
North Siberia (Ali, 2020).

2.2. Ground truth data

LandTrendr was originally developed and designed to detect and
capture forest disturbances. Therefore, we parametrised the algorithm
to be applicable for RTS disturbance dynamics, comprising several in-
dividual steps, which required continuous calibration and validation.
Ground truth (GT) data is sparse in North Siberia and only few RTS
clusters are known so far. Therefore we concentrated on these as focus
sites and collected as much GT data as available for calibration and
validation. To achieve robust results we assessed every parametrisation
step individually. Fig. 2 shows the general workflow to adapt Land-
Trendr to LT-LS2 (LandTrendr Landsat + Sentinel-2) and to parametrise
LT-LS2 to be applicable to RTS.

We collected GT data for six focus sites across North Siberia to assess
the temporal dynamics of RTS. We obtained very high-resolution (VHR)
multi-spectral RapidEye images (5 m spatial resolution) (Krischke et al.,
2000) as well as PlanetScope images (3 m spatial resolution) (Planet
Team, 2017) for as many years as available for the focus sites (Table 2).
There are only images available from 2013 onward, which implies that
the period 1999-2012 cannot be assessed with RapidEye, PlanetScope
or other data from other missions such as SPOT, Pléiades, WorldView or
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Fig. 1. Overview of the study area and focus sites across North Siberia. From West to East: a. West Taymyr, b. East Taymyr, c. Lower Lena, d. Southwest Verkhoyansk
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Table 1

Focus site locations and their characteristics. Mean annual air temperature
(MAAT) and mean annual total precipitation (MATP) are derived from ERA5
reanalysis data based on a 30km-grid (C3S, 2017).

Focus site Coordinates Site characteristics MAAT MATP
(centre) (2m) Jan [mm]
/Jul [°C]
Lower Lena 69.1° N, inland, hilly- -36.5/ 32
124.5° E mountainous, 14.9
Yedoma, Taiga
Tultinsky 67.7° N, coastal, lowland, -25.1 / 40
176.5° W Tundra 7.1
Chukotka 65.1° N, coastal, lowland, -19.9/ 52
172.1°W Tundra 9.0
East Taymyr 75.6° N, coastal, lowland, -28.6 / 28
113.6° E Yedoma, Tundra 3.8
West Taymyr 73.3° N, coastal, hilly, -27.1/ 43
86.9°E Tundra 8.1
Kolyuchinskaya 66.7° N, coastal, lowland, -21.5/ 48
Bay 174.4° W Tundra 5.2
Chokurdakh 70.6° N, coastal, lowland to -33.9/ 24
147.9° E hilly, Yedoma, 10.2
Tundra
Batagay 67.6° N, inland, hilly to -41.9 / 21
134.8° E mountainous, 15.7
Yedoma, Taiga
Southwest 67.1° N, inland, lowland, -36.2 / 49
Verkhoyansk 125.6° E Yedoma, Taiga 14.9

Mountain Range

GeoEye. This lack of VHR data is a general limitation for North Siberia
and unfortunately reflects how infrequent qualitatively sufficient VHR
data is available. We manually digitised multi-temporal RTS extents
from the VHR images by visualising false-colour composites for better
RTS identification and with additional guidance of the permafrost re-
gion disturbance trend product (PRD) of the ESA GlobPermafrost project
(Nitze et al., 2018) and ESRI’s VHR satellite basemap (ESRI, 2017). The
PRD is a Landsat-based multi-spectral trend product, indicated changes
in the landscape. The collection of RTS extents shows the RTS size at
different times and depicts the RTS development over several years at
the six focus sites. Following the development of RTS as indicated by the
digitised extents, we defined observation points along central transects
through individual RTS, which are representative for different distur-
bance years of the slump (Fig. A.9) (Brooker et al., 2014).

Additionally, we used TimeSync for calibration and validation of the
run parameters for the temporal segmentation of LT-LS2 (Cohen et al.,
2010) with yearly Landsat+Sentinel-2 mosaics as input (Runge and
Grosse, 2020). For every transect point (Fig. A.9) we assessed Time-
Sync’s annual image chips and spectral trajectory to visually identify the
timing of RTS disturbance, greatest disturbance segment, and the tem-
poral segmentation of the overall spectral trajectory. As output of the
manual TimeSync assessment, we recorded the year of disturbance (GT
YOD) for every observation point (Table 2).

Lastly, we conducted a binary machine-learning classification to
further remove abundant false positive objects. Based on the LT-LS2
disturbance detection results, we created a training and validation
data set, by manually labelling all identified objects into either RTS (id
1) or no RTS (id 0) for five focus sites. For identification of the distur-
bance objects, we used again the PRD and ESRI's VHR stellite basemap
(Nitze et al., 2018; ESRI, 2017). Table 3 gives an overview of the
identified RTS for validation for each focus site. As described in Section
2.1 and Table 1 these focus sites cover heterogeneous landscapes in
North Siberia as well as different types of RTS that are expected to occur
(Table 3) and are therefore as representative as possible from the limited
available data for ground truthing. Despite this, a level of uncertainty
remains whether the full scope of RTS and their dynamics can be
depicted for such a remote and large study area by the focus sites.
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Fig. 2. Workflow to adapt LT-GEE to LT-LS2 and parametrise the algorithm for
retrogressive thaw slump (RTS) assessment. * RTS probability score = 0.33% is
the optimum threshold for an equilibrium between precision and recall in the
classification as determined in Section 2.8.

2.3. Data and LandTrendr

Landsat and Sentinel-2 images are the input for this time series
assessment as they together have the densest and longest continuous
multi-spectral high resolution image archive. Their combined increased
image acquisition frequency ensures good data coverage in northern
high latitudes despite frequent cloud cover (Li and Roy, 2017), which is
required for high-temporal time series analysis. In this assessment we
adapted and applied the LandTrendr (Landsat-based detection of Trends
in Disturbance and Recovery) algorithm (Kennedy et al., 2010). Land-
Trendr captures disturbance dynamics at high temporal resolution while
only requiring annual mosaics as input, which is attainable in northern
high latitudes by combining Landsat and Sentinel-2 (Runge and Grosse,
2020). LandTrendr is a time series segmentation algorithm that de-
termines disturbance events and change trends from spectral trajectories
on a pixel-basis. The sementation of spectral temporal trajectories con-
sists of a sequence of break-points and straight segments which describe
the temporal spectral trajectories more simplistically and eliminates
noise from the time series (Fig. 3) (Kennedy et al., 2010). The temporal
segmentation process is controlled by a set of run parameters which
constrain the algorithm to achieve the best fitted temporal trajectory
representation of the disturbance. Furthermore, the captured spectral
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Table 2
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Ground truth data at the focus sites from very high-resolution image data used for calibration and validation of the temporal segmentation and the spatial mapping step

for LT-LS2 parametrisation. R = RapidEye, P = PlanetScope.

