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Abstract10

Fast operations, an easily tunable Hamiltonian, and a straightforward two-qubit interaction11

make charge qubits a useful tool for benchmarking device performance and exploring two-qubit12

dynamics. Here, we tune a linear chain of four Si/SiGe quantum dots to host two double dot charge13

qubits. Using the capacitance between the double dots to mediate a strong two-qubit interaction,14

we simultaneously drive coherent transitions to generate correlations between the qubits. We then15

sequentially pulse the qubits to drive one qubit conditionally on the state of the other. We find16

that a conditional ⇡-rotation can be driven in just 74 ps with a modest fidelity demonstrating the17

possibility of two-qubit operations with a 13.5 GHz clockspeed.18
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INTRODUCTION19

With charge, valley, and spin degrees of freedom, quantum dots in silicon are promising20

hosts of many di↵erent types of qubits. Using the electronic spin state as the logical basis has21

enabled high fidelity single-qubit operations [1] and demonstrations of two-qubit gates [2–9].22

To date, two-qubit gates in Si quantum dots have been mediated by a spin-spin exchange23

interaction or by coupling via a superconducting resonator [10].24

Alternatively, a capacitive interaction can be used to coherently couple neighboring dou-25

ble dot qubits using the electronic charge degree of freedom. Capacitive coupling has been26

used to perform fast two-qubit operations in charge qubits [11] and singlet-triplet qubits [12,27

13] in GaAs quantum dot devices.28

In Si-based quantum dot devices, a strong [14] and tunable [15] capacitive interaction29

between double dots has been demonstrated and used to perform qubit control condition-30

ally on the state of a classical two level system [16]. The strength of this interaction makes31

it a promising candidate for coupling qubits that have a tunable charge dipole moment32

such as the quantum dot hybrid qubit (QDHQ) [17–19]. Fast, multi-qubit control presents33

a number of challenges, however, such as pulse synchronization across a device. Here, we34

use capacitively-coupled charge qubits to explore these challenges by measuring correlated35

oscillations between two simultaneously-driven qubits, by using those dynamics to synchro-36

nize our multi-qubit control channels, and by using this interaction to drive a fast (74 ps)37

conditional ⇡-rotation.38

RESULTS39

Device Details40

To perform capacitively-coupled two-qubit measurements, we fabricate a linear chain of41

four quantum dots using an overlapping-aluminum gate architecture (Fig. 1a) [14, 15, 20,42

21]. The fabrication details for this device have been reported in Ref. [15]. Measurements43

are performed in an Oxford Triton 400 dilution refrigerator with a ⇠ 15 mK mixing chamber44

temperature. We tune the device to host two tunnel-coupled double dots, each nominally45

residing in the (1,0)-(0,1) charge configuration (Fig. 1b). In all measurements reported46

here, the double dot electron temperature was T
elec
0 = 228 mK and the charge reservoir47
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temperature was T res
0 = 321 mK [22].48

Two additional quantum dots are formed on the bottom half of the device to enable49

charge sensor readout of the qubit states. The current through the left charge sensor feeds50

into a room temperature current preamplifier and the resulting voltage is measured with a51

lock-in amplifier. The right charge sensor current is amplified at the mixing chamber of our52

dilution unit using a home-built two-stage cryogenic amplifier [23]. It is then amplified again53

at room temperature, and the resulting voltage is measured with a lock-in amplifier. While54

the right charge sensor only responds to the right double dot (RDD), during qubit operations55

the left charge sensor measures both the RDD and the left double dot (LDD). Both charge56

sensors are used in the measurements that follow. As detailed in Supplementary Note 2,57

appropriate normalization measurements allow us to subtract the calibrated RDD signal58

from the left charge sensor data, enabling independent measurement of the two qubits [24].59

Qubit Initialization, Control, and Latched Readout60

In our device, each double dot has an outer dot that neighbors a charge reservoir and61

an inner dot that is isolated from any reservoir. During qubit operations, we initialize each62

charge qubit at a large detuning "I where one electron localizes into the qubit’s outer dot63

(| 0i = |Li for the LDD; | 0i = |Ri for the RDD). Single-qubit operations are described64

well by a charge qubit Hamiltonian65

H1Q =
"

2
�z + tc�x (1)

where " is the double dot detuning, tc is the tunnel coupling, and �x, �z are the standard66

Pauli operators in the position basis {L,R}. As discussed in Supplementary Note 4, we have67

neglected the valley excited states that can be seen in Si/SiGe quantum dot qubits [26].68

To perform quantum control, we apply a fast dc pulse to move the system to " = 0. This69

rapid pulse non-adiabatically changes the qubit Hamiltonian to generate �x rotations at a70

rate of 2tc. These rotations persist until the detuning is moved back to "I. If some fraction71

of the electron remains in the inner dot at the end of the coherent evolution, then there is72

nonzero probability that a second electron will tunnel from the reservoir into the outer dot73

before the qubit relaxes into | 0i. When this occurs, the qubit is projected into the (1,1)74

charge configuration and remains there until a co-tunneling process reinitializes the qubit75
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FIG. 1: Device and measurement details. (a) False-color scanning electron micrograph of

a device nominally identical to the one measured here. Gates P1 and P4 are used for fast

dc control as described in Supplementary Note 3 [25]. The scale bar indicates 200 nm. (b)

Stability diagram of the right double dot tuned to the nominal (1,0)-(0,1) charge

configuration. (c) Schematic depiction of latched state readout for the right double dot

with a charge reservoir to the right and a hard-wall potential on the left. Latched readout

projects the excited charge qubit state into a (1,1) charge configuration when the tunnel

rate from the charge reservoir �Load exceeds the charge qubit relaxation rate 1/T1. (d)

