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Abstract
The accelerating climatic changes and new infrastructure development across the Arctic require
more robust risk and environmental assessment, but thus far there is no consistent record of
human impact. We provide a first panarctic satellite-based record of expanding infrastructure and
anthropogenic impacts along all permafrost affected coasts (100 km buffer,≈6.2 Mio km2), named
the Sentinel-1/2 derived Arctic Coastal Human Impact (SACHI) dataset. The completeness and
thematic content goes beyond traditional satellite based approaches as well as other publicly
accessible data sources. Three classes are considered: linear transport infrastructure (roads and
railways), buildings, and other impacted area. C-band synthetic aperture radar and multi-spectral
information (2016–2020) is exploited within a machine learning framework (gradient boosting
machines and deep learning) and combined for retrieval with 10 m nominal resolution. In total, an
area of 1243 km2 constitutes human-built infrastructure as of 2016–2020. Depending on region,
SACHI contains 8%–48% more information (human presence) than in OpenStreetMap. 221
(78%) more settlements are identified than in a recently published dataset for this region. 47% is
not covered in a global night-time light dataset from 2016. At least 15% (180 km2) correspond to
new or increased detectable human impact since 2000 according to a Landsat-based normalized
difference vegetation index trend comparison within the analysis extent. Most of the expanded
presence occurred in Russia, but also some in Canada and US. 31% and 5% of impacted area
associated predominantly with oil/gas and mining industry respectively has appeared after 2000.
55% of the identified human impacted area will be shifting to above 0 ◦C ground temperature at
two meter depth by 2050 if current permafrost warming trends continue at the pace of the last two
decades, highlighting the critical importance to better understand how much and where Arctic
infrastructure may become threatened by permafrost thaw.

1. Introduction

Global warming is driving wide spread degrada-
tion of the Earth’s cryosphere and warming in the
Arctic is more pronounced than the global aver-
age (IPCC 2021). About 3.3 Million people are liv-
ing in permafrost regions in the Arctic according
to Ramage et al (2021). Warming of the Arctic res-
ults in widespread increase of ground temperatures

(Biskaborn et al 2019) and permafrost degradation is
occurring inmany regions (e.g.Hjort et al 2018, IPCC
2019). Expansion of thermokarst features has been
also documented related to expanding infrastructure
(Raynolds et al 2014). The length of the open water
season has been increasing over the Arctic leading to
increased capacity for coastal erosion (Barnhart et al
2014). Arctic coastal communities are seen as specific-
ally vulnerable to climate change due to the combined
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effects of sea ice loss and permafrost thaw (Irrgang
et al 2019) which add to the non-climatic factors that
require communities to adapt (Ford et al 2015). The
latter affects the vulnerability of local and indigenous
populations, increasing sensitivity to climate change
impacts and constraining adaptive capacity (Ford et al
2015). The impact with respect to the economic value
of ecosystem services, minerals and oil needs to be
considered (O’Garra 2017). A wide range of geospa-
tial data can be used to support vulnerability map-
ping including information on infrastructure such as
roads (Preston et al 2011). Risk assessment frame-
works which have been recently in focus for the Arctic
(Larsen et al 2021) include physical exposure as one
crucial element. The operability of such frameworks
presuppose that, for example, the location and extent
of infrastructure objects (settlements as well as trans-
port infrastructure) under risk is known.

Ramage et al (2021) considered the locations
of settlements for which population data have been
available. Other risk assessment frameworks consider
a much broader definition of the human footprint.
Also, roads, railways, buildings, and airport strips
are included (Suter et al 2019). Hjort et al (2018)
for example utilize OpenStreetMap (OSM) data to
represent built infrastructure on permafrost within a
risk assessment framework. This allows for the con-
sideration of infrastructure such as roads. However,
the nature of this type of database results in incon-
sistencies. To account for such inconsistencies, spe-
cifically regarding minor roads, Hjort et al (2018)
included only roads of a certain importance. In addi-
tion, as in similar studies, only roads and buildings
excluding the surrounding grounds were considered
part of the infrastructure. The infrastructure foot-
print in Arctic regions includes, however, also gravel
pads and mines (excavation sites) as surface types
(Raynolds et al 2014). In addition, large parts of the
Arctic and specifically recent industrial development
is not reflected in OSM (Bartsch et al 2020a). A con-
sistent record which considers all relevant features is
still lacking across the Arctic. The increasing human
impact due to industrial development (e.g. Kumpula
et al 2012) and military activities also remains to be
quantified.

Satellite data can potentially be used to improve
detection of infrastructure indicating human activ-
ities and also to categorize affected areas in Arctic
environments. This includes high resolution optical
satellite data (Kumpula et al 2012), the combination
with synthetic aperture radar observations (Bartsch
et al 2020a) as well as night-time light radiance
records (Bennett and Smith 2017). There are, how-
ever, clear limitations. Impacts to natural assets that
provide ecosystem services that are critical for sur-
vival and well-being of Arctic residents cannot be
addressed and are beyond the scope of this paper.

Here, it deserves to be mentioned that infrastructures
and other human impacts on the environment are
not inventions of settler colonists. Limiting ourselves
to transport infrastructure, indigenous networks of
trails (Aporta 2009), the seasonal use of rivers, etc
needs to be mentioned. The specific consideration of
settler infrastructures in this paper is prompted by
their size and quantity, which makes them detectable
through remote sensing.