Site Temporal segmentation Years VHR images (R) RTS transects Observation points Spatial mapping Year RTS extent (R/P)
Chukotka Calibration 2013, 2014, 2016, 4 18 Calibration 2019 (R)
2017, 2018, 2019
Batagay Calibration 2013, 2016, 2017 4 19 Validation 2018 (P)
Lower Lena Calibration 2013, 2014, 2016, 2018 4 24 Calibration 2019 (P)
Tultinsky Validation 2014, 2016, 2018 3 20 Calibration 2018 (R)
Kolyuchinskaya Bay Validation 2013, 2014, 2015, 2016, 4 25 Validation 2019 (R)
2017, 2018, 2019
Southwest VMR Validation 2019 (P)

Table 3
The identified RTS in the disturbance data set for training of the machine-
learning algorithm.

Study Site RTS/Site characteristics Number of RTS

Chukotka Coast coastal RTS, discontinuous 53
permafrost

Tultinsky lakeshore RTS, 2-3 RTS per lake 66

Lower Lena lakeshore RTS, 2-3 RTS per lake, 71
LGM glacial ice extent

West Taymyr lakeshore RTS, >3 RTS per lake, 116
pre-glacial moraine deposits

Chokurdakh lakeshore RTS, >3 RTS per lake, 206
Yedoma

Total 512

change by the temporal segmentation can further be limited to a specific
disturbance type and source by spectrally filtering the LandTrendr
temporal segmentation results. LandTrendr is fully integrated on Google
Earth Engine (GEE) as LT-GEE (Kennedy et al., 2018) and we followed
the established workflow for adaptation (Fig. 2).

We relied on the full archives of Landsat (Thematic Mapper (TM),
Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager
(OLD)) and Sentinel-2 (MultiSpectral Instrument (MSI)) top-of-
atmosphere (TOA) image collections for North Siberia from 1999 to
2020 and used images from the peak-growing season months, July-
August. This reduces seasonal variations in reflectance values and en-
sures spectral comparability of land covers between years independent
of phenological phases. An initial cloud cover filter of less than 80% was
included as a first image quality criterion. We masked cloud and cloud
shadow pixels based on the pre-processed metadata information for both
image products (Landsat band: BQA (CFMASK), Sentinel-2 band: QA60
(adapted CFMASK)) to ensure data quality. Lastly, we applied spectral
band transformations from MSI to OLI (Runge and Grosse, 2019) and
OLI to ETM+ data (Roy et al., 2016) for spectral harmonisation and
temporal continuity across the different sensors in the time series. The
filtered, masked and harmonised image collections were input for a
combined annual mosaicking process. We applied the medoid
mosaicking function (Flood, 2013), which produces cloud-free, good
quality and seasonally representative annual mosaics in Arctic-Boreal
regions (Runge and Grosse, 2020). With these consistent annual mo-
saics we ensured temporal continuity in the time series and therefore
had robust input for the LT-LS2 assessment.

2.4. Index selection

RTS can be mapped from multi-spectral data as there are distinct
spectral differences between the RTS slump floor dominated by bare or
sparsely vegetated, disturbed soils and wet mudflows and the sur-
rounding undisturbed vegetated landscape (either tundra or forest)
(Fig. 3). To determine the multi-spectral index, which captures the
spectral change in the time series most reliably, we conducted a
comparative analysis of six indices: the normalized difference vegetation

index (NDVI) (Rouse et al., 1974), normalized burn ratio (NBR) (Key and
Benson, 2005), normalized difference moisture index (NDMI) (Wilson
and Sader, 2002), and the tasseled cap transformation indices greenness
(TCG), brightness (TCB), and wetness (TCW) (Huang et al., 2002). At
three focus sites, Lower Lena, Batagay and Iultinsky, we assessed the
sensitivity of the indices to distinguish between pre-disturbance, RTS
disturbance and post-disturbance in a time series (Quintero et al., 2019;
Yang et al., 2018). The TCG and NDVI showed the clearest differentia-
tion between the three stages in a spectral time series (Fig. 4). TCG
showed more significant differences between pre-, post- and the RTS
disturbance year compared to more subtle variation in NDVI. We
therefore proceeded with TCG as the assessment index, which is also in
accordance with Brooker et al. (2014).

2.5. LT-LS2 temporal segmentation

To identify the most suitable run parameters for RTS disturbances we
defined the range of possible values for each parameter based on rec-
ommendations defined by the algorithm developers and previous ad-
aptations (Table 4) and compared the different temporal segmentation
outputs to the GT data (Section 2.2). In total we ran 48 LT-LS2 temporal
segmentations for each calibration site and extracted the year of
disturbance (LT-LS2 YOD) for the greatest loss segment for each transect
observation point (Table 2). We calculated the error matrix between the
GT YOD and LT-LS2 YOD for all temporal segmentation runs at each
focus site and recorded the overall accuracy and Pearson’s correlation
coefficient to determine the best fitting temporal segmentation run and
its corresponding run parameters. The segmentation results with the
highest Pearson’s correlation coefficient and overall accuracy were not
the same for each focus site but showed tendencies for individual pa-
rameters. We therefore compared the runs with the highest scores and
picked the run parameters with the highest agreement between sites and
run options (Table 4). The selection of run parameters are in agreement
with recommendations from Kennedy et al. (2010) and their sensitivity
assessment for a successful LandTrendr set-up. With this parametrisation
we ran LT-LS2 for the full study area of North Siberia and generated
LT-LS2 change images for the greatest change segment. Six bands
describe the disturbance at every pixel: 1) magnitude of spectral change,
2) year of disturbance, 3) duration of disturbance, 4) pre-change spectral
value, 5) rate of spectral change, and 6) DSNR as a fit metric.

2.6. LT-LS2 spectral filtering

The majority of spectral change captured by LT-LS2 in the temporal
segmentation is not RTS disturbance but due to general spectral change
and trend, other landscape disturbances such as wildfires or lake
drainage, erroneous pixels (cloud, haze, fire smoke) or other artefacts.
To remove spectral change not associated to RTS disturbances, we
filtered the temporal segmentation result by applying thresholds to the
LT-LS2 image bands. We determined filter thresholds for magnitude of
spectral change (mag) and duration in years (dur) that still map RTS but
remove other spectral change. Spectral filtering disturbance mapping
resultsfrom a range of possible threshold values (mag: 200, 400, 600,
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Fig. 3. Retrogressive thaw slump detection by LandTrendr. a. LandTrendr temporal segmentation schematic, indicating the year of detected disturbance from change
in spectral magnitude and disturbance duration. b. Picture of coastal thaw slumping at Bykovsky Peninsula (129.2° E, 71.5° N) in 2014 (G. Grosse). Note persons for
scale. c. Thumbnails indicating the development of RTS (white arrows in 2020) at the coast of Chukotka (172.2° W, 64.6° N) 2000-2020. Illustration based on a TCB/

TCG/TCW visualisation in the LT-GEE Time Series Animator App (Justin, 2020).