Stability diagram in (b) with fast dc control pulses applied to P1. The bright triangular

region indicates the latched readout window, and the white arrows illustrate the applied dc

pulse.

into | 0i, providing a latched-state readout process [27, 28].76

Using the metastable (1,1) charge configuration for latched-state readout provides two77

advantages. First, when the qubit enters the latched state, a second electron is added to the78

double dot system. This produces a larger shift in the charge sensor current than the mere79
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relocation of a single electron. Secondly, this change in charge configuration persists for a80

much longer time because the co-tunneling process needed for reinitialization is generally81

much slower (TLatch > 100 ns) than charge qubit relaxation (T1 < 10 ns in this device [29]).82

Both of these mechanisms increase the signal generated by our qubit measurements.83

To maximize the probability that a driven state becomes latched, we tune the tunnel84

rate between the reservoir and the outer dot to be much larger than the charge relaxation85

rate between the two dots (�Load � 1/T1). Fig. 1c provides a schematic representation86

of this latched measurement strategy for the RDD, and Fig. 1d shows the latched state87

readout window that appears when dc pulses are applied to the stability diagram in Fig. 1b.88

This measurement was performed by shuttering our control pulses at a fixed repetition rate,89

locking in to the presence and absence of control pulses, and measuring the time-averaged90

charge sensor response. All qubit data reported here were measured with this latched-state,91

time-averaged technique.92

Single-Qubit Measurements93

With each qubit tuned to the nominal (1,0)-(0,1) charge configuration, we use dc control94

pulses to perform single-qubit Ramsey measurements of the qubit inhomogeneous dephasing95

times T
⇤
2 . The pulse sequence (Fig. 2a) begins with initialization at large detuning "I. A96

sudden dc-shift to " = 0 turns on �x rotations in the {L,R} basis. After a (n+1)⇡/2 rotation,97

we apply a second dc-shift, moving to nonzero detuning and adding a �z component to the98

Hamiltonian to start phase accumulation. Returning to " = 0 allows us to perform a second99

(n + 1)⇡/2 rotation, projecting the accumulated phase onto the z-axis of the {L,R} Bloch100

sphere. Finally, moving back to "I for latched state readout maps the charge qubit coherence101

onto the measured charge sensor current [30].102

The Ramsey data for the LDD and RDD are shown in Fig. 2b,c, respectively. Both qubits103

display coherent behavior. By extracting the frequency of the Ramsey fringes as a function104

of detuning, we map the dispersion of our qubits and confirm that Eq. 1 appropriately105

describes each system. At large detuning ("/h > 30 GHz), however, the RDD dispersion106

begins to deviate from the expected charge qubit behavior. This could be due to timing107

artifacts in our control hardware as the rotation speed surpasses the 40 ps rise time of108

our waveform generator. Alternatively, this could be evidence of a low-lying valley state109
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generating additional curvature in the dispersion near " = 0 [31].110
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FIG. 2: Single qubit dispersions. (a) Dispersion (orange) and pulse sequence (cyan) for

measuring Ramsey oscillations at a detuning " for a free evolution time ⌧ . (b,c) Ramsey

oscillations measured in the (b) left and (c) right double dots. The extracted charge qubit

dispersions with (b) tLc /h = 9.9 GHz and (c) tRc /h = 5.0 GHz are shown in the insets.

The LDD Ramsey fringes lose all visibility for free evolution at " > 0. This could111

be due to imperfect pulse edges creating unintentional adiabaticity. Such an e↵ect would112

have been more apparent in the LDD than in the RDD due to the larger tunnel coupling113

(tLc /h = 9.9 GHz versus tRc /h = 5.0 GHz) requiring faster rise times for true non-adiabatic114

control.115

For large detunings, the qubit dispersion is approximately linear in ". Assuming non-116

Markovian detuning noise dominates the dephasing [32], we can fit the decaying coherence117

to a Gaussian envelope e
�t2/T ⇤2

2 and find that for large detunings T
⇤
2 = 80 ± 20 ps and118

109 ± 6 ps for the LDD and RDD, respectively. These dephasing times can be explained119

by quasistatic detuning noise with standard deviations given by �" = h/
p
2⇡T ⇤

2 where h is120

Planck’s constant. For the LDD and RDD, we find comparable values of 12 ± 4 µeV and121

8.5± 0.5 µeV, respectively (additional details in the SI [33]).122

Correlated Oscillations123

The two qubits in our device are capacitively coupled with a gate-voltage tunable cou-124

pling coe�cient g [15]. In the two-qubit position basis {LL,LR,RL,RR}, the Hamiltonian125

describing this coupled system can be written as [11]126

H2Q =
"L

2
�z ⌦ I + t

L
c �x ⌦ I +

"R

2
I ⌦ �z

+ t
R
c I ⌦ �x +

g

4
(I � �z)⌦ (I � �z)

(2)
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where "L ("R) and t
L
c (tRc ) are the detuning and tunnel coupling in the LDD (RDD) and I is127

the identity matrix. The �z ⌦ �z nature of the capacitive interaction generates a detuning128

o↵set in one qubit conditionally on the state of the other (Figs. 3a,b). This capacitive129

interaction can be used to build state correlations between the two qubits, which we will130

use to synchronize one qubit’s control pulses with those of the other. We note that the131

latched state readout described above also creates a capacitive shift upon projection into132

the latched state due to the introduction of an additional charge into the system. This shift133

is of comparable magnitude to the coherent two-qubit interaction but only appears after a134

qubit has been pulsed into its readout window (details in Supplementary Note 7 [34]).135

