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The KP equation is a nonlinear dispersive wave equation 
which provides an excellent model for resonant interactions of 
shallow-water waves. It is well known that regular soliton 
solutions of the KP equation may be constructed from 
points in the totally nonnegative Grassmannian Gr(N, M)≥0. 
Kodama and Williams studied the asymptotic patterns 
(tropical limit) of KP solitons, called soliton graphs, and 
showed that they correspond to Postnikov’s Le-diagrams. In 
this paper, we consider soliton graphs for the KP hierarchy, 
a family of commuting flows which are compatible with the 
KP equation. For the positive Grassmannian Gr(2, M)>0, 
Kodama and Williams showed that soliton graphs are in 
bijection with triangulations of the M -gon. We extend this 
result to Gr(N, M)>0 when N = 3 and M = 6, 7 and 8. In 
each case, we show that soliton graphs are in bijection with 
Postnikov’s plabic graphs, which generalize Le-diagrams.
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1. Introduction

The KP equation is a nonlinear partial differential equation, introduced by Kadomtsev 
and Petviashvili in 1970 [10], which provides an excellent model for resonant interactions 
of shallow-water waves (see e.g. [2,11]). A solution u = u(x, y, t) to the KP-equation 
represents the wave amplitude at the point (x, y) in the plane for a fixed time t. In 
this paper, we investigate soliton graphs, which capture the combinatorial structure of 
regular line soliton solutions to the KP equation.

Line soliton solutions model waves whose peaks are localized along a collection of 
line segments and rays. We may thus represent the wave peaks as edges of a network. 
By rescaling the variables, we construct soliton graphs, which capture the asymptotic 
behavior of these networks. Our goal is to classify soliton graphs.

Regular line soliton solutions to the KP equation can be constructed from points in 
the real Grassmannian of N -planes in M -space [15,12,1]. We restrict our focus to line-
soliton solutions arising from points in the totally positive Grassmannian Gr(N, M)>0; 
the space of N × M matrices with positive maximal minors, modulo row operations. 
Remarkably, the corresponding soliton graphs are examples of Postnikov’s plabic graphs, 
a class of planar networks which give coordinate charts on Gr>0(N, M) [20,15]. Plabic 
graphs are central to the theory of total positivity and cluster algebras [23,5], and have 
a straight-forward combinatorial classification [19].

We say a plabic graph for Gr(N, M)>0 is realizable if it is structurally equiva-
lent to a soliton graph. Kodama and Williams demonstrated that every plabic graph 
for Gr(2, M)>0 is realizable, for all M [15]. Huang showed that every plabic graph 
for Gr(3, 6)>0 is realizable, and conjectured that the same holds for any Gr(N, M)>0
[9]. In this paper, we describe an inductive algorithm to construct soliton graphs 
for Gr(N, M)>0, and use the algorithm to show that Huang’s conjecture is true for 
Gr(3, 7)>0 and Gr(3, 8)>0. However, we show that the conjecture is false in general. In 
fact, we construct a plabic graph for Gr(9, 18)>0 which cannot be realized as a soliton 
graph.

Constructing a soliton graph involves an initial choice of parameters; some plabic 
graphs are realizable only for certain choices of these parameters. For Gr(3, 6)>0 and 
Gr(3, 7)>0, we classify the plabic graphs which may be realized for each choice of initial 
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parameters. For Gr(3, 8)>0, we show that for any plabic graph, there is some choice of 
parameters for which the graph is realizable, but do not have a more precise classification.

In Section 2 below, we provide the necessary background to state our results more 
precisely. We start with a brief review of the KP equation and soliton graphs. Then, 
as a background information for the present paper, we define the duality map, which 
gives a correspondence between soliton graphs and soliton subdivisions, and sketch some 
combinatorial background. At the end of this section, we describe the structure of the 
paper and state our main theorems.

2. Preliminaries

2.1. The KP equation and soliton solutions

The KP equation is a two-dimensional nonlinear dispersive wave equation given by

∂

∂x

(
−4∂u

∂t
+ 6u∂u

∂x
+ ∂3u

∂x3

)
+ 3∂

2u

∂y2 = 0, (2.1)

where u = u(x, y, t) represents the wave amplitude at the point (x, y) for a fixed time t
[10]. It is standard to express the solutions in terms of the τ -function in the form (see 
e.g. [8,12]),

u(x, y, t) = 2 ∂2

∂x2 ln τ(x, y, t). (2.2)

We are interested in solutions of the KP equation that are regular in the entire 
xy-plane, where they are localized along certain line segments and rays. We call such 
solutions line-soliton solutions, or KP solitons (see [12] for a survey of the KP soliton). 
They are constructed as follows: First fix real parameters {κ1 < κ2 < · · · < κM}, and 
let A = (ai,j) be a full-rank N ×M matrix for some N < M . Then the τ -function can 
be expressed as the sum of exponential terms,

τ(x, y, t) =
∑

I∈([M]
N )

ΔI(A)KI exp(ΘI(x, y, t)). (2.3)

Here I = {i1 < i2 < . . . < iN}, and 
([M ]

N

)
denotes the set of all N -index subsets of 

[M ] := {1, . . . , M}. The term KI is defined by KI =
∏

j>l(κij − κil), and the order in 
the parameters κ’s implies KI > 0. The coefficient ΔI(A) is the N × N minor of the 
matrix A with the columns labeled by the index set I, and the exponent ΘI(x, y, t) is 
given by

ΘI(x, y, t) =
∑

θi(x, y, t) = pIx + qIy + ωIt, (2.4)

i∈I
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where pI =
∑
i∈I

κi, qI =
∑
i∈I

κ2
i and ωI =

∑
i∈I

κ3
i . It was then shown in [14] that the τ -

function is positive for all (x, y, t) (i.e. the solution is regular) if and only if ΔI(A) ≥ 0
for all the N -element subset I. In this case, the matrix A is called a totally nonnegative
(TNN) matrix [20].

The KP equation admits an infinite number of commuting flows, and these flows all 
together define the KP hierarchy (see e.g. [18]). Let {tn : n = 1, 2, . . . , } denote the flow 
parameters. Then the τ -function for the KP hierarchy is given by an extension of (2.3),

τ(x, y, t) =
∑

I∈([M]
N )

ΔI(A)KI exp(ΘI(x, y, t)), (2.5)

where t = (t3, t4, . . .), and the definition of ΘI(x, y, t) is analogous to (2.4), i.e. ΘI =∑
j∈I

θj with

θj(x, y, t) = κjx + κ2
jy +

M−1∑
i=3

κi
jti.

Setting t = t3, and treating the remaining ti-parameters as constants, we obtain a soliton 
solution to the KP equation.

Remark 2.1. The Grassmannian Gr(N, M) is the parameter space of N -planes in RM . 
Concretely, Gr(N, M) is the space of full-rank N ×M matrices, modulo row operations. 
A matrix A corresponds to the span of its rows, and the map (the Plücker embedding)

A �−→
{

ΔI(A) : I ∈
(

[M ]
N

)}
,

gives a system of homogeneous coordinates on Gr(N, M), known as Plücker coordinates. 
Hence the construction A �→ τ(x, y, t) gives a soliton solution for each point in Gr(N, M), 
which is unique up to multiplication by a scalar. Regular soliton solutions correspond to 
points in the totally nonnegative Grassmannian Gr(M, N)≥0, which is of considerable 
interest in its own right [20,15].

2.2. Soliton graphs

We are interested in the two-dimensional wave patterns generated by the regular KP 
solitons u(x, y, t) constructed in the previous section. We may represent the wave pattern 
at a given time by a contour plot showing the wave peaks in the xy-plane. Fig. 1 shows 
the time evolution of the solution for a 3 × 6 matrix A, with κ-parameters

(κ1, . . . , κ6) = (−5/2,−5/4,−1/2, 1/2, 3/2, 5/2).



R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439 5
Fig. 1. The contour plots corresponding to a KP soliton for Gr(3, 6)>0. The panels show the time evolution 
of the solution u(x, y, t) for t = −10, 0, 10, 20 from the left.

Here all 3 × 3 minors of A are nonzero (this type of matrix is called a totally positive
matrix).

Each region in a contour plot represents the portion of the xy-plane where one of the 
exponential terms ΔI(A)eΘI in the τ -function (2.5) is dominant over the others. Hence 
to characterize the contour plot, we must determine which exponential term ΔI(A)eΘI

dominates at each point in the xy-plane. Equivalently, we may ask which of the linear 
terms

ln(ΔJ(A)KJ) + ΘJ(x, y, t) for J ∈
(

[M ]
N

)
(2.6)

dominates at each point.
Since the KP equation is nonlinear, arbitrary contour plots can be rather complicated. 

To make the problem more tractable, we focus on the asymptotic behavior of these plots 
for large values of the variables. We rescale the variables (x, y, t), so that the constant 
terms ln(ΔJ(A)KJ) are negligible. More precisely, we perform a change of variables 
x → x/ε, y → y/ε and t → t/ε with a small positive number 0 < ε � 1. Then the 
τ -function becomes

τ

(
x

ε
,
y

ε
,
t
ε

)
=

∑
I∈M(A)

exp
(

1
ε
ΘI(x, y, t) + ln(KIΔJ(A))

)
where M(A) is the matroid associated to the matrix A, defined by

M(A) :=
{
I ∈

(
[M ]
N

)
: ΔI(A) > 0

}
.

Then we define a piecewise linear function which is given by the tropical limit

fM(A)(x, y, t) := lim
ε→0

(ε ln τ) = max
I∈M(A)

{ΘI(x, y, t)} . (2.7)

That is, fM(A)(x, y, t) represents a dominant plane z = ΘI(x, y, t) in R3 for fixed t. We 
define the soliton graph for each t by

Ct(M(A)) := {the locus of the xy-plane where fM(A)(x, y, t) is not linear}.
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The soliton graph is hence a collection of bounded and unbounded line segments, which 
we call line solitons. Note that each region of the complement of Ct(M(A)) is a domain 
of linearity for fM(A)(x, y, t), hence each region is associated to a dominant plane z =
ΘI(x, y, t) for a certain I ∈ M(A). We label this region ΘI or simply I.

Suppose a line-soliton separates two regions, labeled I and J . Then we have

J = I\{i} ∪ {j} for some i, j ∈ [M ], (2.8)

that is, their labels differ only by a single index for a generic choice of the κ-parameters, 
i.e. κi +κj �= κn +κm if {i, j} �= {n, m} (see [2]). We call this segment an [i, j]-soliton for 
i < j; if we do not wish to specify that i < j, we use the notation {i, j}-soliton instead.

Our goal is to understand the combinatorial structure of soliton graphs; that is, we 
want to classify the possible sets of region labels, and the adjacency relations among the 
regions. Hence we may forget the original xy-coordinates, and represent a soliton graph 
as an abstract network with labeled faces. Edges represent line solitons, and vertices 
represent points where multiple solitons meet in a common endpoint. (If multiple solitons 
cross at a point which is not a common endpoint, we do not consider that a vertex.) We 
review some facts about the resulting networks, due to [14,15] (see also [12] for a survey 
of these results).

Generically, a point where several solitons share an endpoint will have degree three. 
So a generic soliton graph is a trivalent network, with regions labeled by elements of ([M ]

N

)
for some N < M . Let I, J, L ∈

([M ]
N

)
be the labels of three regions which meet at 

a trivalent vertex v of a soliton graph. Recall (2.8), that is, whenever two regions of the 
xy-plane are separated by a line soliton, their labels differ by a single index. Hence there 
are two possibilities for the labels I, J and L:

(1) I = I0 ∪ {i}, J = I0 ∪ {j} and L = I0 ∪ {l} for some common (N − 1)-index set I0.
(2) I = K0 \{i}, J = K0 \{j} and L = K0 \{l} for some common (N +1)-index set K0.

We color the vertex v white in the first case, and black in the second. See Fig. 3 for an 
example.

In the previous works [1,2,14,15], it was shown that the KP soliton (2.2) with the 
τ -function (2.3) consists of N line-solitons as y 	 0 and M −N line-solitons as y � 0. 
Each of those asymptotic solitons is uniquely parametrized by a map π such that π(i) = j

if the [i, j]-soliton appears at y 	 0, and π(j) = i if the [i, j]-soliton appears at y � 0. 
The map π is well-defined, and is in fact a fixed-point free permutation or derangement
of the index set {1, . . . , M}. Moreover, the derangement is completely determined by the 
matroid M(A) of the totally nonnegative matrix A, and vice versa (see [12] for a survey 
of these results).

A totally nonnegative matrix A is totally positive if M(A) =
([M ]

N

)
. The corresponding 

derangement is given by i �→ i −N , where all values are taken modulo M . The space of 
totally positive matrices, modulo row operations, is the totally positive Grassmannian
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Fig. 2. Duality map. The vector 〈p, q, −1〉 is the normal vector of the plane z = px + qy + ω and the vector 
∇z = 〈p, q〉 gives the increasing direction of z.

Gr(N, M)>0. Soliton graphs for Gr(N, M)>0 have nice combinatorial properties, which 
make them easier to classify. See Section 2.4 for details. In what follows, we restrict our 
attention to soliton graphs for Gr(N, M)>0.

2.3. Duality and soliton subdivisions

In order to study the soliton graphs for Gr(N, M)>0, we first define a bijection, called 
the duality map, which maps a plane in R3 to a point in R3,

μ : (p, q, ω) ←→ {(x, y, z) : z = px + qy + ω}, (2.9)

where p = κi, q = κ2
i and ω is some constant (we may take ω = κ3

i t for a KP soliton). 
The vector 〈p, q, −1〉 is the normal vector of the plane, and the vector 〈p, q〉 gives the 
increasing direction of the plane, i.e. ∇z = 〈p, q〉. See Fig. 2. Using the map, we can 
classify the soliton graphs Ct(M(A)) via the triangulations of a polygon inscribed in a 
parabola as described below.

