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Abstract

Fast operations, an easily tunable Hamiltonian, and a straightforward two-qubit interaction
make charge qubits a useful tool for benchmarking device performance and exploring two-qubit
dynamics. Here, we tune a linear chain of four Si/SiGe quantum dots to host two double dot charge
qubits. Using the capacitance between the double dots to mediate a strong two-qubit interaction,
we simultaneously drive coherent transitions to generate correlations between the qubits. We then
sequentially pulse the qubits to drive one qubit conditionally on the state of the other. We find
that a conditional 7-rotation can be driven in just 74 ps with a modest fidelity demonstrating the

possibility of two-qubit operations with a 13.5 GHz clockspeed.
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INTRODUCTION

With charge, valley, and spin degrees of freedom, quantum dots in silicon are promising
hosts of many different types of qubits. Using the electronic spin state as the logical basis has
enabled high fidelity single-qubit operations |1| and demonstrations of two-qubit gates [29].
To date, two-qubit gates in Si quantum dots have been mediated by a spin-spin exchange
interaction or by coupling via a superconducting resonator |10].

Alternatively, a capacitive interaction can be used to coherently couple neighboring dou-
ble dot qubits using the electronic charge degree of freedom. Capacitive coupling has been
used to perform fast two-qubit operations in charge qubits 11| and singlet-triplet qubits |12|
13| in GaAs quantum dot devices.

In Si-based quantum dot devices, a strong [14| and tunable [15| capacitive interaction
between double dots has been demonstrated and used to perform qubit control condition-
ally on the state of a classical two level system [16]. The strength of this interaction makes
it a promising candidate for coupling qubits that have a tunable charge dipole moment
such as the quantum dot hybrid qubit (QDHQ) [17+19]. Fast, multi-qubit control presents
a number of challenges, however, such as pulse synchronization across a device. Here, we
use capacitively-coupled charge qubits to explore these challenges by measuring correlated
oscillations between two simultaneously-driven qubits, by using those dynamics to synchro-
nize our multi-qubit control channels, and by using this interaction to drive a fast (74 ps)

conditional m-rotation.

RESULTS
Device Detalils

To perform capacitively-coupled two-qubit measurements, we fabricate a linear chain of
four quantum dots using an overlapping-aluminum gate architecture (Fig. ) (14} |15} 120,
21]. The fabrication details for this device have been reported in Ref. [15]. Measurements
are performed in an Oxford Triton 400 dilution refrigerator with a ~ 15 mK mixing chamber
temperature. We tune the device to host two tunnel-coupled double dots, each nominally
residing in the (1,0)-(0,1) charge configuration (Fig.[lp). In all measurements reported

here, the double dot electron temperature was T¢© = 228 mK and the charge reservoir
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temperature was 75% = 321 mK [22].

Two additional quantum dots are formed on the bottom half of the device to enable
charge sensor readout of the qubit states. The current through the left charge sensor feeds
into a room temperature current preamplifier and the resulting voltage is measured with a
lock-in amplifier. The right charge sensor current is amplified at the mixing chamber of our
dilution unit using a home-built two-stage cryogenic amplifier [23]. It is then amplified again
at room temperature, and the resulting voltage is measured with a lock-in amplifier. While
the right charge sensor only responds to the right double dot (RDD), during qubit operations
the left charge sensor measures both the RDD and the left double dot (LDD). Both charge
sensors are used in the measurements that follow. As detailed in Supplementary Note 2,
appropriate normalization measurements allow us to subtract the calibrated RDD signal

from the left charge sensor data, enabling independent measurement of the two qubits [24].

Qubit Initialization, Control, and Latched Readout

In our device, each double dot has an outer dot that neighbors a charge reservoir and
an inner dot that is isolated from any reservoir. During qubit operations, we initialize each
charge qubit at a large detuning ; where one electron localizes into the qubit’s outer dot
(lto) = |L) for the LDD; |¢)) = |R) for the RDD). Single-qubit operations are described

well by a charge qubit Hamiltonian
€
Hig= §UZ + t.0, (1)

where ¢ is the double dot detuning, t. is the tunnel coupling, and o,, o, are the standard
Pauli operators in the position basis { L, R}. As discussed in Supplementary Note 4, we have
neglected the valley excited states that can be seen in Si/SiGe quantum dot qubits [26).
To perform quantum control, we apply a fast dc pulse to move the system to ¢ = 0. This
rapid pulse non-adiabatically changes the qubit Hamiltonian to generate o, rotations at a
rate of 2t.. These rotations persist until the detuning is moved back to ¢;. If some fraction
of the electron remains in the inner dot at the end of the coherent evolution, then there is
nonzero probability that a second electron will tunnel from the reservoir into the outer dot
before the qubit relaxes into [1). When this occurs, the qubit is projected into the (1,1)

charge configuration and remains there until a co-tunneling process reinitializes the qubit
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(b) Right Double Dot Stability Diagram
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FIG. 1: Device and measurement details. (a) False-color scanning electron micrograph of
a device nominally identical to the one measured here. Gates P1 and P4 are used for fast
dc control as described in Supplementary Note 3 . The scale bar indicates 200 nm. (b)
Stability diagram of the right double dot tuned to the nominal (1,0)-(0,1) charge
configuration. (c¢) Schematic depiction of latched state readout for the right double dot
with a charge reservoir to the right and a hard-wall potential on the left. Latched readout
projects the excited charge qubit state into a (1,1) charge configuration when the tunnel
rate from the charge reservoir I' g exceeds the charge qubit relaxation rate 1/77. (d)
Stability diagram in (b) with fast dc control pulses applied to P1. The bright triangular
region indicates the latched readout window, and the white arrows illustrate the applied dc

pulse.

into [1g), providing a latched-state readout process , .