The aims of this study are (1) to quantify change
of recent human impact in the panarctic coastal zone,
specifically new infrastructure since 2000, (2) identify
built infrastructure potentially impacted by recent cli-
mate change through combination with permafrost
time series (Obu et al 2021a, 2021b, 2021c), and
(3) to document the added value of satellite-derived
built infrastructuremaps along the Arctic coasts com-
pared to datasets by OSM (Ramm 2020), night-time
lights information (Elvidge et al 2021), and a recently
published settlement dataset for the Arctic (Ramage
et al 2021, Wang et al 2021). As a basis (aim #1),
the algorithms of Bartsch et al (2020a) and Nitze
et al (2018) are applied across the entire Arctic and
a fusion and post-processing scheme is developed.

2. Study area and data

2.1. Arctic coasts
The extent of our analysis domain is defined by
the spatial distance from the Arctic coast and by
the presence of at least partially discontinuous per-
mafrost (based on Obu et al 2021b). We chose a
100 km buffer from the coast to also include com-
munities upstream from estuaries across the Arctic,
which to some extent depend on sea access down-
stream (e.g. Cherskii in northern Yakutia). Compared
to the socio-ecological system definition approach by
Ramage et al (2021) andWang et al (2021) (consider-
ation of coastal dependence of settlements as defined
by expert assessment), our approach excludes set-
tlements located along the southern Alaskan coast,
most of Scandinavia, the southern Newfoundland
coast at the Atlantic Ocean, and several Russian settle-
ments south of the treeline. The analyses extent covers
approximately 6.2Mio km2. Figure 1 shows the extent
and boundaries for our study area and location of
settlements.

2.2. Data
A combination of Sentinel-1 (Synthetic Aperture
Radar—SAR) and Sentinel-2 (multispectral-optical)
was recommended by Bartsch et al (2020a) for human
footprint identification in Arctic environments using
the gradient boosting machines method, a machine
learning approach applicable in data sparse regions
(Chen and Guestrin 2016, Georganos et al 2018). An
approach using Sentinel-2 only was suggested by the
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Figure 1. Overview of analyses area (100 km buffer zone), settlements of Wang et al (2021) and newly in this study identified
settlements (red circles). Background: average permafrost extent derived from Obu et al (2021b).

same authors for the use of the Keras deep learning
framework. For our study of panarctic coastal infra-
structure mapping we therefore used both Sentinel
sensor types (for details see appendix A).

Sentinel-1 data for winter time (exclusion of
moisture impact on backscatter; December and early
January) were assembled for winters 2017/2018 in
90% of all processed scenes, but also for 2018/2019
and 2019/2020 in some cases.

Sentinel-2 is provided in granules of a size of
100 km. More than 1200 granules overlaped with our
100 km buffer area along the coast, but less than 300
did overlap with inhabited areas. In total 2424 gran-
ules from years 2016 to 2020 were used in our study.

We used Landsat data for the quantification
of normalized difference vegetation index (NDVI)
trends in association with infrastructure change since
2000. The combined archive of Landsat-7 and -8
datasets formed the basis for trend analyses using
multispectral indices as described inNitze andGrosse
(2016).

Auxiliary datasets included OSM (Ramm 2020),
ground temperature data from the European Space
Agency’s (ESA) climate change initiative (CCI) per-
mafrost project (Obu et al 2021a, 2021b, 2021c), a
global night-time lights dataset (Elvidge et al 2021)
and an Arctic settlements dataset (Wang et al 2021)
(for details see appendix A).

To validate the Sentinel-1 and Sentinel-2 infra-
structure classifications, Bartsch et al (2020a) used
vectorized data on infrastructure based on high resol-
ution observations of Prudhoe Bay and for several set-
tlements with built infrastructure on Greenland and
Longyearbyen. The Prudhoe Bay and Longyearbyen
datasets (for sources see table A1) are used in this

study to assess the quality of the post-processing
scheme, specifically the impact of different editors.

3. Methods

3.1. Pre-processing and classification
An existing processing chain (Bartsch et al 2020a)
was used as a first step to obtain results from
two different classification approaches. It includes a
pixel-based classification using a Gradient Boosting
Machine (Chen and Guestrin 2016) and a windowed
semantic segmentation approach (U-Net convolu-
tional neural network architecture) using the deep
learning framework Keras (Chollet 2017) with the
Tensorflow backend. The approaches will be referred
to as GBM and DL, respectively, in the following. The
GBM is pixel based and the selected scheme provided
three classes for human-affected areas and two classes
for other features (vegetated tundra and open water).
In contrast, theKerasDL framework allows for amore
contextual approach and three classes only covering
the target object types (human-affected area) were
produced.

3.2. Post-processing and fusion of infrastructure
datasets
As demonstrated by Bartsch et al (2020a), misclas-
sifications frequently occur for bare areas in case of
the GBM approach. This includes lake and sea shores,
river banks and exposed bedrock. Using, for example,
Google hybrid maps such obvious misclassifica-
tions can be manually removed. The raster inform-
ation was therefore converted to vector to allow
object-specific editing. GBM results also included the
classes ‘other/tundra’ and ‘water bodies’. Both were
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excluded from further analyses. All single pixel objects
were removed automatically before manual removal
involving several editors. The latter was carried out by
four editors independently for selected sites to test the
impact of possible performance differences. The same
validation data as considered in Bartsch et al (2020a)
was then used to assess the quality of the manual
post-processing for Prudhoe Bay and Longyearbyen
(Walker et al 2014, Lu et al 2018).