As a simplest example, consider the case with three points p̂i = (pi, qi, ωi) ∈ R3 with 
pi = κi, qi = κ2

i and ωi = κ3
i t for i = 1, 2, 3. Then we have a triangle inscribed in the 

parabola q = p2 whose vertices are {p1, p2, p3}, and each vertex pi = (pi, qi) has a 
weight ωi. Again for simplicity, take all ωi = 0. Then all the planes

z = θi(x, y) = pix + qiy

intersect at the origin, and at each point (x, y), one of the planes becomes dominant. 
Fig. 3 shows the duality between the triangles in the pq-plane and the soliton graphs 
in the xy-plane at t = 0. The dynamics of the intersection point are linear in time t as 
given by θ1 = θ2 = θ3. The left two panels show the case for Gr(1, 3)>0, that is, we have 
M(A) = {1, 2, 3} and

fM(A)(x, y, 0) = max{θi(x, y, 0) : i = 1, 2, 3}.

In the soliton graph (the second figure from left), each region is labeled by the dominant 
plane z = θi(x, y, 0). Since the trivalent vertex in the soliton graph is colored white, we 
define the triangle inscribed in the parabola as a white triangle. Notice that each edge 
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Fig. 3. Duality between the triangles prescribed in a parabola in the pq-plane and the soliton graphs in 
the xy-plane. Trivalent vertices in the soliton graphs are colored white for Gr(1, 3)>0 (left) and black for 
Gr(2, 3)>0 (right).

Fig. 4. Triangulations and the soliton graphs for Gr(2, 4): Black-white flip. The left two figures show the 
triangulation of the point set 12{p12, p23, p34, p14, p13, p24} (each point is shown as an open circle) and the 
corresponding soliton graph for t < 0. The right two figures are for t > 0. The κ-parameters are (−2, 0, 1, 2).

of the triangle, say p[i,j] = pi − pj , is perpendicular to the line given by θi = θj which 
corresponds to the [i, j]-soliton.

The right two panels show the case for Gr(2, 3)>0, that is, we have M(A) =
{12, 13, 23} and

fM(A)(x, y, 0) = max{θi,j(x, y, 0) : 1 ≤ i < j ≤ 3},

where θi,j = θi + θJ . This triangle is defined as a black triangle, which is dual to the 
black vertex in the soliton graph. In the figure, the black triangle is the convex hull of 
the vertices {1

2 (pi +pj) : 1 ≤ i < j ≤ 3}, i.e. the vertices are the mid points of the edges 
of the white triangle in the left figure.

In general, the soliton graph for Gr(N, M)>0 has only trivalent vertices which are 
colored either white or black [15]. Hence for a generic choice of weights, the image of the 
duality map for the soliton graph is a triangulation with colored triangles. We will only 
consider the soliton graphs for Gr(N, M)>0, and their corresponding triangulations.

In the case of Gr(2, 4)>0, we have

fM(A)(x, y, t) = max{θi,j(x, y, t) : 1 ≤ i < j ≤ 4},

Fig. 4 illustrates the soliton graphs for t < 0 (left), and for t > 0 (right). In the figures, the 
change of the graphs can be considered as a flip in the triangulation of the quadrilateral 
given by the convex hull of the set of six points {pij = pi +pj : 1 ≤ i < j ≤ 4}. The flip 
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corresponds to the mutation in the cluster algebra structure on Gr(N, M) [4,5,23,13,15], 
and we call the flip “black-white flip” (i.e. the colors of the vertices exchange). Note 
that the quadrilateral (parallelogram) in the figures are given by the convex hull of 
{1

2 (pi + pj) : 1 ≤ i < j ≤ 4}.

2.3.1. Definitions and notation
We now give some definitions and notations that we use in the rest of this paper. Let 

I = i1 · · · iN denote the N -element subset I = {i1, . . . , iN} ∈
([M ]

N

)
, and IiN+1 denote 

the (N + 1)-element subset I ∪ {iN+1}. Also let I\ik denote the (N − 1)-element subset 
I \ {ik} for k ∈ [N ].

For A ∈ Gr(N, M)>0, we have M(A) =
([M ]

N

)
. We denote the corresponding point 

configuration by

AN,M :=
{
pI = (pI , qI) : I ∈

(
[M ]
N

)}
,

where pI =
∑
i∈I

κi, qI =
∑
i∈I

κ2
i with the order κ1 < κ2 < · · · < κM . Also note that the 

convex hull

PN,M := P0
N,M := conv(AN,M )

is an M -gon. This follows by considering the behavior of KP solitons for |y| 	 0 and 
applying the duality map (see [2,15] for the asymptotic behavior of the KP solitons).

Given a weight vector ω = (ω1, · · · , ωM ), we assign each point pi a weight ωi, and write 
p̂i = (pi, ωi). For I ∈

([M ]
N

)
, we have the weighted point p̂I = (pI , ωI) where pI =

∑
i∈I

pi

and ωI =
∑
k∈I

ωk. Then we consider the weighted (or lifted) point configuration

Aω
N,M :=

{
p̂I = (pI , qI , ωI) ∈ R3 : I ∈

(
[M ]
N

)}
,

and the convex hull of the lifted point configuration

Pω
N,M = conv(Aω

N,M ),

which is a three-dimensional convex polytope. Note here that P0
N,M is an M -gon in the 

pq-plane. The vertices of the M -gon are given by{
pIj : Ij = {j, j + 1, . . . , j + N − 1}, j = 1, . . . ,M (cyclic order)

}
For example, in the case of Gr(2, 6)>0, the convex hull of 15 points {pi,j : 1 ≤ i < j ≤ 6}
is a hexagon with the vertices

{p1,2, p2,3, p3,4, p4,5, p5,6, p1,6}.
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Note here that all other 9 points pi,j with |i − j| > 1 (cyclic sense) are inner points of 
the hexagon.

We also define the m-faces of the polygon Pω
N,M with m being the dimension of the 

face, and in our case, m = 0, 1 or 2.

Definition 2.2. A nonempty set S ⊂ Pω
N,M is an upper m-face of the convex polytope 

Pω
N,M , if there exists a plane P := {z = ax + by + c} such that

(a) S = Pω
N,M ∩ P with dim S = m and

(b) any point in the region z > ax + by + c has no intersection with Pω
N,M .

Similarly, a nonempty set S ⊂ Pω
N,M is a lower m-face of Pω

N,M , if there exists a plane 
P := {z = ax + by + c} with property (a), and the region z < ax + by + c has no 
intersection with Pω

N,M .

Then projecting the upper hull, the collections of all upper faces, of Pω
N,M back on to 

the pq-plane induces a regular subdivision of the polygon P0
N,M in R2. Here the notions 

of subdivision and regular (or coherent) are defined in general as follows (see e.g. [3,24]):

Definition 2.3. A set Q is a subdivision of the M -gon P0, if there are sets of indices 
{σ1, . . . , σm} with σi ⊂

([M ]
N

)
such that Pσi

:= conv{pj : j ∈ σi} satisfy

(i) Pσi
is a k-gon with k ≥ 3,

(ii) Q =
⋃m

i=1 Pσi
,

(iii) Pσi
∩ Pσj

is either empty or a common edge of those polygons.

In particular, if all Pσi
are triangles, then the subdivision is called a triangulation. We 

also say that a subdivision Q is regular, if it is obtained by the projection of the upper 
hull of a polytope Pω = conv{(pI , ωI) ∈ R3} for some weight ω.

We then define a soliton subdivision to be a regular subdivision, denoted by QN,M (ω), 
which is given by the projection of the upper hull of Pω

N,M , where each polygon Pσi
in the 

subdivision is the projection of an upper face of Pω
N,M . We sometimes refer to “a regular 

subdivision (or regular triangulation) QN,M (ω(t)) of the polygon PN,M associated with 
the weight function ω(t)” as simply “subdivision (or triangulation) QN,M of Aω

N,M”.
For a polygon in QN,M (ω), its vertices are given by the set {pI1 , · · · , pIk} when the 

polygon is a k-gon. Each vertex pI can be represented by its index set I ∈
([M ]

N

)
, and 

we may denote the polygon conv{pI1 , · · · , pIk} by {pI1 , · · · , pIk}, or simply its index 
set {I1, I2, · · · , Ik} for short. For the corresponding face of the polytope in Pω

N,M , we 

sometimes denote it as {p̂I1 , p̂I2 , · · · , p̂Ik} or {Î1, Î2, · · · , ÎN}.
We also define the following notions for the polygons appearing in the subdivision 

QN,M (ω), which is the generalization of white-black triangles:
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Fig. 5. A soliton graph for Gr(2, 5)>0, and corresponding plabic graph and triangulation.

Definition 2.4. For a convex polygon (k-gon) in the subdivision QN,M (ω), we say that

(a) the polygon is white if the vertices of the polygon are expressed by

{Ii1, Ii2, · · · , Iik} for some I ∈
(

[M ]
N − 1

)
,

and
(b) the polygon is black if the vertices are expressed by

{J\i1, J\i2, · · · , J\ik} for some J ∈
(

[M ]
N + 1

)
.

Since the index sets of two adjacent points differ only by a single index [2], there are 
only these types of polygons in the subdivisions (recall that each edge in the subdivision 
corresponds to a line-soliton).

We are interested in using soliton triangulations to study the combinatorial structure 
of soliton graphs, forgetting the xy coordinates. Hence, we may forget the pq-coordinates 
of a soliton triangulation, and remember only the adjacency relations between the tiles. 
For convenience, we often draw the vertices {p̂I1 , . . . , p̂IM } of the convex M -gon PN,M

as points on a circle, rather than on a parabola.

2.4. Plabic graph, weakly separated collections and realizability

The main objective of this paper is to classify soliton graphs for Gr(N, M)>0. By 
results of [15], these graphs are planar and trivalent. For convenience, we may embed 
a soliton graph in a bounding disk whose interior contains all vertices of the graph. 
We place a boundary vertex at the point where each {i, π(i)}-soliton intersects the disk, 
and label the boundary vertex π(i). We forget the metric structure on the graph, and 
maintain only the combinatorial structure. As in the previous section, we color each 
internal vertex black or white, depending on the labels of the surrounding faces. See 
Fig. 5 for an example.
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With these conventions, every soliton graph for Gr(N, M)>0 is combinatorially (or 
topologically) equivalent to a reduced plabic graph [15]. First introduced by Postnikov, 
reduced plabic graphs play a key role in the combinatorial theory of Gr(M, N)>0 [20]. 
We give a precise characterization of plabic graphs in Section 7.1. For now, it suffices to 
remark that a plabic graph is a planar, bicolored network which satisfies some technical 
conditions; and whose faces have a natural labeling by elements of 

([M ]
N

)
for some N < M .

Each plabic graph has an associated permutation π. For soliton graphs, π is the 
derangement defined by the soliton asymptotics [2,15]. We say G is a plabic graph for 
the totally positive Grassmannian Gr(N, M)>0 if π is the permutation corresponding 
to Gr(N, M)>0; that is, if π is defined by i �→ i − N with indices taken modulo M . 
Plabic graphs for Gr(M, N)>0 have an easy classification in terms of weakly separated 
collections, as explained below.

For G a reduced plabic graph, contracting an edge whose endpoints are vertices of the 
same color gives a reduced plabic graph G′ with the same face labels, and this operation is 
reversible. We say that two plabic graphs are contraction equivalent if we can transform 
one into another by contracting and un-contracting unicolored edges. Reduced plabic 
graphs, up to contraction equivalence, are determined uniquely by their face labels. 
The possible collections of face labels can be easily classified, using the notion of weak 
separation defined in [16].

Definition 2.5. For I, J ⊆
([M ]

N

)
, we say I and J are weakly separated if there do not

exist a, b ∈ I\J and c, d ∈ J\I such that if M points 1, 2, . . . , M are arranged counter-
clockwise around a circle, the points a, c, b and d occur in cyclic order.

Definition 2.6. A weakly separated collection is a collection of elements of 
([M ]

N

)
whose 

members are pairwise weakly separated. A weakly separated collection is maximal if it 
is maximal by inclusion.

Theorem 2.7. [19] A collection of elements of 
([M ]

N

)
is the set of face labels of a plabic 

graph for Gr(N, M)>0 if and only if it is a maximal weakly separated collection.

In [19], the authors introduce planar diagrams called plabic tilings, which correspond 
to weakly separated collections. We refer to [19, Section 9] for the precise definition. For 
our purposes, it suffices to describe triangulated plabic tilings as the duals of trivalent 
reduced plabic graphs. That is, we can obtain a triangulated plabic tiling from a plabic 
graph by applying a purely combinatorial analogue of the duality map from Section 2.3. 
Deleting edges that separate triangles of the same color, we obtain a subdivision of the 
M -gon into black and white polygons, which we call a plabic tiling. Since soliton graphs 
for Gr(N, M)>0 are plabic graphs [15], soliton triangulations are triangulated plabic 
tilings (via the duality map).

Definition 2.8. A plabic graph for Gr(N, M)>0 is realizable if it is a soliton graph, up 
to contraction equivalence; a triangulated plabic tiling is realizable if it is a soliton 
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triangulation. A weakly separated collection for Gr(N, M)>0 is realizable if it is the set 
of face labels of a soliton graph, or equivalently, the set of vertex labels of a soliton 
subdivision.

Kodama and Williams showed that every plabic graph for Gr(2, M)>0 is realizable, 
up to contraction equivalence [15, Theorem 12.1]. In the language of tilings, their result 
says that every weakly separated collection for Gr(2, M)>0 is realizable. We recover this 
result below, as a consequence of Algorithm 3.10. See Section 3.3 for details.