Using the metastable (1,1) charge configuration for latched-state readout provides two
advantages. First, when the qubit enters the latched state, a second electron is added to the

double dot system. This produces a larger shift in the charge sensor current than the mere
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relocation of a single electron. Secondly, this change in charge configuration persists for a
much longer time because the co-tunneling process needed for reinitialization is generally
much slower (T7aten > 100 ns) than charge qubit relaxation (77 < 10 ns in this device |29)).
Both of these mechanisms increase the signal generated by our qubit measurements.

To maximize the probability that a driven state becomes latched, we tune the tunnel
rate between the reservoir and the outer dot to be much larger than the charge relaxation
rate between the two dots (I'Leaqa > 1/77). Fig. provides a schematic representation
of this latched measurement strategy for the RDD, and Fig. shows the latched state
readout window that appears when dc pulses are applied to the stability diagram in Fig. .
This measurement was performed by shuttering our control pulses at a fixed repetition rate,
locking in to the presence and absence of control pulses, and measuring the time-averaged
charge sensor response. All qubit data reported here were measured with this latched-state,

time-averaged technique.

Single-Qubit Measurements

With each qubit tuned to the nominal (1,0)-(0,1) charge configuration, we use dc control
pulses to perform single-qubit Ramsey measurements of the qubit inhomogeneous dephasing
times T;. The pulse sequence (Fig. ) begins with initialization at large detuning e;. A
sudden de-shift to € = 0 turns on o, rotations in the { L, R} basis. After a (n+1)m/2 rotation,
we apply a second dc-shift, moving to nonzero detuning and adding a o, component to the
Hamiltonian to start phase accumulation. Returning to ¢ = 0 allows us to perform a second
(n + 1)7/2 rotation, projecting the accumulated phase onto the z-axis of the {L, R} Bloch
sphere. Finally, moving back to e for latched state readout maps the charge qubit coherence
onto the measured charge sensor current |30].

The Ramsey data for the LDD and RDD are shown in Fig. [2b,c, respectively. Both qubits
display coherent behavior. By extracting the frequency of the Ramsey fringes as a function
of detuning, we map the dispersion of our qubits and confirm that Eq. [1| appropriately
describes each system. At large detuning (¢/h > 30 GHz), however, the RDD dispersion
begins to deviate from the expected charge qubit behavior. This could be due to timing
artifacts in our control hardware as the rotation speed surpasses the 40 ps rise time of

our waveform generator. Alternatively, this could be evidence of a low-lying valley state
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generating additional curvature in the dispersion near ¢ = 0 .

(a) 2 Ramsey Pulse Sequence (b)  Left Double Dot Ramsey Measurement (€) Right Double Dot Ramsey Measurement
20 3 30 o~ | 105
N 5. e N . 9 D
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FIG. 2: Single qubit dispersions. (a) Dispersion (orange) and pulse sequence (cyan) for
measuring Ramsey oscillations at a detuning e for a free evolution time 7. (b,c) Ramsey
oscillations measured in the (b) left and (c) right double dots. The extracted charge qubit
dispersions with (b) t&'/h = 9.9 GHz and (c) t}/h = 5.0 GHz are shown in the insets.

The LDD Ramsey fringes lose all visibility for free evolution at ¢ > 0. This could
be due to imperfect pulse edges creating unintentional adiabaticity. Such an effect would
have been more apparent in the LDD than in the RDD due to the larger tunnel coupling
(t%/h = 9.9 GHz versus t&/h = 5.0 GHz) requiring faster rise times for true non-adiabatic
control.

For large detunings, the qubit dispersion is approximately linear in €. Assuming non-
Markovian detuning noise dominates the dephasing , we can fit the decaying coherence
to a Gaussian envelope e/ and find that for large detunings Ty = 80 £ 20 ps and
109 £ 6 ps for the LDD and RDD, respectively. These dephasing times can be explained
by quasistatic detuning noise with standard deviations given by o. = h/+/27Ty where h is
Planck’s constant. For the LDD and RDD, we find comparable values of 12 £ 4 peV and
8.5 £ 0.5 peV, respectively (additional details in the SI )

Correlated Oscillations

The two qubits in our device are capacitively coupled with a gate-voltage tunable cou-
pling coefficient g . In the two-qubit position basis {LL, LR, RL, RR}, the Hamiltonian
describing this coupled system can be written as

