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1. Introduction

The KP equation is a nonlinear partial differential equation, introduced by Kadomtsev
and Petviashvili in 1970 [10], which provides an excellent model for resonant interactions
of shallow-water waves (see e.g. [2,11]). A solution v = u(z,y,t) to the KP-equation
represents the wave amplitude at the point (z,y) in the plane for a fixed time ¢. In
this paper, we investigate soliton graphs, which capture the combinatorial structure of
regular line soliton solutions to the KP equation.

Line soliton solutions model waves whose peaks are localized along a collection of
line segments and rays. We may thus represent the wave peaks as edges of a network.
By rescaling the variables, we construct soliton graphs, which capture the asymptotic
behavior of these networks. Our goal is to classify soliton graphs.

Regular line soliton solutions to the KP equation can be constructed from points in
the real Grassmannian of N-planes in M-space [15,12,1]. We restrict our focus to line-
soliton solutions arising from points in the totally positive Grassmannian Gr(N, M)so;
the space of N x M matrices with positive maximal minors, modulo row operations.
Remarkably, the corresponding soliton graphs are examples of Postnikov’s plabic graphs,
a class of planar networks which give coordinate charts on Grso(N, M) [20,15]. Plabic
graphs are central to the theory of total positivity and cluster algebras [23,5], and have
a straight-forward combinatorial classification [19].

We say a plabic graph for Gr(N,M)sq is realizable if it is structurally equiva-
lent to a soliton graph. Kodama and Williams demonstrated that every plabic graph
for Gr(2,M)s¢ is realizable, for all M [15]. Huang showed that every plabic graph
for Gr(3,6)~¢ is realizable, and conjectured that the same holds for any Gr(N, M)~
[9]. In this paper, we describe an inductive algorithm to construct soliton graphs
for Gr(N, M)so, and use the algorithm to show that Huang’s conjecture is true for
Gr(3,7)s0 and Gr(3,8)sq. However, we show that the conjecture is false in general. In
fact, we construct a plabic graph for Gr(9,18)so which cannot be realized as a soliton
graph.

Constructing a soliton graph involves an initial choice of parameters; some plabic
graphs are realizable only for certain choices of these parameters. For Gr(3,6)-o and
Gr(3,7)0, we classify the plabic graphs which may be realized for each choice of initial
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parameters. For Gr(3,8)s0, we show that for any plabic graph, there is some choice of
parameters for which the graph is realizable, but do not have a more precise classification.

In Section 2 below, we provide the necessary background to state our results more
precisely. We start with a brief review of the KP equation and soliton graphs. Then,
as a background information for the present paper, we define the duality map, which
gives a correspondence between soliton graphs and soliton subdivisions, and sketch some
combinatorial background. At the end of this section, we describe the structure of the
paper and state our main theorems.

2. Preliminaries
2.1. The KP equation and soliton solutions

The KP equation is a two-dimensional nonlinear dispersive wave equation given by
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where u = u(z,y,t) represents the wave amplitude at the point (z,y) for a fixed time ¢
[10]. It is standard to express the solutions in terms of the 7-function in the form (see
e.g. [8,12]),

82
u(z,y,t) = 2@1n7(x,y7t). (2.2)

We are interested in solutions of the KP equation that are regular in the entire
zy-plane, where they are localized along certain line segments and rays. We call such
solutions line-soliton solutions, or KP solitons (see [12] for a survey of the KP soliton).
They are constructed as follows: First fix real parameters {k; < k3 < -+ < Kk}, and
let A = (a;;) be a full-rank N x M matrix for some N < M. Then the 7-function can
be expressed as the sum of exponential terms,

T(z,y,t) = %: ) Ar(A)Krexp(©f(x,y,t)). (2.3)
1e(ty

Here I = {iy < i2 < ... < iy}, and ([%]) denotes the set of all N-index subsets of
[M] :={1,...,M}. The term K is defined by K; = [];,;(xi; — i,), and the order in
the parameters £’s implies K; > 0. The coefficient A;(A) is the N x N minor of the
matrix A with the columns labeled by the index set I, and the exponent ©;(x,y,t) is
given by

@[(ﬁc,y,t)zZ@i(ac,y,t)Zp[x—i—qu—i—wIt, (24)
el
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where p; = > kiqr = Y k? and wy = Y k3. It was then shown in [14] that the 7-
function is pé)esétive for allleéx, y,t) (i-e. thelesglution is regular) if and only if A;(A) >0
for all the N-element subset I. In this case, the matrix A is called a totally nonnegative
(TNN) matrix [20].

The KP equation admits an infinite number of commuting flows, and these flows all
together define the KP hierarchy (see e.g. [18]). Let {t,, : n =1,2,...,} denote the flow
parameters. Then the 7-function for the KP hierarchy is given by an extension of (2.3),

T(z,y,t) = (Z[ ) Ar(A)Krexp(©(x,y,t)), (2.5)
1e(Xf

where t = (t3,14,...), and the definition of O(x,y,t) is analogous to (2.4), i.e. O =

Z Gj with
jerI

M-1
0i(z,y,t) = kjx + K',?y + > Kjti
i=3

Setting t = t3, and treating the remaining ¢;-parameters as constants, we obtain a soliton
solution to the KP equation.

Remark 2.1. The Grassmannian Gr(N, M) is the parameter space of N-planes in RM.
Concretely, Gr(N, M) is the space of full-rank N x M matrices, modulo row operations.
A matrix A corresponds to the span of its rows, and the map (the Pliicker embedding)

e {sre (M)

gives a system of homogeneous coordinates on Gr(N, M), known as Plicker coordinates.
Hence the construction A — 7(x, y, t) gives a soliton solution for each point in Gr(N, M),
which is unique up to multiplication by a scalar. Regular soliton solutions correspond to
points in the totally nonnegative Grassmannian Gr(M, N)>q, which is of considerable
interest in its own right [20,15].

2.2. Soliton graphs

We are interested in the two-dimensional wave patterns generated by the regular KP
solitons u(x, y,t) constructed in the previous section. We may represent the wave pattern
at a given time by a contour plot showing the wave peaks in the xy-plane. Fig. 1 shows

the time evolution of the solution for a 3 x 6 matrix A, with x-parameters

(K1,. .. K6) = (—=5/2,—5/4,—1/2,1/2,3/2,5/2).
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Fig. 1. The contour plots corresponding to a KP soliton for Gr(3, 6)~¢. The panels show the time evolution
of the solution u(z,y,t) for t = —10,0, 10, 20 from the left.

Here all 3 x 3 minors of A are nonzero (this type of matrix is called a totally positive
matrix).

Each region in a contour plot represents the portion of the xy-plane where one of the
exponential terms A;(A)e®7 in the 7-function (2.5) is dominant over the others. Hence
to characterize the contour plot, we must determine which exponential term Aj(A)e®”
dominates at each point in the zy-plane. Equivalently, we may ask which of the linear
terms

In(Ay(A)Ky)+0O,(x,y,t) for Je€ C?@) (2.6)

dominates at each point.

Since the KP equation is nonlinear, arbitrary contour plots can be rather complicated.
To make the problem more tractable, we focus on the asymptotic behavior of these plots
for large values of the variables. We rescale the variables (z,y,t), so that the constant
terms In(A;(A)K ;) are negligible. More precisely, we perform a change of variables
x = x/e,y — y/e and t — t/e with a small positive number 0 < € < 1. Then the
7-function becomes

; (E y E) - > ew (%61(%3/,‘5)+1n(K1AJ(A)))

b) )
€ € € IeEM(A

where M(A) is the matroid associated to the matrix A, defined by

M(A) = {I € (U\A{]) A7 (A) > 0}.

Then we define a piecewise linear function which is given by the tropical limit

f./\/l(A) (5177 Y, t) = lg% (6 In T) = Iernj\%(};) {@](i, yvt)} . (27)

That is, foqca)(2,y,t) represents a dominant plane z = ©;(z,y,t) in R? for fixed t. We
define the soliton graph for each t by

Ct(M(A)) := {the locus of the xy-plane where fuqa)(z,y,t) is not linear}.
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The soliton graph is hence a collection of bounded and unbounded line segments, which
we call line solitons. Note that each region of the complement of C;(M(A)) is a domain
of linearity for fuqca)(,y,t), hence each region is associated to a dominant plane z =
O (z,y,t) for a certain I € M(A). We label this region ©; or simply I.

Suppose a line-soliton separates two regions, labeled I and J. Then we have

J=I\{i}U{j} forsome i,j€[M], (2.8)

that is, their labels differ only by a single index for a generic choice of the x-parameters,
ie. Ki+Kj # kn+rm if {i,7} # {n,m} (see [2]). We call this segment an [¢, j]-soliton for
i < j; if we do not wish to specify that ¢ < j, we use the notation {4, j}-soliton instead.

Our goal is to understand the combinatorial structure of soliton graphs; that is, we
want to classify the possible sets of region labels, and the adjacency relations among the
regions. Hence we may forget the original xy-coordinates, and represent a soliton graph
as an abstract network with labeled faces. Edges represent line solitons, and vertices
represent points where multiple solitons meet in a common endpoint. (If multiple solitons
cross at a point which is not a common endpoint, we do not consider that a vertex.) We
review some facts about the resulting networks, due to [14,15] (see also [12] for a survey
of these results).

Generically, a point where several solitons share an endpoint will have degree three.
So a generic soliton graph is a trivalent network, with regions labeled by elements of
([%]) for some N < M. Let I,J, L € ([%]) be the labels of three regions which meet at
a trivalent vertex v of a soliton graph. Recall (2.8), that is, whenever two regions of the
xy-plane are separated by a line soliton, their labels differ by a single index. Hence there
are two possibilities for the labels I, J and L:

(1) I=Ihu{i},J=IyU{j} and L = Iy U {{} for some common (N — 1)-index set Iy.
(2) T =Ko\ {i},J=Ko\{j} and L = Ko\ {I} for some common (NN + 1)-index set K.

We color the vertex v white in the first case, and black in the second. See Fig. 3 for an
example.

In the previous works [1,2,14,15], it was shown that the KP soliton (2.2) with the
T-function (2.3) consists of N line-solitons as y > 0 and M — N line-solitons as y < 0.
Each of those asymptotic solitons is uniquely parametrized by a map 7 such that 7 (i) = j
if the [4, j]-soliton appears at y > 0, and 7 (j) = 4 if the [¢, j]-soliton appears at y < 0.
The map 7 is well-defined, and is in fact a fixed-point free permutation or derangement
of the index set {1,..., M }. Moreover, the derangement is completely determined by the
matroid M(A) of the totally nonnegative matrix A, and vice versa (see [12] for a survey
of these results).

A totally nonnegative matrix A is totally positive if M(A) = ([%1). The corresponding
derangement is given by ¢ — ¢ — N, where all values are taken modulo M. The space of
totally positive matrices, modulo row operations, is the totally positive Grassmannian
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Fig. 2. Duality map. The vector (p, q, —1) is the normal vector of the plane z = pz 4+ qy + w and the vector
Vz = (p, q) gives the increasing direction of z.

Gr(N, M)sg. Soliton graphs for Gr(N, M)~ have nice combinatorial properties, which
make them easier to classify. See Section 2.4 for details. In what follows, we restrict our
attention to soliton graphs for Gr(N, M)s.

2.8. Duality and soliton subdivisions

In order to study the soliton graphs for Gr(N, M)~g, we first define a bijection, called
the duality map, which maps a plane in R? to a point in R3,

we(pg,w) < {(2,y,2): 2 =pr+qy +w}, (2.9)

where p = k;,q = 7 and w is some constant (we may take w = x5t for a KP soliton).
The vector (p,q, —1) is the normal vector of the plane, and the vector (p,q) gives the
increasing direction of the plane, i.e. Vz = (p,q). See Fig. 2. Using the map, we can
classify the soliton graphs Cy(M(A)) via the triangulations of a polygon inscribed in a
parabola as described below.