In his PhD thesis, Huang showed that every weakly separated collection (or plabic 
tiling) for Gr(3, 6)>0 is realizable [9]. However, some collections are only realizable for 
certain choices of κ-parameters. Huang then conjectured that every weakly separated 
collection for any Gr(N, M)>0 is realizable for some choice of parameters, a conjecture 
we disprove in Section 7.

2.5. Summary of results

The structure of the rest of the paper is as follows. In Section 3, we describe an in-
ductive algorithm from [9] for constructing soliton subdivisions, which will be used in 
Sections 4 and 6. As a consequence, in Section 3.3, we recover Kodama and Williams’ 
classification of soliton graphs for Gr(2, M)>0 [15], by proving that every weakly sepa-
rated collection for Gr(2, M)>0 is realizable.

In Section 4, we construct a polyhedral fan in the space of multi-time parameters
of the KP hierarchy, which can be used to check whether a given subdivision comes 
from a soliton graph. In Section 5, we use the polyhedral fan to classify soliton graphs 
for Gr(3, 6)>0, by showing that every possible soliton subdivision comes from a soliton 
graph. In addition, we specify the subdivisions which are realizable for each choice of 
κ-parameters in the KP soliton (Theorem 4.11). The main results of Sections 4 and 5
first appeared in [9], but are presented here in greater detail.

In Section 6, we show that every possible soliton subdivision for Gr(3, 7)>0 or 
Gr(3, 8)>0 occurs for some choice of κ-parameters. For Gr(3, 7)>0, we give a more precise 
classification in terms of the κ-parameters, just as we did for Gr(3, 6)>0 (Theorem 6.2); 
we do not yet have a classification for each choice of the κ-parameters.

Finally, in Section 7, we give a subdivision that does not come from a soliton graph, 
disproving a conjecture made in [9]. More precisely, we prove Theorem 7.3, which states 
for some Gr(N, M)>0, there is a weakly separated collection which is not realizable for 
any choice of the parameters.

3. Constructing soliton graphs

In this section, we describe an explicit algorithm to construct soliton triangulations. 
We give the algorithm for Gr(1, M)>0 in Section 3.1, and for general Gr(N, M)>0 in 
Section 3.2. In Section 3.3 we present some useful consequences of the algorithm.
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3.1. Triangulations of the point configuration Aω
1,M

Let us start with the subdivisions Qω
1,4. The polytope Pω

1,4 is a tetrahedron, and the 
subdivision Q1,4(ω) given by the projection of Pω

1,4 depends on the following determinant,

D1,2,3,4 =

∣∣∣∣∣∣∣
1 p1 q1 ω1
1 p2 q2 ω2
1 p3 q3 ω3
1 p4 q4 ω4

∣∣∣∣∣∣∣ with (pi, qi) = (κi, κ
2
i ). (3.1)

That is, we have the following lemma, which we call the quadrilateral checking lemma:

Lemma 3.1. The subdivision Q1,4(ω) has the diagonal {1, 3} if the determinant D1,2,3,4 <

0; and Q1,4(ω) has the diagonal {2, 4} if D1,2,3,4 > 0.

Proof. Using the vector notation for the points, i.e. p̂i := (pi, qi, ωi), the determinant 
(3.1) is expressed by a triple scalar product:

D1,2,3,4 = −[(p̂2 − p̂1) × (p̂4 − p̂1)] · (p̂3 − p̂1).

Then D1,2,3,4 < 0 implies that the edge {1̂, ̂3} given by the vector p̂3− p̂1 is in the upper 
face of the tetrahedron Pω

1,4. That is, the diagonal {1, 3} in the subdivision Q1,4(ω) is the 
projection of the upper 1-face of Pω

1,4. The case D1,2,3,4 > 0 implies that the edge {1̂, ̂3}
is in the lower face of Pω

1,4, and then the edge {2, 4} is the diagonal of Q1,4(ω). �
Remark 3.2. Since the formula D1,2,3,4 is dealing with the relative position of two di-
agonals in R3, we may also state that the edge {1̂, ̂3} is vertically above {2̂, ̂4} when 
D1,2,3,4 < 0. This means, when looking down from above at the intersection point of the 
diagonals {1, 3} and {2, 4} in R2, {1̂, ̂3} is vertically above {2̂, ̂4} in R3.

Thus, the sign of the determinant Di1,i2,i3,i4 for a quadrilateral with vertices {p̂ik :
k = 1, . . . , 4} determines the triangulation of the point configuration Aω

1,4. Repeatedly 
apply Lemma 3.1 leads to the following algorithm to construct a subdivision Q1,M (ω)
for given weights ω = (ω1, . . . , ωM ), for arbitrary M :

Algorithm 3.3 (Soliton Triangulation for the point configuration Aω
1,M).

(1) Starting with the triangle {1, 2, 3}, we add next vertex p4. Then the original bound-
ary edge {1, 3} becomes an internal edge of the 4-gon {1, 2, 3, 4}, and we use 
Lemma 3.1 to check whether or not the edge {1̂, ̂3} is an upper face of the tetrahe-
dron Pω

1,4. If D1,2,3,4 < 0, then the edge {1̂, ̂3} is an upper face of Pω
1,4, and it is a 

diagonal for the triangulation Q1,4(ω); if D1,2,3,4 > 0, the edge {2, 4} now becomes 
the diagonal instead of {1, 3}.
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Fig. 6. Algorithm to construct the soliton subdivision Q1,5. Adding a new vertex p5, we mark the edge 
{1, 4} as a dashed line and check whether or not it gives a diagonal for the new polygon P1,5. Each step 
is determined by the sign of the determinant Di,j,k,l for the quadrilateral {i, j, k, l}. The dotted lines are 
invisible edges obtained in the steps.

(2) Suppose that we have a triangulation of the polygon {1, 2, · · · , m} having a triangle 
{1, j, m} for some pj with 1 < j < m. Then we add the next vertex pm+1, and 
consider the following process:
(i) We consider the 4-gon {1, j, m, m + 1}, and mark the original boundary edge 

{1, m} as a “dashed” line, meaning that this edge should be checked as a diag-
onal for the triangulation Q1,m+1(ω). See Fig. 6.

(ii) Use Lemma 3.1 to check whether or not this dashed line {1, m} remains to 
be the diagonal for {1, j, m, m + 1}. If D1,j,m,m+1 < 0, the line {1, m} is the 
diagonal, and we move to the step (3). If D1,j,m,m+1 > 0, we have a new diagonal 
{j, m + 1} in Q1,m+1(ω), which breaks the whole polygon {1, 2, · · · , m +1} into 
two polygons, and we mark {1, j} and {j, m} as dashed lines. See Lemma 3.6
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below. We then mark the original edge {1, m} as a “dotted” line, meaning that 
it is below the line {j, m + 1}. See Fig. 6.

(iii) For these polygons {1, 2, · · · , j, m + 1} and {j, j + 1 · · · , m + 1}, we repeat the 
process in (ii).

(3) We repeat the step (2), and finally obtain the soliton triangulation Q1,M(ω) after 
adding pM .

Remark 3.4. It should be noted that one can choose any order of adding process of the 
vertices in the algorithm. In particular, we may choose a suitable order from the weights. 
For example, we choose the order in the adding process {i1, i2, i3, . . .}, if the weights are 
in the order ωi1 > ωi2 > ωi3 > · · · .

Example 3.5. Consider Aω
1,5. We demonstrate the construction of the triangulation of 

Aω
1,5 for an arbitrary choice of the weights as shown in Fig. 6. We start from the quadrilat-

eral {1, 2, 3, 4}, and use the determinant D1,2,3,4 to construct a triangulation. Depending 
on the sign of the determinant, we have two triangulations. Then we add a vertex p5. 
We now check whether {1, 4} is a diagonal for the quadrilateral {1, 3, 4, 5} or {1, 2, 4, 5}. 
If the edge {1, 4} remains the diagonal for the quadrilateral, then we have the triangu-
lation of the pentagon. If not, then we have a new edge depending on the sign of the 
determinant Di,j,k,l. See Fig. 6.

Let us now state some lemmas to verify the algorithm.

Lemma 3.6. Let {pi : i = 1, . . . , M} be the vertices of the M -gon P0
1,M . Then the follow-

ing two statements are equivalent for fixed weights ω and fixed a, c ∈ [M ]:

(1) The edge {â, ̂c} is not an upper 1-face of Pω
1,M .

(2) There exists b, d with a < b < c < d (in the cyclic order) such that {b̂, d̂} is an upper 
1-face of Pω

1,M .

Proof. If the edge {â, ̂c} is not an upper 1-face, then {a, c} is not a boundary edge of 
P0

1,M . Thus the edge {a, c} breaks the polygon P0
1,M into two parts. Consider one side, 

say P1, which is also a polygon having {a, c} with a < c as a boundary. We consider 
the corresponding polytope Pω

1 , and we can find an upper 2-face of Pω
1 whose vertices 

have indices including a, c, b for some b with a < b < c. Consider a plane P spanned 
by those three vertices {â, ̂b, ̂c}. Then there exists a vertex p̂d on the other half of the 
polytope such that p̂d is above the plane P. This means that the edge {b̂, d̂} is vertically 
above {â, ̂c}. There may be several vertices p̂d, and one can find at least one such vertex 
such that {b̂, d̂} is a 1-face of Pω

1,M . If not, then {â, ̂c} should be 1-face of Pω
1,M . But this 

contradicts.
The other direction, (2) → (1), is obvious. �
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Lemma 3.6 implies that if the edge {â, ̂c} with a < c is an upper 1-face, then for any 
{b, d} intersecting {a, c} in the pq-plane, {â, ̂c} is vertically above {b̂, d̂}.

We also have the following lemma:

Lemma 3.7. Let {a, b} with a < b be a diagonal in the subdivision Q1,M (ω), which divides 
the M -gon P0

1,M into two polygons, say P1 and P2. If L is a diagonal of the triangulation 
for P1, then L is also a diagonal in Q1,M (ω).

Proof. Denote such L by {i, j}, and assume a ≤ i < j ≤ b. Suppose L is not a diagonal 
for the subdivision Q1,M (ω). Then by Lemma 3.6, we can find c, d such that {ĉ, d̂} is 
above {̂i, ̂j} and i < c < j and b < d < a (in the cyclic order), i.e. pc is a vertex in P1 and 
pd is in P2. Then the edge {̂i, ̂j} cannot be above the plane spanned by {â, ̂b, ̂c}. Since 
the plane contains the edges {â, ̂c} and {b̂, ̂c}, at least one of these edges is vertically 
above {̂i, ̂j}. But this contradicts L being a diagonal of the subdivision for P1. �

Now we can give the proof of Algorithm 3.3:

Proof. Assume we have a soliton triangulation Q1,m(ω) of the polygon,

P{i1···im} := conv{pij : j = 1, . . . ,m},

where i1 < i2 < · · · < im in cyclic order. We then add one more vertex pim+1 with 
i1 < im+1 < im in cyclic order. Let {i1, il, im} be a triangle in the triangulation Q1,m(ω)
for some vertex pl. If {̂i1, ̂im} is vertically above {̂im+1, ̂il}, then we have the vertex p̂im+1

is below the plane containing the vertices {p̂i1 , p̂im , p̂il}, hence {i1, im} a diagonal in 
Q1,m+1(ω). If {̂im+1, ̂il} is vertically above {̂i1, ̂im}, Lemma 3.7 implies that {im+1, il}
breaks the polygon P{i1,··· ,im+1} into two sub-polygons P1, P2, and {̂im+1, ̂il} is an upper 
1-face of the polytope Pω

{i1,··· ,im+1}. Inductively we can consider the triangulations of 
these sub-polygons P1 and P2. �
3.2. Inductive construction of the triangulation QN,M (ω)

We now develop an inductive algorithm to construct the triangulation QN+1,M(ω)
from QN,M (ω) for given weights ω. For the case N = 1, the triangulation Q1,M (ω) may 
be constructed by Algorithm 3.3 from the previous section. We show how to construct 
Q2,M (ω) from Q1,M (ω), then give the inductive step in general.

The subdivision Q2,M (ω) corresponds to the point configuration

Aω
2,M = {p̂ij : 1 ≤ i < j ≤ M} ,

where p̂ij = p̂i + p̂j . We must identify the points Aω
2,M which give the upper vertices of 

the polytope Pω
2,M . Since 1 (pi +pj) is the midpoint of the edge {pi, pj}, the vertices in 
2
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Fig. 7. A subdivision Q2,11 on the right is constructed from the triangulation Q1,11 in the left. The vertices in 
Q2,11 are given by the midpoints of the edges in Q1,11 in this figure. Each white polygon in Q2,11 corresponds 
to the vertex pi with the degree di ≥ 3 in Q1,11, and the number in each circle in the white polygon is the 
index of pi, which is the common index in Definition 2.4.

Q2,M are induced by the edges in Q1,M . Moreover, the subdivision Q2,M has the following 
structure:

(a) The boundary vertices of Q2,M are given by {pi + pi+1 : i = 1, . . . , M, mod(M)}.
(b) If the degree of the (boundary) vertex pi in Q1,M is di ≥ 3, we have a di-gon with 

the vertices {pij� = pi + pj� : 
 = 1, . . . , di}, which corresponds to a subdivision 
P1,di

of the point configuration A1,di
= {pj� : 
 = 1, . . . , di}.

(c) The number of internal vertices in Q2,M is given by M − 3, and we have

1
2

M∑
i=1

(di − 2) = M − 3.

Fig. 7 demonstrates the induction process to construct a subdivision Q2,M from the 
triangulation Q1,M by an example with M = 11.

We now describe the induction process from QN,M to QN+1,M . Let us first introduce 
a continuous process, called the ε-blow up or simply the blow-up.