Hsyq 2%0Z®[+t£“ax®f—i—%{l®az

+t§]®ax+%(l—az)®(l—az)
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where e, (er) and t7 (t}) are the detuning and tunnel coupling in the LDD (RDD) and I is
the identity matrix. The o, ® o, nature of the capacitive interaction generates a detuning
offset in one qubit conditionally on the state of the other (Figs. ,b). This capacitive
interaction can be used to build state correlations between the two qubits, which we will
use to synchronize one qubit’s control pulses with those of the other. We note that the
latched state readout described above also creates a capacitive shift upon projection into
the latched state due to the introduction of an additional charge into the system. This shift
is of comparable magnitude to the coherent two-qubit interaction but only appears after a

qubit has been pulsed into its readout window (details in Supplementary Note 7 [34]).

In order to observe such correlations, we first tune a Hamiltonian with t&/h = 4.2,
t}/h = 3.3, and g/h = 15.3 GHz. We then pulse the RDD to its anti-crossing at eg = 0. A
time A thereafter, we pulse the LDD to e, = g, the location of its unshifted anti-crossing.
The two qubits then simultaneously evolve according to the two-qubit Hamiltonian Hyq.
After an evolution time 7, (7g), we pulse the LDD (RDD) into its readout window for
projection into the latched state. Because the latched readout state produces a capacitive
shift of similar magnitude to the two-qubit interaction, the RDD (LDD) then continues
evolving conditionally on the projected state of the LDD (RDD). By independently varying
11, and 7r as shown in Figs. ,d, we can then observe coherent two qubit dynamics along
the diagonal of Figs. ,d where both qubits evolve at their respective anti-crossings. Away
from that diagonal, we observe correlated two qubit evolution since one qubit has been
conditionally projected into its latched state for some portion of the measurement. In
Fig.[3}1, for instance, when 71, < 7r — A the RDD continues evolving after the LDD has been
pulsed to its readout window. If the LDD was projected into its latched state, the resulting
capacitive shift prevents further evolution of the RDD. Otherwise, the RDD continues to
oscillate with 7g. Importantly, by using the abrupt change in charge dynamics along the
diagonal of Fig. as feedback, we are able to sync our fast dc pulses at the mixing chamber
to within ~ 80 ps.

As shown in Fig. [3k,f, we recreate the measured two-qubit evolution by numerically
solving the von Neumann equation using the Hamiltonian presented in Eq. Dephasing
from charge noise is included by convolving this simulation with perturbations to both er,
and eg (i.e. g; — €; + 0g;). We assume these perturbations follow Gaussian distributions

with standard deviations given by o. = 12 and 8.5 peV, respectively. Notably, the only

7
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FIG. 3: Correlated qubit evolution. (a,b) Dispersions (orange) and pulse sequences (cyan)
for simultaneously driving two charge qubits. Both the capacitively-shifted (light orange)
and unshifted (dark orange) dispersions are shown. (c,d) Measured two-qubit response to
simultaneous driving. In (c), charge sensor crosstalk has been subtracted , and the
black pixels lie outside the range of the plotted color scale. In (d), a jump in the charge
sensor has been normalized out of the data [24]. (e,f) Simulated two-qubit response to
simultaneous driving. In this measurement, the right double dot pulse starts 150 ps before
the left double dot pulse. We note that the time evolution in this figure occurs near each

qubit’s anti-crossing, so coherent oscillations persist for longer times than those in Fig. 2.

150 free parameter in this simulation is the fixed offset between the rising edges of the pulses,

1o which we fix to A = 150 ps. Additional simulation details are provided in Supplementary

161 Note 8 .
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Towards a Two-Qubit Gate
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FIG. 4: Conditional qubit evolution. (a) Evolution of the target qubit conditional on the
coherent driving of the control qubit. A one-dimensional slice of the control qubit
evolution is plotted on the left. (b) Dispersions (orange) and pulse sequences (cyan, red)
used to measure conditional rotations. The top (bottom) pair of figures was used to
prepare two qubit states with the control in |L) (|R)). The different control sequences used
to prepare and measure the four input states are color-coded. (c,d) Evolution of the four
input states in the (c¢) control and (d) target qubits. Charge sensor crosstalk has been

subtracted from the control qubit data )

The capacitive interaction can also be used to drive one qubit conditionally on the state of
the other as has been demonstrated experimentally in GaAs charge qubits and proposed
theoretically in Si/SiGe QDHQs . To demonstrate conditional rotations, we designate
the LDD the control qubit and the RDD the target. We shift the control qubit to ef, = g
(the location of the LDD anti-crossing for the initialized state |LR)), allow it to evolve for

9
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some time 77, and then shift it to a large detuning &;q;, that lies outside the readout window.
The addition of this idle step delays the conditional projection of the control qubit into its
latched state, ensuring that the control qubit remains within its computational basis during
target qubit operations. While the control qubit is idling, the target qubit is pulsed to
er = 0 and is conditionally driven dependent on the state populations of the control qubit.
This pulse on the target qubit constitutes our conditional driving. Both qubits are then
moved into their readout windows for latched-state measurement. We note that the control
qubit dephases during its idle period (T3 = 80 & 20 ps at &jqi.), but because dephasing does
not alter qubit state populations, this does not affect the target qubit evolution. The results
of this measurement generate the patchwork pattern shown in Fig. , which is a hallmark

of conditional evolution.