After clean-up, the outputs fromDL and theGMB
were fused.DLwas given priority in the fusionprocess
due to its better performance. In case of presence of an
object identified with DL, the objects from GBM are
dropped. Automatic fusion was carried out using the
Python package ‘geopandas’ (Jordahl et al 2021). In
the following step, polygons were dissolved by human
impact class. Since there are overlaps between adja-
cent Sentinel-2 granules, polygons of different classes
could still overlap after the dissolve step. Where there
was still overlap, differences were calculated using
polygon sets for each class to allow only one polygon
of a certain class at a single location. During this step,
highest priority was given to the building class, fol-
lowed by the road class.

3.3. Preparation of auxiliary datasets and
combination
A Theil-Sen regression (Sen 1968, Theil 1992) was
used for trend retrievals from 2 m ground temperat-
ure, active layer thickness (ALT), and permafrost frac-
tion. In case of Landsat derivedNDVI, the trends have
been obtained with Ordinary Least Square regres-
sion. For NDVI, changes per decade, and for all other
parameters, changes per year were extracted. For each
object the average change was derived. This was car-
ried out for all classes together as well as separately.
The analyses were made on different levels: the entire
Arctic and by country/region (in both cases subset
with the 100 km buffer).

NDVI change occurs due to climate change
(greening, rapid permafrost thaw) and hydrologic
processes as well as human impacts. A certain mag-
nitude of abrupt negative change can be expected in
the latter case. A value of 0.6 is a common NDVI for
Tundra in case of high shrub cover, but it can also be
lower; less than 0.3 is typical for bare ground (Bartsch
et al 2020b). An NDVI trend of smaller than−0.1 per
decade was therefore chosen as threshold for identi-
fication of impacted areas.

All objects were assigned settlement names and
further attributes where available. In a first step the
settlement database of Wang et al (2021) was used. A
40 km search radius was applied. Clusters of objects
which remained unassigned were manually reviewed
in a second step. Missing settlements were identi-
fied and added, guided by information from the
Google Hybrid data layer. The updated settlement
database was then extended for name and economic
use/function based on information accessible on the

internet. The following general categories were con-
sidered: fishing, agriculture (mostly reindeer herd-
ing), gas/oil industry, mining, other use (e.g. trans-
port hub), abandoned, and unknown (sub-categories
are provided in table B1). It should be noted that this
approach does not allow for distinction between, for
example, subsistence-harvest and commercial fisher-
ies or extractive industries overlapping with subsist-
ence land use.

Eventually a 40 km maximum search radius
(benchmark Bovanenkovo, Yamal) was applied to all
objects again in order to attribute the mapped fea-
tures to a certain settlement and to assign the eco-
nomic use/function to them. This is of relevance for
the comparison to the NDVI trends in order to ana-
lyze differences across different settlement and use
types.

3.4. Comparison with OSM
OSM data contain a wide range of features. But spe-
cifically the road class comprises a diversity of trans-
port routes. This includes also winter routes which
do not rely on permanent constructions and there-
fore are mostly not visible in summer acquisitions
of multispectral images. This needs to be considered
for the comparison. Therefore, based on the mapped
features, all relevant OSM objects (buildings, traffic,
transport, railways, roads) were extracted to identify
how much of our dataset is represented in OSM, but
only buildings were analyzed for the extraction of
satellite derived features based on the OSM. In order
to account for positional inaccuracies in both data-
sets, buffers of 30, 50 and 100 m were used for the
overlay analyses.

4. Results

4.1. Post-processing of infrastructure
classifications
Three-hundred and sixty-six granules contained
identifiable infrastructure. 99.5% of GBM results and
35.0% of DL results were manually removed. Devi-
ations between different editors were less than±2.5%
(differences largest for roads, tables 1 and 2). The
merged dataset provides a better producers accuracy
for roads (60%) while keeping the values for nat-
ural areas high (95%; see table 3). The results from
Prudhoe Bay (producers accuracy) for ‘impacted’
areas demonstrated the added value of merging DL
and GBM. While DL provided very good results for
roads it had low performance for other ‘impacted’
areas. The producers accuracy for Longyearbyen sug-
gests better performance of DL alone, but the users
accuracy could not be derived in this case (table 4).
The manual editing specifically improved the GBM
results (both sites) and allowed for an enhancement
through the merging.
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Table 1. Users and producers accuracy of post-processed results (by four different editors A–D) of DL (deep learning) and GBM
(gradient boosting machines) for Prudhoe Bay. Reference dataset: Walker et al (2014) with separation of non-impacted (56.41 km2),
impacted (4.16 km2), roads (1.44 km2).

Producer accuracy User accuracy

Building as Other as ‘Impacted’ as ‘Impacted’ as
Method Editor Road ‘impacted’ ‘impacted’ Natural Road building other Natural

DL A 54% 95% 77% 93% 35% 5% 11% 99%
B 54% 95% 77% 93% 35% 5% 11% 99%
C 54% 95% 77% 93% 35% 5% 11% 99%
D 54% 95% 77% 93% 35% 5% 11% 99%

GBM A 28% 80% 56% 98% 44% 33% 30% 97%
B 28% 80% 57% 98% 45% 33% 30% 97%
C 28% 80% 58% 98% 44% 33% 30% 97%
D 28% 80% 57% 98% 45% 33% 30% 97%

Table 2. Producers (per reference class) accuracy of post-processed results (by four different editors A–D) of DL (deep learning) and
GBM (gradient boosting machines) for Longyearbyen. Reference dataset: Lu et al (2018) with 0.13 km2 for roads and buildings and
0.42 km2 for natural areas.