Definition 3.8. Let QN,M be the triangulation for given weights ω. For a number 0 ≤ ε ≤
1, let J + εa denote the vertex pJ + εpa for some index set J and index a /∈ J . Then we 
define an ε-blow up of QN,M by the following procedure:

(a) For each white triangle {Ia, Ib, Ic} in QN,M for some I ∈
( [M ]
N−1

)
, we replace it by 

the hexagon {Ia+ εb, Ia+ εc, Ib+ εa, Ib+ εc, Ic+ εa, Ic+ εb}. That is, when ε = 0, it 
is the original triangle, and when ε = 1, it becomes a black triangle with the vertices 
{Iab, Ibc, Iac}.

(b) For each black triangle {Kab, Kbc, Kac} in QN,M for some K ∈
( [M ]
N−2

)
, we replace 

it by the triangle {Kab + εc, Kbc + εa, Kac + εb}, which shrinks to the point pKabc

when ε = 1.



R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439 19
The ε-blow up for 0 < ε < 1 is a 2M -gon with the vertices {pIi +εpi+N , pIi +εpi−1 : i =
1, . . . , M(mod M)} where Ii = {i, i + 1, . . . , i + N − 1} are the indices of the boundary 
vertices of QN,M .

To describe the structure of the ε-blow up of the triangulation QN,M(ω) for ε = 1, we 
first define the induced degree for each vertex p in QN,M (ω), denoted by I-deg(p), by

I-deg(p) = {# of incoming edges to p} − {# of black triangles adjacent to p}. (3.2)

Then one can see that the ε-blow up of QN,M(ω) consists of the following black and 
white polygons when ε = 1:

(a) Each white triangle in QN,M (ω) generates a black triangle.
(b) Each vertex p in QN,M (ω) with I-deg(p) = m ≥ 3 generates a white m-gon.

Note that we can triangulate the m-gon in (b) using Algorithm 3.3.
Now we have the following proposition:

Proposition 3.9. The ε-blow up of the triangulation QN,M (ω) generates a subdivision 
QN+1,M (ω) for fixed ω when ε = 1.

Proof. We need to show that all the polygons generated in the ε-blow up correspond to 
the upper faces of Pω

N+1,M . This can be shown as follows:

(a) We first show that each black triangle {Iab, Ibc, Iac} in QN+1,M (ω) is obtained from 
the white triangle {Ia, Ib, Ic} in QN,M (ω) with I ∈

( [M ]
N−1

)
. Since {Îa, Îb, Îc} is an 

upper 2-face of Pω
N,M , all the other vertices p̂J , J ∈

([M ]
N

)
, are below the plane 

containing this face. Thus we can see all the vertices p̂K , K ∈
( [M ]
N+1

)
are below the 

plane containing the points {p̂Iab, p̂Ibc, p̂Iac}, that is, {Îab, Îbc, ̂Iac} is an upper 
2-face of Pω

N+1,M .
(b) Now we show the each white triangle {Ii, Ij, Ik} in QN+1,M (ω) is also given by 

the projection of an upper 2-face of the polytope Pω
N+1,M . First, we have a plane 

L : z = ax + by + c containing {p̂Ii, p̂Ij , p̂Ik}. Consider the plane L′ parallel to L
containing p̂I in Pω

N,M . Then we can see that it is above all other vertices p̂J for all 
J ∈

([M ]
N

)
, and consequently, we have that L containing {p̂Ii, p̂Ij , p̂Ik} is above all 

the vertices p̂K for all K ∈
( [M ]
N+1

)
. This implies that the white triangle {Ii, Ij, Ik}

is given by the projection of the upper 2-face {Îi, Îj, ̂Ik}.

The items (a) and (b) complete the proof. �
This proposition gives an inductive algorithm to construct the triangulation

QN+1,M (ω) from QN,M (ω). We assume here that the weight vector ω is sufficiently 
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Fig. 8. Inductive construction of Q3,11 from Q2,11. Step (1) in Algorithm 3.10 shows the process from the 
triangulation Q2,11(ω) (left) to a subdivision Q3,11(ω) (middle). Then Step (2) provides the triangulation 
Q3,11(ω) (right).

generic that triangulating the white polygons is possible at each step. That is, no four 
of the original points p̂i may be coplanar.

Algorithm 3.10 (Inductive construction of QN+1,M (ω) from QN,M (ω)).

(1) Apply the ε-blow up to QN,M (ω), and take ε = 1 to construct a subdivision 
QN+1,M (ω).

(2) Use Algorithm 3.3 to triangulate the white polygons in the subdivision QN+1,M(ω)
obtained in the previous step.

In Fig. 8, we illustrate the inductive construction of the triangulations QN,11 for 
N = 2, 3. Here the triangulation Q2,11(ω) is obtained from the triangulations of the 
white polygons in the subdivision Q2,11(ω) in Fig. 7 (i.e. Step (2) in Algorithm 3.10).

One can also show the following proposition about the topological structure of the 
triangulation QN,M (ω):

Proposition 3.11. The triangulation QN,M (ω) has

(1) FB
N := N(M −N) −M + N black triangles,

(2) FW
N := N(M −N) −N white triangles,

(3) VN := N(M −N) + 1 vertices, and
(4) EN = 3N(M −N) −M edges.

Proof. First note that the item (4) is a direct consequence of the items (1), (2) and (3) 
by the Euler characteristics. That is, we have

EN = VN + FN − 1 = 3N(M −N) −M,

where FN = FB
N + FW

N is the total number of faces in QN,M (ω).
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We give an inductive proof based on the construction of the subdivision QN+1,M(ω)
via the ε-blow up in Definition 3.8. When N = 1, the subdivision Q1,M is a triangulation 
of the M -gon with M − 3 diagonals, thus it satisfies all items.

(i) From Definition 3.8, it is clear that the number of black triangles in QN+1,M (ω) is 
given by the number of white triangles in QN,M (ω). This means that we have

FB
N+1 = FW

N = N(M −N) −N

= (N + 1)(M − (N + 1)) −M + (N + 1),

which agrees with the formula in (1).
(ii) Note that each edge in QN,M(ω) becomes a vertex in QN+1,M (ω). Also note that 

each black triangle in QN,M (ω) shrinks to a vertex in QN+1,M (ω). This leads to

VN+1 = EN − 2FB
N = 3N(M −N) −M − 2(N(M −N) −M + N)

= (N + 1)(M − (N + 1)) + 1,

which gives the formula in (3).
(iii) Since each vertex in QN,M(ω) generates white triangles and the number of these 

triangles is related to the degree of the vertex, we first calculate the total degree 
of the vertices. Let di be the degree of each vertex pi in QN,M (ω). Then the total 
degree of the vertices in QN,M (ω) is given by

VN∑
i=1

di = 2EN = 2(3N(M −N) −M).

Then note that each vertex pi with degree di ≥ 2 generates di − 2 white triangles 
via the ε-blow up at ε = 1. However, three vertices of each black triangle shrink to 
a point at ε = 1, hence those vertices do not generate any triangles, and we have

FW
N+1 =

VN∑
i=1

(di − 2) − 3FB
N = 2EN − 2VN − 3FB

N

= (N + 1)(M − (N + 1)) − (N + 1).

This completes the proof. �
3.3. Connection to zonotopal tilings

By [15, Corollary 10.9], every non-degenerate soliton graph for Gr(N, M)>0 is a re-
duced plabic graph. Equivalently, every non-degenerate soliton subdivision QN,M is a 
triangulated plabic tiling. In this section, we outline an alternate proof of this result, 
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Fig. 9. Zonotope structure in the ε-blow up. Starting with the triangulation of the 4-gon Q1,4 at left, we 
have the triangulation Q2,4 in the middle by blowing-up each vertex of Q1,4. Note that each edge shrinks 
to a point via the ε-blow up when ε = 1.

using Algorithm 3.10 and Galashin’s results on Zonotopal tilings; see [6]. As a conse-
quence, we obtain Kodama and Williams’ classification of soliton graphs for Gr(2, M)>0; 
and derive a key lemma that we use in the proofs of Theorems 6.1 and 6.3.

For polytopes Z1 and Z2, the Minkowski sum of Z1 and Z2 is the set of points

{p1 + p2 : p1 ∈ Z1 and p2 ∈ Z2}.

A zonotope is a polytope which is a Minkowski sum of line segments. The cyclic zonotope
Z(3, M) is the Minkowski sum of M segments [0, ̂pi] in R3, where

p̂i = (κi, κ
2
i , 1)

and κ1 < κ2 < . . . < κM . A zonotopal tiling of Z(3, M) is a subdivision of Z(3, M) into 
smaller zonotopes (called tiles), each of which is the Minkowski sum of

{p̂i : i ∈ I} ∪ {[0, p̂j ] : j ∈ J}

for some disjoint I, J ⊆ [M ]; and such that the intersection of any two tiles is either 
empty, or a lower-dimensional tile. We say the tiling is fine if each top-dimensional tile 
is a translate of the Minkowski sum of at most three segments.

Let p1, . . . , pM be points on the parabola q = p2, and let

ω = (ω1, . . . , ωM )

be a weighting of the points. Without loss of generality, assume ω1, . . . , ωM > 0. Re-
peatedly applying the induction algorithm gives a subdivision of QN,M (ω) for each 
0 ≤ N ≤ M . This collection of subdivisions induces a tiling of the cyclic zonotope, 
whose top-dimensional tiles are in one-to-one correspondence with the white triangles in 
the family of subdivisions. Fig. 9 illustrates this construction for M = 4, and 1 ≤ N ≤ 3. 
The horizontal direction shows the ε-blow up of the vertices, and the number of blowing-
up ε → 1 directions are given by the I-degree of the vertex.

Each vertex of a zonotopal tiling which lies in the plane z = N has the form

p̂I =
∑

p̂i

i∈I
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for some I ∈
([M ]

N

)
, and the vertex labels I form a maximal weakly separated collection 

DN in 
([M ]

N

)
. Intersecting a fine zonotopal tiling of Z(3, M) with the plane z = N gives 

a triangulated plabic tiling, i.e. soliton triangulation, with vertex set DN [6, Theorem 
2.1]. It follows from the above discussion that every soliton subdivision QN,M is combi-
natorially equivalent to a section of a zonotopal tiling, and is therefore a triangulated 
plabic tiling for Gr(N, M)>0. Hence we recover the result of [15] that soliton graphs for 
Gr(N, M)>0 are plabic graphs.

It follows from the discussion in [6, Section 4] that for M ≥ 2, every plabic tiling for 
Gr(N, M)>0 may be obtained from some triangulated plabic tiling of Gr(N−1, M)>0, by 
applying a purely combinatorial analog of the induction algorithm, Algorithm 3.10. The 
following observation, which we will use in the proofs of Theorem 6.1 and Theorem 6.3, 
is immediate.

Lemma 3.12. If every triangulated plabic tiling for Gr(N − 1, M)>0 is realizable, then 
every plabic tiling for Gr(N, M)>0 is realizable.

For any M , it is easy to see that triangulated plabic tilings for Gr(1, M)>0 are real-
izable. Hence we obtain Kodama and Williams’ result [15, Theorem 12.1], which states 
that all plabic tilings for Gr(2, M)>0 are realizable. Moreover, from Algorithm 3.10 it is 
clear that these plabic tilings are in one-to-one correspondence with the triangulations 
of the M -gon, just as described in [15].

4. KP hierarchy and the polyhedral structure of multi-time space

In this section, we define a polyhedral fan structure on the space of multi-time pa-
rameters t in the KP hierarchy. The cones in this fan structure correspond to realizable 
soliton subdivisions QN,M for a fixed choice of κ parameters. That is, one can construct 
the soliton graph dual to the subdivision QN,M(ω(t)) by choosing multi-time parameters 
t ∈ RM−3 in the corresponding cone. See Theorem 4.11 for a precise statement. We will 
apply these results to classify soliton graphs for Gr(3, 6)>0.

4.1. The KP hierarchy and the multi-time space

In this section, we show that we can realize triangulations corresponding to arbi-
trary weight vectors ω simply by varying the multi-time parameters t. We also review 
polyhedral cones.

Recall that the piecewise linear function fN,M (x, y, t) for a KP soliton is given by

fN,M (x, y, t) = max
{

ΘI(x, y, t) = pIx + qIy + ωI(t) : I ∈
(

[M ]
N

)}
with pI =

∑
i∈I

κi, qI =
∑
i∈I

κ2
i , ωI =

∑
i∈I

ωi(t),
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where ωi(t) with t = (t3, . . . , tM−1) ∈ RM−3 is given by

ωi(t) =
M−1∑
k=3

κk
i tk.

The point configuration for this case is

Aω(t)
N,M =

{
p̂I = (pI , qI , ωI(t)) ∈ R3 : I ∈

(
[M ]
N

)}
.

Let Ω = (Ω1, . . . , ΩM ) be a weight vector, and let QN,M(Ω) be the corresponding soli-
ton triangulation. We claim that there exists t such that QN,M (ω(t)) is combinatorially 
equivalent to QN,M (Ω).

To see this, we first define the plane 
i(t0, x, y, t) := t0 + θi(x, y, t), and consider the 
system 
i = Ωi for i = 1, . . . , M , i.e.⎛⎜⎜⎜⎜⎜⎜⎝

1 κ1 κ2
1 · · · κM−1

1
1 κ2 κ2

2 · · · κM−1
2

1 κ3 κ2
3 · · · κM−1

3
...

...
...

. . .
...

1 κM κ2
M · · · κM−1

M

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
t0
x
y
...

tM−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Ω1
Ω2
Ω3
...

ΩM

⎞⎟⎟⎟⎟⎠ .