As a simplest example, consider the case with three points p; = (p;, ¢;, w;) € R3 with
pi = ki,q; = k7 and w; = K5t for i = 1,2,3. Then we have a triangle inscribed in the
parabola ¢ = p? whose vertices are {pi, p2, P3}, and each vertex p; = (p;,q;) has a

weight w;. Again for simplicity, take all w; = 0. Then all the planes

z = 0i(x,y) = pir + q;y

intersect at the origin, and at each point (x,y), one of the planes becomes dominant.
Fig. 3 shows the duality between the triangles in the pg-plane and the soliton graphs
in the zy-plane at ¢ = 0. The dynamics of the intersection point are linear in time ¢ as
given by 61 = 65 = 65. The left two panels show the case for Gr(1,3)~, that is, we have
M(A) ={1,2,3} and

fM(A)(xayao) = maX{ei(JU;yvO) ti= 17273}

In the soliton graph (the second figure from left), each region is labeled by the dominant
plane z = 6;(x,y,0). Since the trivalent vertex in the soliton graph is colored white, we
define the triangle inscribed in the parabola as a white triangle. Notice that each edge
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[2.3]

012 X
[12]

1Y (ppa)2 131
K1 K2 K3 K1 K2 K3 P

Fig. 3. Duality between the triangles prescribed in a parabola in the pg-plane and the soliton graphs in
the zy-plane. Trivalent vertices in the soliton graphs are colored white for Gr(1,3)s¢o (left) and black for
Gr(2,3)>0 (right).

Yo
[13] Py [1,3]
"""""" 014 \ 9
[24] [24] 4
013 034 X 034 ¥
012 012 024
023 24
H (131 24 ha ¥ [24]
K7 K2 k} K4 K1 K2 K3 K¢

Fig. 4. Triangulations and the soliton graphs for Gr(2,4): Black-white flip. The left two figures show the
triangulation of the point set %{plg, P23, P34, P14, P13, P24} (each point is shown as an open circle) and the
corresponding soliton graph for ¢ < 0. The right two figures are for ¢t > 0. The k-parameters are (—2,0, 1, 2).

of the triangle, say py; ;1 = Pi — Py, is perpendicular to the line given by ¢; = ¢; which
corresponds to the [i, j]-soliton.

The right two panels show the case for Gr(2,3)s¢, that is, we have M(A4) =
{12,13,23} and

fameay (@, y,0) = max{0; ;(z,y,0) : 1 <i < j <3},

where 6; ; = 0; 4+ 0. This triangle is defined as a black triangle, which is dual to the
black vertex in the soliton graph. In the figure, the black triangle is the convex hull of
the vertices {%(pl +p;):1<i<j <3}, ie. the vertices are the mid points of the edges
of the white triangle in the left figure.

In general, the soliton graph for Gr(N, M)so has only trivalent vertices which are
colored either white or black [15]. Hence for a generic choice of weights, the image of the
duality map for the soliton graph is a triangulation with colored triangles. We will only
consider the soliton graphs for Gr(N, M)s¢, and their corresponding triangulations.

In the case of Gr(2,4)~¢, we have

fM(A)(x,yvt) = ma‘x{ai,j(xvyvt) 1<i< .7 < 4},

Fig. 4 illustrates the soliton graphs for ¢ < 0 (left), and for ¢ > 0 (right). In the figures, the
change of the graphs can be considered as a flip in the triangulation of the quadrilateral
given by the convex hull of the set of six points {p;; = p; +p; : 1 <14 < j < 4}. The flip
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corresponds to the mutation in the cluster algebra structure on Gr(N, M) [4,5,23,13,15],
and we call the flip “black-white flip” (i.e. the colors of the vertices exchange). Note
that the quadrilateral (parallelogram) in the figures are given by the convex hull of
{3(pi+py):1<i<j<4}.

2.8.1. Definitions and notation

We now give some definitions and notations that we use in the rest of this paper. Let
I = iy---iy denote the N-element subset I = {i1,...,in} € (UX,”), and Iiny; denote
the (V + 1)-element subset I U {iy11}. Also let I\ix denote the (N — 1)-element subset
I\ {ix} for k € [N].

For A € Gr(N,M)so, we have M(A) = ([JX,[]). We denote the corresponding point

configuration by
M
AN M = {pz = (pr,qr): 1 € <[N]> },

where p; = 3 ki, qr = Y. k2 with the order k1 < k2 < --- < kpy. Also note that the
i€l i€l
convex hull

Py = P?\/,M = conv(An, )

is an M-gon. This follows by considering the behavior of KP solitons for |y| > 0 and
applying the duality map (see [2,15] for the asymptotic behavior of the KP solitons).
Given a weight vector w = (w1, -+ ,wnr), we assign each point p; a weight w;, and write

pi = (ps,w;). For I € ([Aj\/[[]), we have the weighted point p; = (pr,wy) where p;y = > p;
i€l
and wy = Y wg. Then we consider the weighted (or lifted) point configuration
kel

R M
AL],J\LM = {pl—(pl’QI,(L)I)eRg.IG ([N])},
and the convex hull of the lifted point configuration

LK/,M = COHV(AL](Z,M)v

which is a three-dimensional convex polytope. Note here that P?V’ a is an M-gon in the
pg-plane. The vertices of the M-gon are given by

{pr,: Li={jj+1,....i + N—1}, j=1,..., M (cyclic order)}

For example, in the case of Gr(2,6)0, the convex hull of 15 points {p; ; : 1 < i < j <6}
is a heragon with the vertices

{pl,z, P2,3, P34, P45, P56, pl,s}-
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Note here that all other 9 points p; ; with |i — j| > 1 (cyclic sense) are inner points of
the hexagon.

We also define the m-faces of the polygon P} ,, with m being the dimension of the
face, and in our case, m = 0,1 or 2.

Definition 2.2. A nonempty set S C PX.a 18 an upper m-face of the convex polytope
P% ar» if there exists a plane P := {z = ax + by + c} such that

(a) S=P% NP with dimS = m and
(b) any point in the region z > az + by + ¢ has no intersection with PN -

Similarly, a nonempty set S C PX.ar is a lower m-face of PR/, if there exists a plane
P := {z = ax + by + ¢} with property (a), and the region z < az + by + ¢ has no
intersection with P%; 5.

Then projecting the upper hull, the collections of all upper faces, of PR ;, back on to
the pg-plane induces a regular subdivision of the polygon P(])v, r in R2. Here the notions
of subdivision and regular (or coherent) are defined in general as follows (see e.g. [3,24]):

Definition 2.3. A set Q is a subdivision of the M-gon PP, if there are sets of indices
{o1,...,0m} with o; C ([%]) such that P, := conv{p; : j € 0;} satisfy

(i) Py, is a k-gon with k > 3,
(i) Q= U£1 Ps.

(iii) Py, NPy, is either empty or a common edge of those polygons.

In particular, if all P,, are triangles, then the subdivision is called a triangulation. We
also say that a subdivision Q is regular, if it is obtained by the projection of the upper
hull of a polytope P¥ = conv{(pr,ws) € R3} for some weight w.

We then define a soliton subdivision to be a regular subdivision, denoted by Qn ar(w),
which is given by the projection of the upper hull of PX,ar» where each polygon Py, in the
subdivision is the projection of an upper face of PR ;,. We sometimes refer to “a regular
subdivision (or regular triangulation) Qu,az(w(t)) of the polygon Py ar associated with
the weight function w(t)” as simply “subdivision (or triangulation) Qn s of A% 5"

For a polygon in Qun,a(w), its vertices are given by the set {py,,--- ,pr, } when the

. o M
polygon is a k-gon. Each vertex p; can be represented by its index set I € ([ N]), and
we may denote the polygon conv{pr,,---,pr,} by {Pr,, -+ ,Pr,}, or simply its index
set {I1,Ia, -+, I} for short. For the corresponding face of the polytope in PX.ars we
sometimes denote it as {pr,,Pr,, - ,Dr. } or {I1,12,-- ,IN}.

We also define the following notions for the polygons appearing in the subdivision
Qn,am(w), which is the generalization of white-black triangles:
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Fig. 5. A soliton graph for Gr(2,5)s0, and corresponding plabic graph and triangulation.

Definition 2.4. For a convex polygon (k-gon) in the subdivision Qn ar(w), we say that

(a) the polygon is white if the vertices of the polygon are expressed by

M
{Iiy, Lig, -+ , Ii} for some I € (]\E]1>,
and
(b) the polygon is black if the vertices are expressed by

o : [M]
J\i1, J\ig, -, J f J e :
{J\i1, J\i2 \ix } or some (N +1
Since the index sets of two adjacent points differ only by a single index [2], there are
only these types of polygons in the subdivisions (recall that each edge in the subdivision
corresponds to a line-soliton).

We are interested in using soliton triangulations to study the combinatorial structure
of soliton graphs, forgetting the xy coordinates. Hence, we may forget the pg-coordinates
of a soliton triangulation, and remember only the adjacency relations between the tiles.
For convenience, we often draw the vertices {py,,...,Pr,, } of the convex M-gon Py
as points on a circle, rather than on a parabola.

2.4. Plabic graph, weakly separated collections and realizability

The main objective of this paper is to classify soliton graphs for Gr(N,M)so. By
results of [15], these graphs are planar and trivalent. For convenience, we may embed
a soliton graph in a bounding disk whose interior contains all vertices of the graph.
We place a boundary vertez at the point where each {7, 7(7) }-soliton intersects the disk,
and label the boundary vertex 7(¢). We forget the metric structure on the graph, and
maintain only the combinatorial structure. As in the previous section, we color each
internal vertex black or white, depending on the labels of the surrounding faces. See
Fig. 5 for an example.
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With these conventions, every soliton graph for Gr(N, M)~ is combinatorially (or
topologically) equivalent to a reduced plabic graph [15]. First introduced by Postnikov,
reduced plabic graphs play a key role in the combinatorial theory of Gr(M, N)sq [20].
We give a precise characterization of plabic graphs in Section 7.1. For now, it suffices to
remark that a plabic graph is a planar, bicolored network which satisfies some technical
conditions; and whose faces have a natural labeling by elements of ([%]) for some N < M.

Each plabic graph has an associated permutation 7. For soliton graphs, m is the
derangement defined by the soliton asymptotics [2,15]. We say G is a plabic graph for
the totally positive Grassmannian Gr(N,M)sq if 7 is the permutation corresponding
to Gr(N, M)so; that is, if 7 is defined by ¢ — ¢ — N with indices taken modulo M.
Plabic graphs for Gr(M, N)s¢ have an easy classification in terms of weakly separated
collections, as explained below.

For G a reduced plabic graph, contracting an edge whose endpoints are vertices of the
same color gives a reduced plabic graph G’ with the same face labels, and this operation is
reversible. We say that two plabic graphs are contraction equivalent if we can transform
one into another by contracting and un-contracting unicolored edges. Reduced plabic
graphs, up to contraction equivalence, are determined uniquely by their face labels.
The possible collections of face labels can be easily classified, using the notion of weak
separation defined in [16].

Definition 2.5. For I,J C ([%]), we say I and J are weakly separated if there do not
exist a,b € I\J and ¢,d € J\I such that if M points 1,2,..., M are arranged counter-
clockwise around a circle, the points a, ¢, b and d occur in cyclic order.

Definition 2.6. A weakly separated collection is a collection of elements of (1) whose
members are pairwise weakly separated. A weakly separated collection is mazimal if it
is maximal by inclusion.

Theorem 2.7. [19] A collection of elements of ([%]) is the set of face labels of a plabic
graph for Gr(N, M)~ if and only if it is a maximal weakly separated collection.

In [19], the authors introduce planar diagrams called plabic tilings, which correspond
to weakly separated collections. We refer to [19, Section 9] for the precise definition. For
our purposes, it suffices to describe triangulated plabic tilings as the duals of trivalent
reduced plabic graphs. That is, we can obtain a triangulated plabic tiling from a plabic
graph by applying a purely combinatorial analogue of the duality map from Section 2.3.
Deleting edges that separate triangles of the same color, we obtain a subdivision of the
M-gon into black and white polygons, which we call a plabic tiling. Since soliton graphs
for Gr(N, M)s( are plabic graphs [15], soliton triangulations are triangulated plabic
tilings (via the duality map).

Definition 2.8. A plabic graph for Gr(N, M)sq is realizable if it is a soliton graph, up
to contraction equivalence; a triangulated plabic tiling is realizable if it is a soliton
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triangulation. A weakly separated collection for Gr(N, M)~ is realizable if it is the set
of face labels of a soliton graph, or equivalently, the set of vertex labels of a soliton
subdivision.

Kodama and Williams showed that every plabic graph for Gr(2, M)~ is realizable,
up to contraction equivalence [15, Theorem 12.1]. In the language of tilings, their result
says that every weakly separated collection for Gr(2, M)~ is realizable. We recover this
result below, as a consequence of Algorithm 3.10. See Section 3.3 for details.