Next, we characterize the fidelity of a conditional w-rotation at a tuning where t%/h = 7.2,
t}/h = 5.4, and g/h = 28 GHz [34]. Our latched-state measurement technique provides
the time-averaged values of (o, ® I) and (I ® o0,). Without joint single shot readout or
a verified, high fidelity two-qubit gate, this is not enough information to perform two-
qubit tomography 36|, so we restrict our analysis to input states for which both qubits
are expected to evolve into single-qubit eigenstates. For these inputs, we can assume the
resulting two-qubit state is separable and our readout provides the appropriate populations

for construction of the truth table Mcy, describing our conditional operation.

To measure Mcy,, we follow the pulse sequences shown in Fig. to prepare each input
state {LR, LL, RR, RL}. We then measure the resulting output after application of an
additional driving pulse of length 7; on our target qubit. As discussed in the SI, the charge
sensor dedicated to the control qubit measures both qubits simultaneously. To account
for this, we use the calibrated signal from the target qubit’s charge sensor to isolate the
control qubit response. We then perform a maximum likelihood estimate to ensure positive

probabilities |24} |37]. Fig. ,d show the results of this measurement.

Selecting 7; = 74 ps maximizes the average of the logical state input fidelities (the inqui-

sition Z [38]) at a modest value of Z = 63%. At this point, in the {LR, LL, RR, RL} basis,

10
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which we compare to an ideal conditional w-rotation
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Notably, the input state that requires the most state preparation (|RL)) has a significantly
lower fidelity (46%) than the other input states. This suggests that state preparation errors
are a dominant source of infidelity in our conditional operation, although tunnel coupling

noise and state relaxation could also contribute [39).

DISCUSSION

Although the 74 ps conditional m-rotation demonstrated here is consistent with a two-
qubit CNOT, the T} = 80 =+ 20 ps dephasing time of the control qubit during its idle step
limits any claim of a coherent two-qubit processor. Nevertheless, the 13.5 GHz two-qubit
clockspeed highlights the benefit of using the strong capacitive interaction for inter-qubit
coupling. Encoded qubits that have a tunable electric dipole moment such as the QDHQ
stand to benefit from this fast gate speed without suffering from dephasing during idle
periods. Compared to the charge qubits used in this work, higher fidelity single-qubit oper-
ations [18| and longer coherence times [40] for the QDHQ could also reduce state preparation
errors and enable the extended pulse sequences needed for a multi-qubit processor.

In summary, we have demonstrated correlated and conditional evolution between two
capacitively coupled charge qubits. After quantifying the single-qubit coherences, we si-
multaneously drove coherent rotations in both qubits to demonstrate correlated two-qubit
evolution. We then operated in a sequential-driving mode to demonstrate a fast (74 ps)
conditional 7-rotation with a modest average fidelity (63%) that was likely limited by state-

preparation errors. These results represent an important demonstration of the promise
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capacitive coupling holds for two-qubit interactions in Si/SiGe double dot qubits.

METHODS

Additional experimental details are provided in the Supplementary Information that ac-

companies this paper [41].
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SUPPLEMENTAL NOTE 1: ELECTRON TEMPERATURE

We measured the electron temperature in the double dots (electron reservoirs) of our
device by sweeping through a non-tunnel-broadened polarization line (charge transition)
as a function of the mixing chamber temperature Th;c. For each temperature measure-
ment, linecuts were collected at a range of Th;c up to 350 mK and then simultaneously
fit to extract an effective electron temperature. Polarization lines were fit to a standard
DiCarlo function with an electron temperature of T, = \/m where Tj is the ideal
electron temperature |1]. We note that this functional forms assumes an ideal charge qubit
and thus ignores valley states which can lead to asymmetric lineshapes and/or modify the
linewidths [2|. Charge transitions to a reservoir were fit to a Fermi-Dirac distribution [3].
The voltage-to-energy lever arms were also free parameters in these fits but were constrained
to be fixed across each linecut in a given dataset.

With this method, we obtained electron temperatures of Ty = 228 + 7 mK for the RDD
and Ty = 321 + 7 mK for the left electron reservoir. These values are exceptionally high.
We believe that these temperatures could be reduced in future experiments by improving

the thermal anchoring of the dc lines at the mixing chamber.

(a) Ramsey Oscillations (b) Coherence Versus Temperature
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Supplementary Figure 1: Coherence versus temperature. (a) Ramsey data measured
on the right double dot as a function of temperature. These linecuts were taken at
e/h = —33 GHz. (b) Inhomogeneous dephasing time and quasistatic charge noise

extracted from the temperature-dependent Ramsey data.