Since the coefficient matrix is the Vandermonde matrix with distinct κj’s, the system has 
a unique solution, which we denote by (a0, x0, y0, a) with a ∈ RM−3. Next, we consider 
the plane defined by

z = 
i(a0, x, y,a) = a0 + κix + κ2
i y + ωi(a),

which can be rewritten in the form

z = κi(x− x0) + κ2
i (y − y0) + Ωi, i = 1, . . . ,M.

Setting x0 = y0 = 0 translates the contour plot in the xy-plane, but does not change 
its combinatorial structure. In other words, setting t = a gives a choice of multi-time 
parameters corresponding to the soliton triangulation with the κ-parameters and weight 
vector Ω. Hence giving the weight vector Ω is equivalent to choosing a particular direction 
in the time-space. Our aim is to identify the polyhedral structure in the time-space with 
t = (t3, . . . , tM−1) variables.

The plane 
i = Ωi in the M -dimensional space with (t0, x, y, t) has the normal vector 
(1, κi, . . . , κ

M−1
i ), and the hyperplane arrangements,


i − 
j = θi − θj = 0 1 ≤ i < j ≤ M,
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divide RM into M ! regions. The dual to the set of those regions gives a permutohedron 
for the symmetric group SM .

We now give a few definitions.

Definition 4.1. A polyhedral cone (or cone for short) generated by a finite set of vectors

BJ := {bj : j ∈ J ⊂ [M ]}

is defined by

cone(BJ) :=
{∑

j∈J

λjbj : bj ∈ BJ , λj ≥ 0
}
.

If the dimension of cone(BJ) is k, we define the relative interior of cone(BJ), denoted 
by relint(cone(BJ)), as the collection of all points p in cone(BJ) such that there exists 
a small ball Bp of dimension k centered at p such that Bp ⊂ cone(BJ). That is, the 
relative interior is the interior within the topology of the subspace spanned by the cone.

Example 4.2. Consider e1 = (1, 0, 0), e2 = (0, 1, 0) in R3. Then cone({e1, e2}) is the 
region {(x, y, 0) : x ≥ 0, y ≥ 0}, and has dimension two; while relint(cone({e1, e2})) is 
the region {(x, y, 0) : x > 0, y > 0}, which is not an interior of the topology of R3.

4.2. Polyhedral cones for Gr(1, M)>0 and Gr(2, M)>0

Let us first consider a non-generic subdivision of Aω
1,M induced from the weight ω =

(−1, 0, · · · , 0). With this weight vector, the lifted points {p̂2, p̂3, · · · , p̂M} have the same 
height, while p̂1 is below the plane containing these points. Thus we have a non-generic 
subdivision with only one diagonal {2, M}. There exists a vector, say r−1 , in the t-space 
RM−3, such that each point on the cone{r−1 } generates this non-generic subdivision. 
The negative − sign in the notation r−1 means the −1 in the weight ω = (−1, 0, · · · , 0). 
Similarly, we define r−i for all other i = 2, · · · , M . We also define r+

i = −r−i , which 
will be explained in more detail below. We call these r±i the main rays in t-space for 
non-generic subdivisions.

Before giving explicit coordinates for the vectors r−i , we note the following lemma:

Lemma 4.3. Two weights ω = (ω1, · · · , ωM ) and ω′ = (ω′
1, . . . , ω

′
M ) with ω′

i = t0 +
κix0 + κ2

i y0 + ωi for arbitrary (t0, x0, y0) give the same subdivision, that is, we have 
QN,M (ω) = QN,M (ω′).

Proof. Translating the coordinates (x, y, z) by (x + x0, y + y0, z − t0), each plane

z = θi(x, y, t) = κix + κ2
i y + ωi(t)
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becomes z = κix + κ2
i y + ω′

i(t). It is obvious that the dominance relation among the 
planes does not change under the translations of coordinates. �
Remark 4.4. Recall that for given weights (Ω1, . . . , ΩM ) ∈ RM , one can find a unique 
point (t0, x, y, t) ∈ RM such that the planes 
i are given by t0 + κix + κ2

i y + ωi(t) = Ωi

for i = 1, . . . , M . Then Lemma 4.3 implies that the subdivision can be determined by 
only the time variable t = (t3, . . . , tM−1) ∈ RM−3.

To find the vector r−i ∈ RM−3, we consider the following system of equations for 
(t0, x, y, t3, . . . , tM−1),

t0 + κix + κ2
i y +

M−1∑
k=3

κk
i tk = Ωi for i = 1, . . . ,M, (4.1)

where we assign the weights (Ω1, . . . , ΩM ) with Ωj = −δi,j (Kronecker delta). Then, 
by Lemma 4.3 and Remark 4.4, the (column) vector r−i is given by the last M − 3
components in the solution of this system, i.e.

r−i = (t3, t4, . . . , tM−1)T ∈ RM−3.

Equation (4.1) can be written in the M ×M matrix form,

RV = −Id or
M∑
k=1

ri,kκ
k−1
j = −δi,j ,

where V = (κi−1
j )1≤i,j≤M is the Vandermonde matrix, and Id is the identity matrix. The 

solution matrix R = −V −1 can be obtained by the Lagrange interpolation. Consider the 
polynomial,

pi(κ) =
M∑
k=1

ri,kκ
k−1 with pi(κj) = −δi,j .

The Lagrange interpolation formula then gives

pi(κ) = −
∏
l 
=i

κ− κl

κi − κl
= −1∏

l 
=i(κi − κl)
M∑
k=1

(−1)M−ke
(i)
M−kκ

k−1,

where e(i)
k is the k-th elementary symmetric polynomial of (κ1, . . . , ̂κi, . . . , κM ) (missing 

the κi variable). Explicitly, we have

e
(i)
k =

∑
1≤s1<s2···<sk≤M

κs1κs2 · · ·κsk .
i/∈{s1,...,sk}
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Thus, we have

ri,k = −1∏
l 
=i(κi − κl)

(−1)M−ke
(i)
M−k. (4.2)

The vector r−i is then given by

r−i = (ri,4, ri,5, . . . , ri,M )T ∈ RM−3.

Definition 4.5. The set of vectors B := {r−1 , . . . , r−M} is called the Gale transform of 
the point configuration A1,M = {(κi, κ2

i ) ∈ R2 : i = 1, . . . , M} and the vectors r−i are 
referred to as the Gale vectors. The Gale transform is defined formally using the following 
procedure, which applies more generally to point configurations (see e.g. [3,24]). Consider 
the 3 ×M matrix representing A1,M ,

A :=

⎛⎝ 1 1 · · · 1
κ1 κ2 · · · κM

κ2
1 κ2

2 · · · κ2
M

⎞⎠ ,

and consider the kernel of A

kerR(A) := {u ∈ RM : Au = 0}.

Let {u1, · · · , uM−3} be a basis for the vector space kerR(A). We organize these vectors 
as the columns of an M × (M − 3) matrix B, so AB = O3×(M−3), the 3 × (M − 3) zero 
matrix. Then

B := [u1, u2, · · · ,uM−3].

The M ordered rows of B give BT = [r−1 , . . . , r
−
M ], which is the Gale transform B.

The Gale transform B is a useful tool to read off the polygons in the regular subdi-
vision QN,M (ω), and the faces of the polytope Pω = conv({p1, · · · , pM}). The following 
theorem gives the method to check the regularity of a subdivision using the Gale trans-
form.

Theorem 4.6 ([17]). Let Q = {σ1, · · · , σm}, σi ⊂ [M ] for i = 1, · · · , m, be a subdivision 
of a point configuration A and let B be a Gale transform of A. Then Q is regular if and 
only if

m⋂
i=1

relint(cone(Bσ̄i
)) �= ∅,

where Bσ̄i
:= {r−j : j ∈ σ̄i = [M ] \ σi}.
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Note that if t ∈ cone{r−i }, then the subdivision Q1,M (ω(t)) consists of the triangle 
{i − 1, i, i + 1} and the (M − 1)-gon with the vertices {pj : j ∈ [M ] \ {i}}. One can then 
easily find that the subdivision having just one diagonal, say {i, j}, can be constructed 
by choosing the time variable t in the following cone,

cone{Bσi,j
} ∩ cone{Bτi,j},

where σi,j and τi,j are defined by

σi,j = {i + 1, . . . , j − 1}, τi,j = {j + 1, . . . , i− 1} (in the cyclic order),

that is, σi,j ∪ τi,j = [M ] \ {i, j}. Note that the dimension of the intersection is one: 
Writing j = i + k + 1 (mod M), then we have

dim(cone{Bσi,j
}) = k, dim(cone{Bτi,j}) = M − k − 2.

Then we define a vector r[i,j] such that

cone{r[i,j]} = cone{Bσi,j
} ∩ cone{Bτi,j}.

Notice that r−i = r[i−1,i+1]. Then it is immediate that we have the following propositions:

Proposition 4.7. A white polygon Pσ with vertex set σ ⊂ [M ] shows up in the subdivision 
Q1,M (ω(t)) if and only if the time variable t ∈ RM−3 belongs to the relative interior 
relint(cone{Bσ̄}) where σ̄ = [M ] \ σ.

Proposition 4.8. A subdivision Q1,M (ω(t)) has the diagonals {il, jl} for l = 1, . . . , m, if 
and only if

t ∈ relint
(
cone{r[il,jl] : l = 1, . . . ,m}

)
.

Since any triangulation of the M -gon has M − 3 diagonals, Proposition 4.8 implies 
that one can realize a unique triangulation Q1,M(ω(t)) with M − 3 diagonals {il, jl} for 
l = 1, . . . , M − 3 by choosing t in the proposition.

Example 4.9. Consider the point configuration for N = 1 and M = 5:

A1,5 = {(κi, κ
2
i ) : i = 1, . . . , 5},

where we take (κ1, . . . , κ5) = (−2, −1, 0, 1, 2). Then, from (4.2), the Gale transform 
B = {r−1 , . . . , r−5 } is given by
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Fig. 10. Triangulations Q1,5(ω(t)) (left) and Q2,5(ω(t)) (right) for the weights ωi(t) = κ3
i t3 + κ4

i t4. The 
set B = {r−i : i = 1, . . . , 5} is the Gale transform and r+

i = −r−i . Here the κ-parameters are given by 
(κ1, . . . , κ5) = (−2, −1, 0, 1, 2).

r−1 = 1
12

(
2
−1

)
, r−2 = 1

6

(
−1
1

)
, r−3 = 1

4

(
0
−1

)
,

r−4 = 1
6

(
1
1

)
, r−5 = 1

12

(
−2
1

)
.

The left figure in Fig. 10 illustrates the triangulations of the pentagon P1,5. Each triangu-
lation for P1,5 can be obtained by using Proposition 4.7. For example, the triangulation 
containing the triangle σ = {1, 3, 5} can be obtained by choosing a point (t3, t4) in the 
cone spanned by r−2 and r−4 (note {2, 4} = [5] \ {1, 3, 5}), i.e.

t = (t3, t4) ∈ relint
(
cone{r−2 , r−4 }

)
.

One should note that the triangulation Q1,5 = {σ1, σ2, σ3} with σ1 = {1, 2, 3}, σ2 =
{1, 3, 5}, σ3 = {3, 4, 5} can be realized with t = (t3, t4) in relint(cone{Bσ̄2}), since

cone{Bσ̄1} ∩ cone{Bσ̄2} ∩ cone{Bσ̄3} = cone{Bσ̄2}.

We also remark that in terms of the determinant Di1,i2,i3,i4 in (3.1), each direction 
r−i can be described by D[5]\i = 0, i.e. the vertices {pj : j ∈ [5] \ i} are coplanar.

Now we consider the subdivision for the configuration Aω(t)
2,M . We use Algorithm 3.10

to construct Q2,M (ω(t)). The right figure in Fig. 10 shows the subdivisions obtained 
from the triangulations Q1,M (ω(t)) in the left figure for M = 5. Each black triangle 
in Q2,M (ω(t)) corresponds to a white triangle in Q1,M (ω(t)) for the same t. Notice 
that the dotted lines in the left figure become the solid lines which are the boundaries 
corresponding to the black-white flips. For example, the solid line of r−2 is the boundary 
corresponding to the black-white flip of the parallelogram {13, 34, 45, 15}.
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The subdivision obtained by the algorithm contains some white k-gons where k is 
given by the degree of the corresponding vertex. More precisely, such a k-gon has the 
index set {i0i1, i0i2, . . . , i0ik} ⊂

([M ]
2
)

for a common index i0 ∈ [M ] where i0 is the index 
of the vertex pi0 = (κi0 , κ

2
i0

) in the M -gon P1,M . Then one can triangulate this white 
polygon using the algorithm for the configuration A1,k = {pi1 , . . . , pik}. For example, 
consider the subdivision Q2,5 in cone{r−2 , r−4 } which has the white quadrilateral with 
vertex set {13, 23, 34, 35}. Then 3 is the common index, and we triangulate the A1,4 =
{p1, p2, p4, p5}. A triangulation is given by choosing the triangle {1, 2, 4} as shown in 
Fig. 10, and it is obtained by choosing the time variable

t = (t3, t4) ∈ relint
(
cone{r−5 , r+

3 } ∩ cone{r−2 , r−4 }
)
.

The r+
3 in the first cone indicates the dominant (or common) index, and the r−5 indicates 

the missing index in A1,4 for the white 4-gon. Note that the intersection is also given by 
cone{r−2 , r+

3 } which is obtained by taking the other triangle {1, 4, 5} in the 4-gon. In the 
next section, we discuss the general case.