In his PhD thesis, Huang showed that every weakly separated collection (or plabic
tiling) for Gr(3,6)~¢ is realizable [9]. However, some collections are only realizable for
certain choices of k-parameters. Huang then conjectured that every weakly separated
collection for any Gr(N, M)~ is realizable for some choice of parameters, a conjecture
we disprove in Section 7.

2.5. Summary of results

The structure of the rest of the paper is as follows. In Section 3, we describe an in-
ductive algorithm from [9] for constructing soliton subdivisions, which will be used in
Sections 4 and 6. As a consequence, in Section 3.3, we recover Kodama and Williams’
classification of soliton graphs for Gr(2, M)~¢ [15], by proving that every weakly sepa-
rated collection for Gr(2, M) is realizable.

In Section 4, we construct a polyhedral fan in the space of multi-time parameters
of the KP hierarchy, which can be used to check whether a given subdivision comes
from a soliton graph. In Section 5, we use the polyhedral fan to classify soliton graphs
for Gr(3,6)0, by showing that every possible soliton subdivision comes from a soliton
graph. In addition, we specify the subdivisions which are realizable for each choice of
r-parameters in the KP soliton (Theorem 4.11). The main results of Sections 4 and 5
first appeared in [9], but are presented here in greater detail.

In Section 6, we show that every possible soliton subdivision for Gr(3,7)s¢ or
Gr(3,8)¢ occurs for some choice of k-parameters. For Gr(3, 7)o, we give a more precise
classification in terms of the x-parameters, just as we did for Gr(3,6)>¢ (Theorem 6.2);
we do not yet have a classification for each choice of the k-parameters.

Finally, in Section 7, we give a subdivision that does not come from a soliton graph,
disproving a conjecture made in [9]. More precisely, we prove Theorem 7.3, which states
for some Gr(N, M)~g, there is a weakly separated collection which is not realizable for
any choice of the parameters.

3. Constructing soliton graphs
In this section, we describe an explicit algorithm to construct soliton triangulations.

We give the algorithm for Gr(1, M)~ in Section 3.1, and for general Gr(N, M)~ in
Section 3.2. In Section 3.3 we present some useful consequences of the algorithm.
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3.1. Triangulations of the point configuration AY

Let us start with the subdivisions Qf 4. The polytope P{, is a tetrahedron, and the
subdivision Q1 4(w) given by the projection of P ; depends on the following determinant,

1 ;11w
1 po @ w .

Dio34= 1 pi qi wi with  (pi, i) = (Kki, k7). (3.1)
1 ps q wy

That is, we have the following lemma, which we call the quadrilateral checking lemma:

Lemma 3.1. The subdivision Q1 4(w) has the diagonal {1,3} if the determinant D1 234 <
0; and Q1.4(w) has the diagonal {2,4} if D1 234 > 0.

Proof. Using the vector notation for the points, i.e. p; := (py, ¢, w;), the determinant
(3.1) is expressed by a triple scalar product:

N A N N A N

Di234 = —[(D2 —DP1) X (Psa — D1)] - (P3 — P1)-

Then D 234 < 0 implies that the edge {i, 3} given by the vector p3 — p; is in the upper
face of the tetrahedron P{ . That is, the diagonal {1, 3} in the subdivision Q; 4(w) is the
projection of the upper 1-face of P{,. The case Dj 234 > 0 implies that the edge {1,3}
is in the lower face of P{,, and then the edge {2,4} is the diagonal of Qi 4(w). O

Remark 3.2. Since the formula D; 234 is dealing with the relative position of two di-
agonals in R®, we may also state that the edge {i,3} is vertically above {2,4} when
D1,2.3.4 < 0. This means, when looking down from above at the intersection point of the
diagonals {1,3} and {2,4} in R?, {1,3} is vertically above {2,4} in R3.

Thus, the sign of the determinant D for a quadrilateral with vertices {p;, :

11,12,%3,14
k =1,...,4} determines the triangulation of the point configuration A{ ;. Repeatedly
apply Lemma 3.1 leads to the following algorithm to construct a subdivision Q1 as(w)

for given weights w = (w1, ...,wn), for arbitrary M:
Algorithm 3.3 (Soliton Triangulation for the point configuration AY 5).

(1) Starting with the triangle {1, 2,3}, we add next vertex p4. Then the original bound-
ary edge {1,3} becomes an internal edge of the 4-gon {1,2,3,4}, and we use
Lemma 3.1 to check whether or not the edge {17 3} is an upper face of the tetrahe-
dron P{ 4. If D234 < 0, then the edge {1,3} is an upper face of Py 4, and it is a
diagonal for the triangulation Qi 4(w); if D1,2,3.4 > 0, the edge {2,4} now becomes
the diagonal instead of {1, 3}.
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Di23a< 0 Di23a> 0

o

D135 < 0 D245 < 0

Di1235< 0 Di235> 0

Fig. 6. Algorithm to construct the soliton subdivision Q;,5. Adding a new vertex ps, we mark the edge
{1,4} as a dashed line and check whether or not it gives a diagonal for the new polygon P; 5. Each step
is determined by the sign of the determinant D; j i, for the quadrilateral {4, j, k,1}. The dotted lines are
invisible edges obtained in the steps.

(2) Suppose that we have a triangulation of the polygon {1,2,--- ,m} having a triangle
{1,4,m} for some p; with 1 < j < m. Then we add the next vertex p,+1, and
consider the following process:

(i) We consider the 4-gon {1, j,m,m + 1}, and mark the original boundary edge
{1,m} as a “dashed” line, meaning that this edge should be checked as a diag-
onal for the triangulation Qi m+1(w). See Fig. 6.

(ii) Use Lemma 3.1 to check whether or not this dashed line {1,m} remains to
be the diagonal for {1, j,m,m + 1}. If D1 j m m+1 < 0, the line {1,m} is the
diagonal, and we move to the step (3). If Dy j m m41 > 0, we have a new diagonal
{j,m + 1} in Q1 m+1(w), which breaks the whole polygon {1,2,--- ,m+1} into
two polygons, and we mark {1,;} and {j,m} as dashed lines. See Lemma 3.6
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below. We then mark the original edge {1, m} as a “dotted” line, meaning that
it is below the line {j,m + 1}. See Fig. 6.
(iii) For these polygons {1,2,---,j,m+ 1} and {j,j+1---,m + 1}, we repeat the
process in (ii).
(3) We repeat the step (2), and finally obtain the soliton triangulation Qq as(w) after
adding pas-

Remark 3.4. It should be noted that one can choose any order of adding process of the
vertices in the algorithm. In particular, we may choose a suitable order from the weights.
For example, we choose the order in the adding process {i1, 12,13, ...}, if the weights are
in the order w;, > w;, > w;, > -+ -.

Example 3.5. Consider A7 ;. We demonstrate the construction of the triangulation of

{ 5 for an arbitrary choice of the weights as shown in Fig. 6. We start from the quadrilat-
eral {1,2,3,4}, and use the determinant D; 5 34 to construct a triangulation. Depending
on the sign of the determinant, we have two triangulations. Then we add a vertex ps.
We now check whether {1,4} is a diagonal for the quadrilateral {1,3,4,5} or {1,2,4,5}.
If the edge {1,4} remains the diagonal for the quadrilateral, then we have the triangu-
lation of the pentagon. If not, then we have a new edge depending on the sign of the
determinant D; ; ;. See Fig. 6.

Let us now state some lemmas to verify the algorithm.

Lemma 3.6. Let {p; :i=1,..., M} be the vertices of the M-gon P(l))M. Then the follow-
ing two statements are equivalent for fized weights w and fized a,c € [M]:

(1) The edge {a,c} is not an upper 1-face of PY y.
(2) There exists b,d with a < b < ¢ < d (in the cyclic order) such that {b,d} is an upper
1-face of PY ;.

Proof. If the edge {a,¢} is not an upper 1-face, then {a,c} is not a boundary edge of
PY o- Thus the edge {a,c} breaks the polygon P{ ,, into two parts. Consider one side,
say Pp, which is also a polygon having {a,c} with a < ¢ as a boundary. We consider
the corresponding polytope P¥, and we can find an upper 2-face of P{ whose vertices
have indices including a,c,b for some b with a < b < c¢. Consider a plane P spanned
by those three vertices {a, 13, ¢}. Then there exists a vertex pg on the other half of the
polytope such that pg is above the plane P. This means that the edge {5, cZ} is vertically
above {d, ¢}. There may be several vertices Py, and one can find at least one such vertex
such that {b,d} is a 1-face of P¢ yr- If not, then {a, ¢} should be 1-face of P{ ;,. But this
contradicts.
The other direction, (2) — (1), is obvious. O
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Lemma 3.6 implies that if the edge {a, ¢} with a < ¢ is an upper 1-face, then for any
{b,d} intersecting {a, c} in the pg-plane, {a, ¢} is vertically above {13, cf}
We also have the following lemma:

Lemma 3.7. Let {a,b} with a < b be a diagonal in the subdivision Q1 (w), which divides
the M -gon P%M into two polygons, say Py and Po. If L is a diagonal of the triangulation
for P1, then L is also a diagonal in Q1 ar(w).

Proof. Denote such L by {7,j}, and assume a <14 < j < b. Suppose L is not a diagonal
for the subdivision Qi pr(w). Then by Lemma 3.6, we can find ¢, d such that {¢, d} is
above {7, 7} and i < ¢ < j and b < d < a (in the cyclic order), i.e. p. is a vertex in P; and
pq is in Py. Then the edge {2,3} cannot be above the plane spanned by {4, b, ¢}. Since
the plane contains the edges {a,¢} and {b, ¢}, at least one of these edges is vertically
above {%75} But this contradicts L being a diagonal of the subdivision for P;. O

Now we can give the proof of Algorithm 3.3:

Proof. Assume we have a soliton triangulation Qi ,,(w) of the polygon,

Plirimy i=conv{p;; 1 j =1,...,m},

where i; < ig < -+ < iy, in cyclic order. We then add one more vertex p;,., with
i1 < @m+1 < i in cyclic order. Let {i1, i;,im } be a triangle in the triangulation Q1 ., (w)
for some vertex p;. If {%1, ’Zm} is vertically above {%m_H, le}, then we have the vertex p;,, .,
is below the plane containing the vertices {p;,,Di, ,Di, }, hence {i1,i,} a diagonal in
Q1 mt1(w). If {%m_l,_]_,'zl} is vertically above {51,27,1}, Lemma 3.7 implies that {im,1,%}
breaks the polygon Py;, ... ; .} into two sub-polygons Py, P2, and {fmﬂ, {l} is an upper

1-face of the polytope P“{il . } Inductively we can consider the triangulations of

CEmel

these sub-polygons P; and P,. O
3.2. Inductive construction of the triangulation Qn,ar(w)

We now develop an inductive algorithm to construct the triangulation Q1 (w)
from Qn ar(w) for given weights w. For the case N = 1, the triangulation Qi ps(w) may
be constructed by Algorithm 3.3 from the previous section. We show how to construct
Q2,07 (w) from Q1 ar(w), then give the inductive step in general.

The subdivision Q2 as(w) corresponds to the point configuration

AS = 1{Dij: 1 <i<j< My,

where p;; = p; + ;. We must identify the points A5 ,, which give the upper vertices of
the polytope P ;. Since %(pl + p,) is the midpoint of the edge {p;, p,}, the vertices in
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11
1 10

5 6

Fig. 7. A subdivision Q2,11 on the right is constructed from the triangulation Q1,11 in the left. The vertices in
Q2,11 are given by the midpoints of the edges in Q1,11 in this figure. Each white polygon in Q2,11 corresponds
to the vertex p; with the degree d; > 3 in Q1,11, and the number in each circle in the white polygon is the
index of p;, which is the common index in Definition 2.4.

Q2,0 are induced by the edges in Qi ar. Moreover, the subdivision Q2 s has the following
structure:

(a) The boundary vertices of Qo s are given by {p; + pi+1:4=1,..., M, mod(M)}.

(b) If the degree of the (boundary) vertex p; in Qi as is d; > 3, we have a d;-gon with
the vertices {p;j, = pi + pj, : { = 1,...,d;}, which corresponds to a subdivision
P14, of the point configuration Ay 4, = {p;, : ¢ =1,...,d;}.

(¢) The number of internal vertices in Qz as is given by M — 3, and we have

> (di—2)=M —3.

7

N | =
ng

Fig. 7 demonstrates the induction process to construct a subdivision Qg s from the
triangulation Qi as by an example with M = 11.