In order to observe such correlations, we first tune a Hamiltonian with t
L
c /h = 4.2,136

t
R
c /h = 3.3, and g/h = 15.3 GHz. We then pulse the RDD to its anti-crossing at "R = 0. A137

time � thereafter, we pulse the LDD to "L = g, the location of its unshifted anti-crossing.138

The two qubits then simultaneously evolve according to the two-qubit Hamiltonian H2Q.139

After an evolution time ⌧L (⌧R), we pulse the LDD (RDD) into its readout window for140

projection into the latched state. Because the latched readout state produces a capacitive141

shift of similar magnitude to the two-qubit interaction, the RDD (LDD) then continues142

evolving conditionally on the projected state of the LDD (RDD). By independently varying143

⌧L and ⌧R as shown in Figs. 3c,d, we can then observe coherent two qubit dynamics along144

the diagonal of Figs. 3c,d where both qubits evolve at their respective anti-crossings. Away145

from that diagonal, we observe correlated two qubit evolution since one qubit has been146

conditionally projected into its latched state for some portion of the measurement. In147

Fig. 3d, for instance, when ⌧L < ⌧R�� the RDD continues evolving after the LDD has been148

pulsed to its readout window. If the LDD was projected into its latched state, the resulting149

capacitive shift prevents further evolution of the RDD. Otherwise, the RDD continues to150

oscillate with ⌧R. Importantly, by using the abrupt change in charge dynamics along the151

diagonal of Fig. 3 as feedback, we are able to sync our fast dc pulses at the mixing chamber152

to within ⇠ 80 ps.153

As shown in Fig. 3e,f, we recreate the measured two-qubit evolution by numerically154

solving the von Neumann equation using the Hamiltonian presented in Eq. 2. Dephasing155

from charge noise is included by convolving this simulation with perturbations to both "L156

and "R (i.e. "i ! "i + �"i). We assume these perturbations follow Gaussian distributions157

with standard deviations given by �" = 12 and 8.5 µeV, respectively. Notably, the only158
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FIG. 3: Correlated qubit evolution. (a,b) Dispersions (orange) and pulse sequences (cyan)

for simultaneously driving two charge qubits. Both the capacitively-shifted (light orange)

and unshifted (dark orange) dispersions are shown. (c,d) Measured two-qubit response to

simultaneous driving. In (c), charge sensor crosstalk has been subtracted [24], and the

black pixels lie outside the range of the plotted color scale. In (d), a jump in the charge

sensor has been normalized out of the data [24]. (e,f) Simulated two-qubit response to

simultaneous driving. In this measurement, the right double dot pulse starts 150 ps before

the left double dot pulse. We note that the time evolution in this figure occurs near each

qubit’s anti-crossing, so coherent oscillations persist for longer times than those in Fig. 2.

free parameter in this simulation is the fixed o↵set between the rising edges of the pulses,159

which we fix to � = 150 ps. Additional simulation details are provided in Supplementary160

Note 8 [35].161
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Towards a Two-Qubit Gate162
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FIG. 4: Conditional qubit evolution. (a) Evolution of the target qubit conditional on the

coherent driving of the control qubit. A one-dimensional slice of the control qubit

evolution is plotted on the left. (b) Dispersions (orange) and pulse sequences (cyan, red)

used to measure conditional rotations. The top (bottom) pair of figures was used to

prepare two qubit states with the control in |Li (|Ri). The di↵erent control sequences used

to prepare and measure the four input states are color-coded. (c,d) Evolution of the four

input states in the (c) control and (d) target qubits. Charge sensor crosstalk has been

subtracted from the control qubit data [24].

The capacitive interaction can also be used to drive one qubit conditionally on the state of163

the other as has been demonstrated experimentally in GaAs charge qubits [11] and proposed164

theoretically in Si/SiGe QDHQs [19]. To demonstrate conditional rotations, we designate165

the LDD the control qubit and the RDD the target. We shift the control qubit to "L = g166

(the location of the LDD anti-crossing for the initialized state |LRi), allow it to evolve for167
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some time ⌧L, and then shift it to a large detuning "idle that lies outside the readout window.168

The addition of this idle step delays the conditional projection of the control qubit into its169

latched state, ensuring that the control qubit remains within its computational basis during170

target qubit operations. While the control qubit is idling, the target qubit is pulsed to171

"R = 0 and is conditionally driven dependent on the state populations of the control qubit.172

This pulse on the target qubit constitutes our conditional driving. Both qubits are then173

moved into their readout windows for latched-state measurement. We note that the control174

qubit dephases during its idle period (T ⇤
2 = 80± 20 ps at "idle), but because dephasing does175

not alter qubit state populations, this does not a↵ect the target qubit evolution. The results176

of this measurement generate the patchwork pattern shown in Fig. 4a, which is a hallmark177

of conditional evolution.178

Next, we characterize the fidelity of a conditional ⇡-rotation at a tuning where tLc /h = 7.2,179

t
R
c /h = 5.4, and g/h = 28 GHz [34]. Our latched-state measurement technique provides180

the time-averaged values of h�z ⌦ Ii and hI ⌦ �zi. Without joint single shot readout or181

a verified, high fidelity two-qubit gate, this is not enough information to perform two-182

qubit tomography [36], so we restrict our analysis to input states for which both qubits183

are expected to evolve into single-qubit eigenstates. For these inputs, we can assume the184

resulting two-qubit state is separable and our readout provides the appropriate populations185

for construction of the truth table Mexp describing our conditional operation.186