To examine the prospect of operating our device at high temperatures, we measured

Ramsey oscillations for the RDD as a function of the mixing chamber temperature (Supp.
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Fig.[1h). Extracting 75 and o, at each temperature (Supp. Fig.[1p), we find that coherence
persists up to Th;c = 700 mK. In fact, these measurements were not limited by loss in
coherence, but instead by a reduction in the visibility of our signal. At 700 mK, the lifetime
of our latched state had been reduced from T qsen, ~ 150 ns to Trqsen ~ 40 ns. Although not
conclusive, these results are promising for the prospect of operating qubits with a charge-like

degree of freedom at higher temperatures.

SUPPLEMENTAL NOTE 2: CROSSTALK SUBTRACTION AND MAXIMUM
LIKELIHOOD ESTIMATION

During our two-qubit measurements, the left charge sensor was sensitive to both the
LDD and RDD qubits, whereas the right charge sensor was only sensitive to the RDD qubit
dynamics. This crosstalk is demonstrated in Supp. Fig. With control pulses applied
to the RDD, both the right and left charge sensors detect the RDD latched-state readout
window. When pulses are applied to the LDD, however, only the left charge sensor measures
the LDD latched-state readout window. This crosstalk obfuscates the LDD qubit dynamics,
but appropriate normalization measurements allow us to deconvolve the LDD and RDD
signal from the left sensor data.

Since the right sensor only measures RDD qubit dynamics, two normalization measure-
ments are performed for this signal. First, the right sensor is measured after the LDD and
RDD qubits have been initialized into |L) and |R), respectively, providing Rpg. Next, the
right sensor is measured after the RDD qubit has been pulsed into the (1,1) latched state.
This is done by rapidly shifting the RDD to a large negative detuning, delaying at that point
until the system has relaxed into |L), and rapidly shifting back to the readout window for
latching. This second measurement provides Ry

The left charge sensor measures both qubits, so more normalization measurements are
required to deconvolve its signal. First, the pulses described in the previous paragraph are
repeated, and the left sensor current is monitored. This provides the quantities Lz and
L. These same measurements are then repeated again with the pulses applied to the
LDD qubit instead of the RDD qubit to obtain £, (again) and Lgg. A final normalization
measurement applies pulses to both the LDD and the RDD to obtain Lgy.

It is worth noting that our time-averaged measurement technique integrates signal over
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Supplementary Figure 2: Measurements of the latched-state readout windows for the

(a,c) LDD and (b,d) RDD using the (a,b) left charge sensor and (c,d) right charge sensor.

the entire duty cycle of the pulse sequence. This pollutes our data with signal generated
during the manipulation portion of the duty cycle. For all of our measurements, however,
the manipulation time is many orders of magnitude shorter than the measurement time and
any pollution is negligible. This effect is most significant for the measurements of Ry, L1,

Lrr, and Lr;, where the manipulation time rises to ~ 1% of the total duty cycle.

After obtaining normalization data, qubit measurements are performed to obtain the
uncalibrated signal £ and R. Because the right charge sensor only measures the RDD qubit,
we can first calibrate R to obtain the probability the RDD qubit has ended its evolution in

4
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The left charge sensor measures both qubits simultaneously. To account for this, we first
need to determine how the two qubit signals are combined in the charge sensor response.
From Supp. Fig. |2l we see that the LDD and the RDD both contribute positively to the
left sensor signal, and comparing normalization pulses, we find Lzrr > Lrr > L1 > LrR.
Making the assumption of monotonic contributions to the charge sensor signal, we explain
this behavior with a LDD signal whose dynamic range depends on the state of the RDD. If
the RDD is in |R) then the LDD signal ranges from Lzgr to Lpg, whereas with the RDD
in |L), the LDD contribution ranges from Lz, to L1,. The RDD contribution, however,
always ranges from (L, — Lrg) to 0.

To apply this model to our data, we approximate the combined signal by
L= Lrpp+ LrpD (2)

where Lrpp (Lrpp) is the RDD’s (LDD’s) contribution to the left sensor signal. The

calibrated right sensor signal allows us to calculate

Lrpp = P|1 X (Lrr — LLR). (3)

Combining Eqgs. [2]and [3|and calibrating with our normalization data, we can then write the

probability the LDD qubit has ended its evolution in state |R) as

L— PRDD X (Lo, — LLR) — Crmin

A" = EE——, W
where
Cmin = LLLPEYP + Lor (1= PEP) (5)
and
Cmaz = Lri P Y + Lrr (1 — PEP) (6)

define the state-dependent ranges of L pp. Notably, applying this procedure to our normal-
ization pulses returns the expected probabilities. The data shown in Fig. 4c of the main text
is replotted in Figs. ,b with and without the charge sensor crosstalk subtracted. For some
portions of these data, this crosstalk removal procedure returns a negative probability (see

Supp. Fig. ) To make sense of this unphysical result, we apply a maximum likelihood

5
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estimator (MLE) to our single-qubit states to enforce positivity of the reported probabilities.
Because we have assumed separable states in our conditional measurements, applying this
MLE at the single-qubit or the two-qubit level provides identical results.