4.3. A realizability theorem for QN,M (ω(t))

We first define the following pair of indices (K+
σ , K−

σ ) for the triangles σ = {I, J, L}
with I, J, L ∈

([M ]
N

)
in the subdivision QN,M (ω):

(a) If σ is a white triangle, the vertices of the triangle σ are expressed by {Kσa, Kσb,

Kσc} for some Kσ ∈
( [M ]
N−1

)
. We define a pair of indices (K+

σ , K−
σ ) as

K+
σ := Kσ, K−

σ = [M ] \ (Kσ ∪ {a, b, c}). (4.3)

(b) If σ is a black triangle, the vertices are expressed by {Kσ \a, Kσ \ b, Kσ \ c} for some 
Kσ ∈

( [M ]
N+1

)
. We then define (K+

σ , K−
σ ) as

K+
σ := Kσ \ {a, b, c}, K−

σ = [M ] \Kσ. (4.4)

That is, K+
σ represents the common indices, and K−

σ represents the missing indices for 
the triangle σ. Also notice that |K+

σ | + |K−
σ | = M − 3. Then we have:

Theorem 4.10. A subdivision QN,M (ω(t)) contains a triangle σ if and only if

t ∈ relint
(
cone

{
r+
α , r−β : α ∈ K+

σ , β ∈ K−
σ

})
.

The dimension of the cone is M − 3, i.e. the full dimension of the t-space.

Proof. We here consider only the white triangle case with {Kσa, Kσb, Kσc} and Kσ =
K+

σ (the other case is similar). Recall that the time t ∈ cone{r−i } corresponds to a 
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subdivision QN,M (ω(t)) having the weight ωk = −δi,k for k = 1, . . . , M . Similarly, the 
time t ∈ cone{r+

i } with r+
i = −r−i implies the weight ωk = +δi,k for k = 1, . . . , M .

First assume that t ∈ relint(cone{r+
α , r−β : α ∈ K+

σ , β ∈ K−
σ }). This means that 

the vertices {p̂Kσa, p̂Kσb, p̂Kσc} have the same positive weight, and all other vertices in 
Aω

N,M have smaller weights. Thus the subdivision contains the triangle {Kσa, Kσb, Kσc}.
Now assume that the points {p̂Kσa, p̂Kσb, p̂Kσc} form an upper 2-face of the poly-

tope Pω
N,M . Then, from Lemma 4.3, one can find (c, x0, y0) such that each point in 

{p̂Kσa, p̂Kσb, p̂Kσc} has the same positive weight while all other vertices have smaller 
weights. This means that t is a point in

relint(cone{r+
α , r−β : α ∈ K+

σ , β ∈ K−
σ }). �

Using Theorem 4.10 we now obtain the main theorem, which can be proven in the 
same way as in the proof of Theorem 4.10.

Theorem 4.11. A triangulation QN,M (ω(t)) having the set of triangles � = {σ1, · · · , σm}
is realizable if and only if the following set is not empty, i.e.⋂

σ∈�
relint

(
cone

{
r+
α , r−β : α ∈ K+

σ , β ∈ K−
σ

})
�= ∅.

If the set is empty, then the subdivision is not realizable.

For N > 1, it is sometimes useful to consider subdivisions of Aω(t)
N,M modulo the 

triangulation of each black or white region. For a soliton subdivision QN,M(ω(t)), we 
let QN,M (ω(t))/ ∼ w be the coarser subdivision obtained by merging any two white 
polygons that share an edge; let QN,M (ω)/ ∼ b be the subdivision which results from 
merging any two black polygons that share an edge; and let QN,M(ω(t))/ ∼ wb denote 
the case where we merge both black and white polygons. We note that Algorithm 3.10
gives a purely combinatorial recipe for constructing QN+1,M (ω(t))/ ∼ w, and hence 
QN+1,M (ω(t))/ ∼ wb, from QN,M (ω(t))/ ∼ b.

Definition 4.12. For a given choice of the κ-parameters, we let F̃N,M denote the poly-
hedral fan whose maximal cones correspond to triangulations QN,M (ω(t)). We let 
FN,M denote the polyhedral fan whose maximal cones correspond to subdivisions 
QN,M (ω(t))/ ∼ wb, where QN,M (ω(t)) is a triangulation. Hence F̃N,M is a refinement 
of FN,M .

5. Triangulations QN,6(ω(t)) for N = 1, 2, 3

In this section, we construct the triangulations QN,6(ω(t)) for N = 1, 2 and 3 by 
giving the detailed structure of the corresponding polyhedral fans in multi-time space of 
the KP hierarchy. We show that all subdivision QN,6 are realizable, up to triangulation 
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Fig. 11. Polyhedral cones in the time space R3. The Gale vectors r−i are marked by the white ver-
tices with i− for i = 1, . . . , 6. In particular, the triangulation with triangle {2, 4, 6} is generated by 
t ∈ relint(cone{r−1 , r−3 , r−5 }).

of the black and white tiles. However, some subdivisions Q3,6 are only realizable for 
certain choices of κ-parameters. There is no fixed choice of the κ-parameters for which 
all subdivisions Q3,6 are realizable.

5.1. Subdivisions Q1,6(ω(t)) and Q2,6(ω(t))

We first construct F̃1,6, which has six main rays

{r−i : 1 ≤ i ≤ 6}

in t-space. Fig. 11 shows a schematic drawing of this fan, projected onto a region in two-
dimensional space. Each white vertex represents one of the main rays r−i . Any two of the 
rays r−i span a two-dimensional cone, shown in the figure as a dashed line segment, and 
any three of the rays r−i span a three-dimensional cone. Taking the common refinement 
of this collection of cones gives a polyhedral fan, where each full-dimensional cone can 
be labeled by a unique triangulation of the hexagon (Theorem 4.11). For example, the 
cone associated to the unique triangulation having triangles {1, 2, 3}, {1, 3, 6}, {3, 5, 6}
and {3, 4, 5} corresponds to the intersection of two cones,

cone{r−2 , r−4 , r−5 } and cone{r−1 , r−2 , r−4 }.

The first cone corresponds to the triangle {1, 3, 6} and the second one to {3, 5, 6}. 
Note here that we only need to use a minimal number of triangles which determine 
the triangulation. In particular, the cone for the case with the triangle {2, 4, 6} is just 
cone{r−1 , r−3 , r−5 } (the middle triangular cone in Fig. 11).

Remark 5.1. It is well-known that the number of triangulations of the M -gon is given 
by the Catalan number,

CM−2 = 1
(

2(M − 2)
)
.

M − 1 M − 2
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Fig. 12. Subdivisions Q2,6(ω(t)) via Algorithm 3.10 from the triangulations Q1,6(ω(t)). Each black triangle 
is induced by a white triangle in Q1,6(ω(t)).

Fig. 13. The polyhedral structures FN,6 in the time space R3 for N = 1, 2, 3. The dashed lines correspond 
to the flips of diagonals in the white polygons, and the solid lines correspond to the black-white flips in 
the parallelograms (see Fig. 4). Note that the solid lines disappear and the dashed lines become solid lines 
as N increases. In the case N = 3, we omit the dashed lines which correspond to the triangulations of the 
white polygons in the subdivisions Q3,6(ω(t)) obtained by the blow-up of Q2,6(ω(t)).

Notice that the number of polyhedral cones in Fig. 11 is C4 = 14. The secondary polytope 
which is dual to the polyhedral structure of RM−3 is known as the associahedron, whose 
vertices are labeled by the triangulations of the M -gon.

It follows from Algorithm 3.10 that F2,6 has precisely the same cones as F̃1,6. This is 
illustrated in Fig. 12. We now refine F2,6 to produce F̃2,6. First, we construct the rays

{r+
i : 1 ≤ i ≤ 6},

represented by black dots in the middle panel of Fig. 13. (The black dot inside a white 
circle does not represent one of the main rays, and will be explained below.) We then 
construct the two-dimensional cones cone{r−i , r+

j } for all i �= j, represented by dashed 
segments in the figure. Taking the common refinement of the resulting collection of cones 
with the cones of F̃1,6, we obtain F̃2,6. As explained below, the structure of F̃2,6 (and 
hence, the collection of the subdivisions for Gr(2, 6)>0 that are realizable) depends on 
our choice of κ-parameters.

By construction, maximal cones of F̃2,6 correspond to the triangulations of A2,6. For 
example, the unique such triangulation having two black triangles {{1, 2}, {1, 5}, {2, 5}}
and {{2, 3}, {2, 5}, {3, 5}} and a white triangle {{1, 5}, {3, 5}, {5, 6}} can be realized 
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Fig. 14. Triangulations Q2,6(ω(t)) which are only realizable for some choices of the κ-parameters. Each of 
these triangulations is realized by choosing a point in the middle triangular cone in the time space R3

shown in Fig. 12.

by taking a point t = (t3, t4, t5) in the intersection of three cones spanned by 
{r−3 , r−4 , r−6 }, {r−1 , r−4 , r−6 } and {r+

5 , r
−
1 , r

−
4 } (Theorem 4.11).

5.2. Subdivision Q3,6(ω(t))

We now construct F3,6. Using Algorithm 3.10, this is obtained by taking F̃3,6, and 
merging any top-dimensional cones that represent the same triangulations, up to tri-
angulation of the black polygons. For this, we claim it suffices to merge each pair of 
three-dimensional cones in F̃2,6 separated by a face of the form cone{r+

i , r
−
j }. In our 

example, this yields the fan shown at right in Fig. 13. To prove the claim, note that 
two full-dimensional cones are separated by a face cone{r+

i , r
−
j } if and only if the cor-

responding triangulations differ by a black-white flip, which occurs if and only if their 
images at N = 3 are identical, up to flipping a diagonal in one of the triangulated black 
polygons.

We note that there are four triangulations Q2,6(ω(t)) which can only be realized for 
certain κ-parameters. Two of these are refinements of the subdivision obtained inside the 
cone{r−1 , r−3 , r−5 }, which has four white 4-gons as shown in Fig. 12; two are refinements 
of the analogous subdivision which occurs within cone{r−2 , r−4 , r−6 }. We triangulate the 
subdivision in the following two cases, shown in Fig. 14:

(a) The triangulation with the three white triangles,

{12, 24, 26}, {24, 34, 46}, {26, 46, 56}.

They can be realized from the following cones, respectively,

cone{r+
2 , r

−
3 , r

−
5 }, cone{r+

4 , r
−
1 , r

−
5 }, cone{r+

6 , r
−
1 , r

−
3 }.

(b) The triangulation with three white triangles,

{23, 24, 26}, {24, 45, 46}, {16, 26, 46}.

They are realized from the following cones:

cone{r+
2 , r

−
1 , r

−
5 }, cone{r+

4 , r
−
1 , r

−
3 }, cone{r+

6 , r
−
3 , r

−
5 }.
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By Theorem 4.11, these triangulations can be realized by a point t in the intersection 
of the given cones (if it is not empty). For a choice of κ-parameters, however, both 
intersections can be empty. This occurs when the segments representing cone{r−1 , r+

4 }, 
cone{r−3 , r+

4 } and cone{r−5 , r+
2 } intersect in a single point (representing a ray in t-space). 

We denote this double point of F̃3,6 by a black dot inside a white circle as shown in Fig. 13.
We now determine for which choices of the κ-parameters such a double point occurs. 

First, we claim that the two-dimensional fan spanned by cone{r−1 , r+
4 } is contained within 

the plane defined by D2,3,5,6 = 0. To see this, note that the plane defined by D2,3,5,6 is 
the region in t-space corresponding to the point configurations where p̂2, p̂3, p̂5 and p̂6
are coplanar. Certainly, any point in t-space which is a linear combination of r−1 and r+

4
satisfies this condition; for such a point p2, p3, p5 and p6 all have weight 0.

We may rewrite the equation for the plane D2,3,5,6 = 0 by plugging in the coordinates

pi = κj , qi = κ2
i , ωi(t) =

5∑
j=3

κj
i tj

into the determinant formula for D2,3,5,6. Factoring the resulting equation, and dividing 
by terms that cannot equal to zero when κ1 < κ2 < · · · < κ6, we obtain

t3 + h1(2, 3, 5, 6)t4 + h2(2, 3, 5, 6)t5 = 0

where hk is the homogeneous symmetric polynomial of degree k defined by

hk(i1, i2, i3, i4) =
∑

1≤s1≤s2≤···≤sk≤4
κis1

· · ·κisk
.

Similarly, the plane defined by D1,2,4,5 = 0 contains cone{r−3 , r+
6 }, and the plane 

defined by D1,3,4,6 = 0 contains cone{r−5 , r+
2 }. Hence the three two-dimensional cones 

intersect in a ray precisely when the three planes intersect in a line, that is, when we 
have the following determinant condition,∣∣∣∣∣∣

1 h1(2, 3, 5, 6) h2(2, 3, 5, 6)
1 h1(1, 2, 4, 5) h2(1, 2, 4, 5)
1 h1(1, 3, 4, 6) h2(1, 3, 4, 6)

∣∣∣∣∣∣ = 0. (5.1)

To obtain a simpler formula, we may specialize to the case where the κ-parameters 
satisfy a symmetric condition,

κ1 = −κ6, κ2 = −κ5, κ3 = −κ4.

With this choice of parameters, the determinant (5.1) becomes

−2(κ2
2 − κ1κ3)(κ1 − κ3).

Since κ1 < κ3, the determinant is positive if κ2
2 > κ1κ3, and negative if κ2

2 < κ1κ3.
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Fig. 15. One possibility for the arrangement of two-dimensional cones inside cone{r−1 , r−3 , r−5 }. Each Gale 
vector r±i is marked by i±. The arrows show the normal vectors corresponding to rows of the matrix in the 
determinant (5.1).