Method Editor Road Building Natural

DL A 98.10% 96.51% 100.00%
B 98.10% 96.51% 100.00%
C 98.10% 96.51% 100.00%
D 98.10% 96.51% 100.00%

GBM A 46.65% 85.27% 100.00%
B 48.52% 85.27% 99.98%
C 44.96% 85.40% 100.00%
D 49.71% 85.27% 100.00%

Table 3. Users and producers accuracy of the merged product, original and post-processed results (average of four different editors, see
table 1) of DL (deep learning) and GBM (gradient boosting machines) for Prudhoe Bay. DL-original refers to results of Bartsch et al
(2020a). Reference dataset: Walker et al (2014) with separation of non-impacted (56.41 km2), impacted (4.16 km2), roads (1.44 km2).

Producers accuracy Users accuracy

Building as Other as ‘Impacted’ ‘Impacted’
Product Road ‘impacted’ ‘impacted’ Natural Road as building as other Natural

DL-original 54.00% 95.00% 77.00% 93.00% 35.46% 5.09% 11.10% 97.85%
DL postprocessed
(average)

53.87% 94.81% 76.88% 92.96% 35.36% 5.01% 10.96% 99.28%

GBM-original 24.00% 78.00% 38.00% 99.00% 46.46% 33.87% 31.52% 76.77%
GBM postprocessed
(average)

28.20% 80.07% 57.03% 97.95% 44.75% 33.15% 30.37% 96.89%

Final product 26.04% 79.50% 64.68% 98.46% 69.37% 28.29% 31.21% 95.46%

Table 4. Producers accuracy of the merged product, original and post-processed results (average of four different editors, see table 1) of
DL (deep learning) and GBM (gradient boosting machines) for Longyearbyen, Svalbard. DL-original refers to results of Bartsch et al
(2020a). Reference dataset: Lu et al (2018).

Product Road Building Other

DL-original 65% 75% 100%
DL-postprocessed (averaged) 98% 97% 100%
GBM-original 55% 36% 61%
GBM-postprocessed (averaged) 47% 85% 100%
Final product 57% 95% 100%

4.2. Post-processed settlements data base
The settlement dataset ofWang et al (2021) contained
285 settlements within our analyses extent. 47% of
all objects could be directly assigned to them. After
the semi-automatic extension (addition of 221 settle-
ments based on identified clusters within our results,
figure 1), 87% could be attributed. Remaining objects

correspond mostly to roads and railways connecting
the remote locations.

4.3. Human-impacted area across the Arctic
In total, 0.02% of the land area within the 100 km
buffer was identified as human-impacted (sum of
all target classes). The overall sum is 1243 km2.
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Figure 2. Distribution of human-impacted area as mapped with Sentinel-1 and -2 within the analysis extent across different
permafrost zones by country/region (year 2019, permafrost zone source: Obu et al (2021b)). For analyses extent see figure 1.

Table 5. Distribution of human-impacted areas in absolute and
relative values (with respect to sum of identified areas within the
100 km Arctic coastal zone) and proportion of NDVI reduction of
more than 0.1 per decade by country/region for 2000–2018.

Type Roads Buildings
Other
impacted areas

Area in km2 661 204 378
Proportion in % 54 16 30
NDVI decline in %

Canada 5.7 8.7 8.7
Greenland 0.9 1.9 1.0
Russia 15.4 14.4 28.8
Svalbard 18.2 7.6 26.1
United States 3.4 6.1 11.7

More than 50% occurs over continuous permafrost
and more than 30% over discontinuous permafrost
(figure 2). Most identified areas in Canada and US
are located on continuous permafrost. For Russia this
applies to less than half of them. The majority of
the human-impacted area was assigned to the ‘Road’
class and least to ‘Buildings’ (table 5). Most of the
human impacted areas that we identified relate to
oil/gas industry and mining activities (figure 3). It
needs to be noted that there might also be subsist-
ence land use in the surroundings.On average, 31%of
area associated with oil/gas (overall occurrence 38%)
is new since 2000 and 5% in case of mining (overall
occurrence 21%) (figure 5).

The NDVI trend with the maximum frequency
is positive (figure 4(a)) and the total area with a
positive trend is also larger than with a negative trend
(789 km2 versus 454 km2, respectively). The average
is, however, close to zero (−0.006 per decade). Lar-
ger changes (greater than 0.1) are less common and
differ between regions (figures 5 and C1, table 5).
As an example, greening seems to occur for Svalbard
settlements with at the same time a decline at the
same magnitude due to extension of infrastructure.
Greening dominates around Longyearbyen, Ny Ale-
sund and Pyramiden and a decline around themining
towns of Svea and Barentsburg (figure 6). A notable
partial NDVI decline can be observed for all regions
exceptGreenland (figures 5 andC1). The affected area
and proportion is largest for Russia. Most relates to
infrastructure expansion inWestern Siberia (figure 7)
and in general to gas and oil industry (figure 8). In
total, 159 km2 are affected in Russia, compared to
19 km2 for Canada and 9 km2 for US. Most falls into
the categories ‘roads’ and ‘other’ (figure C1).

Almost 97% of all mapped areas showed a pos-
itive trend in ground temperature and 93% for ALT
(figures 4(b) and (c)). Temperatures were increasing
by 0.8 ◦C per decade on average over the human-
impacted area identified within the analysis extent.
The ALT increase was 11 cm per decade (average
ALT in 2019 was 84 cm). About 8% changed from a
permafrost fraction of 100% to a lower value between
1997 and 2019.
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Figure 3. General use type for human-impacted area as mapped with Sentinel-1 and -2 within the analysis extent by
country/region. For analyses extent see figure 1. See table B1 for details on categories.