800; dur: 1, 2, 4) were compared to GT data (Section 2.2). We compared
the mapped area size of RTS from the 36 spectral filtering options to the
GT area size (RTS extents 2019) and chose the threshold combination,
which showed the highest correlation to the GT based on the Pearsons’
correlation coefficient. With the exception of Chukotka Coast and East
Taymyr, the Pearsons’ correlation coefficients show high agreement
between a dur value of 2 and mag values of 400, 600, and 800 (Table 5).
A dur threshold of 2 ensures the inclusion of disturbance events that last
at least 2 years which can be expected for RTS. At the same time this
threshold excludes short term spectral disturbances, which are most
likely related to anomalies, such as longer or earlier snow cover, as well
as pixel artefacts. The best fitting mag threshold varied across the focus
sites but there is a high correlation with several mag values (Table 5).
The mag threshold is critical to ensure full spatial coverage of the RTS
objects. We therefore chose the lower mag threshold of 400. While this
enhances the RTS object coverage it also leads to high commission er-
rors, including more non-RTS disturbance pixels and noise which has to

be removed in the following steps.
2.7. Spatial masking and object filtering

The LT-LS2 disturbance map after spectral filtering, despite its
explicit parametrisation to RTS disturbances, does not only depict thaw
slumping features but includes other, spectrally similar disturbances,
such as wildfires, active layer detachment slides, changes in river water
levels. To further narrow the LT-LS2 disturbance map to RTS, we applied
several environmental spatial masks (Table 6).

Following this, we performed object-oriented spatial filters to further
exclude false positive disturbances and to restrict the subsequent anal-
ysis to RTS disturbances (Table 7). We identified disturbance objects
with scikit-image’s connected component algorithm in a 2-connectivity
neighbourhood (Van der Walt et al.,, 2014) and extracted for every
labelled object feature properties. Based on the LT-LS2 year of distur-
bance band, we derived the minimum year and maximum year of
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Fig. 4. Spectral indices for pre-disturbance (2010), disturbance (2012) and post-disturbance (2013-2016) years for the focus site Lower Lena. Boxplots illustrate the

spectral reflectance dynamics from representative RTS disturbance pixels.

Table 4

List of necessary LT-LS2 run parameters for the temporal segmen-
tation algorithm, indicating all tested values and eventually
selected values (in bold and italic) for processing. Standard values
were chosen for vertex count overshoot, minimum observations
needed and one year recovery prevention. See Kennedy et al.
(2010) for detailed parameter description.

Run parameter Values
Max segments 3,4,6
Spike threshold 0.75,0.9
Vertex count overshoot 3
Recovery threshold 0.25, 0.5
Best model proportion 0.75,1.0
Pval 0.05, 0.1
Minimum observations needed 6
Prevent one year recovery True

disturbance for every labelled object, representing the disturbance
period of that object. The minimum mapping unit (mmu), maximum
mapping unit (maxmu) (Lacelle et al., 2015; Lewkowicz and Way, 2019;
Kokelj et al., 2015; Lantz and Kokelj, 2008; Segal et al., 2016; Ramage
et al., 2017), object eccentricity, and disturbance period are used to
differentiate between RTS, which evolve over multiple years and have a
certain typical size, and other disturbances such as 2020 fire scars,
remnants of previous fire scars or other extensive disturbances.

2.8. Machine-learning object filter

After spatial masking and filtering the disturbance data set still
contained a high amount of commission errors (false positives). There-
fore we applied a binary classification step to classify the disturbance
object either as a RTS or other. The training and validation data set was

Table 5
The tested mag and dur values for spectral filtering with the highest Pearson’s
correlation coefficient for the calibration and validation focus sites.

Site Magnitude Duration Pearson’s correlation coefficient
Lower Lena 400 2 0.98
600 2 0.92
Chukotka 800 2 0.51
600 2 0.26
400 2 0.24
Tultinsky 800 2 0.94
600 2 0.70
400 2 0.56
East Taymyr 200 2 0.37
400 2 0.28
Southwest VMR 400 2 0.99
Kolyuchinskaya Bay 800 1 0.99
600 2 0.97
400 2 0.95

introduced in Section 2.2 and Table 3. Based on the available GT RTS
data only 13% (F1 score) of the identified disturbances were correctly
identified RTS before the binary classification step (Table 9). Omission
and commission scores cannot be assessed at this point, as only the
disturbance objects identified up until the previous processing step were
included for the five focus sites. There is no additional GT data available
that could possibly specify missed RTS by our method. We used the
pycaret (version 2.3) package in python to setup a classification pipe-
line. As input data we used basic statistics (min, mean, max values) of all
LT-LS2 output bands, except “year of disturbance”, and Landsat Tasseled
Cap Index Trends (slopes of TC brightness, greenness and wetness) per
polygon object. In the model comparison Light Gradient Boosting Ma-
chine (Ke et al., 2017) came out as the best model, where we used the F1
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Table 6
Overview of spatial masks applied.
Mask Data set Threshold Reference
Water Global surface water Pekel et al.
data set (2016)
Fire Global forest cover Hansen et al.
change (2013)
Slope ArcticDEM 3-15° Porter et al.
(2021)
Elevation ArcticDEM <250 m a.s.l. Porter et al.
(2021)
Water Global surface water 300 m buffer Pekel et al.
buffer data set (2016)
Permafrost Extent and Ground Continuous, Obu et al.
Temperature discontinuous (2019)

Table 7

Overview of object-oriented spatial filters applied.
Filter Threshold Reference
Eccentricity >0.75 empirically derived

(Lower Lena, Chukotka, Iultinsky)

Minimum mapping unit 0.36 ha 2*2 30 m pixels,

(mmu) Brooker et al. (2014)

Maximum mapping unit 15 ha

(maxmu)

Disturbance period <2 years unlikely RTS, but likely 2020 fires,

remnant fire scars, ALDS, artefacts

score as the primary estimator metric. To deal with the extreme class
imbalance we used the Synthetic Minority Oversampling Technique
(SMOTE) resampling algorithm (Chawla et al., 2002), which is imple-
mented in pycaret. Furthermore we calculated overall classification
metrics Accuracy and Kappa as well as binary and class specific metrics
area under curve (AUC), precision and recall. We optimised the model
and performed a 10-fold stratified cross-validation on the input data set.
We used pycaret’s built-in model evaluation functionality to determine
the best separation threshold between classes, as the initial discrimi-
nation was strongly imbalanced with a bias towards the no-slump class.
We repeated the cross-validation on a regional basis, training on four
tiles and validating on the fifth, rotating through all tiles. We added the
regional validation to test the transferability to unseen regions. Finally,
we trained the production model on all five ground-truth tiles and ran
the inference on the entire study area. The output data set contains final
class labels (0 or 1) and class specific probability scores. With this we
reduced the false positives of LT-LS2 drastically, which improved the
RTS disturbance mapping greatly compared to the purely LT-LS2 auto-
mated algorithm.