The MLE aims to find the physically-valid density matrix p, that most closely approxi-
mates our measured density matrix p.,,. Since we can only measure the diagonal elements of
Pexps We adapt the MLE protocol used in Supp. Ref. |4] to neglect coherences. We constrain
pp to be a non-negative, definite matrix by defining p, = TT /Te[TTT] where

[t o0
T=1{""]. (7)
0 t

We then make the assumption that for each element p.,,; imperfections in our measure-
ments generate a Gaussian probability of measuring the physical value p,; and the standard
deviation of that distribution is approximated by ,/p,; |4|. The probability that p, could

produce pe,, then becomes

4
1 (Ppi = Peapsi
pexp = NH Xp[ P Pyt ) ] (8)

2pp,i

where N is a normalization constant. Rather than maximizing Eq.|[8, we instead maximize
its logarithm, which amounts to minimizing the function

4

(Ppi — Peapi)”

pel‘p Z p 2p 2 ° (9)
i=1 Dt

The diagonal elements of the resulting p, then fill in the columns of M.,,, providing the
truth table quoted in the main text. The results of this MLE process are shown in Supp.
Fig.|3c for the control qubit and in Supp. Fig. [4] for the target qubit data.

For the data in Fig. 3 of the main text, we did not perform normalization measurements
simultaneously with data acquisition. Moreover, the right charge sensor jumped during the
course of the measurement. This jump created a discrete change in the charge sensor’s
dynamic range. To compensate for the effect of the jump, we split the data at the point
of the jump and normalized each segment using the maximum and minimum values within
that segment as approximations of Ry, and Rpg, respectively. The effect of this procedure
is demonstrated in Figs. ,b. We then subtracted the RDD qubit signal from the left charge
sensor data using the values of L and Lg; measured during our conditional measurements

and approximating Lrr and Lz with the maximum and minimum values of the raw signal.
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Supplementary Figure 3: The control qubit data from our conditional measurements
plotted (a) with and (b) without the target qubit crosstalk included. (c¢) The control qubit

data after the maximum likelihood estimation has been performed.
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Supplementary Figure 4: The target qubit data from our conditional measurements

plotted (a) before and (b) after the maximum likelihood estimation has been performed.

The effect of this subtraction is shown in Supp. Fig. ,d. Because we have approximated
these normalization values, we plot the data with arbitrary units on the z-axis and do not

apply the MLE for this measurement.

SUPPLEMENTAL NOTE 3: FAST PULSE WAVEFORM GENERATION

For each qubit, fast dc pulses were supplied by a Tektronix AWG 70001a. Internally,
each waveform generator uses two interleaved 25 GS/s digital-to-analog (DAC) converters
to generate a 50 GS/s waveform. We operate in a mode where, for a given AWG, each
internal DAC outputs a distinct waveform. We output a positive waveform on one DAC
and the negative of that same waveform plus some perturbation on the other. The internal

power combiner of the AWG then sums the two waveforms, yielding just the perturbation,

7
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Supplementary Figure 5: Correlated oscillation data for the (a,b) RDD and (c,d) LDD.
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been smoothed and removed.

which we designate as our control pulse. We control the phase delay between the two DACs
with 1 ps resolution, providing precise control of the generated control pulse’s duration. This

method is depicted schematically in Supp. Fig. |§|

For measurement sequences where multiple pulses were applied to the same qubit, this
strategy of controlling the DAC phase delay only provides precise control over a single pulse
edge in the sequence. Other pulses are constrained to durations that are multiples of the

single DAC 40 ps sampling resolution. For the Ramsey measurements in Fig. 2 of the
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main text, the free evolution time 7 is incremented in 1 ps steps and the 7 /2-pulses in the
measurement were constrained to this 40 ps discretization. For our conditional measurement
(Fig. 4c,d of the main text), the target qubit input state preparation pulses were constrained
to this 40 ps grid. This pixelation likely contributed substantially to the state preparation
errors that appear in our data.

For two-qubit measurements, both AWGs were synced at the top of the fridge using a
Tektronix Sync Hub. The uncorrected time delay between the two AWGs at the bottom of

the fridge was measured to be ~ 0.75 ns.
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Supplementary Figure 6: Schematic representation of our strategy for generating

waveforms with ~ps timing resolution

To minimize distortions to these high speed pulses, care was taken to minimize impedance
mismatches between the waveform generator and the device. Supp. Fig. plots the RF
transmission of the high frequency lines in our dilution refrigerator that were used in these
measurements. Supp. Fig. shows typical RF transmission through a nominally-identical
PCB to the one on which our device was mounted. These PCB measurements were performed

by wire-bonding across two on-board RF traces and measuring the throughput with a vector
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network analyzer. Each of these PCB measurements thus samples the transmission of two
RF traces in series. Beyond the PCB, it becomes very had to know the RF response of a

specific device.
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Supplementary Figure 7: RF transmission measurements. (a) RF transmission spectra
for the high frequency lines of our dilution refrigerator used in these measurements. The
RF lines in the fridge have —39 dB of DC attenuation added for thermalization. (b)
Transmission through two pairs of RF lines of a nominally-identical PCB to the one on

which our device was mounted.