The changes in ground temperature during the
last two decades tend to be larger in colder permafrost
than for ground with temperatures near zero degree
C (as determined for the year 2019, figure 9), which
agrees with prior findings (Romanovsky et al 2017,
Biskaborn et al 2019, Box et al 2019). As the mag-
nitude for the latter is still on the order of one degree
C for this time period, the expected impact during the
upcoming decades is large if the trend continues. 55%
and 67% of human-impacted areas will be located on
ground with larger than zero degree C mean annual
ground temperature down to 2m depth in 2050 and
2060 respectively. Most affected is Russia and some
areas in the US (Alaska) (figures 11 and C2).

4.4. Night-time lights comparison
Approximately 53% of the overall identified human-
impacted area was represented in the night-time light
dataset (3% had no data, 44% had a radiance value
of 0 nWcm−2 sr−1). This overlap was similar across
all considered classes, with only a slightly lower frac-
tion for buildings. The uncovered areas included 48%
of the roads or rail tracks, 47% of the other human
impacted areas, and 42% of the buildings class. The
latter were often constructions in association with
pipelines and railroads. It also included misclassifica-
tions of road segments.

The most frequent night-time light radiance was
around 10 nWcm−2 sr−1 (figure 4). It was derived
from all regions where data is available (figure 10;
Svalbard is not included in Elvidge et al 2021). It was
higher for Greenland (about 20 nWcm−2 sr−1) and
lower for Russia andUS (around 6–7 nWcm−2 sr−1).

The maximum for Greenland was 40, for Canada 90,
and for the US about 700 nWcm−2 sr−1. A value of
1000 nWcm−2 sr−1 per object was only exceeded for
Russia. Such a high radiance occurred over 0.7 km2.
The overall average radiance for objects with data was
26 nWcm−2 sr−1.

4.5. OSM comparison
In total, 40% of human-impacted area identified in
SACHI was not yet included in OSM. This value is
lowest for Svalbard (8%) andhighest for Russia (48%)
considering a 100 m buffer (table 6). About 18%
of buildings contained in the OSM have not been
identified as human-impacted considering a radius of
100 m.

5. Discussion

The combination of Sentinel-1 and Sentinel-2 as well
as the GBM and DL approach provides a means for
quantification of human-impacted areas in the per-
mafrost affected Arctic coastal zone. But a range of
limitations needs to be considered when using the
resulting SACHI dataset for further analyses. Many
smaller unpaved tracks which are very common in the
Arctic (Kumpula et al 2012, Ehrich et al 2018) can-
not be captured due to the spatial resolution limits.
The same applies to winter roads (seasonal ice roads)
which play an important role in the Arctic, but can-
not be readily detected with summer season imagery.
In general, the ‘road’ class which encompasses linear
infrastructure also including rail tracks has a rather
low accuracy based on the chosen validation datasets
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Figure 4. Histograms for selected trends and states within the human-impacted area as mapped with Sentinel-1 and -2:
(a) normalized difference vegetation index (NDVI) trends 2000–2018∅=−0.006), (b) ground temperature (GTD) trend at 2 m
depth 1997–2019 (∅=−0.08 ◦C yr−1), (c) active layer thickness (ALT) trend 1997–2019 (∅=−1.1 cm yr−1), (d) permafrost
fraction (PFR) trend 1997–2019 (∅=−0.23%), (e) Ground temperature at 2 m depth in 2019 (∅=−2.9 ◦C), (f) active layer
thickness 2019 (∅= 84cm), (g) Permafrost fraction 2019 (∅= 85.9%), (h) Night-time light radiance 2016 (Elvidge et al 2021)
for the mapped areas (∅= 26.3 nWcm−2 sr−1). Sources of permafrost values (b)–(g): Obu et al (2021a, 2021b, 2021c).

(tables 3 and 4). The 10 m resolution is very limit-
ing but still provides a step forward for infrastructure
mapping in Arctic environments. Further, Bartsch
et al (2020a) noted that the performance ofHHversus
VV polarization for the Gradient Boosting Machines

approach differs. This may affect results from Green-
land. However, our approach to fuse GBM with the
Deep Learning results helps to limit the impact of
some of the differences. If only linear infrastructure
is of interest, then the application of Deep Learning

8



Environ. Res. Lett. 16 (2021) 115013 A Bartsch et al

Figure 5. Fraction of Landsat-based normalized difference vegetation index (NDVI) change trends 2000–2018 for each class of
human impacted area as mapped with Sentinel-1 and -2 by country/region.

might be sufficient (tables 3 and 4). Other impacted
areas such as open pit mines are irregularly shaped
and can not yet be well captured with DL (users
accuracy table 3). A revision of the training of the
algorithm and extension of target classes to reflect dif-
ferent possible ‘other impacted’ areas might allow for
improvements.