We now investigate what happens when the determinant (5.1) is nonzero. By the 
quadrilateral-checking formula (Lemma 3.1), D2,3,5,6 > 0 when the diagonal {3̂, ̂6} passes 
over the diagonal {2̂, ̂5}, while D2,3,5,6 < 0 when {2̂, ̂5} passes over {3̂, ̂6}. Hence, the 
normal vector

〈1, h1(2, 3, 5, 6), h2(2, 3, 5, 6)〉

to the plane containing cone{r−1 , r+
4 } points toward the half-space containing r−5 and r+

6 . 
Similarly, the normal vector

〈1, h1(1, 2, 4, 5), h2(1, 2, 4, 5)〉

to the plane defined by D1,2,4,5 = 0 points toward the half-space containing r−1 and r+
2 , 

while the normal vector

〈1, h1(1, 3, 4, 6), h2(1, 3, 4, 6)〉

to the plane defined by D1,3,4,6 = 0 points toward the half-space containing r−1 and r+
6 . 

See Fig. 15.
Note that the ray where the planes D2,3,5,6 = 0 and D1,2,4,5 = 0 intersect inside 

cone{r−1 , r−3 , r−5 } is the cross product

〈1, h1(1, 2, 4, 5), h1(1, 2, 4, 5)〉 × 〈1, h1(2, 3, 5, 6), h1(2, 3, 5, 6)〉.

The triple scalar product of this ray with

〈1, h1(1, 3, 4, 6), h2(1, 3, 4, 6)〉
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Fig. 16. Subdivisions Q3,6(ω(t)) and the corresponding polyhedral cones in the time space R3 shown in 
Fig. 13.

Fig. 17. Two different triangulations for the middle section of the left panel in Fig. 16. They are corresponding 
to the different choices of the κ-parameters. For the symmetric parameters (κ1, κ2, κ3, −κ3, −κ2, −κ1), the 
left figure corresponds to the case κ2

2 > κ1κ2, and the right one to κ2
2 < κ1κ3.

is positive if the ray lies on the same side of cone{r−5 , r+
2 } as r−1 and r+

6 , as shown on the 
right in Fig. 17; and negative if the ray lies on the opposite side of the cone as shown 
at left in Fig. 17. By properties of the triple scalar product, the determinant (5.1), is 
negative in the first case, and positive in the second.

We now use Algorithm 3.10 to construct a subdivision Q3,6(ω(t)) from a triangulation 
Q2,6(ω(t)). Note here that two triangulations Q2,6 adjacent to a common solid line in 
Fig. 13 lead to the same subdivision Q3,6 by the blow-up process. That is, the solid lines 
in N = 2 case disappear in N = 3, and each subdivision Q3,6(ω(t)) can be generated 
by choosing a point t in a cone illustrated in the figure N = 3 where the solid lines are 
the dashed lines in the case N = 2. Fig. 16 shows the subdivisions Q3,6 obtained from 
the triangulations Q2,6 through Algorithm 3.10. The total number of the subdivisions 
is given by the number of polyhedral cones in the time space. Then recall that there 
are two triangulations of Q2,6 which cannot be realized for fixed κ-parameters. Using 
a different set of κ-parameters, we obtained those missing triangulations Q2,6 as shown 
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Fig. 18. Triangulated plabic tilings Q3,6(ω(t)) which are only realizable for some choices of the κ-parameters. 
There triangulations are realized by choosing points in the central polyhedral cones in Fig. 17.

in Fig. 14. Then it is immediate to see that the subdivisions Q3,6 obtained from these 
triangulations through the blow-up process are triangulations which cannot be obtained 
from the original set of the κ-parameters. Fig. 17 shows these triangulations for the 
middle section in Fig. 16.

We now summarize this discussion in Theorem 5.2 below, which states when each 
maximal weakly separated collection for Gr(3, 6)>0 is realizable. See also Figs. 16 and 
17. Note that the theorem is stated in terms of weakly separated collections, which 
correspond to soliton subdivisions rather than soliton triangulations.

Theorem 5.2. There are 34 maximally weakly separated collections for Gr(3, 6)>0. Of 
these, 30 are realizable for every choice of κ-parameters. For a generic choice of κ-
parameters, 32 of the 34 are realizable. We can realize the weakly separated collections 
shown at left in Fig. 18 if and only if the determinant (5.1) is positive. We can realize 
the collections shown at right in Fig. 18 if and only if the determinant (5.1) is negative.

Example 5.3. We demonstrate the case for Gr(3, 6)>0 by considering an explicit example 
where we take the κ-parameter as (κ1, . . . , κ6) = (−3, −2, −1, 1, 2, 3). Then the Gale 
vectors are calculated as

r−1 =
(−5
−3
1

)
, r−2 =

( 10
2
−1

)
, r−3 =

(−13
−1
1

)
,

r−4 =
( 13
−1
−1

)
, r−5 =

(−10
2
1

)
, r−6 =

( 5
−3
−1

)
.
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Fig. 19. The Gale vectors for (κ1, . . . , κ6) = (−3, −2, −1, 1, 2, 3) in the time space. The vectors in the left 
are shown at the plane t5 = 1, and the right ones are at t5 = −1.

Fig. 20. The soliton graph and the corresponding triangulation Q3,6(t) for the case with (κ1, . . . , κ6) =
(−3, −2, −1, 1, 2, 3) and t = (−10.5, 0, 1).

Here these vectors are normalized to be ±1 in the third component. Fig. 19 illustrates 
the polyhedral cones in the time space t = (t3, t4, t5). Note that the vectors r−1 , r

−
3 , r

−
5

appear at the plane t5 = 1, and other vectors are at t5 = −1.
As a summary of this section, we show how to find values of t that realize the subdi-

vision Q2,6(ω(t)) shown in the center of Fig. 12 and the triangulation Q3,6(ω(t)) shown 
in Fig. 20:

(a) Consider the triangulation Q1,6(ω(t)) with the triangle {2, 4, 6}, which is realized by 
taking

t ∈ relint
(
C−−−
1,3,5

)
with C−−−

1,3,5 := cone
{
r−1 , r

−
3 , r

−
5
}
.

This leads to the subdivision Q2,6(ω(t)) shown in Fig. 12.
(b) Triangulate three white 4-gons in Q2,6(ω(t)) by taking the intersection of three 

cones, C+−−
2,3,5 , C−+−

1,4,5 and C−−+
1,3,6 . Then the triangulation Q3,6(ω(t)) shown in Fig. 20

is obtained by taking a point

t ∈ relint
(
C+−−
2,3,5 ∩ C−+−

1,4,5 ∩ C−−+
1,3,6

)
.

The triangulation Q3,6(ω(t)) in Fig. 20 is obtained by taking t = (−10.5, 0, 1).



40 R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439
Fig. 21. The four triangulations Q1,7 of the heptagon, up to rotation and reflection.

6. Realizability of Q3,7(ω(t)) and Q3,8(ω(t))

6.1. Results for Gr(3, 7)>0

We now extend our results from Gr(3, 6)>0 to Gr(3, 7)>0. We show that every max-
imal weakly separated collection for Gr(3, 7)>0 is realizable for some choice of the 
κ-parameters (κ1, . . . , κ7), and determine which of these collections are realizable for 
any given choice of the κ-parameters.

Theorem 6.1. Every maximal weakly separated collection for Gr(3, 7)>0 is realizable for 
some choice of the κ-parameters.

Proof. Since the t-space has dimension 4, visualizing the polyhedral fan for A1,7 is rather 
difficult. We instead reason directly about the placement of the lifted points

{p̂1, p̂2, . . . , p̂7} ⊂ R3.

By Lemma 3.12, it suffices to prove that every triangulated plabic tiling for Gr(2, 7)>0
is realizable for some choice of the κ-parameters. We have already shown the analo-
gous result for Gr(3, 6)>0. Hence our approach is to start with a weight function on 
{p1, . . . , p6}, and show that we can add a seventh point with an appropriate weight to 
realize the desired triangulation.

Consider a realizable triangulation Q2,7(ω(t)) of A2,7. By Algorithm 3.10, Q2,N (ω(t))
uniquely determines Q1,N (ω(t)). Moreover, the triangulation of the white polygon whose 
vertices have common index i in Q2,7(ω(t)) is determined by restricting ω(t) to the set 
of neighbors of pi in Q1,7(ω(t)). Hence to show that a given subdivision Q2,7 of A2,7 is 
realizable, it suffices to find a weight function ω(t) such that the following hold:

(1) Q1,7(ω(t)) is the triangulation determined by Q2,7(ω(t)).
(2) For each 1 ≤ i ≤ 7, restricting ω(t) to the neighbors of pi in the triangulation 

Q1,7(ω(t)) yields the appropriate triangulation which corresponds to the white poly-
gon of Q2,7.

There are four soliton triangulations Q1,7 of the heptagon, up to rotation and re-
flection. First, consider the leftmost triangulation in Fig. 21. We may assign weights 
{ω1, . . . , ω7} to produce any triangulation of A1,6 we desire. Placing p̂7 high enough 
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then guarantees that all diagonals incident at p7 appear in the triangulation of A1,7. 
Hence, any triangulation Q2,7 which is obtained by blowing up this triangulation of the 
heptagon is realizable.

For the middle two triangulations in Fig. 21, we assume we have an appropriate weight 
function on p1, . . . , p6, and then show that we can add a point p̂7 to obtain the desired 
Q2,7. For this, note that our point p̂7 must satisfy two constraints.

(1) The point p̂7 lies below the plane through p̂1, p̂2 and p̂6.
(2) The line segment {2̂, ̂7} passes either below or above the line segment {1̂, ̂5}, de-

pending on the desired triangulation.

If {2̂, ̂7} must pass below {1̂, ̂5}, this is easily achieved by placing p̂7 low enough. Other-
wise, note that p̂5 lies below the plane spanned by p̂1, p̂2 and p̂6. Hence we can achieve 
the desired configuration by taking p̂7 just slightly below this plane.

Finally, we consider the rightmost triangulation in Fig. 21. Here, there are five possible 
cases for the triangulation of the white polygon with common index 6, corresponding 
to possible regular triangulations of the pentagon with vertices p1, p2, p4, p5 and p7. 
Assume we have an appropriate weight function for these points. We must show that we 
can place the lifted point p̂7 as needed in each case.

Suppose no diagonal incident at p7 appears in the desired triangulation of the pen-
tagon. Then it suffices to simply place p̂7 low enough. This covers the case where either 
p1 or p5 is incident at both diagonals which appear in the pentagon.

For the remaining cases, note that by our choice of weight function for p1, . . . , p6, 
the plane P through p̂1, p̂2 and p̂4 must pass below p̂6. Hence we obtain the desired 
triangulation Q1,7(ω(t)) as long as p̂7 is sufficiently close to P.

Suppose we weight the points p1, . . . , p6 in such a way that {1̂, ̂4} passes over {2̂, ̂5}. 
Then placing p̂7 slightly above P yields the case where p7 is incident at both diagonals 
of the pentagon which appear; and placing p̂7 slightly below P yields the case where p4

is incident at both diagonals which appear. Finally, suppose {1̂, ̂4} passes below {2̂, ̂5}. 
Then placing p̂7 slightly above P yields the case where p2 is incident to both diagonals. 
This completes the proof. �
Theorem 6.2. There are 203 maximal weakly separated collections in 

([7]
3
)

which are re-
alizable for any choice of the κ-parameters. For each generic choice of the parameters, 
a total of 231 collections are realizable.

Proof. We first show that all triangulated plabic tilings Q2,7 are realizable for any choice 
of the κ-parameters, except those which can be obtained from the triangulations in 
Fig. 22 by applying symmetries of the heptagon.

In the proof of Theorem 6.1, we realize each plabic tiling Q2,7 by first choosing an 
appropriate weight function on the points {p1, . . . , p6}, and then adding a lifted point 
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Fig. 22. Triangulated plabic tilings Q2,7 which are only realizable for some choice of parameters.

p̂7. None of the arguments requires any restriction on the location of the (non-lifted) 
point p7 in the pq-plane, or equivalently on the value of κ7.

Recall that any Q2,7 can be obtained by blowing up a unique triangulation Q1,7. If 
Q1,7 is the leftmost triangulation in Fig. 21, up to symmetries of the heptagon, the 
proof of Theorem 6.1 simply requires that we find a weight function on {p1, . . . , p6}
which induces the desired subdivision on Q1,6. This is possible for any choice of the 
parameters.

Otherwise, we must find a weight function on {p1, . . . , p6} which gives some specified 
Q2,6. This is possible for any choice of {κ1, . . . , κ6}, unless the desired triangulation is 
one of those shown in Fig. 14, up to symmetry. This occurs precisely when Q2,6 is one 
of those shown in Fig. 22, up to symmetry, so the first part of the claim is proved.

We now determine when the triangulated plabic tilings in Fig. 22 are realizable. By 
Theorem 5.2, the two plabic tilings on the top row of Fig. 22 are not realizable unless the 
determinant (5.1) is negative. Conversely, if this condition holds, then both plabic tilings 
are realizable, by Theorem 5.2 and the proof of Theorem 6.1. Similarly, the first two 
plabic tilings on the bottom row of Fig. 22 are realizable if and only if the determinant 
in (5.1) is positive.

The case of the tiling at bottom right in Fig. 22 is more complicated. By Theorem 5.2, 
this tiling cannot be realizable unless the determinant in (5.1) is positive, which suffices 
for our purposes. It can be shown, however, that this triangulation is realizable if and 
only if the κ-parameters satisfy the stronger condition

∣∣∣∣∣∣
1 h1(2, 3, 5, 7) h2(2, 3, 5, 7)
1 h1(1, 2, 4, 5) h2(1, 2, 4, 5)
1 h1(1, 3, 4, 7) h2(1, 3, 4, 7)

∣∣∣∣∣∣ > 0.
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Fig. 23. Plabic tilings Q3,7 which are only realizable for some choice of the κ-parameters.