2.9. Method accuracy

2.9.1. LT-LS2 temporal segmentation accuracy
The results from the comparison between GT YOD and LT-LS2 YOD

Table 8
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showed that the LT-LS2 temporal segmentation depicts the progression
of annual temporal dynamics of RTS well. The Pearson’s correlation
coefficient between GT YOD and LT-LS2 YOD show an agreement of up
to 0.98 for individual RTS transects (Chukotka 1 and 4, Iultinsky 2, 3 and
Kolyuchinskaya Bay 1), which verifies that the LT-LS2 temporal seg-
mentation parametrisation captures the progression of RTS thaw dy-
namics at an annual temporal resolution (Table 8). Individual transects
show little agreement between the GT YOD and LT-LS2 YOD data (Lower
Lena 1 and 2, Iultinsky 1, Kolyuchinskaya Bay 2 and 3). A visual
assessment showed that this is mainly due to individual faulty data
points in the temporal spectral trajectories, which resulted from irreg-
ularities in the mosaics, for example from ETM+ scan-line errors or from
individual invalid pixels, which deviated from the expected temporal
trajectory. Hence, overall LT-LS2 captures and depicts the dynamic
development of RTS well. Further, we derived the mean deviation and
standard deviation between absolute GT and LT-LS2 identified year of
disturbance for the transect observation points to evaluate the precision
of detected disturbance year (Table 8). The mean deviation ranges from
-4.4 to +3 years for Kolyuchinskaya Bay transect 3 and Lower Lena
transect 1, respectively. Half of the mean values demonstrate that LT-
LS2 YOD values are later compared to the GT YOD, which shows a
delay in disturbance recognition in the LT-LS2 analysis. Contrary to this,
negative mean values illustrate that LT-LS2 implies a disturbance earlier
than the GT YOD data set. An issue is probably that with a spatial res-
olution of 30 m we have to account for mixed pixels, which delay the
detection of a disturbance, as the multi-spectral data only recognises the
disturbance when bare soil dominates the mixed pixel. The assessment
shows no clear trend on whether LT-LS2 identifies RTS disturbances
rather too early or delayed but that we have to account for inaccuracies
of approximately +2 years for the disturbance year of LT-LS2.

2.9.2. Machine-learning object filter accuracy

The validation results prove the challenging task of mapping RTS at
large-scale. 10-fold cross-validation (CV) on the full GT data set without
regional differentiation revealed a mean accuracy (statistics of all 10
folds) of 0.9479+0.0106 and kappa of 0.5452+0.1042 (Table 9). The
class specific performance for RTS (id 1) metrics revealed a mediocre
performance with a F1 score of 0.609. The higher precision (0.655)
compared to recall (0.569) shows a slight bias towards an “under-
detection” of RTS. To overcome this bias and to receive a balanced
classification we used the “threshold” estimator in pycaret. This

Table 9

Overall 10 fold cross-validation. Mean and standard deviation of scores from all
10 folds. *Accuracy assessment of the RTS training data set before the binary
classification. AUC = Area Under the Curve.

Accuracy  AUC Recall Precision  F1 Kappa
Mean* 0.07 0.13
Mean 0.9479 0.9014 0.4846 0.6765 0.5622 0.5355
Standard 0.0106 0.0172  0.1025 0.1034 0.1013  0.1061
Deviation

Assessment of the LT-LS2 temporal segmentation based on the GT YOD and LT-LS2 YOD transect observation points. The first value is the Pearson’s correlation
coefficient indicating the general level of agreement between GT and LT-LS2. The second value is the mean deviation between the absolute GT YOD and LT-LS2 YOD
value and the third the standard deviation, demonstrating the error in absolute year of disturbance in the temporal segmentation. For transects marked with an asterisk

we excluded the earliest transect point for the mean and standard deviation.

Step Site All Transect Transect Transect Transect
transects 1 2 3 4
Calibration Chukotka Coast 0.63/-0.3/26 0.65/1%/1.4 0.40/-1.3/2.8 0.98/-2/2.1 0.95/2% /1.2
Batagay 0.78 /0.8 /3.3 0.8/1.7*/0.9 0.66 / 2.8* / 1.9 0.81/-2.8/3.4 0.76 / 2.5% / 1.2
Lower Lena 0.23/0/3.9 0.22 /3% /5.1 014/15/1.4 0.81/18/0.7 0.59/-1.7* / 4.6
Validation Tultinsky 0.49/-0.13 /3.9 0.06 / -1.5% / 6.2 0.90 /2.3* / 1.8 0.92/-0.7/1.8
Kolyuchinskaya 0.40/-2.1/5.3 0.97 /-0.4/1.0 0.05/-1.4* /5.4 0.05/-44/6.7

Bay
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revealed an optimum threshold (probability score for class 1) of 0.33 to
maximize the F1 score and a threshold of 0.25 for an equilibrium of
precision and recall (Fig. A.10). The regional cross-validation (five sites)
revealed the challenges of model transferability. RTS class specific F1
score ranged from 0.07 (Lower Lena) to 0.37 (West Taymyr) and
therefore lower than a CV on the entire data set (Table 10). The classi-
fication bias, as observed on the full CV, was more diverse in the regional
CV. Three of five regions have a higher recall, while only two exhibit an
excess in precision.

3. Results
3.1. Focus sites

For five focus sites we mapped RTS and assessed their annual thaw
dynamics in detail to demonstrate the capability and applicability of our
method. The focus sites comprise a square area of 625 km? and represent
known RTS clusters, with varying RTS and densities (Table 11). Chu-
kotka presents a coastal site with many active RTS along the coastline.
Here, as the RTS grow retrogressively, neighbouring RTS merge together
and form bigger RTS objects with time. At Iultinsky and Lower Lena we
identified RTS at lake shores and often 2-3 RTS at one lake. Both focus
sites are located at the border of the Last Glacial Maximum (LGM) glacial
ice extent in Siberia and are close to areas with ice-rich Yedoma deposits
(Fig. 7). The other two focus sites, West Taymyr and Chokurdakh, also
feature RTS at lake shores but often with more than 3 RTS at a lake.
Chokurdakh is special, as not only individual RTS developed but com-
plete lake shores erode. Here, LT-LS2 often identified multiple individ-
ual RTS, for the more active erosion parts of the shore. Chokurdakh is
characterised by extensive Yedoma deposits, whereas West Taymyr is
located within pre-LGM glacial moraine complexes. The minimum RTS
size with 0.45 ha was found at [ultinsky, Chukotka and Chokurdakh, the
predefined mmu. The biggest identified RTS is in Chukotka with
14.94 ha, the maxmu. The mean RTS size for the sites ranges from 1.4 to
4.8 ha. In West Taymyr the average RTS activity duration is 11.8 years
compared to 15.2 years in Chukotka. The initial RTS-affected area in
2000 per focus site varies greatly (Iultinsky: 5.9 ha, West Taymyr: 69 ha)
and likewise does the increase in RTS-affected area from 2001 to 2019.
The RTS-affected area in Iultinsky, West Taymyr and Lower Lena
increased by 188%, 144% and 141%, respectively. In contrast, the area
increase of 73% was much lower for Chokurdakh.