Three issues need to be considered when inter-
preting the NDVI trends: (1) the retrieval of zonal
statistics by object may cause object size-dependent
effects, (2) themismatch of spatial resolution between
Sentinel-1/2 and Landsat, and (3) the range of NDVI
levels across different Arctic landscapes. As NDVI is
derived for specific objects, smaller features such as
buildings have fewer pixels and thus are more likely
to be assigned extreme changes while larger objects

may be less represented through extreme changes
because a larger number of pixels averages out strong
change. This is especially relevant for road networks
(also connecting to runways, as e.g. in Longyearbyen,
figure 6(b)). But due to the fact that NDVI change is
derived from a coarser resolution dataset which does
not resolve roads, also a pixel based retrieval is not
expected to providemore locally representative values
in most cases. The mixed pixel effect likely has a lar-
ger effect on roads than on square gravel pads. Hence,
variations between objects may not in all cases reflect
an actual degree of vegetation removal. It is therefore
suggested to derive change/no change only from the
SACHI dataset (as done in this study). The general
background NDVI may also differ between regions
and this should be considered. Extensions of built

9
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Figure 6. Landsat-based normalized difference vegetation index (NDVI) change 2000–2018 within human impacted areas as
mapped with Sentinel-1 and -2 (averages for distinct objects) for (a) central Svalbard, (b) subset for Longyearbyen and (c) Svea
(background: OpenStreetMap). Values less than−0.1 indicate new human impacts after 2000. Source of settlement locations:
Wang et al (2021).

infrastructures on bedrock or other barren ground,
for example in the High Arctic, might not reflect well
in the NDVI trend values. Including other multi-
spectral indices sensitive to soil moisture, such as the
normalized different moisture index, may enhance
such detection in future upgrades of the workflow.
The focus for this study was on vegetation decline,
but greening is also a common feature in Arctic set-
tlements (see Svalbard example figure 6). Settlements
with built infrastructure are in cases partially aban-
doned or vegetation recovers after disturbance due to
construction works.

The magnitude of ground temperature change
(figure 11) is similar to previous findings which focus
on larger parts of the Arctic. Ramage et al (2021)
estimate that about 42% of settlements currently
on permafrost will experience widespread perma-
frost thaw by 2050. Hjort et al (2018) estimate based
on statistical modelling of mean annual ground

temperature that 70% of all Arctic infrastructure
will be affected by thaw by 2050 (RCP4.5 for 2041–
2060). These estimates are, however, not directly
comparable due to the different extent, less con-
sidered human-impacted areas, and differences in
the retrieval for ground temperature projections
for 2050 (2 m depth versus unspecified depth).
The simple trend interpolation results specific-
ally deviate in Western and Far Eastern Siberia
(figure 11).

The permafrost temperature dataset used in this
study is based on a modelling approach (Wester-
mann et al 2015, Obu et al 2021c). Adequate soil
parameterization is needed to represent heat trans-
fer. Many artificial surfaces are currently not con-
sidered in such models. In case of larger areas with
built infrastructure (with respect to the 1 km gridding
of the permafrost data), temperatures and ALTmight
therefore deviate.

10
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Figure 7. Landsat-based normalized difference vegetation index (NDVI) change 2000–2018 within human impacted areas as
mapped with Sentinel-1 and -2 (averages for distinct objects) for (a) Western Siberia, (b) subset for Yar-Sale on the southern
Yamal peninsula and (c) the Yamburg gas and condensate field (background of (b) and (c): OpenStreetMap). Values less than
−0.1 indicate new human impacts after 2000. Source of settlement locations: Wang et al (2021).

15% of identified objects could not be assigned to
a specific settlement. This, on the one hand reflects
remoteness of some infrastructures for this region
but might also be caused by the fact that a name
could not be found for all object clusters, especially
in Russia. Some of these settlements are not histor-
ically grown public places but they result from min-
ing industry. Constructions related to mining, oil
and gas industry typically extend over larger regions
with a network of roads and pipelines which con-
nect gravel pads or mines with industrial facilities
(e.g. figure 7(c)). Use categories depend on availab-
ility of information. No category could be assigned in
47 cases. Those aremost likely indigenous communit-
ies. It can also be assumed that not all landuse and
economic activities are captured. Some settlements
in Canada and Alaska have been assigned Tourism
as the only category (figure B1) but subsistence land
use such as hunting and fishing can be most likely

also expected. Mining and Gas/Oil industry use can
be, however, clearly identified and thus features asso-
ciated with indigenous communities outside these
regions potentially separated. Such settlements are
characterized by slightly increasing NDVI and low
night-time light radiance values (table B1).

Owing to the OSM data model, there can theoret-
ically be an infinite number of mappings from OSM
data to discrete GIS layers. Here, we used the thematic
layers extracted by Geofabrik. Themapping they used
is described in detail by Ramm (2019). Certain layers,
such as ‘points of interest’ or ‘places’ were available as
point geometries, that could not be used in our ana-
lyses. Road data were available as linestring geomet-
ries only, which might potentially affect the compar-
isons to our results.

Elvidge et al (2017) note a background radi-
ation of about 1 nWcm−2 sr−1 in high latitudes.
This reduces the features with night-time light
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Figure 8. Landsat-based normalized difference vegetation index (NDVI) change 2000–2018 within human impacted areas as
mapped with Sentinel-1 and -2 by general use type. Values less than−0.1 indicate new human impacts after 2000.

information further, to 44.9%. Large cities such as
Seoul can have areas with radiance of larger than
100 nWcm−2 sr−1 according to Elvidge et al (2021).
About 3% of the human impacted area along the
Arctic coasts has values higher than this. It occurs
for example on the Prudhoe Bay Oil field in Alaska,
Churchill in Canada and in many oil/gas industry
settlements in Western Siberia. Bennett and Smith
(2017) discuss the detection of gas flaring for Bovan-
enkovo (Yamal, Western Siberia). They exemplify the
derivation of fixed capital investment (oil as well
as non-oil producing) from night-time light prop-
erties for Russia. Future studies may therefore also
consider the inclusion of night-time light trends for
monitoring of industrial developments across the
Arctic.