SUPPLEMENTAL NOTE 4: VALLEY STATES

Throughout this manuscript, we have neglected excited valley states in our analysis of
the qubit dynamics. This was done because our measurements did not resolve any sign of
excited valley states and because the dispersions extracted from our Ramsey measurements
(Fig. 2 of the main text) fit well to charge qubit dispersions that neglect excited valley states.

One explanation for the absence of valley states in our data would be that the valley
splittings in our device are very large. Such a system could be modelled as a simple charge
qubit and the dynamics would match what we have observed.

Another explanation for the apparent absence of valley splittings could be that the de-
vice’s high electron temperature thermally populated a weakly-split valley manifold. Ignor-
ing inter-valley coupling, qubit evolution would then occur independently within each valley.
We do not observe beating in our Ramsey measurements, suggesting that any difference in ¢,

between the ground and excited valley states is less than the decoherence rate for our qubits.
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Evolution within each valley state would then be indistinguishable to our measurement, and
this would also have generated behavior identical to the simple charge qubit Hamiltonian

we assumed in our manuscript.

Our measurements are unable to distinguish between a very large and a very small valley
splitting, but similar devices we measured showed very low valley splittings (< 10 GHz) |5

Because of this, we judge the latter case to be the more likely reality.

SUPPLEMENTAL NOTE 5: 77 AND Tr4.:n MEASUREMENTS

Following the method described in Supp. Ref. [6], we measured the relaxation time T of
our two charge qubits. For both qubits, we measured 7; < 10 ns (Supp. Fig. , which is
short enough to prohibit ac driving of our charge qubits [7|. We speculate that this short

relaxation time stems from increased electron-phonon scattering due to our high electron

temperature.
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Supplementary Figure 8: Charge state relaxation. (a,b) 77 measurements for the (a)
left double dot and (b) right double dot. (¢) Measurement of the latched state lifetime

TLatch .

A similar measurement technique enabled us to quantify the lifetime of the latched read-
out state. The latched state was controllably prepared and allowed to persist for a variable
time 7 by modifying the duty cycle of the measurement. Supp. Fig. |8c shows the resulting
decay in signal, which we fit to find T4 = 440 £ 60 ns for this tuning.
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SUPPLEMENTAL NOTE 6: FITTING RAMSEY DATA

To extract the inhomogeneous dephasing time 77, we neglect any valley or spin degrees

of freedom and fit the charge qubit coherence ppr to the function
prr = Ae "1 cos (wr + ¢) + B (10)

where A and B are constants, 7 is the free evolution time, w is the qubit frequency at a
given detuning, and ¢ is a fixed phase offset.

To extract the charge qubit dispersions shown in the insets of Fig. 2a,b of the main text,
we fit linecuts of the data to Eq. For the LDD data, the Ramsey fringe visibility vanishes
for ¢ > 0. The background level also drifts with the free evolution time 7 in these data. To
correct for this, we average all linecuts with €/h > 8.9 GHz where the fringe visibility has
vanished and subtract this mean from the rest of the data before fitting. The 0. = 1244 peV
value for the LDD quasistatic charge noise was obtained by averaging the 7% values returned
from the fits for all ¢/h < —27.5 GHz at which point |Ow/0e| > 0.8.

Charge qubits exhibit a reduced sensitivity to charge noise when operated near their
anti-crossing. This creates the prolonged dephasing time for detunings near zero in Fig. 2
of the main text. Fitting linecuts of these data (Supp. Fig. @, we can demonstrate
this enhancement by observing a T3 increase from Ty (¢/h =20 GHz) = 109 + 6 ps to
Ty (e/h = —5.2 GHz) = 330 £ 20 ps for the RDD and T (¢/h = 31 GHz) = 75+ 15 ps to
T3 (¢/h = 9.3 GHz) > 200 ps for the LDD.

(a) Left Double Dot Ramsey (b) . Right' Douple Dpt Rgmsey
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Supplementary Figure 9: Linecuts of Fig. 2 in the main text demonstrating an increase

in the dephasing time for detunings near zero in the (a) left and (b) right double dot.
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When fitting the Ramsey measurements performed as a function of temperature (Supp.
Fig.|1|in the SI), we fix ¢ and w at each detuning to be the same for every temperature.
The data in Supp. Fig. are the average results for linecuts in the detuning range €/h €
(—33,—29) GHz. The 0. = 8.5+ 0.5 pueV value of the RDD quasistatic charge noise quoted

in the main text was extracted from the Th;c = 15 mK datum in this measurement.

To compare these charge noise values to those reported elsewhere, we assume the qua-
sistatic value we measure comes from a S.(f) ~ 1/f noise spectrum integrated from the
bandwidth of our lock-in amplifier 1/7), where 1)y = 50 ms to 31 GHz for the RDD and
33 GHz for the LDD. This gives charge noise values of 551/2(1 Hz) = 1.3 peV/+/Hz for the
RDD and 1.8 eV /v/Hz for the LDD, both of which are reasonable values for a Si/SiGe

device with a 30 nm deep quantum well and 5 nm of Al,O3 gate oxide [8].