The first and last year of slump activity for each identified RTS and
the summarised RTS-affected area per year, indicating the annual RTS
growth, show the dynamic progression of RTS (Fig. 5) as visually
depicted in Fig. 6. The first year in the assessment period, 2000, com-
prises not only newly disturbed RTS area in 2000 but also the accu-
mulated dynamics from previous years before our time series starts
(approximately 1997-2000) (Fig. 5). The annual RTS area analysis
shows that the increase in RTS area is not uniformly during the obser-
vation period but that distinct years with accelerated RTS area growth
can be determined. Iultinsky had two periods of increased slump ac-
tivity, 2008-2010 and 2015-2018, with the highest RTS area growth in
2008 (Fig. 5d). Similarly, West Taymyr also showed two periods with
increased slump activity, 2005-2006 and 2012-2017. The RTS-affected
area in Lower Lena increased in 2008 and lasted until 2017, with the
exception of 2014. About 60% of the RTS in West Taymyr showed their

Table 10
Regional Cross-validation (RTS class only).

Site Precision Recall F1 Support (n objects)
Chukotka 0.45 0.27 0.34 48

Tultinsky 0.28 0.34 0.30 56

Lower Lena 0.04 0.44 0.07 61

Chokurdakh 0.38 0.18 0.24 212

West Taymyr 0.63 0.26 0.37 110
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last activity in 2016-2017 (Fig. 5¢), which is either the peak slump year
(2016) or one year later (2017). This suggests that the accelerated slump
activity was caused by a temporary trigger. There is little new RTS
initiation during the assessment period in Iultinsky and Lower Lena alike
and more than 80% of the identified RTS were active since 2000. Most of
the RTS had their last activity in the second half of the time series,
specifying higher slump activity during the last two decades in Iultinsky
and Lower Lena compared to West Taymyr. Chokurdakh und Chukotka
show very similar annual RTS-affected area trends as Iultinsky and
Lower Lena. The results show an alternation between time periods of
high RTS activity and less RTS development during the observation
period (Fig. A.12).

3.2. North Siberia

Within our study area of approximately 8.1 x 10% km? covering
North Siberia, a total number of 50,895 RTS were identified and map-
ped. The majority of RTS was found between 61 to 73° N (Fig. 8b). This
RTS abundance is highly related to the uneven latitudinal land mass
distribution in the study area, with less land area north of 72° N reducing
the number of RTS. Similarly to this, the lower latitudes in the East of the
study area (140° E, 55-60° N) cover less land mass, which explains the
lower geographic boundary of identified RTS. Fig. 7 shows the
geographic density of identified RTS for 40km x 40km grid cells. The
majority of RTS were identified in the continuous permafrost zone, more
than 70% of the RTS (Fig. A.11c). Where the permafrost extent becomes
discontinuous, sporadic or isolated permafrost, RTS occurrence and
density decrease as well. Furthermore, the RTS density map reveals
clusters of RTS between 80 to 90° E in the West of the study area, be-
tween 140 to 160° E and north of 65° N and along the border of the LGM
glacial ice extent in Siberia (Ehlers and Gibbard, 2003). The abundance
of RTS along the margins of the LGM glaciation is most likely associated
to degrading buried glacial ice in moraines (Barr and Clark, 2012; Kokelj
et al., 2017). Moreover, the occurrence and density of RTS correlates
closely with the distribution of thick ice-rich Yedoma permafrost de-
posits that are particularly vulnerable to thermokarst and
thermo-erosion processes such as RTS (Fig. 7) (Strauss et al., 2017,
2016). About 14% of the RTS are within Yedoma deposits and almost
70% in close vicinity (<10km) (Fig. A.11d). A high density of RTS can be
found in central Yakutia near Yakutsk, a known hot spot region for
permafrost degradation and thermokarst development (Séjourné et al.,
2015; Ulrich et al., 2017). In contrast to this, we also identified vast
areas with no or low RTS densities across North Siberia, most notably in
mountainous regions and the central West of the study area.

Assessing the mapped RTS in relation to elevation and slope showed,
that the majority of RTS were found in a sloped terrain of 2-4 ° (about
30%) (Fig. A.11b). The occurrence of RTS decreased with increased
elevation but is also cut-off by the elevation threshold of 250 m a.s.l
(Fig. A.11a).

The normalised area frequency plot (Fig. 8d) illustrates that the vast
majority of identified RTS are small and close to the predefined mmu.
About 50% of all identified RTS are smaller than 1.17 ha and 90% of the
RTS are smaller than 3.42 ha, which indicates that the normalised area
frequency is positively skewed. The proportion of bigger slumps is much
lower. The distribution is positively skewed because RTS are rather
small-scale disturbance features, with commonly reported sizes of
0.4-5.3 ha (Lacelle et al., 2015; Segal et al., 2016), which our results
show as well. RTS exceeding this size by far, so-called mega slumps,
occur but are less common. Secondly, RTS are polycyclic which is
another reason for the predominance of smaller identified RTS objects.
RTS often alternate between periods of active degradation and periods
of stabilised dormancy, which can differ spatially with only part of a
stabilised RTS re-initiating, depending on slumping drivers and envi-
ronmental factors such as remaining ice content, exposure of the ice, the
sloped terrain, drainage and sediment transport, and climatological
conditions (Balser et al., 2014; Kokelj et al., 2009). The stabilised part of
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Table 11

Overview of identified RTS for the focus sites (625 km?) and all of North Siberia. The number of identified RTS, average slump size and the average slump activity
duration (last - first year of disturbance pixel) are based on the identified RTS objects. The summarised slump area for 2000 and the summarised slump area from 2001
to 2019 are compiled from all RTS pixels in a focus site. The summarised area from 2001 to 2019 percentage indicates the area growth compared to the RTS area in
2000. The peak growth years are the two years with the highest RTS area in the time series. *The initial RTS area was derived from 2000 to 2001.