The identifiable features cover only a proportion
of assets which are of relevance to local communit-
ies, providing limited insight for vulnerability stud-
ies (Fritz et al 2017, Brady and Leichenko 2020). The
possibility to identify built infrastructure and popula-
tion centers does nevertheless contribute to assessing
Arctic exposures to global warming impacts. First, the
pan-arctic scale allows comparisons between different
regions and landuse types. Second, the extension of
the features with resource use categories provides
a first step for enhanced insight into regions with
limited socio-economic diversity and proximity of
indigenous communities to industrial developments.
Natural assets (Brady and Leichenko 2020), sym-
bolic values (Adger et al 2011) and societal limits
to adaptation (Adger et al 2009, Ford et al 2015)
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Figure 9. Scatterplots of trend versus 2019 status for (a) ground temperature at 2 m depth, (b) active layer thickness and
(c) permafrost fraction. Each point represents the average for a distinct object (human impacted area) as mapped with Sentinel-1
and -2 (Bartsch et al 2021). Calculations are based on Obu et al (2021a, 2021b, 2021c) respectively.

are critical aspects of global warming impacts in the
Arctic that are not captured in this study. It there-
fore provides only limited insight into what is at
risk for local communities. Satellite derived informa-
tion, however, may aid identification of natural assets
but implementation at the Arctic scale (what would
require a high degree of automatizing) is challenging.
For example, while built infrastructure was the focus
here, satellite information using other techniques can
be used to detect coastal change, including barrier
islands and other coastal features that are rich in well-
mapped subsistence and related traditional land use
in the Arctic.

The actual interpretation regarding the impacts
on local communities cannot be uniformly handled
for the Arctic. Country specific developments need to
be considered. Some mining and hydrocarbon infra-
structures are led by Native Corporations in Alaska

Table 6. Percentage of human impacted area not included in
OpenStreetMap considering buffers of 30, 50 and 100 m.

Region 30 m 50 m 100 m

Canada 63 % 48 % 34 %
Greenland 53 % 38 % 26 %
Russia 68 % 58 % 48 %
Svalbard 43 % 22 % 8 %
Alaska 48 % 32 % 20 %

(Brady and Leichenko 2020) whereas such involve-
ment is not documented for Russia. Overall, expand-
ing infrastructure can be only observed for settle-
ments with mining and gas/oil industry related use.
While we can monitor the extent of impact, the qual-
ity of local impacts can only be assessed through
in-situ fieldwork. It also needs to be considered that
the development of the often externally controlled
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Figure 10. Night-time light radiance (source: Elvidge et al 2021) value occurrence for all classes of human impacted area as
mapped with Sentinel-1 and -2 by country/region (analysis extent only).

extractive infrastructure adds to the vulnerability for
local residents, in addition to climate change, lead-
ing to ‘double exposure’ (O’Brien and Leichenko
2000).

6. Conclusions

Positive ground temperature trends during the last
two decades were observed for the vast majority of
identified infrastructure objects. More than half of it
will shift from permafrost to non-permafrost at 2 m
depth by 2050 considering a simple ground temper-
ature trend extrapolation.

The inclusion of natural assets which are of high
relevance for local communities remains open and
requires future research with respect to the utility
of satellite data analyses. Nevertheless, the identific-
ation of infrastructure and population centers across
the Arctic provides a step forward for human impact
monitoring in Arctic environments. Sentinel-1/2

derived impacts on natural assets provide more detail
than any other currently available records for this
region. Conventional satellite derived information is
confined to densely populated regions with built-up
areas and therefore the Far North, such as Svalbard,
is often not included and small Arctic settlements as
typical for the Arctic are not being considered. The
combination with satellite derived vegetation index
(NDVI) trends allows for identification of recently
build infrastructure. Our results suggest that the
detectable human-impacted area in the Arctic coastal
region increased by 15% since 2000. Themajority can
be attributed to the oil/gas industry. These findings
highlight continued industrial development, which
also shows up in night-time lights observations. Fur-
ther developments of monitoring schemes may com-
bine classifications with NDVI and night-time light
trends. Databases on coastal dynamics currently only
document coastline change (Lantuit et al 2012). Such
information should be combined with information
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Figure 11. Distribution of Sentinel-1/2 derived human-impacted areas (SACHI objects) within the 100 km coastal zone.
Background: Permafrost presence at 2 m depth (mean annual ground temperature<0 ◦C) in 2050 based on extrapolated trends
(1997–2019; input: Obu et al (2021c), ground thermal modelling based on satellite derived landsurface temperature in
combination with reanalyses data) and a statistical modelling result for a RCP 4.5 scenario for 2050 (source: Karjalainen et al
2018; mean annual ground temperature<0 ◦C, unspecified depth).

on settlements and built infrastructure in order to
facilitate advanced vulnerability assessment at cir-
cumpolar scale.
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Appendix A. Used datasets

Table A1. Overview of used datasets for input, comparison and evaluation.