We now describe the induction process from Qun as to Qn41,0. Let us first introduce
a continuous process, called the e-blow up or simply the blow-up.

Definition 3.8. Let Qx s be the triangulation for given weights w. For a number 0 < e <
1, let J + ea denote the vertex ps + ep, for some index set J and index a ¢ J. Then we
define an e-blow up of Qu s by the following procedure:

(a) For each white triangle {Ia, Ib, Ic} in Qu a for some I € (1{71\{]1)7 we replace it by
the hexagon {Ia+eb, [a+ec, Ib+ea, Ib+ec, Ic+e€a, [c+€b}. That is, when e = 0, it
is the original triangle, and when € = 1, it becomes a black triangle with the vertices
{Iab, Ibc, Iac}.

(b) For each black triangle {Kab, Kbc, Kac} in Qn a for some K € (15{12), we replace
it by the triangle { Kab + ec, Kbc + ea, Kac + eb}, which shrinks to the point pxape

when € = 1.
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The e-blow up for 0 < € < 1is a 2M-gon with the vertices {p;, + €pi+n, P1, + €Pi—1 : & =
1,...,M(mod M)} where I, = {i,i+1,...,4+ N — 1} are the indices of the boundary
vertices of Qn,ar.

To describe the structure of the e-blow up of the triangulation Qn ar(w) for e = 1, we
first define the induced degree for each vertex p in Qn as(w), denoted by I-deg(p), by

I-deg(p) = {# of incoming edges to p} — {# of black triangles adjacent to p}. (3.2)

Then one can see that the e-blow up of Qu ar(w) consists of the following black and
white polygons when € = 1:

(a) Each white triangle in Qun,a(w) generates a black triangle.
(b) Each vertex p in Qn,a(w) with I-deg(p) = m > 3 generates a white m-gon.

Note that we can triangulate the m-gon in (b) using Algorithm 3.3.
Now we have the following proposition:

Proposition 3.9. The e-blow up of the triangulation Qn a(w) generates a subdivision
Qn41,m (W) for fized w when e = 1.

Proof. We need to show that all the polygons generated in the e-blow up correspond to
the upper faces of PX;; j;. This can be shown as follows:

(a) We first show that each black triangle {Iab, Ibc, Iac} in Qny1,0m(w) is obtained from
the white triangle {Ia, Ib,Ic} in Qn p(w) with I € (&1\/_[]1) Since {Ia, Ib,Ic} is an

upper 2-face of PR ,,, all the other vertices py, J € ([%]), are below the plane
containing this face. Thus we can see all the vertices pg, K € ( J£IA—/&I-]1) are below the

plane containing the points {Prab, Prve, Prac}, that is, {Ta\b, I/b\c, fa\c} is an upper
2-face of PR 14 -

(b) Now we show the each white triangle {Ii,Ij, Ik} in Qn41,m(w) is also given by
the projection of an upper 2-face of the polytope P%_; ). First, we have a plane
L: z=azx+ by + ¢ containing {Pr;, Prj, Prx}- Consider the plane £ parallel to £
containing pr in P, ;. Then we can see that it is above all other vertices p,; for all
J e ([1\]\/[1])’ and consequently, we have that £ containing {Pr;, Pr;, Prx} is above all

the vertices py for all K € (12/]\1[_]1) This implies that the white triangle {I7,Ij, Ik}

is given by the projection of the upper 2-face {fz, fj, ﬁ}
The items (a) and (b) complete the proof. O

This proposition gives an inductive algorithm to construct the triangulation
Qn41,m(w) from Qu pr(w). We assume here that the weight vector w is sufficiently
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Fig. 8. Inductive construction of Qs,11 from Q2 11. Step (1) in Algorithm 3.10 shows the process from the
triangulation Q2,11(w) (left) to a subdivision Qz,11(w) (middle). Then Step (2) provides the triangulation
Q3’11(UJ) (I‘ight)‘

generic that triangulating the white polygons is possible at each step. That is, no four
of the original points p; may be coplanar.

Algorithm 3.10 (Inductive construction of Qn41,m(w) from Qn am(w)).

(1) Apply the e-blow up to Qn,m(w), and take € = 1 to construct a subdivision
Qn+1,m(w).

(2) Use Algorithm 3.3 to triangulate the white polygons in the subdivision Qny1,a(w)
obtained in the previous step.

In Fig. 8, we illustrate the inductive construction of the triangulations Qu 11 for
N = 2,3. Here the triangulation Qs 11(w) is obtained from the triangulations of the
white polygons in the subdivision Qg 11(w) in Fig. 7 (i.e. Step (2) in Algorithm 3.10).

One can also show the following proposition about the topological structure of the
triangulation Qn,ar(w):

Proposition 3.11. The triangulation Qn a(w) has

(1) F8:= N(M — N)— M + N black triangles,
(2) FY := N(M — N) — N white triangles,

(3) Vy := N(M — N) + 1 vertices, and

(4) EN =3N(M — N) — M edges.

Proof. First note that the item (4) is a direct consequence of the items (1), (2) and (3)
by the Euler characteristics. That is, we have

Ex=Vy+Fy—1=3N(M—N)— M,

where Fy = FE + FY is the total number of faces in Qs (w).
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We give an inductive proof based on the construction of the subdivision Qn 1, (w)
via the e-blow up in Definition 3.8. When N = 1, the subdivision Q; s is a triangulation
of the M-gon with M — 3 diagonals, thus it satisfies all items.

(i) From Definition 3.8, it is clear that the number of black triangles in Qn 41,0 (w) is
given by the number of white triangles in Qu,a(w). This means that we have

FB ,=FY=NM-N)-N
=(N+1)(M—-(N+1)—M+(N+1),

which agrees with the formula in (1).
(ii) Note that each edge in Qn,a(w) becomes a vertex in Qn41,am(w). Also note that
each black triangle in Qu,as(w) shrinks to a vertex in Qn+1,nm(w). This leads to

VN1 = Exy —2FF =3N(M — N) - M —2(N(M — N) — M + N)
=N +1)(M—(N+1))+1,

which gives the formula in (3).

(iii) Since each vertex in Qn as(w) generates white triangles and the number of these
triangles is related to the degree of the vertex, we first calculate the total degree
of the vertices. Let d; be the degree of each vertex p; in Qn, a(w). Then the total
degree of the vertices in Qn, a(w) is given by

Vi

> di=2Ey =2(3N(M — N) — M).

i=1
Then note that each vertex p; with degree d; > 2 generates d; — 2 white triangles
via the e-blow up at ¢ = 1. However, three vertices of each black triangle shrink to
a point at € = 1, hence those vertices do not generate any triangles, and we have

VN
Y., = ;(di —2) - 3F8 =2Ey — 2Vy — 3FE

=(N+1)(M—-(N+1))—(N+1).
This completes the proof. O
3.8. Connection to zonotopal tilings
By [15, Corollary 10.9], every non-degenerate soliton graph for Gr(N, M)~ is a re-

duced plabic graph. Equivalently, every non-degenerate soliton subdivision Qn as is a
triangulated plabic tiling. In this section, we outline an alternate proof of this result,
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Fig. 9. Zonotope structure in the e-blow up. Starting with the triangulation of the 4-gon Qi 4 at left, we
have the triangulation Q2 4 in the middle by blowing-up each vertex of Qi 4. Note that each edge shrinks
to a point via the e-blow up when € = 1.

using Algorithm 3.10 and Galashin’s results on Zonotopal tilings; see [6]. As a conse-
quence, we obtain Kodama and Williams’ classification of soliton graphs for Gr(2, M)~;
and derive a key lemma that we use in the proofs of Theorems 6.1 and 6.3.

For polytopes Z; and Zs, the Minkowski sum of Z; and Zs is the set of points

{pP1+p2:p1 € Z; and ps € Zs}.

A zonotope is a polytope which is a Minkowski sum of line segments. The cyclic zonotope
Z(3, M) is the Minkowski sum of M segments [0, p;] in R?, where

f)i = (Kf’ia K/zza 1)

and k1 < K2 < ... < Kar. A zonotopal tiling of Z(3, M) is a subdivision of Z(3, M) into
smaller zonotopes (called tiles), each of which is the Minkowski sum of

{pi:iel}u{0,p;]:je€J}

for some disjoint I,J C [M]; and such that the intersection of any two tiles is either
empty, or a lower-dimensional tile. We say the tiling is fine if each top-dimensional tile
is a translate of the Minkowski sum of at most three segments.

Let p1,...,pa be points on the parabola ¢ = p?, and let

w = (wl,...,wM)

be a weighting of the points. Without loss of generality, assume wi,...,wp > 0. Re-
peatedly applying the induction algorithm gives a subdivision of Qn a(w) for each
0 < N < M. This collection of subdivisions induces a tiling of the cyclic zonotope,
whose top-dimensional tiles are in one-to-one correspondence with the white triangles in
the family of subdivisions. Fig. 9 illustrates this construction for M =4,and 1 < N < 3.
The horizontal direction shows the e-blow up of the vertices, and the number of blowing-
up € — 1 directions are given by the I-degree of the vertex.
Each vertex of a zonotopal tiling which lies in the plane z = N has the form

pr=>_ b
ict



R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439 23

for some I € ([%]), and the vertex labels I form a maximal weakly separated collection
Dy in ([%]). Intersecting a fine zonotopal tiling of Z(3, M) with the plane z = N gives
a triangulated plabic tiling, i.e. soliton triangulation, with vertex set Dy [6, Theorem
2.1]. It follows from the above discussion that every soliton subdivision Qx as is combi-
natorially equivalent to a section of a zonotopal tiling, and is therefore a triangulated
plabic tiling for Gr(NV, M)s¢. Hence we recover the result of [15] that soliton graphs for
Gr(N, M)~ are plabic graphs.

It follows from the discussion in [6, Section 4] that for M > 2, every plabic tiling for
Gr(N, M)~ may be obtained from some triangulated plabic tiling of Gr(N —1, M)~¢, by
applying a purely combinatorial analog of the induction algorithm, Algorithm 3.10. The
following observation, which we will use in the proofs of Theorem 6.1 and Theorem 6.3,
is immediate.

Lemma 3.12. If every triangulated plabic tiling for Gr(N — 1, M)~ is realizable, then
every plabic tiling for Gr(N, M)~ is realizable.

For any M, it is easy to see that triangulated plabic tilings for Gr(1, M)~ are real-
izable. Hence we obtain Kodama and Williams’ result [15, Theorem 12.1], which states
that all plabic tilings for Gr(2, M)sq are realizable. Moreover, from Algorithm 3.10 it is
clear that these plabic tilings are in one-to-one correspondence with the triangulations
of the M-gon, just as described in [15].

4. KP hierarchy and the polyhedral structure of multi-time space

In this section, we define a polyhedral fan structure on the space of multi-time pa-
rameters t in the KP hierarchy. The cones in this fan structure correspond to realizable
soliton subdivisions Qs for a fixed choice of k parameters. That is, one can construct
the soliton graph dual to the subdivision Qun,a(w(t)) by choosing multi-time parameters
t € R™~3 in the corresponding cone. See Theorem 4.11 for a precise statement. We will
apply these results to classify soliton graphs for Gr(3,6)s¢.

4.1. The KP hierarchy and the multi-time space

In this section, we show that we can realize triangulations corresponding to arbi-
trary weight vectors w simply by varying the multi-time parameters t. We also review
polyhedral cones.

Recall that the piecewise linear function fy a(x,y,t) for a KP soliton is given by

In(2,y,t) = max {91(%%‘6) — i+ qry +wi(t): T e G%]) }

with pr=> ki, q =) "%27 wr = > wi(t),
iel i€l i€l
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where w;(t) with t = (t3,...,ta;—1) € RM~3 is given by

M-1

w;(t) = ng Kyt

The point configuration for this case is

A?”v‘i&f = {fn = (pr.qr,wi(t)) €ER® : T € ([]\]\/{]) }

Let Q@ = (Q1,...,Q) be a weight vector, and let Qxn () be the corresponding soli-
ton triangulation. We claim that there exists t such that Quy a(w(t)) is combinatorially
equivalent to Qn,ar(£2).

To see this, we first define the plane £;(tg, z,y,t) := tg + 0;(z,y, t), and consider the
system £; =Q; fori=1,..., M, i.e.