Number RTS Average slump RTS area RTS area from Average Average Peak growth
Site of min/mean/max activity in 2000 2001-2019 growth/year growth/RTS years
RTS [ha] duration [yr] [ha] [hal/[%] [%] [%] ([hal)
Lower Lena 18 0.72/2.34 /6.2 13.7 17.5 24.6 / 141 7.4 7.8 2013 (3.9),
2015 (3.7)
Tultinsky 9 0.45/1.9/ 8.46 11.9 5.9 11.16 / 188 9.9 20.9 2008 (2.61),
2009 (1.53)
Chukotka 9 0.45/ 4.83 / 14.94 15.2 19.5 23.9 /123 6.5 13.6 2016 (5.4),
2007 (2.97)
Chokurdakh 64 0.45/1.4/7.56 12.3 50.9 36.9/73 3.8 1.1 2009 (6.03),
2011 (5.58)
West Taymyr 88 045/19/11.8 11.8 69.0* 99.5/ 144 7.6 1.6 2016 (43.2),
2013 (20.5)
North Siberia 50,895 0.45 /1.7 /14.94 12.3 20,158 66,699 / 331 17.4 0.007 2019 (9,669),
2016 (7,136)
lultinsky Lower Lena West Taymyr
a b c
80 80 50
8 40
o 60 60
g 30
< 40 40
] 20
—
& 20 20
I | I "
0 l IIII 0 M Il 0...1-.“.--,'.-
D d € |50 f
15
— 40
o 4
= 10 30
@
: 20
<2
5
10
0 0 0
O N & © 0O O N < © O N g © O O N < © O N < © 0 O N < © ®©
sg2sgadagd  gg2egggzads  S22823da= 3

Fig. 5. The first year of RTS activity (red bar) and last year of RTS activity (blue bar) for Iultinsky, Lower Lena and West Taymyr on the top panel (a—c) and the

annually summarised RTS areas for the same sites below (d-f).

a RTS cannot be detected by LT-LS2 as the temporal spectral signature of
these areas does not resemble a disturbance trajectory. LT-LS2 only
detects the actively degrading RTS areas, capturing only disturbances
occurring within the assessment period (1999-2000), which might not
represent the full RTS extent. Therefore, we consider our findings of RTS
numbers and areas conservative low.

Most slumps had their first active year at the start of the assessment
period with almost 50% and 25% in 2000 and 2001, respectively
(Fig. 8a). The remaining RTS had their first activity year in the course of
the time series until 2016 but no RTS initiations were detected in
2017-2018. About 25% of the RTS had their last slump activity in 2019,
which is the end of the time series. However, a bigger proportion of
about 30% of the RTS deceased slumping already before the end of the
assessment period, namely in 2016-2018. The overall summarised RTS-
affected area increases steadily during the time series, illustrating
extended annual RTS growth and development (Fig. 8c). The years 2000
and 2001 show particularly high annual RTS areas. As these are the first
years in the time series, we expect them to contain the accumulated
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disturbance history of recent years. Results for 2000 and 2001 are
therefore strongly influenced by an accumulative effect of first de-
tections at the time series beginning and thus are more difficult to
interpret. Accordingly, the trend line was only calculated for data from
2002 to 2019 (Fig. 8c). Heightened increase rates were determined for
2016, 2017 and 2019. From 2001 to 2019 the RTS-affected area
increased by 331% compared to 2000, which shows a drastic increase in
area affected by permafrost degradation in only 19 years (Table 11).

Combining these results, we can determine, that the increase in RTS-
affected area at the end of the time series is not caused by newly or re-
initiated RTS but most likely by RTS growth of already existing and
active RTS. Furthermore, the high number of inactive RTS in 2016-2018
(last year of activity), suggests that the increase in RTS area is not
necessarily caused by successive thaw, which would prevail for a longer
time period, but by explicit triggers in those years. Whether these RTS
remain inactive and stabilise for a longer period cannot be derived from
this assessment.
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Fig. 6. Annual progression of RTS in Chukotka (172.2° W, 64.6° N), showing the year of disturbance for every pixel. Digitised yearly RTS extents from RapidEye
images are indicated. RTS outline in pink from 2019, in white from 2016, and in yellow from 2013. Background is Esri Satellite Basemap (ESRI, 2017).

4. Discussion
4.1. Mapping of RTS

Our results are overall in agreement with previous studies. The mean
size of identified RTS ranges between 1.4 ha (Chukordakh) to 4.8 ha
(Chukotka), which slightly exceeds the RTS sizes recorded by previous
studies stating average RTS sizes of 0.15-1.63 ha (Ramage et al., 2017;
Lewkowicz and Way, 2019). The range of previously published mega
slump sizes, 3.8-9.9 ha, as described by Kokelj et al. (2015) for NW
Canada, is comparable with the maximum RTS sizes in our study of
6.2-11.8 ha (Chukotka even 14.94 ha). LT-LS2 might be biased towards
larger features due to the lower resolution, whereas other studies use
much higher resolution aerial and and satellite imagery to quantify
average RTS size. But overall the agreement between studies indicates
that LT-LS2 is well suited to identify RTS across very large regions.

Furthermore, we found a strong correlation between the detection of
RTS and environmental factors. RTS generally occur in ice-rich perma-
frost areas, mostly from glaciogenic deposits or syngenetic permafrost,
along sloped terrain and in proximity to lakes, rivers and coasts, where
climatic conditions drive their development (Kokelj and Jorgenson,
2013; Kokelj et al., 2017; Ardelean et al., 2020). Our results also show
that the majority of the RTS and the highest RTS density can be found in
the proximity to the LGM glacial ice extent (moraine complexes) and in
areas with thick ice-rich Yedoma deposits. This agrees with prior find-
ings of increased RTS occurrence in such areas in local and regional
studies from Canada (Ward Jones et al., 2019; Lewkowicz and Way,
2019; Lacelle et al., 2010) and Alaska (Balser et al., 2014), emphasising
that very ice-rich permafrost is a determining factor for RTS. Addition-
ally, the close fit between detected RTS and ice-rich permafrost in this
study verifies that our applied automated method identifies RTS
correctly. The RTS density distribution underlines the vulnerability of
ice-rich permafrost to abrupt thaw and furthermore, the threat of rapidly
mobilizing increased amounts of sediment and organic carbon over
short periods of time (years) in icy permafrost regions experiencing
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thaw.

However, these RTS mapping results were constrained by the mmu
and maxmu which we applied to obtain reliable results regarding the
spatial resolution (30 m), temporal resolution (annual), GT data avail-
ability for this large-scale assessment and to avoid confusion with other
land cover disturbances and changes such as fires or active layer
detachment slides, which have shorter disturbance dynamic periods, as
described in Section 2. Mapping RTS smaller than the mmu is not
feasible at this spatial resolution as the volume of false positives would
have been increased and the limited available GT data set would not be
sufficient to mask or filter these in the post-processing steps. Applying a
similar workflow to VHR data such as RapidEye or PlanetScope would
improve identification and mapping of smaller RTS but we currently
lack the temporal coverage of VHR data in the northern high latitudes
(Table 2).