To measure Mexp, we follow the pulse sequences shown in Fig. 4b to prepare each input187

state {LR,LL,RR,RL}. We then measure the resulting output after application of an188

additional driving pulse of length ⌧t on our target qubit. As discussed in the SI, the charge189

sensor dedicated to the control qubit measures both qubits simultaneously. To account190

for this, we use the calibrated signal from the target qubit’s charge sensor to isolate the191

control qubit response. We then perform a maximum likelihood estimate to ensure positive192

probabilities [24, 37]. Fig. 4c,d show the results of this measurement.193

Selecting ⌧t = 74 ps maximizes the average of the logical state input fidelities (the inqui-194

sition I [38]) at a modest value of I = 63%. At this point, in the {LR,LL,RR,RL} basis,195

10



196

Mexp =

0

BBBBB@

0.22 0.65 0.12 0.09

0.68 0.33 0.02 0.13

0.03 0.02 0.73 0.32

0.08 0.01 0.13 0.46

1

CCCCCA
(3)

which we compare to an ideal conditional ⇡-rotation197

M⇡ =

0

BBBBB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1

CCCCCA
. (4)

Notably, the input state that requires the most state preparation (|RLi) has a significantly198

lower fidelity (46%) than the other input states. This suggests that state preparation errors199

are a dominant source of infidelity in our conditional operation, although tunnel coupling200

noise and state relaxation could also contribute [39].201

DISCUSSION202

Although the 74 ps conditional ⇡-rotation demonstrated here is consistent with a two-203

qubit CNOT, the T
⇤
2 = 80 ± 20 ps dephasing time of the control qubit during its idle step204

limits any claim of a coherent two-qubit processor. Nevertheless, the 13.5 GHz two-qubit205

clockspeed highlights the benefit of using the strong capacitive interaction for inter-qubit206

coupling. Encoded qubits that have a tunable electric dipole moment such as the QDHQ207

stand to benefit from this fast gate speed without su↵ering from dephasing during idle208

periods. Compared to the charge qubits used in this work, higher fidelity single-qubit oper-209

ations [18] and longer coherence times [40] for the QDHQ could also reduce state preparation210

errors and enable the extended pulse sequences needed for a multi-qubit processor.211

In summary, we have demonstrated correlated and conditional evolution between two212

capacitively coupled charge qubits. After quantifying the single-qubit coherences, we si-213

multaneously drove coherent rotations in both qubits to demonstrate correlated two-qubit214

evolution. We then operated in a sequential-driving mode to demonstrate a fast (74 ps)215

conditional ⇡-rotation with a modest average fidelity (63%) that was likely limited by state-216

preparation errors. These results represent an important demonstration of the promise217
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capacitive coupling holds for two-qubit interactions in Si/SiGe double dot qubits.218

METHODS219

Additional experimental details are provided in the Supplementary Information that ac-220

companies this paper [41].221
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SUPPLEMENTAL NOTE 1: ELECTRON TEMPERATURE10

We measured the electron temperature in the double dots (electron reservoirs) of our11

device by sweeping through a non-tunnel-broadened polarization line (charge transition)12

as a function of the mixing chamber temperature TMC . For each temperature measure-13

ment, linecuts were collected at a range of TMC up to 350 mK and then simultaneously14

fit to extract an e↵ective electron temperature. Polarization lines were fit to a standard15

DiCarlo function with an electron temperature of Te =
p
T

2
0 + T

2
MC where T0 is the ideal16

electron temperature [1]. We note that this functional forms assumes an ideal charge qubit17

and thus ignores valley states which can lead to asymmetric lineshapes and/or modify the18

linewidths [2]. Charge transitions to a reservoir were fit to a Fermi-Dirac distribution [3].19

The voltage-to-energy lever arms were also free parameters in these fits but were constrained20

to be fixed across each linecut in a given dataset.21

With this method, we obtained electron temperatures of T0 = 228± 7 mK for the RDD22

and T0 = 321 ± 7 mK for the left electron reservoir. These values are exceptionally high.23

We believe that these temperatures could be reduced in future experiments by improving24

the thermal anchoring of the dc lines at the mixing chamber.25

(a)

𝑇଴௘௟௘௖ 𝑇଴௥௘௦

(b)

Supplementary Figure 1: Coherence versus temperature. (a) Ramsey data measured

on the right double dot as a function of temperature. These linecuts were taken at

"/h = �33 GHz. (b) Inhomogeneous dephasing time and quasistatic charge noise

extracted from the temperature-dependent Ramsey data.

To examine the prospect of operating our device at high temperatures, we measured26

Ramsey oscillations for the RDD as a function of the mixing chamber temperature (Supp.27

2



Fig. 1a). Extracting T
⇤
2 and �" at each temperature (Supp. Fig. 1b), we find that coherence28

persists up to TMC = 700 mK. In fact, these measurements were not limited by loss in29

coherence, but instead by a reduction in the visibility of our signal. At 700 mK, the lifetime30

of our latched state had been reduced from TLatch ⇠ 150 ns to TLatch ⇠ 40 ns. Although not31

conclusive, these results are promising for the prospect of operating qubits with a charge-like32

degree of freedom at higher temperatures.33

SUPPLEMENTAL NOTE 2: CROSSTALK SUBTRACTION AND MAXIMUM34

LIKELIHOOD ESTIMATION35

During our two-qubit measurements, the left charge sensor was sensitive to both the36

