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This work provides a phase-field simulation framework that bridges the structure of defects (e.g., disloca-
tions and grain boundaries (GBs)) to their characteristic properties, such as stresses and energies. The validity
of the current methodology is examined first by predicting the stress field of a single infinitely long screw
dislocation using both the analytical solutions based on anisotropic elasticity and the current phase-field
framework. The well-known stress singularity associated with the dislocation core in the former method
has been effectively avoided in the latter. The framework is then applied to predicting the dislocation net-
work of {0 0 0 1} twisted GB in Mg, which is found to consist of triangular-shaped regions of stacking faults
and perfect crystals separated by partial dislocations. This prediction is consistent with some existing ato-
mistic simulations and the underlying formation mechanism is analyzed rigorously using the displacement
field predicted by our model, revealing the energy minimization process via the dissociation of a
1 1 2

�
0

D E
=3 screw dislocation into a pair of 1100h i=3 screw dislocations. Based on the structure predic-

tion, the associated stress field is further simulated, which provides critical information in evaluating the
interaction of GBs and other crystalline defects such as impurities and dislocations.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The exhibiting properties of polycrystalline crystals depend cru-
cially on the grain boundaries (GBs), which poses a great challenge
for experiments to study in situ the subsequent microstructural
evolution in response to external stimuli [1,2]. For example, a
strong basal texture where the c-axis of Mg (HCP) grains aligned
parallel to each other will lead to significant anisotropy in plastic
deformation [3]. Special boundaries, such as low-angle GBs and
low-CSL (Coincidence Site Lattice) boundaries, are found to have
low vulnerability to cracking [4]. It has also been reported that
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effective strengthening could be achieved without compromising
ductility, electrical, or thermal properties by introducing coherent,
stable, and nanoscale internal boundaries [5].

GBs exhibit many special properties that deviate from those of
the bulk. For example, Simple twin boundaries in ferroelastic
materials can be superconducting and multiferroic and exhibit
other exclusive properties [6]. Strengthening polycrystalline mate-
rials has been effectively achieved through identifying structural
characteristics for boundaries [7], since the structure of a GB deter-
mines all its essential properties, such as the diffusivity, mobility,
cohesive strength, energy, local stress field, and their interactions
with other stress-bearing extended defects such as dislocations,
cracks, micro voids, and coherent precipitates [8]. On the other
hand, crystalline defects, such as dislocations, grain boundaries,
and slip lines tend to promote precipitation and allow for the cre-
ation of nano precipitate networks that offer unprecedented prop-
erties [9–12]. The key to predict such a guided precipitation is to
accurately calculate the structure and the resulting elastic fields
of these defects. Therefore, for many decades under the concept
of grain boundary engineering [13,14], a lot of work has been done
in predicting GB structures, including crystallographic theory, ato-
mistic simulations, and ab initio calculations.

The conventional five degrees of freedoms (DOFs) of GBs, aris-
ing from misorientation of the two adjoining grains and the GB
plane inclination, have been found insufficient to explain the prop-
erties and roles of GBs during processes such as phase transforma-
tions and plastic deformation. Instead, additional ‘‘internal” DOFs
may need to be introduced to better describe GBs and understand
the resulting effect [13–15]. The classical Frank-Bilby equation
provides the net dislocation Burgers vector required to maintain
the interface compatibility when crossing a GB [2,16,17]. The O-
lattice theory further quantizes this net Burger vector into lattice
vectors of the reference crystal by taking into account the transla-
tional symmetry of the adjoining grains [18]. As a matter of fact,
the Burgers vectors of GB dislocations are not necessarily to be
integral multiple of lattice vectors. When the Coincidence Site Lat-
tice (CSL) sites are considered, the Burgers vector can be fractional
of lattice vectors, which is determined through the DSC lattice [19].
These theories are based purely on geometrical consideration and
their applications to predicting real GB structures rely on some
prior assumptions, such as the requirement of minimizing the dis-
location content. On the other hand, molecular dynamics (MD) can
be used to predict atomic structures and energies of GBs [20].
However, MD results essentially describe GB structures in terms
of displacements of all atoms at and near the boundary, which
are virtually impossible to be incorporated directly in any coarse-
grained theories and models aiming to studying macroscopic prop-
erties controlled by GBs.