Additionally, the maxmu prevented to detect large RTS or mega
slumps, such as Batagay (67° N, 134° E) which is the largest mapped RTS
(>70 ha) in Northeast Siberia with a headwall retreat rate of up to 30 m
per year (Giinther et al., 2016). Since the ancillary data sets were not
sufficient to differentiate reliably between large RTS and other bigger
disturbances and land cover changes, as for example Hansen et al.
(2013) forest change currently lacks fires from 2020, we opted to
exclude larger disturbance patches due to heightened uncertainties.
While this is a limitation, the amount of large RTS or mega slumps is
much smaller compared to the average RTS (Kokelj et al., 2015) and
should therefore not affect our results greatly as we capture the most
relevant range of RTS sizes. Therefore, the method presented here is a
compromise between mapping RTS reliably (constrained between mmu
and maxmu) with an automated algorithm at large-scale and being able
to validate the results with limited GT data. Hence, we consider our
mapping results as conservatively low and expect an actually higher
number of RTS in North Siberia than identified in this study.
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4.2. Spatio-temporal variability of RTS dynamics
Between 2000 to 2019 we detected a steady increase in RTS-affected

area for North Siberia with heightened thaw slump dynamics at the end
of the observation period. Overall, the RTS-affected area increased by
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331% between 2001 to 2019 (from 20,158 ha in 2000 to 66,699 ha),
confirming the projected intensification and growing impact of abrupt
permafrost thaw (Nitzbon et al., 2020; Turetsky et al., 2020). The ma-
jority of RTS was active at the beginning of the time series, 2000-2001,
and only a smaller number of newly initiated RTS was detected in the



A. Runge et al.

Remote Sensing of Environment 268 (2022) 112752

North Siberia

50 a
- 75
=AY -
) 24
o 30 g 70
1= 2
9 20 i
0 © 65
810
0 - 60 1 i i i i
Ssa 3 aen 4 © © 0.00 0.02 0.|Q4d 0.06 0.08
22323229888 82:%8 Normalised Frequency
20000 C|50207 | 50%:1.17 d
- ; 90%:3.42
_ 15000 20157 | |
© o i
= w :
= 10000 5 0.10 |
v N R
< 5000 T
———————— I £ 0.05
0 -:gl.i..l.-lll §
—— T 0.00 i y T
oOoN g © ® O NI O ® 0 D 10 15
O O O O O o ™= o - o
SO © OO0 O o0 O O O Area [ha]
AN AN N AN N N AN N N (N

Fig. 8. Identified and mapped RTS in North Siberia: a. First year (red bar) and last year (blue bar) of RTS object activity; b. Normalised frequency of RTS by
geographic latitude; c. Summarised annual RTS area [ha] with trend line indicating an increase in area from 2002 to 2019 with a slope of 374 ha per year; d.

Normalised frequency of RTS object sizes.

course of the observation period. This suggests that the increase in
RTS-affected area is predominantly driven by growth of existing RTS
and not by initiation of new slumps, as also shown by Lewkowicz and
Way (2019) for the Canadian High Arctic. However, the spatial resolu-
tion of 30 m and the applied mmu prevent to detect small-scale changes,
such as RTS initiation. Therefore, we emphasise again that most likely
we underestimate the number of actual RTS as well as the RTS-affected
area. In contrast to this, the focus sites showed differing annual vari-
ability in the RTS thaw dynamics, indicating spatio-temporal variability
of RTS thaw dynamics. All five focus sites do not show a uniform
year-by-year development of RTS area but distinct periods of increased
and decreased thaw dynamics. The peak slump years and periods vary
between focus sites, which further confirms a strong connection to
spatio-temporal varying slump drivers and environmental triggers,
which lead to exposure of ice-rich ground, increased thaw, drainage and
sediment transport during the thaw period. Such assessments of a high
spatial variability in RTS activity and dynamics could only be addressed
in limited ways by previous high temporal resolution assessments
focusing more on local to regional study extents in the Canadian High
Arctic or on the Qinghai-Tibet Plateau (Lewkowicz and Way, 2019;
Ward Jones et al., 2019; Luo et al., 2019).

Lewkowicz and Way (2019) correlated their annual detection of
growing RTS and newly initiated RTS mainly to warm summer years on
Banks Island. A similar relationship was found by Ward Jones et al.
(2019) for their Canadian High Arctic study sites on Ellesmere and Axel
Heiberg Islands. Besides this, Kokelj et al. (2015) linked increased
slumping activity to heavy precipitation events and downward sediment
fluxes for the more southern study area of the Peel Plateau, in NW
Canada. All these studies point towards a strong correlation between
climatic and environmental drivers and RTS activity. Following this, we
correlated the yearly affected RTS area of the focus sites to climate
variables. We derived the mean temperature, the total annual precipi-
tation, the total precipitation for July and August and the number of
thawing days from ERAS5 reanalysis data (C3S, 2017). However, we

found no significant correlation between these climate variables and the
annual RTS area, but only varying tendencies for the different focus
sites. Lewkowicz and Way (2019) and Kokelj et al. (2015) pointed out a
temporal lag of one or two years between the occurrence of reinforcing
thaw drivers and actual increased permafrost thaw and RTS develop-
ment. Therefore, a closer analysis of possible climate drivers and annual
RTS dynamics is required to identify the spatio-temporal RTS drivers at
the different focus sites, but this is outside the scope of this study.

Overall, combining the results from the focus sites and North Siberia,
we can imply that the steady increase in RTS-affected area in North
Siberia results from spatio-temporal variability of RTS thaw dynamics at
local to regional scale. This emphasises the heightened relevance of
abrupt permafrost disturbances at the large-scale but without under-
estimating the importance of local to regional assessments when it
comes, for example, to infrastructure planning or other site-specific
analyses. The impact of advancing permafrost degradation by rapid
RTS development on local-scale is very pronounced in changing topo-
graphic gradients, hydrological systems, and biogeochemical cycling
and can largely be considered irreversible. Most numerical permafrost
models do not yet include rapid thaw processes. However, in a recent
modeling study for the cold and ice-rich permafrost regions of Northeast
Siberia, which were previously thought to remain largely stable despite
gradual warming, Nitzbon et al. (2020) included thermokarst dynamics
and found the landscape to be considerably affected by permafrost
degradation already by 2100. Current carbon models also show that by
2300 abrupt permafrost thaw disturbances will occur on less than 20%
of the permafrost region, but their carbon contribution will be of global
relevance due to their rapid and deep erosion of ice-rich permafrost
(Turetsky et al., 2020). The combination of this high carbon release
potential and the abrupt and widespread thaw process by RTS, also
discovered in this assessment for North Siberia, make RTS a highly
important disturbance feature.
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4.3. LT-LS2 capabilities and limitations