LDD and RDD qubits, whereas the right charge sensor was only sensitive to the RDD qubit37

dynamics. This crosstalk is demonstrated in Supp. Fig. 2. With control pulses applied38

to the RDD, both the right and left charge sensors detect the RDD latched-state readout39

window. When pulses are applied to the LDD, however, only the left charge sensor measures40

the LDD latched-state readout window. This crosstalk obfuscates the LDD qubit dynamics,41

but appropriate normalization measurements allow us to deconvolve the LDD and RDD42

signal from the left sensor data.43

Since the right sensor only measures RDD qubit dynamics, two normalization measure-44

ments are performed for this signal. First, the right sensor is measured after the LDD and45

RDD qubits have been initialized into |Li and |Ri, respectively, providing RLR. Next, the46

right sensor is measured after the RDD qubit has been pulsed into the (1,1) latched state.47

This is done by rapidly shifting the RDD to a large negative detuning, delaying at that point48

until the system has relaxed into |Li, and rapidly shifting back to the readout window for49

latching. This second measurement provides RLL.50

The left charge sensor measures both qubits, so more normalization measurements are51

required to deconvolve its signal. First, the pulses described in the previous paragraph are52

repeated, and the left sensor current is monitored. This provides the quantities LLR and53

LLL. These same measurements are then repeated again with the pulses applied to the54

LDD qubit instead of the RDD qubit to obtain LLR (again) and LRR. A final normalization55

measurement applies pulses to both the LDD and the RDD to obtain LRL.56

It is worth noting that our time-averaged measurement technique integrates signal over57
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Supplementary Figure 2: Measurements of the latched-state readout windows for the

(a,c) LDD and (b,d) RDD using the (a,b) left charge sensor and (c,d) right charge sensor.

the entire duty cycle of the pulse sequence. This pollutes our data with signal generated58

during the manipulation portion of the duty cycle. For all of our measurements, however,59

the manipulation time is many orders of magnitude shorter than the measurement time and60

any pollution is negligible. This e↵ect is most significant for the measurements of RLL, LLL,61

LRR, and LRL where the manipulation time rises to ⇠ 1% of the total duty cycle.62

After obtaining normalization data, qubit measurements are performed to obtain the63

uncalibrated signal L and R. Because the right charge sensor only measures the RDD qubit,64

we can first calibrate R to obtain the probability the RDD qubit has ended its evolution in65

4



state |Li:66

P
RDD
|Li =

R�RLR

RLL �RLR
. (1)

The left charge sensor measures both qubits simultaneously. To account for this, we first67

need to determine how the two qubit signals are combined in the charge sensor response.68

From Supp. Fig. 2, we see that the LDD and the RDD both contribute positively to the69

left sensor signal, and comparing normalization pulses, we find LRR > LRL > LLL > LLR.70

Making the assumption of monotonic contributions to the charge sensor signal, we explain71

this behavior with a LDD signal whose dynamic range depends on the state of the RDD. If72

the RDD is in |Ri then the LDD signal ranges from LRR to LLR, whereas with the RDD73

in |Li, the LDD contribution ranges from LRL to LLL. The RDD contribution, however,74

always ranges from (LLL � LLR) to 0.75

To apply this model to our data, we approximate the combined signal by76

L = LLDD + LRDD (2)

where LRDD (LLDD) is the RDD’s (LDD’s) contribution to the left sensor signal. The77

calibrated right sensor signal allows us to calculate78

LRDD = P
RDD
|1i ⇥ (LLL � LLR) . (3)

Combining Eqs. 2 and 3 and calibrating with our normalization data, we can then write the79

probability the LDD qubit has ended its evolution in state |Ri as80

P
LDD
|Ri =

L� P
RDD
|Li ⇥ (LLL � LLR)� cmin

cmax � cmin
(4)

where81

cmin = LLLP
RDD
|Li + LLR

�
1� P

RDD
|Li

�
(5)

and82

cmax = LRLP
RDD
|Li + LRR

�
1� P

RDD
|Li

�
(6)

define the state-dependent ranges of LLDD. Notably, applying this procedure to our normal-83

ization pulses returns the expected probabilities. The data shown in Fig. 4c of the main text84

is replotted in Figs. 3a,b with and without the charge sensor crosstalk subtracted. For some85

portions of these data, this crosstalk removal procedure returns a negative probability (see86

Supp. Fig. 3b). To make sense of this unphysical result, we apply a maximum likelihood87

5



estimator (MLE) to our single-qubit states to enforce positivity of the reported probabilities.88

Because we have assumed separable states in our conditional measurements, applying this89

MLE at the single-qubit or the two-qubit level provides identical results.90

The MLE aims to find the physically-valid density matrix ⇢p that most closely approxi-91

mates our measured density matrix ⇢exp. Since we can only measure the diagonal elements of92

⇢exp, we adapt the MLE protocol used in Supp. Ref. [4] to neglect coherences. We constrain93

⇢p to be a non-negative, definite matrix by defining ⇢p = T̂
†
T̂ /Tr[T̂ †

T̂ ] where94

T̂ =

0

@t1 0

0 t2

1

A . (7)

We then make the assumption that for each element ⇢exp,i imperfections in our measure-95

ments generate a Gaussian probability of measuring the physical value ⇢p,i and the standard96

deviation of that distribution is approximated by
p
⇢p,i [4]. The probability that ⇢p could97

produce ⇢exp then becomes98

P (⇢exp) =
1

N

4Y

i=1

exp

"
� (⇢p,i � ⇢exp,i)