Following the spirit of multi-scale modeling in computational
materials science, it is highly desired that a model can combine
the existing geometric models (e.g., Frank-Bilby equation and O-
lattice) with the atomistic energetics provided by first-principle
calculations to predict both GB structure and properties such as
the energy and stress field, which can then be easily incorporated
into mesoscale models such as phase-field (to study the GB effect
on microstructure evolution [12]) and crystal plasticity (to study
the GB effect on plastic deformation [21,22]). The need and signif-
icance of such development is only becoming apparent in recent
years and more theoretical and modeling effort is expected.
Recently, a novel microscopic phase-field (MPF) method with sub-
atomic resolution is developed and applied to calculating the dislo-
cation network in pure Al [23], evaluating the transition in GB
structures in various BCC metals [24], and investigating dislocation
structures [33] and dynamics [34]. Nevertheless, application of this
new model to grain boundaries in HCP metals has not been carried
out. Besides, previous applications have not studied the resulting
2

stress field associated with the defects. In this paper, we will
address these two issues within the context of considering the for-
mation of dislocation network in twist GBs in Mg (owing to its sig-
nificance to developing lightweight metal components in recent
years). A brief description of the model framework, together with
the model setups and inputs used in the current simulations, is
given in Section 2. In Section 3, the stress field of the non-
singular infinitely long straight dislocation is calculated and com-
pared with the analytical solution as a benchmark, following which
the model is applied to studying the formation and stress field of
the dislocation network at the twist GBs in Mg. These results and
corresponding discussion are presented in Section 3, with major
conclusions summarized in Section 4.

2. Methods

2.1. Structure prediction using a microscopic phase-field model

The microscopic phase-field (MPF) theory [23] was recently
developed to account for a continuum description of crystalline
defects such as dislocations and GBs at the atomistic scale so that
characteristics of those defects (e.g., dislocation core structure,
grain boundary energy, etc.) will be the output of MPF, rather than
the input as in the conventional mesoscale models. This is achieved
by removing the gradient term and replacing the bulk free energy
in the traditional phase-field model with a crystalline energy Ecryst

that is based on atomistic calculations. Therefore, the total free
energy in MPF model can be written as:

Etot ¼ Ecryst þ Eel þW ð1Þ
Similar to the principal idea of Peierls model for dislocations

[25], while the Ecryst in the MPF model is constrained within the

GB plane (GBP), the Eel is stored in the entire crystal. The equilib-
rium defect structure is then given as a result of the balance

between Ecryst (localized) and Eel (nonlocal). In particular, the for-
mer is associated with the nonlinear and nonconvex generalized
stacking fault (GSF):

Ecryst ¼
Z
c u x; yð Þ½ �dxdy ð2Þ

wherec u x; yð Þ½ � is the GSF energy that depends on the inelastic dis-
placement vector u x; yð Þ. Following the spirit of Peierls model for
dislocations [25], we assume that u x; yð Þ is a planar quantity con-
fined in the fault plane and serves as the displacement basis vector,
which can be expressed as:

u x; yð Þ ¼
XN
p¼1

bp/p x; yð Þ ð3Þ

a summation over all active slip systems, each characterized by a
planar order parameter field /p x; yð Þ. Here bp is a basis (eigen) dis-
placement vector within the p-th slip system and N is the number of
total active slip systems. This equation is analogous to the conven-
tional phase-field dislocation theory where the inelastic transfor-
mation strain field is given as

eTij rð Þ ¼
XN
p¼1

epijgp rð Þ ð4Þ

Here epij ¼ np
i b

p
j þ np

j b
p
i

� �
= 2dp� �

is the (constant) strain tensor associ-

ated with the p-th slip system. np and dp are respectively the normal
and interplanar spacing of slip planes, and gp rð Þ is a phase field that
resides within the 3D volume in general. When
g rð Þ ¼ /p x; yð Þd z� zsð Þdp, i.e., only distributed in the slip plane,
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eTij rð Þ is reduced to the inelastic displacement vector u x; yð Þ. On the
other hand, the elastic energy stored in the 3D volume of crystal is
given in general as

Eel ¼ Eel gp rð Þ
h i

¼ 1
2

XN
p;q¼1

Z
Bpq g

^
� �

g
�
p gð Þg��

q gð Þ dg

2pð Þ3
ð5Þ

where g is the reciprocal vector, bg � g= gj j, and
Bpq bg� � ¼ Cijkl�

p
ij�

q
kl � nirp

ijXjk bg� �
rq

klnl. The tilde ~ designates the Four-

ier transform and the asterisk a complex conjugate, rp
ij � CijkleTkl with

Cijkl being the elastic stiffness tensor, and Xik½ ��1 bg� � � Cijklbgjbgl. Note

that additional condition g rð Þ ¼ /p x; yð Þd z� zsð Þdp should be applied

to Eq. (5) in order to obtain the final closed-form solution of Eel (see

[23] for more details). Since both Eel and Ecryst are functionals of
/p x; yð Þ, the relaxation of the GB structure can be described using
the Allen-Cahn equations, which reaches the equilibrium state
when the variation of the total energy becomes zero.