Blowing up the tilings in Fig. 22, we obtain the (non-triangulated) plabic tiling Q3,7
in Fig. 23. Moreover, the plabic tilings on the top row of Fig. 23 can only be obtained 
by blowing up the corresponding tilings on the top row of Fig. 22; the tiling at lower 
left in Fig. 23 can only be obtained by blowing up the tiling at lower left in Fig. 22; and 
the tiling at lower right in Fig. 23 can only be obtained by blowing up one of the tilings 
shown respectively at lower middle and lower right in Fig. 22. Hence the tilings on the 
top row of Fig. 23 are realizable if and only if (5.1) is negative and the tilings on the 
bottom row of Fig. 23 are realizable if and only if (5.1) is positive.

In sum, for each choice of the κ-parameters, exactly two of the four tilings in Fig. 23
are realizable. Applying the 14 symmetries of the heptagon to the plabic tilings shown 
in Fig. 23, we obtain a total of 56 triangulations. Half of these, or 28 total, are realizable 
for any given generic choice of parameters. There are 259 maximal weakly separated 
collections in 

([7]
3
)
, so this leaves 203 tilings which must be realizable for any choice of 

the κ-parameters. �
6.2. Results for Gr(3, 8)>0

For Gr(3, 8)>0, we do not yet have a classification of the possible soliton triangulations 
for each choice of parameters. However, we can prove the following analog of Theorem 6.1.

Theorem 6.3. Every maximal weakly separated collection for Gr(3, 8)>0 is realizable.

Proof. We show that every triangulated plabic tiling Q2,8 is realizable. The result then 
follows by Lemma 3.12. Each Q2,8 corresponds to a unique triangulation of the octagon 
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Fig. 24. Triangulations Q1,8 of the octagon.

Fig. 25. Plabic tilings Q2,8 which arise from the first triangulation in Fig. 24.

A1,8. The arguments used in the proof of Theorem 6.1 show that Q2,8 is realizable in 
the case where the corresponding triangulation of A1,8 has a triangle with one ver-
tex of degree 2, one vertex of degree 3, and one vertex of degree at most 5. Similarly, 
any triangulation arising from a triangulation of A1,8 which has one vertex that is 
adjacent to all the others is realizable, by the arguments used in the proof of Theo-
rem 6.1.

Up to symmetry, this leaves three triangulations of A1,8, which are shown in Fig. 24. 
We first consider triangulations Q2,8 arising from the leftmost triangulation in Fig. 24. 
These are precisely the triangulations Q2,8 which refine the subdivision shown at left in 
Fig. 25.

Fix such a Q2,8, and suppose the diagonal corresponding to {1̂, ̂5} does not appear in 
either of the two white quadrilaterals. Then we can realize Q2,8 by arranging the points 
{p̂i : i �= 5} appropriately, and then assigning p̂5 a low-enough weight. Similarly, if the 
diagonal corresponding to {1̂, ̂5} appears in both white quadrilaterals, it suffices to place 
p̂5 high enough.

Next, suppose the diagonal corresponding to {1̂, ̂5} appears in exactly one of the two 
quadrilaterals. We consider the case where Q2,8 refines the subdivision shown at right in 
Fig. 25; the other case is analogous. For this, we choose the parameters κi so that in the 
pq-plane, the segment {1, 5} intersects {3, 6}, and {4, 7} to the right of the point where 
the latter two segments intersect.

We assign all points {p̂i : i �= 1, 5} the same weight, and assign a higher weight to 
p̂1. To obtain the desired subdivision, we then assign a weight to p̂5 so that the seg-
ment {1̂, ̂5} passes just slightly above {4̂, ̂7}. We then adjust the weights of the points 
{p̂i : i �= 1, 5} to obtain the desired subdivision of the white hexagon with common 
index 1. Since we can triangulate the hexagon using arbitrarily small adjustments of the 
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Fig. 26. Plabic tilings Q2,8 which arise from the third triangulation in Fig. 24.

weights, there is no danger of disturbing the rest of the configuration, and this case is 
complete. The argument for a tiling Q2,8 corresponding to the middle triangulation in 
Fig. 24 is analogous.

It remains to show that we can realize all triangulated plabic tilings Q2,8 which arise 
from the rightmost triangulation in Fig. 24, up to rotation and reflection. First, note 
that every such Q2,8 refines one of the six plabic tilings shown in Fig. 26, up to ro-
tation and reflection. (This is not immediately obvious, but follows by a simple case 
check.)

If Q2,8 refines the tiling shown at upper left, it suffices to arrange the points 
{p̂i : i �= 2}, and then place p̂2 low enough.

For several of the remaining cases, we start by arranging the p̂i to give a subdivision 
at N = 2 with the correct black triangles, and with all the white polygons planar. This 
is possible if the κi are chosen so that in the pq-plane, the segments {1, 4}, {2, 5}, and 
{3, 7} intersect at a single point; and the same holds for {1, 6}, {5, 8}, and {3, 7}. We 
will call this degenerate subdivision Q∗

2,8.
To realize the upper-middle tiling in Fig. 26, start with Q∗

2,8, and lift p̂2. To refine the 
resulting tiling, we may first raise or lower p̂8 to achieve the desired triangulation of the 
quadrilateral with common index 7, and then adjust the heights of {p̂1, p̂3, p̂4, p̂6, p̂7}
to triangulate the pentagon with common index 5. Note that at each step, we can make 
the height adjustments arbitrarily small, so there is no danger of disturbing the rest of 
the configuration.

For the tiling at upper right, we start with Q∗
2,8, and lower both p̂3 and p̂7. To 

triangulate the white quadrilaterals, we then adjust p̂4 and p̂8.
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The case of the tiling at lower left is slightly more complicated. To realize this tiling, 
we first arrange the points {p̂i : i �= 2, 6} appropriately, such that all the white polygons 
are planar. Choose κ2 so that {2, 5} crosses {1, 4} and {3, 7} to the left of the point where 
the latter two segments intersect, where the octagon is oriented as in Fig. 24. In other 
words, the segment {2, 5} crosses {3, 7} between the vertex p3 and the intersection of 
{3, 7} and {1, 4}. Then we can assign an appropriate weight to p̂2 so that {2̂, ̂5} passes 
just above {1̂, ̂4}, and hence below {3̂, ̂7} as desired. By a similar argument, we can 
add the point p̂6, for an appropriate choice of κ6, to produce the desired configuration. 
Raising and lowering p̂4 and p̂8, we can refine the tiling as needed.

The case of the lower middle is similar, but simpler; we place all points {p̂i : i �= 2} as 
desired, so that all white polygons of the resulting tiling are planar. We then add p̂2 as 
in the previous case, with κ2 chosen appropriately. Raising p̂1 slightly gives the desired 
tiling, which we may then refine by adjusting p̂8.

Finally, for the tiling at lower right, we start with Q∗
2,8, and assume that the segments 

{1̂, ̂5} and {3̂, ̂7} are both parallel to the pq-plane. We adjust p3 by decreasing κ3 slightly, 
so that p3 moves toward p2, without changing the weight of p̂3. This gives the desired 
triangulation of the pentagon with common index 1, and ensures that the diagonal cor-
responding to {1, 4} appears in the pentagon with common index 5. Lowering p̂7 slightly 
then gives the desired tiling, and again we can triangulate the quadrilaterals as needed. 
This completes the final case, and with it the proof. �
7. Non-realizable soliton graphs

In this section we show that not all weakly separated collections are realizable. We 
are grateful to Hugh Thomas for suggesting a counterexample, which we describe in the 
proof of Theorem 7.3.

7.1. Combinatorial background

Before proceeding to the proof, we give some background on pseudoline arrangements, 
and some additional details about plabic graphs. For a reference on pseudoline arrange-
ments, see for example [21].

A pseudoline is a simple closed curve in the real projective plane P 2 which is topo-
logically equivalent to a line; in particular, a pseudoline has no self-intersections. An 
arrangement of pseudolines is a collection of pseudolines L = (L1, . . . , Ln) such that 
for any 1 ≤ i < j ≤ n, the pseudolines Li and Lj intersect exactly once. A pseudoline 
arrangement is simple if no three pseudolines meet in a common point. Two pseudoline 
arrangements are equivalent if they generate isomorphic cell decompositions of P 2. An 
arrangement of pseudolines is stretchable if it is equivalent to an arrangement of projec-
tive lines. Every arrangement of eight pseudolines or fewer is stretchable [7]. However, 
there is a non-stretchable arrangement of 9 pseudolines, and hence of n pseudolines for 
any n > 9 [22].
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As described in [21], we may visualize the real projective plane P 2 as a sphere in 
R3 with antipodal points identified, and visualize pseudolines as great pseudocircles on 
the sphere. Assuming without loss of generality that each pseudoline crosses the equator 
exactly once, and that no crossing of pseudolines occurs on the equator, we may then 
restrict ourselves to the upper hemisphere. Projecting to R2, we obtain an arrangement of 
affine pseudolines. We define simplicity, equivalence, and stretchability for arrangements 
of affine pseudolines in the obvious way. A non-stretchable arrangement of pseudolines 
in P 2 gives non-stretchable arrangement of affine pseudolines in R2.

For the proof of Theorem 7.3, we need a bit more information about plabic graphs.

Definition 7.1. A plabic graph is a planar graph embedding in a disk, with vertices colored 
black or white. A plabic graph has M boundary vertices located on the boundary of 
the disk, numberered 1, 2, . . . , M in counter-clockwise order. All boundary vertices have 
degree one.

Previously, we did not give a precise definition of a reduced plabic graph. Postnikov 
originally defined reducedness in terms of certain local transformations of graphs [20]. 
He then proved a criterion for being reduced in terms of trips.

A trip in a plabic graph G is a directed path which turns (maximally) left at each 
white internal vertex, and (maximally) right at each black internal vertex. Let Ti denote 
the trip which starts at boundary vertex i, and continues until it reaches the boundary 
again. The trip permutation π of G is the permutation defined by setting i �→ j if the 
trip Ti ends at boundary vertex j. Note that a trip in a plabic graph may either be a 
closed cycle containing no boundary vertices (called a round trip), or it may connect two 
boundary vertices i and j.

We label each face of a plabic graph with an i if it is to the left of the trip that begins 
at vertex i. For soliton graphs, this recovers the usual face labels [15].

Definition 7.2. [20, Theorem 13.2] A plabic graph is reduced if and only if it satisfies the 
following conditions:

(1) G has no round trips.
(2) No trip in G uses the same edge twice (unless that edge connects a boundary vertex 

to an adjacent leaf).
(3) No two in G trips have a pair of common edges (e1, e2), where both trips are directed 

from e1 to e2.

The trips Ti in a reduced plabic graph G induce a permutation π on the boundary 
vertices, defined by setting π(i) = j if the trip Ti ends at boundary vertex j. For soliton 
graphs, this gives the usual permutation. With these conventions, G is a reduced plabic 
graph for Gr(N, M)>0 if and only if the trip permutation of G is i �→ i −N , where indices 
are taken modulo M [20, Lemma 17.6].
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Fig. 27. Replacing a crossing between two Pseudolines with a black-white square.

7.2. A non-realizable soliton graph

Theorem 7.3. For every N ≥ 9, there exists a plabic graph for Gr(N, 2N)>0 which is not 
a soliton graph, even up to contraction equivalence. Equivalently, there exists a weakly 
separated collection for Gr(N, 2N)>0 which is not realizable.

Proof. Consider a simple, non-stretchable arrangement L of N affine pseudolines in the 
Euclidean plane. Without loss of generality, assume we can construct a circle C such 
that:

(1) C encloses all intersections of pseudolines in L,
(2) Each pseudoline in L intersects C exactly twice, and
(3) All intersections of the pseudolines in L with the circle C are transversal.

We erase the part of each pseudoline outside of C, place a boundary vertex at each 
intersection of a pseudoline with C, and label the boundary vertices 1, 2, . . . , 2N in 
counterclockwise order. Next, we replace each intersection of pseudolines with a bicolored 
square, as shown in Fig. 27. Let G be the resulting graph, which is embedded in a disk 
with boundary C.

We claim that G is a reduced plabic graph. First, note that each pseudoline in L
connects some boundary vertex k to the boundary vertex k−N , where indices are taken 
modulo 2N . Label the pseudolines in L as L1, . . . , LN , with indices taken modulo N , 
so that Lk contains boundary vertex k. The trip Tk in G follows Lk, taking a detour 
around two sides of each added square which intersects the pseudoline. Hence no trip in 
G crosses itself. The common edges of the trips Tk and Tk−N are precisely those which 
correspond to segments of Lk, and Tk and Tk−N pass through those edges in opposite 
order.

If k �≡ 
 (mod 2N), then Tk and T	 have a single common edge; this edge occurs in the 
square corresponding to the intersection of Lk and L	. If follows from [20, Theorem 13.2]
that G is a reduced plabic graph. The trip permutation of G is defined by k �→ k −N , 
so by [20, Lemma 17.6], the plabic graph G corresponds to Gr(N, 2N)>0.

Assume for the sake of contradiction that G is a soliton graph, up to contraction 
equivalence. In the corresponding contour plot, each edge in Tk which represents a seg-
ment of Lk separates a region where Θk is dominant from one where Θk−N is dominant. 
Hence each such edge is a segment of the line defined by Θk = Θk−N . Moreover, if k �≡ 
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(mod 2N), then the line Θk = Θk−N must intersect the line Θ	 = Θ	−N inside the 
square corresponding to the intersection of Lk and L	. Hence, replacing Lk with the line 
Θk = Θk−N gives a stretching of the affine pseudoline arrangement L. (Note that we 
may contract any unicolor edges without affecting the substance of the argument, since 
each trip must still pass through the corresponding vertices of each black-white square 
after an edge-contraction move.) This is a contradiction, and the proof is complete. �

The smallest counterexample given by the proof of Theorem 7.3 is a plabic graph 
for Gr(9, 18)>0. We conjecture that much smaller non-realizable plabic graphs exist, but 
have yet to find them.
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