2

2⇢p,i

#
(8)

where N is a normalization constant. Rather than maximizing Eq. 8, we instead maximize99

its logarithm, which amounts to minimizing the function100

L(⇢exp) =
4X

i=1

(⇢p,i � ⇢exp,i)
2

2⇢p,i
. (9)

The diagonal elements of the resulting ⇢p then fill in the columns of Mexp, providing the101

truth table quoted in the main text. The results of this MLE process are shown in Supp.102

Fig. 3c for the control qubit and in Supp. Fig. 4 for the target qubit data.103

For the data in Fig. 3 of the main text, we did not perform normalization measurements104

simultaneously with data acquisition. Moreover, the right charge sensor jumped during the105

course of the measurement. This jump created a discrete change in the charge sensor’s106

dynamic range. To compensate for the e↵ect of the jump, we split the data at the point107

of the jump and normalized each segment using the maximum and minimum values within108

that segment as approximations of RLL and RLR, respectively. The e↵ect of this procedure109

is demonstrated in Figs. 5a,b. We then subtracted the RDD qubit signal from the left charge110

sensor data using the values of LLL and LRL measured during our conditional measurements111

and approximating LRR and LLR with the maximum and minimum values of the raw signal.112
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(a) (b) (c)

Supplementary Figure 3: The control qubit data from our conditional measurements

plotted (a) with and (b) without the target qubit crosstalk included. (c) The control qubit

data after the maximum likelihood estimation has been performed.

(a) (b)

Supplementary Figure 4: The target qubit data from our conditional measurements

plotted (a) before and (b) after the maximum likelihood estimation has been performed.

The e↵ect of this subtraction is shown in Supp. Fig. 5c,d. Because we have approximated113

these normalization values, we plot the data with arbitrary units on the z-axis and do not114

apply the MLE for this measurement.115

SUPPLEMENTAL NOTE 3: FAST PULSE WAVEFORM GENERATION116

For each qubit, fast dc pulses were supplied by a Tektronix AWG 70001a. Internally,117

each waveform generator uses two interleaved 25 GS/s digital-to-analog (DAC) converters118

to generate a 50 GS/s waveform. We operate in a mode where, for a given AWG, each119

internal DAC outputs a distinct waveform. We output a positive waveform on one DAC120

and the negative of that same waveform plus some perturbation on the other. The internal121

power combiner of the AWG then sums the two waveforms, yielding just the perturbation,122

7



(a)

(c) (d)

72

64

56

48

40

32

24

16

R
ig

ht
 S

en
so

r S
ig

na
l, 

A
U

After Processing
1.04

0.91

0.78

0.65

0.52

0.39

0.26

0.13

R
D

D
 |L

⟩P
op

ul
at

io
n,

 A
U

0.85

0.68

0.51

0.34

0.17

0.0

-0.17

-0.34

LD
D

 |
⟩

R
P

op
ul

at
io

n,
 A

U

6.3

5.4

4.5

3.6

2.7

1.8

0.9

0.0

LD
D

 |
⟩

R
P

op
ul

at
io

n,
 A

U

(b)

Supplementary Figure 5: Correlated oscillation data for the (a,b) RDD and (c,d) LDD.

(a,b) The RDD (a) before and (b) after the data has been processed to smooth a charge

sensor jump. (c,d) The LDD data (c) before and (d) after the RDD crosstalk signal has

been smoothed and removed.

which we designate as our control pulse. We control the phase delay between the two DACs123

with 1 ps resolution, providing precise control of the generated control pulse’s duration. This124

method is depicted schematically in Supp. Fig. 6.125

For measurement sequences where multiple pulses were applied to the same qubit, this126

strategy of controlling the DAC phase delay only provides precise control over a single pulse127

edge in the sequence. Other pulses are constrained to durations that are multiples of the128

single DAC 40 ps sampling resolution. For the Ramsey measurements in Fig. 2 of the129

8



main text, the free evolution time ⌧ is incremented in 1 ps steps and the ⇡/2-pulses in the130

measurement were constrained to this 40 ps discretization. For our conditional measurement131

(Fig. 4c,d of the main text), the target qubit input state preparation pulses were constrained132

to this 40 ps grid. This pixelation likely contributed substantially to the state preparation133

errors that appear in our data.134

For two-qubit measurements, both AWGs were synced at the top of the fridge using a135

Tektronix Sync Hub. The uncorrected time delay between the two AWGs at the bottom of136

the fridge was measured to be ⇠ 0.75 ns.137

DAC 2 Output

A
m
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DAC 1 Output

A
m
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Time
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AWG Output
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Effective Waveform

Precise control over 
this edge timing

Supplementary Figure 6: Schematic representation of our strategy for generating

waveforms with ⇠ps timing resolution

To minimize distortions to these high speed pulses, care was taken to minimize impedance138

mismatches between the waveform generator and the device. Supp. Fig. 7a plots the RF139

transmission of the high frequency lines in our dilution refrigerator that were used in these140

measurements. Supp. Fig. 7b shows typical RF transmission through a nominally-identical141

PCB to the one on which our device was mounted. These PCBmeasurements were performed142

by wire-bonding across two on-board RF traces and measuring the throughput with a vector143

9



network analyzer. Each of these PCB measurements thus samples the transmission of two144

RF traces in series. Beyond the PCB, it becomes very had to know the RF response of a145

specific device.146

��� ���

Supplementary Figure 7: RF transmission measurements. (a) RF transmission spectra

for the high frequency lines of our dilution refrigerator used in these measurements. The

RF lines in the fridge have �39 dB of DC attenuation added for thermalization. (b)

Transmission through two pairs of RF lines of a nominally-identical PCB to the one on

which our device was mounted.