LT-LS2 identifies disturbances from temporal segmentation of spec-
tral trajectories. The accuracy of the temporal segmentation showed that
the progression of the year-to-year thaw dynamics of RTS are captured
well (Table 8), with an estimated year of disturbance accuracy of +2
years (Section 2.9). Yet, this correlation varies and depends on good
quality input data as seen for few GT transects. By using medoid mosaics
combining both Landsat and Sentinel-2 we enhanced the input database
greatly (Runge and Grosse, 2020), similarly to approaches for MODIS
time series ingesting both Aqua and Terra images (Sulla-Menashe et al.,
2014). However, even Landsat and Sentinel-2 mosaics might not suc-
ceed in providing full spatial and temporal coverage in cloud-prone
areas, such as northern coastal and high Arctic areas. Besides this,
Sentinel-2 images are only available since 2016 for Siberia and before
that we rely on Landsat-only mosaics. Thus, we assessed a possible
correlation between input data and affected RTS area. For the focus sites
we derived the average number of cloud-free pixels for each year, which
is an indicator for the input mosaic quality as the likelihood of obtaining
consistent and gap-free mosaics increases with the number of cloud-free
pixels. Although the number of clear pixels increased drastically with
Sentinel-2 in 2016 for all focus sites, we did not find a correlation be-
tween the average yearly clear-pixel count and identified RTS-affected
area. This suggests that there is no bias between detected RTS area
and enhanced mosaic coverage at the end of the time series, but it rather
implies reliable disturbance detection throughout the assessment
period. This is in contrast to findings from a study on cropland change,
where the image availability and detection of cropland changes showed
a correlation (Dara et al., 2018). However, cropland changes and
abandonment are gradual changes, which are further distorted by land
cover phenology and outliers that are more likely and pronounced in low
quality input mosaics (Dara et al., 2018). Compared to this, the detec-
tion of RTS disturbances is based on determining and extracting the
biggest disturbance segment, following abrupt, drastic spectral change.
This method is more robust to shifts in phenology and outliers, which
might arise in Landsat-only mosaics in years with few cloud-free images
and affirms reliable disturbance detection also for the first 15 years in
the time series.

Insecurities on the definite year of disturbance identification remain
with a deviation of approximately +2 years. While this lowers the
confidence for explicit year of disturbance associations, the 20-year time
series assessment is still able to depict peak periods of abrupt thaw.
Furthermore, the accuracy of the annual dynamics is affected by the
30 m spatial resolution of the input data. Small-scale initial disturbances
of only a few meters width will not be captured by 30 m spatial reso-
lution, which will result in a delay of detecting RTS initiation and early
growth and is therefore considered a low-resolution bias (Sulla-Menashe
et al.,, 2014). A delay of detection can further be perpetuated by thaw
slumping processes where the vegetation cover and hence the spectral
land cover reflectance remains intact while the soil column already
subsides or erodes underneath. Contrary to this, the identification of a
disturbance can be premature if other changes precede the RTS distur-
bance, such as vegetation change, active layer detachment slides or
flooding of lake or river shores.

In spite of the reliable detection of temporal RTS dynamics with LT-
LS2 at local-scale, the application at large-scale required further atten-
tion as we encountered high commission errors. The spectral-temporal
segmentation included a variety of false positives, such as remnants of
fire scars, lake change and drainage, changing water levels and sediment
transport in rivers, shadows in mountains and other commissions. The
difficulty to detect and map RTS at large-scale and to separate from false
positives has been discussed before (Nitze et al., 2018). Manual RTS
confirmation was possible at the focus sites but not for the large-scale
North Siberian application. Hence, a rigorous post-classification of the
identified disturbance objects was necessary to reduce the amount of
false positives and narrow the analysis to RTS disturbances. Considering
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that RTS are very local, small-scale features, the amount of training and
validation data, compared to the false positives was very low and
sparsely scattered across North Siberia as qualitative VHR data is only
infrequently available for North Siberia. Also, prior studies of detailed
local RTS assessments are very sparse in this large study region (e.g.,
Séjourné et al., 2015; Gilinther et al., 2016). This sparseness in
high-resolution data decreases the LT-LS2 RTS classification accuracy to
a F1 score of 0.609 for RTS. At the same time, the LT-LS2 classification
reduced the overall number of identified disturbance objects drastically.
We are confident that final RTS mapping and analysis of RTS across
North Siberia, represents a reasonable and fitting framework for a first
large-scale assessment at high temporal resolution. However, we cannot
completely rule out the false inclusion of fire scar remnants, multi-year
active layer detachment slides or regular landslides, or other disturbance
artefacts as indicated by the classification accuracy.

The RTS distribution and density map indicates local and regional
RTS clusters, closely related to climatic, geologic and topographic con-
ditions. The use of VHR imagery and assessment methods can therefore
now be regionally targeted and used for a high spatial resolution
assessment of RTS in the future, provided the availability of VHR data.
Multi-sensor constellations such as RapidEye and PlanetScope acquire
images at increased rates and high spatial resolution, which increases
the likelihood of obtaining high quality images. This could confirm and
narrow the identified RTS objects in conjunction with the high temporal
resolution assessment presented here as well as enhance the identifica-
tion of initiation and small-scale changes. So far, the long time series of
high temporal high spatial resolution cannot be replaced by VHR data
but a combination of both will enhance the detection of small-scale
changes. Similarly, the development of new improved mapping
methods, such as deep learning algorithms, may help achieving a high
mapping accuracy. For example, RTS in Tibet were mapped using deep
learning techniques with CubeSat images at high spatial resolution,
which ensured a more accurate estimation of RTS-affected area but is
currently still limited to local study sites and only short assessment pe-
riods (Huang et al., 2020).

5. Conclusion

Our study includes the adaptation of the LandTrendr algorithm to
capture the rapid permafrost disturbance dynamics of RTS at high
temporal resolution in a first large-scale assessment across North Sibe-
ria. Parametrisation of LT-LS2 by extending the data input to Landsat
and Sentinel-2, adjustment of the temporal segmentation, adaptation of
the spectral and spatial masking parameters, and a binary machine-
learning classification allowed us to identify and map RTS. While
ground truth is sparse, we aimed to thoroughly assess and parametrise
the individual workflow steps with available VHR data, resulting in a
reliable and robust assessment framework for high temporal RTS anal-
ysis. Our assessment showed an overall steady increase in RTS-affected
area in the 8.1 x 10%m? study area and highlights the abundance and
rapid dynamics of abrupt permafrost thaw processes in ice-rich perma-
frost landscapes. Local focus-site assessments indicated spatio-temporal
variability of RTS thaw dynamics. These patterns and year-by-year
processes can only be detected at high temporal resolution and would
be missed by low temporal resolution assessments and trend analysis. It
is apparent that RTS do not develop uniformly but are caused by varying
drivers. The data set with annual resolution of RTS thaw dynamics now
allows for a detailed assessment of thaw slumping drivers. Our study
covered heterogeneous permafrost regions with varying climatic,
geologic, geomorphological and vegetation conditions, which are also
common in other regions of the pan-arctic. In our rather short time series
covering 20 years (2000-2019), we observed an increasing impact of
abrupt permafrost disturbances on the landscape. Considering that nu-
merical models project increasing permafrost thaw due to climate
change and strong Arctic warming also in very ice-rich permafrost re-
gions, we assume that this observed trend will further continue.
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Code and data products

The LT-LS2 RTS disturbance data set will be provided on PANGAEA
archive for public access.
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