2 M—1
1 w1 KT - K] to 0
1 Ky K3 - néw*l T Qo
1 k3 w2 . M Yy | 9
[— tar— Q
1 ky H?M s m% ! M-1 M

Since the coeflicient matrix is the Vandermonde matrix with distinct ;’s, the system has
a unique solution, which we denote by (ag, zo, 3o, a) with a € RM =3, Next, we consider
the plane defined by

Z = Ki(a’Oa m,y,a) = ap + RiT + K/fy + wi<a>7
which can be rewritten in the form
z = ki —x0) + K2 (y — yo) + s, 1=1,..., M.
Setting x¢p = yo = 0 translates the contour plot in the zy-plane, but does not change
its combinatorial structure. In other words, setting t = a gives a choice of multi-time
parameters corresponding to the soliton triangulation with the k-parameters and weight

vector 2. Hence giving the weight vector €2 is equivalent to choosing a particular direction
in the time-space. Our aim is to identify the polyhedral structure in the time-space with

t = (t3,...,tpm—1) variables.
The plane ¢; = Q; in the M-dimensional space with (o, z,y, t) has the normal vector
(1,44, ..., &M 71), and the hyperplane arrangements,

Ei—éjzﬁi—ﬁj:() 1§i<j§M,
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divide RM into M! regions. The dual to the set of those regions gives a permutohedron
for the symmetric group Sy;.
We now give a few definitions.

Definition 4.1. A polyhedral cone (or cone for short) generated by a finite set of vectors
By:={b;:j5€JC[M]}

is defined by

cone(By) := {Z Ajbj by € By, A\j > 0}-

JjeJ

If the dimension of cone(By) is k, we define the relative interior of cone(By), denoted
by relint(cone(By)), as the collection of all points p in cone(B;) such that there exists
a small ball By of dimension k centered at p such that B, C cone(By). That is, the
relative interior is the interior within the topology of the subspace spanned by the cone.

Example 4.2. Consider e; = (1,0,0), e = (0,1,0) in R3. Then cone({e1,ez}) is the
region {(z,9,0) : > 0,y > 0}, and has dimension two; while relint(cone({e1,es})) is
the region {(x,%,0) : x > 0,y > 0}, which is not an interior of the topology of R3.

4.2. Polyhedral cones for Gr(1, M)~ and Gr(2, M)~

Let us first consider a non-generic subdivision of A{ , induced from the weight w =
(=1,0,---,0). With this weight vector, the lifted points {P2, Ps,- -, Das} have the same
height, while p; is below the plane containing these points. Thus we have a non-generic
subdivision with only one diagonal {2, M }. There exists a vector, say rj , in the t-space
RM=3 such that each point on the cone{r; } generates this non-generic subdivision.
The negative — sign in the notation r; means the —1 in the weight w = (—1,0,---,0).
Similarly, we define r; for all other ¢ = 2,--- , M. We also define rj' = —r; , which
will be explained in more detail below. We call these rf the main rays in t-space for
non-generic subdivisions.

Before giving explicit coordinates for the vectors r; , we note the following lemma:

Lemma 4.3. Two weights w = (w1, -+ ,wp) and W = (Wi,...,w,) with w, = to +
KiTo + K2yo + w; for arbitrary (to,xo,yo0) give the same subdivision, that is, we have
Qnm(w) = Qnm(w').

Proof. Translating the coordinates (x,y, z) by (x + o,y + Yo, 2 — to), each plane

z=0;(z,y,t) = ki + K7y + w;(t)
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becomes z = k;z + K2y + wi(t). It is obvious that the dominance relation among the
planes does not change under the translations of coordinates. 0O

Remark 4.4. Recall that for given weights (Q1,...,Qs7) € RM, one can find a unique
point (tg,z,y,t) € RM such that the planes ¢; are given by to + k;x + k7Y + w;(t) = Q;
fori =1,...,M. Then Lemma 4.3 implies that the subdivision can be determined by
only the time variable t = (t3,...,tar—1) € RM=3,

To find the vector r; € R™~3  we consider the following system of equations for
(t()a xvyvtfﬂa oo ;thl)y

M—1
to+ kix + K2y + 3 KRt = for i=1,...,M, (4.1)
k=3

where we assign the weights (Q1,...,Q) with Q; = —6; ; (Kronecker delta). Then,
by Lemma 4.3 and Remark 4.4, the (column) vector r; is given by the last M — 3
components in the solution of this system, i.e.

r; = (t3,t4,... tar—1)" € RM73,

Equation (4.1) can be written in the M x M matrix form,

)

M
RV = —-1Id or Z Zkl*i 51‘]‘,

where V' = (néfl)lgiﬁ M is the Vandermonde matrix, and Id is the identity matrix. The
solution matrix R = —V ! can be obtained by the Lagrange interpolation. Consider the
polynomial,

M
( ) Z T3, kH with pi(ﬁj) = —52‘7]‘.

The Lagrange interpolation formula then gives

k— ki —1 M M—k_(8) k-1
(k) = | I = > 1
pile) 1 TR Hl;ﬁi(f% — K1) Ic:l( ) RO

where e,(f) is the k-th elementary symmetric polynomial of (k1,...,%;,...,Kn) (missing

the k; variable). Explicitly, we have

6(1) = Rg,Rgo """ KR
k S17vVS2 Sk *
1<s1<sg--<sp,<M

i¢{sl,‘..,sk}
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Thus, we have

—1 —k (i)
rig = = (=1)M7Fey) (4.2)
Hz;éi(’%‘ — K1) Mk

The vector r; is then given by

I'; = (’r‘i’4,T‘i$5, e ,’I’i’M)T c RM_?’.
Definition 4.5. The set of vectors B := {ry,...,r;,} is called the Gale transform of
the point configuration Ay s = {(k;,k?) € R? : i =1,..., M} and the vectors r; are

referred to as the Gale vectors. The Gale transform is defined formally using the following
procedure, which applies more generally to point configurations (see e.g. [3,24]). Consider
the 3 x M matrix representing A; s,

1 1 - 1
A:=| Kt K2 -+ KM |,
2 .2 2
ky Ry o Ry

and consider the kernel of A
kerg (A) := {u e R : Au=0}.
Let {uy, - ,up—3} be a basis for the vector space kerg (A). We organize these vectors

as the columns of an M x (M — 3) matrix B, so AB = Osy(y—3), the 3 x (M — 3) zero
matrix. Then

B:=[uy, ug, -+, up-3).
The M ordered rows of B give BT = [r],...,r},], which is the Gale transform B.

The Gale transform B is a useful tool to read off the polygons in the regular subdi-
vision Qn ar(w), and the faces of the polytope P = conv({p1,--- ,pam}). The following
theorem gives the method to check the regularity of a subdivision using the Gale trans-
form.

Theorem 4.6 ([17]). Let Q = {01, -+ ,om}, 0 C [M] fori=1,--- ,m, be a subdivision
of a point configuration A and let B be a Gale transform of A. Then Q is regular if and
only if

relint(cone(By,)) # 0,

-

Il
-

7

where Bz, := {r>

: 1j €0, =[M]\ o}
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Note that if t € cone{r; }, then the subdivision Qi as(w(t)) consists of the triangle
{i—1,i,i+ 1} and the (M — 1)-gon with the vertices {p; : j € [M]\ {i}}. One can then
easily find that the subdivision having just one diagonal, say {i,j}, can be constructed
by choosing the time variable t in the following cone,

cone{B,, ;} N cone{B, },
where o0; ; and 7; ; are defined by
oi;j={i+1,...,5—-1}, 7 ;={j+1,...,1—1} (in the cyclic order),

that is, o, ; U ; = [M]\ {¢,j}. Note that the dimension of the intersection is one:
Writing j =i+ k + 1 (mod M), then we have

dim(cone{B,, ;}) = k, dim(cone{B,, ;}) = M — k — 2.
Then we define a vector r; j such that
cone{ry; j} = cone{B,, .} N cone{B,  }.
Notice that r;” = rj;_; ;41)- Then it is immediate that we have the following propositions:
Proposition 4.7. A white polygon P, with vertex set o C [M] shows up in the subdivision
Q1. (w(t)) if and only if the time variable t € RM=3 belongs to the relative interior

relint(cone{Bs}) where ¢ = [M]\ o.

Proposition 4.8. A subdivision Q1 p(w(t)) has the diagonals {1, ji} forl=1,...,m, if
and only if

t € relint (cone{ry;, j,;:1=1,...,m}).

Since any triangulation of the M-gon has M — 3 diagonals, Proposition 4.8 implies
that one can realize a unique triangulation Q1 a(w(t)) with M — 3 diagonals {i;, 5;} for
l=1,...,M — 3 by choosing t in the proposition.

Example 4.9. Consider the point configuration for N =1 and M = 5:
Ais = {(ki,k3):i=1,...,5},

where we take (k1,...,k5) = (—2,-1,0,1,2). Then, from (4.2), the Gale transform
B={ry,...,r; } is given by
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13 15 35

12@45 ta @

@ 23 34 2
@ S r3+‘ g
— N
T
+ O, 715
< b2 f3
I Iy
I, . I,

Fig. 10. Triangulations Q1 5(w(t)) (left) and Q2 5(w(t)) (right) for the weights w;(t) = k3t3 4+ wxits. The
set B = {r; :4=1,...,5} is the Gale transform and r] = —r; . Here the x-parameters are given by
(k1,...,k5) =(-2,-1,0,1,2).

_ 11 1 (=2
I'4—E 1 s I'5—E 1 .

The left figure in Fig. 10 illustrates the triangulations of the pentagon P; 5. Each triangu-
lation for Py 5 can be obtained by using Proposition 4.7. For example, the triangulation
containing the triangle o = {1,3,5} can be obtained by choosing a point (¢3,t4) in the
cone spanned by ry and r; (note {2,4} = [5]\ {1,3,5}), i.e.

t = (t3,t4) € relint (cone{r;rl}) .

One should note that the triangulation Q15 = {01, 02,03} with o1 = {1,2,3}, 02 =
{1,3,5}, 05 = {3,4,5} can be realized with t = (t3,%4) in relint(cone{Bs,}), since

cone{Bsz,} N cone{Bz,} N cone{Bs,} = cone{Bs,}.

We also remark that in terms of the determinant D;, ;, 4., in (3.1), each direction
r; can be described by Dj5p; = 0, i.e. the vertices {p; : j € [5] \ i} are coplanar.

Now we consider the subdivision for the configuration A;’(If/f) We use Algorithm 3.10
to construct Qg ar(w(t)). The right figure in Fig. 10 shows the subdivisions obtained
from the triangulations Qi as(w(t)) in the left figure for M = 5. Each black triangle
in Qg am(w(t)) corresponds to a white triangle in Qq as(w(t)) for the same t. Notice
that the dotted lines in the left figure become the solid lines which are the boundaries
corresponding to the black-white flips. For example, the solid line of r; is the boundary
corresponding to the black-white flip of the parallelogram {13, 34,45, 15}.
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The subdivision obtained by the algorithm contains some white k-gons where k is
given by the degree of the corresponding vertex. More precisely, such a k-gon has the
index set {igi1, @02, ..., il } C ([1\2/1]) for a common index iy € [M] where i is the index
of the vertex p;, = (K, “120) in the M-gon Py ;. Then one can triangulate this white
polygon using the algorithm for the configuration A; , = {ps,,...,Pi, - For example,
consider the subdivision Qg5 in cone{r;,r; } which has the white quadrilateral with
vertex set {13,23,34,35}. Then 3 is the common index, and we triangulate the A; 4 =
{P1,P2, P4, P5}. A triangulation is given by choosing the triangle {1,2,4} as shown in
Fig. 10, and it is obtained by choosing the time variable

t = (t3,t4) € relint (cone{r;,r3} N cone{ry,r;}).

The r3 in the first cone indicates the dominant (or common) index, and the r5 indicates
the missing index in A; 4 for the white 4-gon. Note that the intersection is also given by
cone{r;y , 3 } which is obtained by taking the other triangle {1,4,5} in the 4-gon. In the
next section, we discuss the general case.

4.8. A realizability theorem for Qn am(w(t))

We first define the following pair of indices (K}, K) for the triangles o = {I, J, L}
with I,J,L € ([JX][]) in the subdivision Qs (w):

(a) If o is a white triangle, the vertices of the triangle o are expressed by {K,a, Kb,
K,c} for some K, € (Iy\:[]l) We define a pair of indices (K}, K, ) as
Kl =K, K, =[M]\(K,U/{a,b,c}). (4.3)

g

(b) If o is a black triangle, the vertices are expressed by { K, \ a, K, \ b, K, \ ¢} for some
K, € (E‘ﬂ) We then define (K, K ) as
Kl =K, \{a,b,c}, K, =[M]\K,. (4.4)

That is, K represents the common indices, and K represents the missing indices for
the triangle o. Also notice that |K |+ |K, | = M — 3. Then we have:

Theorem 4.10. A subdivision Qn,a(w(t)) contains a triangle o if and only if
t € relint (cone {rj{,rg ca€e Kf Be K;}) .
The dimension of the cone is M — 3, i.e. the full dimension of the t-space.