SUPPLEMENTAL NOTE 4: VALLEY STATES147

Throughout this manuscript, we have neglected excited valley states in our analysis of148

the qubit dynamics. This was done because our measurements did not resolve any sign of149

excited valley states and because the dispersions extracted from our Ramsey measurements150

(Fig. 2 of the main text) fit well to charge qubit dispersions that neglect excited valley states.151

One explanation for the absence of valley states in our data would be that the valley152

splittings in our device are very large. Such a system could be modelled as a simple charge153

qubit and the dynamics would match what we have observed.154

Another explanation for the apparent absence of valley splittings could be that the de-155

vice’s high electron temperature thermally populated a weakly-split valley manifold. Ignor-156

ing inter-valley coupling, qubit evolution would then occur independently within each valley.157

We do not observe beating in our Ramsey measurements, suggesting that any di↵erence in tc158

between the ground and excited valley states is less than the decoherence rate for our qubits.159

10



Evolution within each valley state would then be indistinguishable to our measurement, and160

this would also have generated behavior identical to the simple charge qubit Hamiltonian161

we assumed in our manuscript.162

Our measurements are unable to distinguish between a very large and a very small valley163

splitting, but similar devices we measured showed very low valley splittings (< 10 GHz) [5].164

Because of this, we judge the latter case to be the more likely reality.165

SUPPLEMENTAL NOTE 5: T1 AND TLatch MEASUREMENTS166

Following the method described in Supp. Ref. [6], we measured the relaxation time T1 of167

our two charge qubits. For both qubits, we measured T1 < 10 ns (Supp. Fig. 8), which is168

short enough to prohibit ac driving of our charge qubits [7]. We speculate that this short169

relaxation time stems from increased electron-phonon scattering due to our high electron170

temperature.171

T1 = 3.8 ± 0.3 nsT1 = 6.8 ± 0.6 ns TLatch = 440 ± 60 ns

(a) (b) (c)

Supplementary Figure 8: Charge state relaxation. (a,b) T1 measurements for the (a)

left double dot and (b) right double dot. (c) Measurement of the latched state lifetime

TLatch.

A similar measurement technique enabled us to quantify the lifetime of the latched read-172

out state. The latched state was controllably prepared and allowed to persist for a variable173

time ⌧ by modifying the duty cycle of the measurement. Supp. Fig. 8c shows the resulting174

decay in signal, which we fit to find TLatch = 440± 60 ns for this tuning.175
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SUPPLEMENTAL NOTE 6: FITTING RAMSEY DATA176

To extract the inhomogeneous dephasing time T
⇤
2 , we neglect any valley or spin degrees177

of freedom and fit the charge qubit coherence ⇢LR to the function178

⇢LR = Ae
�⌧2/T ⇤2

2 cos (!⌧ + �) +B (10)

where A and B are constants, ⌧ is the free evolution time, ! is the qubit frequency at a179

given detuning, and � is a fixed phase o↵set.180

To extract the charge qubit dispersions shown in the insets of Fig. 2a,b of the main text,181

we fit linecuts of the data to Eq. 10. For the LDD data, the Ramsey fringe visibility vanishes182

for " > 0. The background level also drifts with the free evolution time ⌧ in these data. To183

correct for this, we average all linecuts with "/h > 8.9 GHz where the fringe visibility has184

vanished and subtract this mean from the rest of the data before fitting. The �" = 12±4 µeV185

value for the LDD quasistatic charge noise was obtained by averaging the T ⇤
2 values returned186

from the fits for all "/h < �27.5 GHz at which point |@!/@"| > 0.8.187

Charge qubits exhibit a reduced sensitivity to charge noise when operated near their188

anti-crossing. This creates the prolonged dephasing time for detunings near zero in Fig. 2189

of the main text. Fitting linecuts of these data (Supp. Fig. 9), we can demonstrate190

this enhancement by observing a T
⇤
2 increase from T

⇤
2 ("/h = 20 GHz) = 109 ± 6 ps to191

T
⇤
2 ("/h = �5.2 GHz) = 330 ± 20 ps for the RDD and T

⇤
2 ("/h = 31 GHz) = 75 ± 15 ps to192

T
⇤
2 ("/h = 9.3 GHz) > 200 ps for the LDD.193

��� ���

Supplementary Figure 9: Linecuts of Fig. 2 in the main text demonstrating an increase

in the dephasing time for detunings near zero in the (a) left and (b) right double dot.
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When fitting the Ramsey measurements performed as a function of temperature (Supp.194

Fig. 1 in the SI), we fix � and ! at each detuning to be the same for every temperature.195

The data in Supp. Fig. 1b are the average results for linecuts in the detuning range "/h 2196

(�33,�29) GHz. The �" = 8.5± 0.5 µeV value of the RDD quasistatic charge noise quoted197

in the main text was extracted from the TMC = 15 mK datum in this measurement.198

To compare these charge noise values to those reported elsewhere, we assume the qua-199

sistatic value we measure comes from a S"(f) ⇠ 1/f noise spectrum integrated from the200

bandwidth of our lock-in amplifier 1/⌧M where ⌧M = 50 ms to 31 GHz for the RDD and201