SUPPLEMENTAL NOTE 7: CAPACITIVE SHIFT OF LATCHED STATE

As discussed in the main text, shelving one double dot into its metastable latched state
produces a capacitive shift in the other double dot. For our conditional measurements,
we move the control qubit to an idle point during target qubit operations. This delays
projection into the latched state until after our conditional rotation is complete, ensuring
that any conditional behavior we detect results from the capacitive interaction between the

two qubits.

Our measurement of correlated oscillations in Fig. 3 of the main text did not use idle
points to delay projection into the latched state. This means that once we deviate from the
diagonal that defines synchronized pulse tails, one qubit has been moved into its readout
window and might have been projected into its latched state. However, extending the
classical capacitance network model described in Supp. Ref. |9], we can show that to first
order in interdot capacitances the double dot capacitive shift ¢ is equal to the capacitive
shift from the latched state grqn. For the simulation shown in Figs. 3e,f, we therefore use
g = Graten = 15.3 x h GHz. This relation between ¢ and gr.., Was verified via electrostatic
measurements at the device tuning used for our conditional measurements (Supp. Fig.

and is expected to hold at the tuning used in Fig. 3 of the main text.
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Supplementary Figure 10: Capacitive shift experienced by the right double dot due to
a transition in the left double dot from (a) the (1,0) to the (1,1) charge state and (b) the
(1,0) to the (0,1) charge state. Note that the abrupt transition in (a) is because the charge

transition being swept is a cotunneling process with a relatively slow tunnel rate [9].

SUPPLEMENTAL NOTE 8 SIMULATIONS OF CORRELATED OSCILLATIONS

The simulation results presented in Fig. 3e,f of the main text were obtained by numerically
solving the von Neumann equation

L O0p
Zha = [H2Qap]' (11)

Here, h is the reduced Planck constant, p is the density matrix for the two-qubit system,
and Hjg is the Hamiltonian presented in Eq. 2 of the main text. This Hamiltonian is
written in the {LL, LR, RL, RR} basis and does not include either qubit’s latched state.
Because ¢ ~ graten (Supplemental Note 7), the only change in Hyg upon the projection
of one qubit into its latched state is that the tunnel coupling for that qubit goes to zero

%
c

(t. — 0). Latched state projection only occurs when g; > t!, at which point the effect of ¢
on the charge dynamics is already negligible. This means that the model described above
is a good approximation of the measurement both before and after latched state projection.
Because we do not have a precise measurement of I'7,,4, we restrict the simulation to the
{LL,LR, RL, RR} basis and assume the effects of ¢’ are negligible when &; > .
Dephasing was included in the simulation by adding a perturbation to each double dot’s
detuning (g; — &; + d¢;), convolving the simulation with Gaussian distributions of de, and

de g, and normalizing appropriately. To verify the simulation reproduced the experimentally-
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measured coherence times, we simulated single qubit dephasing measurements in the large-
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Supplementary Figure 11: Simulations of single qubit dephasing for the (a) left double
dot and (b) right double dot.

SUPPLEMENTAL NOTE 9: SIMULATIONS OF CONDITIONAL OSCILLATIONS

To verify our understanding of the conditional oscillations presented above, we model
these measurements using the simulations described in the previous section. For these
simulations, we use the parameters quoted in the main text: tf/h = 7.2, tf!/h = 5.4,
and g/h = 28 GHz. We assume ideal non-adiabatic pulses for state preparation. Supp.
Fig. shows the results of these measurements. Because our simulations do not include
tunnel coupling noise or state relaxation, they do not accurately recreate the decay envelope
observed in Fig. 4d of the main text. The ideal pulses of the simulation also do not contain
the initial distortion shown in Fig. 4d, placing the conditional m-rotation at 46 ps with a
simulated mean fidelity of Z = 81%.

In Supp. Fig. ,b, we present those same simulations but with g reduced to g/h =
2.8 GHz. In this weak coupling limit, we see a dramatic reduction in the expected fidelity of
the two-qubit interaction. Ignoring dephasing, relaxation, and state preparation errors alto-
gether, the target qubit dynamics can be modeled by Rabi’s formula with a Rabi frequency
of 2t, and a detuning of 0 for when the control qubit is in |L) and —g for the control in
|R) [10]. Plotting the maximum inquisition as a function of both ¢, and g (Supp. Fig.[13}),

we see the border between strong and weak capacitive coupling in an ideal two charge qubit
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Supplementary Figure 12: Simulated response of the (a) control and (b) target qubits
to the measurement sequence depicted in Fig. 4c,d of the main text. The simulation
ignores tunnel coupling noise and state relaxation and thus fails to recreate the decay

envelope observed in the measurement.
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Supplementary Figure 13: Weak coupling simulations. (a,b) Simulated response of the
(a) control and (b) target qubits in the case of realistic weak capacitive coupling. (c)

Calculated mean fidelity for an ideal two charge qubit system.

system. For the parameters of our measurements (t./h = 5.4 GHz, g/h = 28 GHz), we sit

comfortably in the strongly coupled region.
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