Proof. We here consider only the white triangle case with {K,a, K,b, K,c} and K, =
K} (the other case is similar). Recall that the time t € cone{r; } corresponds to a
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subdivision Qn, as(w(t)) having the weight wy, = —d; for k = 1,..., M. Similarly, the
time t € cone{r; } with rj = —r; implies the weight wy = +d; ) for k=1,..., M.
First assume that t € relint(cone{r;‘,rg :a € Kf, € K;}). This means that
the vertices {Pk. a4, Pk, b, DK.c} have the same positive weight, and all other vertices in
.A‘j(,’ 1 have smaller weights. Thus the subdivision contains the triangle { K,a, Kb, K c}.
Now assume that the points {Pxea, Pr.b, PK,c} form an upper 2-face of the poly-
tope PR 5. Then, from Lemma 4.3, one can find (c¢,x0,y0) such that each point in
{PK,a:PK, b, DK, c} has the same positive weight while all other vertices have smaller

weights. This means that t is a point in
relint(cone{r;',rg ca€ Kl BeEKSY). O

Using Theorem 4.10 we now obtain the main theorem, which can be proven in the
same way as in the proof of Theorem 4.10.

Theorem 4.11. A triangulation Qn ar(w(t)) having the set of triangles A = {01, ,0m}
1s realizable if and only if the following set is not empty, i.e.

ﬂ relint (cone{r;f,rg ca€e K, Be K;}) # 0.

(oA SPAN
If the set is empty, then the subdivision is not realizable.

For N > 1, it is sometimes useful to consider subdivisions of .Afv(?e] modulo the
triangulation of each black or white region. For a soliton subdivision Qn as(w(t)), we
let Qn,m(w(t))/ ~ w be the coarser subdivision obtained by merging any two white
polygons that share an edge; let Qn a(w)/ ~ b be the subdivision which results from
merging any two black polygons that share an edge; and let Qn,ar(w(t))/ ~ wb denote
the case where we merge both black and white polygons. We note that Algorithm 3.10
gives a purely combinatorial recipe for constructing Qn41,m(w(t))/ ~ w, and hence

Qn41,m (w(t))/ ~ wb, from Qn, p(w(t))/ ~ b.

Definition 4.12. For a given choice of the x-parameters, we let F ~n,m denote the poly-
hedral fan whose maximal cones correspond to triangulations Qu as(w(t)). We let
Fn,m denote the polyhedral fan whose maximal cones correspond to subdivisions
Q. (w(t))/ ~ wb, where Qu ar(w(t)) is a triangulation. Hence Fy s is a refinement
of ]:N,M-

5. Triangulations Qn,¢(w(t)) for N =1,2,3
In this section, we construct the triangulations Qu ¢(w(t)) for N = 1,2 and 3 by

giving the detailed structure of the corresponding polyhedral fans in multi-time space of
the KP hierarchy. We show that all subdivision Qu ¢ are realizable, up to triangulation
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Fig. 11. Polyhedral cones in the time space R3. The Gale vectors r; are marked by the white ver-
tices with ¢~ for ¢ = 1,...,6. In particular, the triangulation with triangle {2,4,6} is generated by
t € relint(cone{r; ,r3,r; }).

of the black and white tiles. However, some subdivisions Qs are only realizable for
certain choices of k-parameters. There is no fixed choice of the x-parameters for which
all subdivisions Q3¢ are realizable.

5.1. Subdivisions Q1 6(w(t)) and Qz6(w(t))
We first construct ]?176, which has six main rays
{r; :1<i<6}

in t-space. Fig. 11 shows a schematic drawing of this fan, projected onto a region in two-
dimensional space. Each white vertex represents one of the main rays r; . Any two of the
rays r; span a two-dimensional cone, shown in the figure as a dashed line segment, and
any three of the rays r; span a three-dimensional cone. Taking the common refinement
of this collection of cones gives a polyhedral fan, where each full-dimensional cone can
be labeled by a unique triangulation of the hexagon (Theorem 4.11). For example, the
cone associated to the unique triangulation having triangles {1,2,3},{1,3,6},{3,5,6}
and {3,4,5} corresponds to the intersection of two cones,

cone{ry,r,,rs } and  cone{r],ry,r;}.

The first cone corresponds to the triangle {1,3,6} and the second one to {3,5,6}.
Note here that we only need to use a minimal number of triangles which determine
the triangulation. In particular, the cone for the case with the triangle {2,4,6} is just
cone{r; ,r;,r; } (the middle triangular cone in Fig. 11).

Remark 5.1. It is well-known that the number of triangulations of the M-gon is given
by the Catalan number,
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Fig. 12. Subdivisions Q2 6(w(t)) via Algorithm 3.10 from the triangulations Q ¢(w(t)). Each black triangle
is induced by a white triangle in Q1 6(w(t)).

N=1

Fig. 13. The polyhedral structures Fn ¢ in the time space R3 for N = 1,2, 3. The dashed lines correspond
to the flips of diagonals in the white polygons, and the solid lines correspond to the black-white flips in
the parallelograms (see Fig. 4). Note that the solid lines disappear and the dashed lines become solid lines
as N increases. In the case N = 3, we omit the dashed lines which correspond to the triangulations of the
white polygons in the subdivisions Q3,6(w(t)) obtained by the blow-up of Q2 6(w(t)).

Notice that the number of polyhedral cones in Fig. 11 is Cy = 14. The secondary polytope

RI\/I—S

which is dual to the polyhedral structure of is known as the associahedron, whose

vertices are labeled by the triangulations of the M-gon.

It follows from Algorithm 3.10 that JF3 ¢ has precisely the same cones as J?Lg. This is
illustrated in Fig. 12. We now refine J5 ¢ to produce Fj . First, we construct the rays

{rf:1<i<e6},

represented by black dots in the middle panel of Fig. 13. (The black dot inside a white
circle does not represent one of the main rays, and will be explained below.) We then
construct the two-dimensional cones cone{r;, rj} for all ¢ # j, represented by dashed
segments in the figure. Taking the common refinement of the resulting collection of cones
with the cones of .7-~'1’67 we obtain ﬁg,g. As explained below, the structure of .%2’6 (and
hence, the collection of the subdivisions for Gr(2,6)( that are realizable) depends on
our choice of k-parameters.

By construction, maximal cones of ]7"276 correspond to the triangulations of Aj ¢. For
example, the unique such triangulation having two black triangles {{1, 2}, {1,5},{2,5}}
and {{2,3},{2,5},{3,5}} and a white triangle {{1,5},{3,5},{5,6}} can be realized



34 R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439

Fig. 14. Triangulations Q2 ,6(w(t)) which are only realizable for some choices of the k-parameters. Each of
these triangulations is realized by choosing a point in the middle triangular cone in the time space R
shown in Fig. 12.

by taking a point t = (¢3,ts4,t5) in the intersection of three cones spanned by
{ry,ry,rg}, {r],ry,rs } and {r3,r],r;} (Theorem 4.11).

5.2. Subdivision Q3 6(w(t))

We now construct F3e. Using Algorithm 3.10, this is obtained by taking .7?3,6, and
merging any top-dimensional cones that represent the same triangulations, up to tri-
angulation of the black polygons. For this, we claim it suffices to merge each pair of

*

three-dimensional cones in F» ¢ separated by a face of the form cone{r;

,r; }. In our
example, this yields the fan shown at right in Fig. 13. To prove the claim, note that

+
7

two full-dimensional cones are separated by a face cone{r 7r;} if and only if the cor-
responding triangulations differ by a black-white flip, which occurs if and only if their
images at N = 3 are identical, up to flipping a diagonal in one of the triangulated black
polygons.

We note that there are four triangulations Q2 6(w(t)) which can only be realized for
certain k-parameters. Two of these are refinements of the subdivision obtained inside the
cone{r; ,r;,r; }, which has four white 4-gons as shown in Fig. 12; two are refinements
of the analogous subdivision which occurs within cone{r; ,r;,rg }. We triangulate the

subdivision in the following two cases, shown in Fig. 14:

(a) The triangulation with the three white triangles,
{12,24, 26}, {24, 34,46}, {26,46,56}.
They can be realized from the following cones, respectively,
cone{ry,r;,rs }, cone{r],ry,r5 }, cone{rg,ry,rs }.
(b) The triangulation with three white triangles,
{23,24,26}, {24, 45,46}, {16,26,46}.
They are realized from the following cones:

cone{ry,ry,rs }, cone{r;,ry,r3}, cone{rg,r3,r5 }.
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By Theorem 4.11, these triangulations can be realized by a point t in the intersection
of the given cones (if it is not empty). For a choice of k-parameters, however, both
intersections can be empty. This occurs when the segments representing cone{ry ,r; },
cone{r;,r} } and cone{rs ,rj } intersect in a single point (representing a ray in t-space).
We denote this double point of ]?375 by a black dot inside a white circle as shown in Fig. 13.

We now determine for which choices of the x-parameters such a double point occurs.
First, we claim that the two-dimensional fan spanned by cone{ry, ri} is contained within
the plane defined by Dy 356 = 0. To see this, note that the plane defined by Dj 356 is
the region in t-space corresponding to the point configurations where ps, p3, Ps and pg
are coplanar. Certainly, any point in t-space which is a linear combination of r] and r}
satisfies this condition; for such a point ps, p3, ps and pg all have weight 0.

We may rewrite the equation for the plane Dj 356 = 0 by plugging in the coordinates

5 .
pi = Kj, G =K,  wit)=> Klt;

into the determinant formula for Ds 3 5 6. Factoring the resulting equation, and dividing
by terms that cannot equal to zero when k1 < ko < - -+ < Kg, we obtain

t3 + h1(2, 3,9, 6)t4 + h2(2, 3,5, 6)t5 =0
where hj is the homogeneous symmetric polynomial of degree k defined by

by (i1, 2,45, 14) = > Kig, " Kig, -
1<s51 <55 <sp<d

Similarly, the plane defined by Djs45 = 0 contains cone{r;,rg }, and the plane
defined by Dj 34,6 = 0 contains cone{r; ,rj }. Hence the three two-dimensional cones
intersect in a ray precisely when the three planes intersect in a line, that is, when we
have the following determinant condition,

1 hi(2,3,5,6) ha(2,3,5,6)
1 hi(1,2,4,5) ho(1,2,4,5)| = 0. (5.1)
1 hi(1,3,4,6) ho(1,3,4,6)

To obtain a simpler formula, we may specialize to the case where the s-parameters
satisfy a symmetric condition,

k1 = —Ke, ko = —ks, K3 = —kKq.
With this choice of parameters, the determinant (5.1) becomes
—2(/{% — K1R3) (K1 — K3).

Since k1 < ks, the determinant is positive if kK2 > k1k3, and negative if k2 < k1k3.
) 2 ’ 2
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Fig. 15. One possibility for the arrangement of two-dimensional cones inside cone{r; ,r;,r; }. Each Gale
vector ri is marked by i¥. The arrows show the normal vectors corresponding to rows of the matrix in the
determinant (5.1).

We now investigate what happens when the determinant (5.1) is nonzero. By the
quadrilateral-checking formula (Lemma 3.1), D2 3 5 ¢ > 0 when the diagonal {3,6} passes
over the diagonal {2,5}, while Dy 356 < 0 when {2,5} passes over {3,6}. Hence, the
normal vector

<1a h1(27 37 5a 6)7 h2(2a 3) 57 6)>

to the plane containing cone{r;, ri‘} points toward the half-space containing r; and rg' .
Similarly, the normal vector

(1,h1(1,2,4,5), ho(1,2,4,5))

to the plane defined by Dj 245 = 0 points toward the half-space containing r; and rj,
while the normal vector

<15 h1(17 37 45 6)7 h2(1a 3) 47 6)>
to the plane defined by D; 346 = 0 points toward the half-space containing r;” and rg' .
See Fig. 15.
Note that the ray where the planes Dy 356 = 0 and Dy245 = 0 intersect inside
cone{ry ,r;,ry } is the cross product
(1,h1(1,2,4,5),h1(1,2,4,5)) x (1,h1(2,3,5,6),h1(2,3,5,6)).