33 GHz for the LDD. This gives charge noise values of S1/2
" (1 Hz) = 1.3 µeV/

p
Hz for the202

RDD and 1.8 µeV/
p
Hz for the LDD, both of which are reasonable values for a Si/SiGe203

device with a 30 nm deep quantum well and 5 nm of Al2O3 gate oxide [8].204

SUPPLEMENTAL NOTE 7: CAPACITIVE SHIFT OF LATCHED STATE205

As discussed in the main text, shelving one double dot into its metastable latched state206

produces a capacitive shift in the other double dot. For our conditional measurements,207

we move the control qubit to an idle point during target qubit operations. This delays208

projection into the latched state until after our conditional rotation is complete, ensuring209

that any conditional behavior we detect results from the capacitive interaction between the210

two qubits.211

Our measurement of correlated oscillations in Fig. 3 of the main text did not use idle212

points to delay projection into the latched state. This means that once we deviate from the213

diagonal that defines synchronized pulse tails, one qubit has been moved into its readout214

window and might have been projected into its latched state. However, extending the215

classical capacitance network model described in Supp. Ref. [9], we can show that to first216

order in interdot capacitances the double dot capacitive shift g is equal to the capacitive217

shift from the latched state gLatch. For the simulation shown in Figs. 3e,f, we therefore use218

g = gLatch = 15.3⇥ h GHz. This relation between g and gLatch was verified via electrostatic219

measurements at the device tuning used for our conditional measurements (Supp. Fig. 10)220

and is expected to hold at the tuning used in Fig. 3 of the main text.221
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(a) (b)

Supplementary Figure 10: Capacitive shift experienced by the right double dot due to

a transition in the left double dot from (a) the (1,0) to the (1,1) charge state and (b) the

(1,0) to the (0,1) charge state. Note that the abrupt transition in (a) is because the charge

transition being swept is a cotunneling process with a relatively slow tunnel rate [9].

SUPPLEMENTAL NOTE 8: SIMULATIONS OF CORRELATED OSCILLATIONS222

The simulation results presented in Fig. 3e,f of the main text were obtained by numerically223

solving the von Neumann equation224

ih̄
@⇢

@t
= [H2Q, ⇢]. (11)

Here, h̄ is the reduced Planck constant, ⇢ is the density matrix for the two-qubit system,225

and H2Q is the Hamiltonian presented in Eq. 2 of the main text. This Hamiltonian is226

written in the {LL,LR,RL,RR} basis and does not include either qubit’s latched state.227

Because g ⇠ gLatch (Supplemental Note 7), the only change in H2Q upon the projection228

of one qubit into its latched state is that the tunnel coupling for that qubit goes to zero229

(tic ! 0). Latched state projection only occurs when "i � t
i
c, at which point the e↵ect of tic230

on the charge dynamics is already negligible. This means that the model described above231

is a good approximation of the measurement both before and after latched state projection.232

Because we do not have a precise measurement of �Load, we restrict the simulation to the233

{LL,LR,RL,RR} basis and assume the e↵ects of tic are negligible when "i � t
i
c.234

Dephasing was included in the simulation by adding a perturbation to each double dot’s235

detuning ("i ! "i + �"i), convolving the simulation with Gaussian distributions of d"L and236

d"R, and normalizing appropriately. To verify the simulation reproduced the experimentally-237
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measured coherence times, we simulated single qubit dephasing measurements in the large-238

detuning regime (Supp. Fig. 11).239

(a) (b)

Supplementary Figure 11: Simulations of single qubit dephasing for the (a) left double

dot and (b) right double dot.

SUPPLEMENTAL NOTE 9: SIMULATIONS OF CONDITIONAL OSCILLATIONS240

To verify our understanding of the conditional oscillations presented above, we model241

these measurements using the simulations described in the previous section. For these242

simulations, we use the parameters quoted in the main text: t
L
c /h = 7.2, t

R
c /h = 5.4,243

and g/h = 28 GHz. We assume ideal non-adiabatic pulses for state preparation. Supp.244

Fig. 12 shows the results of these measurements. Because our simulations do not include245

tunnel coupling noise or state relaxation, they do not accurately recreate the decay envelope246

observed in Fig. 4d of the main text. The ideal pulses of the simulation also do not contain247

the initial distortion shown in Fig. 4d, placing the conditional ⇡-rotation at 46 ps with a248

simulated mean fidelity of I = 81%.249

In Supp. Fig. 13a,b, we present those same simulations but with g reduced to g/h =250

2.8 GHz. In this weak coupling limit, we see a dramatic reduction in the expected fidelity of251

the two-qubit interaction. Ignoring dephasing, relaxation, and state preparation errors alto-252

gether, the target qubit dynamics can be modeled by Rabi’s formula with a Rabi frequency253

of 2tc and a detuning of 0 for when the control qubit is in |Li and �g for the control in254

|Ri [10]. Plotting the maximum inquisition as a function of both tc and g (Supp. Fig. 13c),255

we see the border between strong and weak capacitive coupling in an ideal two charge qubit256
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Supplementary Figure 12: Simulated response of the (a) control and (b) target qubits

to the measurement sequence depicted in Fig. 4c,d of the main text. The simulation

ignores tunnel coupling noise and state relaxation and thus fails to recreate the decay

envelope observed in the measurement.
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Supplementary Figure 13: Weak coupling simulations. (a,b) Simulated response of the

(a) control and (b) target qubits in the case of realistic weak capacitive coupling. (c)

Calculated mean fidelity for an ideal two charge qubit system.

system. For the parameters of our measurements (tc/h = 5.4 GHz, g/h = 28 GHz), we sit257

comfortably in the strongly coupled region.258
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