Dataset name Source Type
Used layers/
bands

Spatial
coverage

Temporal
coverage Use

Sentinel-1 Copernicus
Data Hub

Synthetic
aperture radar

C-band,
Interferometric
Wide swath
mode (IW),
Polarizations
VV/VH
(most areas)
or HH/HV
(Greenland)

Full analyses
extent, spatial
resolution of
5× 20 m

2017–2020 Input for GBM
classification

Sentinel-2 Copernicus
Data Hub

Multispectral Level 1C,
orthorectified
images of top
of atmosphere
reflectance; all
10 and 20 m
bands

Full analyses
extent, 10
and 20 m
resolution

2016–2020 Input for
GBM and DL
classification

Landsat Landsat-7 and
-8 archive

Multispectral Red and Near
Infrared

Full analyses
extent, 30 m
resolution

2000–2018 Input for
NDVI trend
retrieval

OpenStreetMap Geofabrik
GmbH,
Karlsruhe,
Germany,
www.geofa
brik.de/

Streets and
building
information in
vector format

Relevant
OSM objects
categories:
buildings,
traffic,
transport,
railways and
roads

inconsistent
coverage of
analyses extent

unknown Comparison
with results

Permafrost_cci Obu et al
(2021a, 2021b,
2021c)

Derived from
a ground
thermal
model using
landsurface
temperature

Ground
temperature
at 2 m depth,
permafrost
extent, active
layer thickness

Full analyses
extent, 1 km
resolution

1997–2019 Combination
with results

Night-time
lights global
dataset (VNL
V2)

Elvidge
et al (2021)

Derived from
the visible
and infrared
imaging suite
(VIIRS) day
night band
(DNB) on
board of JPSS
satellites (joint
polar-orbiting
satellitesystem)

Radiances in
nWcm−2 sr−1

Full analyses
extent, 15
arc seconds
resolution

2016 Combination
with results

Arctic
circumpolar
settlements

Wang
et al (2021)

Inhabited
communities
with known
population

Point
coordinates,
names

Full analyses
extent

2017 Comparison
with results,
initial input
for improved
settlement
database

Cumulative
impact map

Walker
et al (2014)

Aerial
photographs
derived
boundaries

Shapefiles with
human impact
as attributes

Three sites
(each 20 km2)
at the Prudhoe
Bay oil
extraction
site, US

1949–2011 Evaluation of
results

Calibration
data for
infrastructure
mapping

Lu et al (2018) Annotated
catastral
information

Shapefiles of
buildings and
roads

Partial
coverage of
Longyearbyen,
Svalbard

2018 Evaluation of
results
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Appendix B. Considered categories for use attributes

Table B1. Considered categories for use attributes at different levels. Main economic activities (use) and most relevant (general use) as
well as areal extent as identified with the Sentinel-1/2 data and selected properties (average night-time light radiance in nWcm−2 sr−1

(NR) and normalized difference vegetation index (NDVI) trend are provided.

Use General use Area (km2) NR NDVI trend

Coal mining Mining 4.19 No data −0.16
Coal mining, tourism Mining 4.51 No data 0.09
Diamonds mining Mining 0.25 1.88 0.05
Farming Agriculture 2.55 3.73 0.02
Fishing Fishing 88.90 5.36 0.01
Fishing, education Fishing 0.56 10.05 −0.02
Fishing, farming Fishing 0.77 9.75 0.01
Fishing, gold mining Mining 34.32 3.23 0.03
Fishing, herding Fishing 1.91 4.39 0.04
Fishing, herding, hunting Fishing 10.57 5.03 0.01
Fishing, hunting Fishing 36.35 4.35 0.02
Fishing, hunting, tourism Fishing 0.86 9.73 0.04
Fishing, tourism Fishing 32.12 8.47 0.01
Forest Other 1.28 1.94 0.07
Gas, herding Gas/oil 1.00 9.84 0.01
Gas/oil Gas/oil 410.56 31.48 −0.03
Gas/oil, tourism Gas/oil 5.29 33.77 0.02
Gold mining Mining 64.06 1.25 0.03
Gold & uranium mining Mining 4.07 1.67 0.01
Herding Agriculture 17.62 7.52 0.01
Historical Other 1.84 1.60 0.03
Hunting Other 2.82 0.11 0.04
Lead−zinc mining Mining 11.22 0.00 0.02
Military Military 39.52 3.21 0.04
Military, tourism Military 5.12 1.80 0.01
Mining Mining 58.20 0.48 0.04
Nature reserve Other 0.95 7.52 −0.04
Nickel mining Mining 51.96 3.85 −0.02
Quartz mining Mining 0.93 0.00 0.00
Research station Other 0.01 5.18 −0.08
Research station, coal mining Other 0.46 No data 0.13
Tourism Other 71.01 6.64 0.00
Transport Other 4.83 2.46 0.03
Transport, mining Other 16.84 2.07 0.06
Abandoned Abandoned 32.50 0.96 0.02
Unknown Other 67.19 2.96 0.02
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Figure B1. Assigned use categories for settlement centers with identified built infrastructure (coordinates for 285 settlements
extracted fromWang et al (2021); 221 added using Bartsch et al (2021), see figure 1) based on publicly available information
(analysis extent only; partially summarized, see table B1). Note, the actual extent of land use is not reflected in this representation.
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Appendix C. Additional regional results plots

Figure C1. Area extent of Landsat-based normalized difference vegetation index (NDVI) change trends 2000–2018 for each class
of human impacted areas as mapped with Sentinel-1 and -2 by country/region (analysis extent only).
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Figure C2. Scatterplots of ground temperature (GTD; 2 m depth) trend versus 2019 status for different countries/regions
(analysis extent only). Each point represents the average for a distinct object (human impacted area) as mapped with Sentinel-1
and -2 (Bartsch et al 2021).
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