The triple scalar product of this ray with

<17 h1(173747 6)7 h2(1a 3) 47 6)>
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Fig. 16. Subdivisions Qs ¢(w(t)) and the corresponding polyhedral cones in the time space R® shown in
Fig. 13.

Fig. 17. Two different triangulations for the middle section of the left panel in Fig. 16. They are corresponding
to the different choices of the k-parameters. For the symmetric parameters (k1, k2, k3, —k3, —k2, —K1), the
left figure corresponds to the case I{g > Kk1K2, and the right one to ng < K1K3.

is positive if the ray lies on the same side of cone{r; ,r3 } as r] and rg, as shown on the
right in Fig. 17; and negative if the ray lies on the opposite side of the cone as shown
at left in Fig. 17. By properties of the triple scalar product, the determinant (5.1), is
negative in the first case, and positive in the second.

We now use Algorithm 3.10 to construct a subdivision Qs 6(w(t)) from a triangulation
Q2,6(w(t)). Note here that two triangulations Qa6 adjacent to a common solid line in
Fig. 13 lead to the same subdivision Q3 ¢ by the blow-up process. That is, the solid lines
in N = 2 case disappear in N = 3, and each subdivision Qs ¢(w(t)) can be generated
by choosing a point t in a cone illustrated in the figure N = 3 where the solid lines are
the dashed lines in the case N = 2. Fig. 16 shows the subdivisions Q3 ¢ obtained from
the triangulations Q2 ¢ through Algorithm 3.10. The total number of the subdivisions
is given by the number of polyhedral cones in the time space. Then recall that there
are two triangulations of Q2 ¢ which cannot be realized for fixed k-parameters. Using
a different set of k-parameters, we obtained those missing triangulations Qa6 as shown



38 R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439

Fig. 18. Triangulated plabic tilings Qs 6(w(t)) which are only realizable for some choices of the r-parameters.
There triangulations are realized by choosing points in the central polyhedral cones in Fig. 17.

in Fig. 14. Then it is immediate to see that the subdivisions Q3 ¢ obtained from these
triangulations through the blow-up process are triangulations which cannot be obtained
from the original set of the x-parameters. Fig. 17 shows these triangulations for the
middle section in Fig. 16.

We now summarize this discussion in Theorem 5.2 below, which states when each
maximal weakly separated collection for Gr(3,6)s¢ is realizable. See also Figs. 16 and
17. Note that the theorem is stated in terms of weakly separated collections, which
correspond to soliton subdivisions rather than soliton triangulations.

Theorem 5.2. There are 34 mazimally weakly separated collections for Gr(3,6)sq. Of
these, 30 are realizable for every choice of k-parameters. For a generic choice of k-
parameters, 32 of the 34 are realizable. We can realize the weakly separated collections
shown at left in Fig. 18 if and only if the determinant (5.1) is positive. We can realize
the collections shown at right in Fig. 18 if and only if the determinant (5.1) is negative.

Example 5.3. We demonstrate the case for Gr(3,6)~o by considering an explicit example
where we take the k-parameter as (k1,...,kg) = (—3,—2,—1,1,2,3). Then the Gale
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t5=-1
6+ 3r 1+ ‘
1 .3+
e B
R
Fig. 19. The Gale vectors for (k1,...,ks) = (—3,—2,—1,1,2,3) in the time space. The vectors in the left
are shown at the plane t5 = 1, and the right ones are at t5 = —1.

y

234 346

345

Fig. 20. The soliton graph and the corresponding triangulation Qs,(t) for the case with (k1,...,ks) =
(—3,-2,-1,1,2,3) and t = (—10.5,0, 1).

Here these vectors are normalized to be £1 in the third component. Fig. 19 illustrates
the polyhedral cones in the time space t = (t3,%4,?5). Note that the vectors ri,r3,ry
appear at the plane t5 = 1, and other vectors are at t5 = —1.

As a summary of this section, we show how to find values of t that realize the subdi-
vision Qg,6(w(t)) shown in the center of Fig. 12 and the triangulation Qs ¢(w(t)) shown
in Fig. 20:

(a) Consider the triangulation Q1 ¢(w(t)) with the triangle {2, 4,6}, which is realized by
taking

t € relint (61_3_5_) with Ci35 = cone {rl_,rg, rg} .

This leads to the subdivision Qz,6(w(t)) shown in Fig. 12.

(b) Triangulate three white 4-gons in Qg6(w(t)) by taking the intersection of three
cones, C3 35 ,Cr 45 and Ci 5. Then the triangulation Qz6(w(t)) shown in Fig. 20
is obtained by taking a point

t € relint (C555 NCri5 NCiag)-

The triangulation Qs ¢(w(t)) in Fig. 20 is obtained by taking t = (—10.5,0, 1).
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1 7 1 7 1 7 1 7
6 6 6 6
2 2 2 2
5 5 5 5
3 1 3 1 3 1 3 1
Fig. 21. The four triangulations Q1,7 of the heptagon, up to rotation and reflection.
6. Realizability of Qs 7(w(t)) and Qs s(w(t))
6.1. Results for Gr(3,7)s0

We now extend our results from Gr(3,6)s9 to Gr(3,7)so. We show that every max-
imal weakly separated collection for Gr(3,7)s¢ is realizable for some choice of the
k-parameters (ki,...,K7), and determine which of these collections are realizable for
any given choice of the k-parameters.

Theorem 6.1. Every mazimal weakly separated collection for Gr(3,T)sq is realizable for
some choice of the k-parameters.

Proof. Since the t-space has dimension 4, visualizing the polyhedral fan for A; 7 is rather
difficult. We instead reason directly about the placement of the lifted points

{f)l?f)Qﬂ"' 7f)7} C R3.

By Lemma 3.12, it suffices to prove that every triangulated plabic tiling for Gr(2,7)sq
is realizable for some choice of the k-parameters. We have already shown the analo-
gous result for Gr(3,6)so. Hence our approach is to start with a weight function on
{p1,...,Ps}, and show that we can add a seventh point with an appropriate weight to
realize the desired triangulation.

Consider a realizable triangulation Qo 7(w(t)) of Az 7. By Algorithm 3.10, Qg n(w(t))
uniquely determines Qq ny(w(t)). Moreover, the triangulation of the white polygon whose
vertices have common index ¢ in Qg 7(w(t)) is determined by restricting w(t) to the set
of neighbors of p; in Q; 7(w(t)). Hence to show that a given subdivision Qg 7 of Az 7 is
realizable, it suffices to find a weight function w(t) such that the following hold:

(1) Q1,7(w(t)) is the triangulation determined by Q2 7(w(t)).

(2) For each 1 < 4 < 7, restricting w(t) to the neighbors of p; in the triangulation
Q1,7(w(t)) yields the appropriate triangulation which corresponds to the white poly-
gon of Qa 7.

There are four soliton triangulations Q7 of the heptagon, up to rotation and re-
flection. First, consider the leftmost triangulation in Fig. 21. We may assign weights
{w1,...,wr} to produce any triangulation of A; ¢ we desire. Placing p7 high enough
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then guarantees that all diagonals incident at p; appear in the triangulation of A; 7.
Hence, any triangulation Qg 7 which is obtained by blowing up this triangulation of the
heptagon is realizable.

For the middle two triangulations in Fig. 21, we assume we have an appropriate weight
function on py, ..., pg, and then show that we can add a point p; to obtain the desired
Q2,7. For this, note that our point pr must satisfy two constraints.

(1) The point pr lies below the plane through p;, p2 and ps.
(2) The line segment {2,7} passes either below or above the line segment {1,5}, de-
pending on the desired triangulation.

If {2, 7} must pass below {1,5}, this is easily achieved by placing pr low enough. Other-
wise, note that ps lies below the plane spanned by p1, p2 and pg. Hence we can achieve
the desired configuration by taking pr just slightly below this plane.

Finally, we consider the rightmost triangulation in Fig. 21. Here, there are five possible
cases for the triangulation of the white polygon with common index 6, corresponding
to possible regular triangulations of the pentagon with vertices pi, po, P4, Ps and pr7.
Assume we have an appropriate weight function for these points. We must show that we
can place the lifted point pr as needed in each case.

Suppose no diagonal incident at p7 appears in the desired triangulation of the pen-
tagon. Then it suffices to simply place p7 low enough. This covers the case where either
P1 or ps is incident at both diagonals which appear in the pentagon.

For the remaining cases, note that by our choice of weight function for p1,..., ps,
the plane P through p1,p2 and p4 must pass below pg. Hence we obtain the desired
triangulation Q1 7(w(t)) as long as pr is sufficiently close to P.

Suppose we weight the points p1,...,pg in such a way that {1,4} passes over {2, 5}.
Then placing p7 slightly above P yields the case where p7 is incident at both diagonals
of the pentagon which appear; and placing p7 slightly below P yields the case where py
is incident at both diagonals which appear. Finally, suppose {1,4} passes below {2,5}.
Then placing p7 slightly above P yields the case where p2 is incident to both diagonals.
This completes the proof. O

Theorem 6.2. There are 203 maximal weakly separated collections in ([;]) which are re-
alizable for any choice of the k-parameters. For each generic choice of the parameters,
a total of 231 collections are realizable.

Proof. We first show that all triangulated plabic tilings Q2 7 are realizable for any choice
of the rk-parameters, except those which can be obtained from the triangulations in
Fig. 22 by applying symmetries of the heptagon.

In the proof of Theorem 6.1, we realize each plabic tiling Qo7 by first choosing an
appropriate weight function on the points {pi,...,ps}, and then adding a lifted point
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Fig. 22. Triangulated plabic tilings Q2,7 which are only realizable for some choice of parameters.

pP7. None of the arguments requires any restriction on the location of the (non-lifted)
point p7 in the pg-plane, or equivalently on the value of k7.

Recall that any Q27 can be obtained by blowing up a unique triangulation Q7. If
Q1,7 is the leftmost triangulation in Fig. 21, up to symmetries of the heptagon, the
proof of Theorem 6.1 simply requires that we find a weight function on {p1,...,ps}
which induces the desired subdivision on Q. This is possible for any choice of the

parameters.
Otherwise, we must find a weight function on {p, ..., pg} which gives some specified
Q2,6. This is possible for any choice of {k1,..., K¢}, unless the desired triangulation is

one of those shown in Fig. 14, up to symmetry. This occurs precisely when Qg ¢ is one
of those shown in Fig. 22, up to symmetry, so the first part of the claim is proved.

We now determine when the triangulated plabic tilings in Fig. 22 are realizable. By
Theorem 5.2, the two plabic tilings on the top row of Fig. 22 are not realizable unless the
determinant (5.1) is negative. Conversely, if this condition holds, then both plabic tilings
are realizable, by Theorem 5.2 and the proof of Theorem 6.1. Similarly, the first two
plabic tilings on the bottom row of Fig. 22 are realizable if and only if the determinant
in (5.1) is positive.

The case of the tiling at bottom right in Fig. 22 is more complicated. By Theorem 5.2,
this tiling cannot be realizable unless the determinant in (5.1) is positive, which suffices
for our purposes. It can be shown, however, that this triangulation is realizable if and
only if the k-parameters satisfy the stronger condition

1 h(2,3,5,7) ha(2,3,5,7)
1 h(1,2,4,5) ho(1,2,4,5)] > 0.
1 h(1,3,4,7) ho(1,3,4,7)
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Fig. 23. Plabic tilings Qs,7 which are only realizable for some choice of the k-parameters.

Blowing up the tilings in Fig. 22, we obtain the (non-triangulated) plabic tiling Qs 7
in Fig. 23. Moreover, the plabic tilings on the top row of Fig. 23 can only be obtained
by blowing up the corresponding tilings on the top row of Fig. 22; the tiling at lower
left in Fig. 23 can only be obtained by blowing up the tiling at lower left in Fig. 22; and
the tiling at lower right in Fig. 23 can only be obtained by blowing up one of the tilings
shown respectively at lower middle and lower right in Fig. 22. Hence the tilings on the
top row of Fig. 23 are realizable if and only if (5.1) is negative and the tilings on the
bottom row of Fig. 23 are realizable if and only if (5.1) is positive.

In sum, for each choice of the k-parameters, exactly two of the four tilings in Fig. 23
are realizable. Applying the 14 symmetries of the heptagon to the plabic tilings shown
in Fig. 23, we obtain a total of 56 triangulations. Half of these, or 28 total, are realizable
for any given generic choice of parameters. There are 259 maximal weakly separated
collections in ([Z]), so this leaves 203 tilings which must be realizable for any choice of
the k-parameters. 0O

6.2. Results for Gr(3,8)s¢

For Gr(3, 8)>0, we do not yet have a classification of the possible soliton triangulations
for each choice of parameters. However, we can prove the following analog of Theorem 6.1.

Theorem 6.3. Every maximal weakly separated collection for Gr(3,8)s¢ is realizable.

Proof. We show that every triangulated plabic tiling Q2 g is realizable. The result then
follows by Lemma 3.12. Each Qg g corresponds to a unique triangulation of the octagon
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1 1 1
2 3 2 3 2 3
3 7 3 7 3 7

6 6 6
4 : 4 2 4 .

Fig. 24. Triangulations Qi s of the octagon.

Fig. 25. Plabic tilings Q2 s which arise from the first triangulation in Fig. 24.

Ais. The arguments used in the proof of Theorem 6.1 show that Qg g is realizable in
the case where the corresponding triangulation of A; g has a triangle with one ver-
tex of degree 2, one vertex of degree 3, and one vertex of degree at most 5. Similarly,
any triangulation arising from a triangulation of A; g which has one vertex that is
adjacent to all the others is realizable, by the arguments used in the proof of Theo-
rem 6.1.

Up to symmetry, this leaves three triangulations of A; g, which are shown in Fig. 24.
We first consider triangulations Qg g arising from the leftmost triangulation in Fig. 24.
These are precisely the triangulations Qg g which refine the subdivision shown at left in
Fig. 25.

Fix such a Qg g, and suppose the diagonal corresponding to {1,5} does not appear in
either of the two white quadrilaterals. Then we can realize Q2 g by arranging the points
{P; : i # 5} appropriately, and then assigning ps a low-enough weight. Similarly, if the
diagonal corresponding to {i, 5} appears in both white quadrilaterals, it suffices to place
P5 high enough.

Next, suppose the diagonal corresponding to {i, 5} appears in exactly one of the two
quadrilaterals. We consider the case where Q3 g refines the subdivision shown at right in
Fig. 25; the other case is analogous. For this, we choose the parameters k; so that in the
pg-plane, the segment {1,5} intersects {3,6}, and {4, 7} to the right of the point where
the latter two segments intersect.

We assign all points {p; : ¢ # 1,5} the same weight, and assign a higher weight to
P1- To obtain the desired subdivision, we then assign a weight to ps so that the seg-
ment {1,5} passes just slightly above {4,7}. We then adjust the weights of the points
{P: : © # 1,5} to obtain the desired subdivision of the white hexagon with common
index 1. Since we can triangulate the hexagon using arbitrarily small adjustments of the



R. Karpman, Y. Kodama / Advances in Mathematics 376 (2021) 107439 45

Fig. 26. Plabic tilings Q2,8 which arise from the third triangulation in Fig. 24.

weights, there is no danger of disturbing the rest of the configuration, and this case is
complete. The argument for a tiling Q2 g corresponding to the middle triangulation in
Fig. 24 is analogous.

It remains to show that we can realize all triangulated plabic tilings Q2 g which arise
from the rightmost triangulation in Fig. 24, up to rotation and reflection. First, note
that every such Qg refines one of the six plabic tilings shown in Fig. 26, up to ro-
tation and reflection. (This is not immediately obvious, but follows by a simple case
check.)

If Qg8 refines the tiling shown at upper left, it suffices to arrange the points
{Pi : i # 2}, and then place P2 low enough.

For several of the remaining cases, we start by arranging the p; to give a subdivision
at N = 2 with the correct black triangles, and with all the white polygons planar. This
is possible if the ; are chosen so that in the pg-plane, the segments {1,4}, {2,5}, and
{3, 7} intersect at a single point; and the same holds for {1,6}, {5,8}, and {3,7}. We
will call this degenerate subdivision Q;S.

To realize the upper-middle tiling in Fig. 26, start with Q3 g, and lift pa. To refine the
resulting tiling, we may first raise or lower pg to achieve the desired triangulation of the
quadrilateral with common index 7, and then adjust the heights of {p1, Ps, P4, Ps, D7}
to triangulate the pentagon with common index 5. Note that at each step, we can make
the height adjustments arbitrarily small, so there is no danger of disturbing the rest of
the configuration.

For the tiling at upper right, we start with Qjg, and lower both p3 and p7. To
triangulate the white quadrilaterals, we then adjust ps and Ps.
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The case of the tiling at lower left is slightly more complicated. To realize this tiling,
we first arrange the points {p; : i # 2,6} appropriately, such that all the white polygons
are planar. Choose kg so that {2,5} crosses {1,4} and {3, 7} to the left of the point where
the latter two segments intersect, where the octagon is oriented as in Fig. 24. In other
words, the segment {2,5} crosses {3,7} between the vertex p3 and the intersection of
{3,7} and {1,4}. Then we can assign an appropriate weight to Po so that {2,5} passes
just above {1,4}, and hence below {3,7} as desired. By a similar argument, we can
add the point pg, for an appropriate choice of kg, to produce the desired configuration.
Raising and lowering ps and pg, we can refine the tiling as needed.

The case of the lower middle is similar, but simpler; we place all points {p; : i # 2} as
desired, so that all white polygons of the resulting tiling are planar. We then add p2 as
in the previous case, with ko chosen appropriately. Raising p; slightly gives the desired
tiling, which we may then refine by adjusting ps.

Finally, for the tiling at lower right, we start with Q3 5, and assume that the segments
{1,5} and {3, 7} are both parallel to the pg-plane. We adjust p3 by decreasing x5 slightly,
so that ps moves toward p2, without changing the weight of ps. This gives the desired
triangulation of the pentagon with common index 1, and ensures that the diagonal cor-
responding to {1,4} appears in the pentagon with common index 5. Lowering pr slightly
then gives the desired tiling, and again we can triangulate the quadrilaterals as needed.
This completes the final case, and with it the proof. O

7. Non-realizable soliton graphs

In this section we show that not all weakly separated collections are realizable. We
are grateful to Hugh Thomas for suggesting a counterexample, which we describe in the
proof of Theorem 7.3.

7.1. Combinatorial background

Before proceeding to the proof, we give some background on pseudoline arrangements,
and some additional details about plabic graphs. For a reference on pseudoline arrange-
ments, see for example [21].

A pseudoline is a simple closed curve in the real projective plane P? which is topo-
logically equivalent to a line; in particular, a pseudoline has no self-intersections. An
arrangement of pseudolines is a collection of pseudolines £ = (Ly,...,L,) such that
for any 1 <14 < j < n, the pseudolines L; and L; intersect exactly once. A pseudoline
arrangement is simple if no three pseudolines meet in a common point. Two pseudoline
arrangements are equivalent if they generate isomorphic cell decompositions of P2. An
arrangement of pseudolines is stretchable if it is equivalent to an arrangement of projec-
tive lines. Every arrangement of eight pseudolines or fewer is stretchable [7]. However,
there is a non-stretchable arrangement of 9 pseudolines, and hence of n pseudolines for
any n > 9 [22].
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As described in [21], we may visualize the real projective plane P? as a sphere in
R? with antipodal points identified, and visualize pseudolines as great pseudocircles on
the sphere. Assuming without loss of generality that each pseudoline crosses the equator
exactly once, and that no crossing of pseudolines occurs on the equator, we may then
restrict ourselves to the upper hemisphere. Projecting to R?, we obtain an arrangement of
affine pseudolines. We define simplicity, equivalence, and stretchability for arrangements
of affine pseudolines in the obvious way. A non-stretchable arrangement of pseudolines
in P2 gives non-stretchable arrangement of affine pseudolines in R2.

For the proof of Theorem 7.3, we need a bit more information about plabic graphs.

Definition 7.1. A plabic graph is a planar graph embedding in a disk, with vertices colored
black or white. A plabic graph has M boundary vertices located on the boundary of
the disk, numberered 1,2, ..., M in counter-clockwise order. All boundary vertices have
degree one.

Previously, we did not give a precise definition of a reduced plabic graph. Postnikov
originally defined reducedness in terms of certain local transformations of graphs [20].
He then proved a criterion for being reduced in terms of trips.

A trip in a plabic graph G is a directed path which turns (maximally) left at each
white internal vertex, and (maximally) right at each black internal vertex. Let T; denote
the trip which starts at boundary vertex 4, and continues until it reaches the boundary
again. The trip permutation m of G is the permutation defined by setting i — j if the
trip T; ends at boundary vertex j. Note that a trip in a plabic graph may either be a
closed cycle containing no boundary vertices (called a round trip), or it may connect two
boundary vertices ¢ and j.

We label each face of a plabic graph with an 7 if it is to the left of the trip that begins
at vertex 4. For soliton graphs, this recovers the usual face labels [15].

Definition 7.2. [20, Theorem 13.2] A plabic graph is reduced if and only if it satisfies the
following conditions:

(1) G has no round trips.

(2) No trip in G uses the same edge twice (unless that edge connects a boundary vertex
to an adjacent leaf).

(3) No two in G trips have a pair of common edges (e, e2), where both trips are directed
from e; to es.

The trips T; in a reduced plabic graph G induce a permutation 7 on the boundary
vertices, defined by setting (i) = j if the trip T; ends at boundary vertex j. For soliton
graphs, this gives the usual permutation. With these conventions, G is a reduced plabic
graph for Gr(N, M)~ if and only if the trip permutation of G is i — i— N, where indices
are taken modulo M [20, Lemma 17.6].
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Fig. 27. Replacing a crossing between two Pseudolines with a black-white square.

7.2. A non-realizable soliton graph

Theorem 7.3. For every N > 9, there exists a plabic graph for Gr(N,2N)sq which is not
a soliton graph, even up to contraction equivalence. Equivalently, there exists a weakly
separated collection for Gr(N,2N)so which is not realizable.

Proof. Consider a simple, non-stretchable arrangement £ of N affine pseudolines in the
FEuclidean plane. Without loss of generality, assume we can construct a circle C' such
that:

(1) C encloses all intersections of pseudolines in £,
(2) Each pseudoline in £ intersects C' exactly twice, and
(3) All intersections of the pseudolines in £ with the circle C' are transversal.

We erase the part of each pseudoline outside of C, place a boundary vertex at each
intersection of a pseudoline with C, and label the boundary vertices 1,2,...,2N in
counterclockwise order. Next, we replace each intersection of pseudolines with a bicolored
square, as shown in Fig. 27. Let G be the resulting graph, which is embedded in a disk
with boundary C.

We claim that G is a reduced plabic graph. First, note that each pseudoline in £
connects some boundary vertex k to the boundary vertex k — N, where indices are taken
modulo 2N. Label the pseudolines in £ as Lq,..., Ly, with indices taken modulo N,
so that Lj contains boundary vertex k. The trip Ty in G follows Ly, taking a detour
around two sides of each added square which intersects the pseudoline. Hence no trip in
G crosses itself. The common edges of the trips T}, and Tj_ n are precisely those which
correspond to segments of Lg, and T and Ty_ N pass through those edges in opposite
order.

If k #£ £ (mod 2N), then T}, and Ty have a single common edge; this edge occurs in the
square corresponding to the intersection of Ly and L. If follows from [20, Theorem 13.2]
that G is a reduced plabic graph. The trip permutation of G is defined by k +— k — N,
so by [20, Lemma 17.6], the plabic graph G corresponds to Gr(N,2N)sq.

Assume for the sake of contradiction that G is a soliton graph, up to contraction
equivalence. In the corresponding contour plot, each edge in T} which represents a seg-
ment of Ly, separates a region where O is dominant from one where ©_ is dominant.
Hence each such edge is a segment of the line defined by O = ©_ n. Moreover, if k # £
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(mod 2N), then the line ©; = ©4_x must intersect the line O, = Oy_y inside the
square corresponding to the intersection of Ly and Ly. Hence, replacing Ly with the line
O = O)_nN gives a stretching of the affine pseudoline arrangement £. (Note that we
may contract any unicolor edges without affecting the substance of the argument, since
each trip must still pass through the corresponding vertices of each black-white square
after an edge-contraction move.) This is a contradiction, and the proof is complete. O

The smallest counterexample given by the proof of Theorem 7.3 is a plabic graph
for Gr(9,18)~¢. We conjecture that much smaller non-realizable plabic graphs exist, but
have yet to find them.
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