2.2. Stress calculation using the phase-field microelasticity theory

In order to calculate the stress state of an elastic medium con-
taining dislocations of arbitrary shapes and distributions, the key
problem is to solving the stress equilibrium equation, i.e.,

rji;j rð Þ ¼ 0 ð6Þ
subjected to the prescribed boundary conditions. Here we briefly
describe the computation procedure. First, define the displacement
field and the total strain field as ui rð Þ and �ij rð Þ, which according to
the elasticity theory (under infinitesimal strain assumption), are
related by

�ij rð Þ ¼ 1
2

ui;j rð Þ þ uj;i rð Þ� 	 ð7Þ

The elastic strain is part of the total strain and expressed as

eij rð Þ ¼ �ij rð Þ � eTij rð Þ ð8Þ

where eTij rð Þ is the inelastic strain field determined by the strain ten-
sor and the distribution of dislocations in the specified slip systems,
as shown in Eq. (4). By substituting Eqs. (7) and (8) into the the
stress equilibrium equation (Eq. (6)) and using the constitutive rela-
tionship rij rð Þ ¼ Cijklekl rð Þ together with the symmetry of the elastic
stiffness tensor Cijkl, we have

Cijkluk;l rð Þ � eTkl rð Þ� �
;j ¼ 0 ð9Þ

Solving Eq. (9) gives the displacement, stress, and strain fields of
the given dislocation configuration. In order to solve this set of sec-
ond order partial differential equations, the spectral method based
on fast Fourier transform is employed, which can greatly improve
the computational efficiency. Note that Eq. (9) is a general form
regardless of the location dependence of Cijkl. For elastically homo-
geneous system (e.g., an infinite crystal containing a single disloca-
tion), a closed-form solution has be derived in [26] and the
corresponding numerical implementation is straightforward. For
a bi-crystal containing a GB (to be considered in the current study),
the elastic stiffness tensors of the two grains are different and
related according to the crystallographic orientation of the GB.
For such an elastically inhomogeneous system, no closed-form
solution exists for Eq. (9) and the method proposed in Ref. [27] is
implemented numerically to obtain the stress equilibrium fields.
Note that the inelastic field eTij rð Þ in Eq. (8) is the input of the model,
which contains the characteristic information of defects in calcu-
lating the stress field and in the current work is uniquely predicted
using MPF simulations.
3

2.3. Model setup and inputs

To calculate the GB dislocation network in a pure twist GB in
Mg, we will first validate the MPF method by modeling the struc-
ture of a single dislocation and then calculating its stress field and
comparing with the analytical solution. Note that the analytical
solution of dislocation stress field is based on the assumption of
a singular non-dissociated core, which is contrary to the dissoci-
ated core structure of basal dislocations in Mg (as will be discussed
latter in this paper). For the benchmark purpose, we perform the
MPF and stress field simulations instead for the single dislocation
in {111} plane of Al crystal, which, due to a relatively high sacking
fault energy, results in virtually no dissociation in the dislocation
cores. Note that both {0 0 0 1} of Mg and {111} of Al are close-
packed planes sharing certain crystallographic similarity.

As two types of crystal defects will be investigated in the pre-
sent work, i.e., the core structure of single screw dislocation in Al
and the dislocation network of a pure twist GB in the basal plane
of Mg, their corresponding model parameters are listed in Table 1.
Another important model input, the GSF surfaces of {111}Al and
{0001}Mg (will be shown in the subsequent section), can be found
in Refs. [23] and [29], respectively.

The simulation cells of the single screw dislocation and the
basal twist GB are shown in Fig. 1(a) and (b), respectively. The
screw dislocation is located on the closed packed plane 1 1 1ð ÞAl
with its Burgers vector in the direction of 0 1 1

�h i
Al
. Assuming that

the displacement along the dislocation sense direction is identical,
the three-dimensional simulation cell could be reduced to a two-
dimensional one (indicated by the dashed square in Fig. 1(a)).
The twist GB at the basal plane of Mg crystal is considered as gen-
erated due to a rotation of Grain-A by 5

�
relative to the Grain-B

around their common 0 0 0 1½ �Mg direction. The system size in
terms of l1, l2, and l3, together with the grid size l0 is shown in
Table. 1. Note that considering the symmetry of the HCP crystal,
the model unit cell (i.e., the green square in Fig. 1(b)) is selected
from the GBP in order to comply with the periodic boundary con-
dition required for the MPF model when Fourier transformation is
applied to calculating the elastic energy in Eq. (5).

As an input of MPF model, discrete GSF data (Fig. 1(c)) of Mg
basal plane from ab initio calculations [29] is firstly fitted using a
truncated Fourier series and shown in Fig. 1(d) in order to be used
in the simulation grid with a much finer resolution. The minima
are located at the centers of the triangular contours and corre-
spond to the lattice sites of the (0 0 0 1) plane in Mg. It should
be noted that the plots in Fig. 1(c) and (d) have the smallest unit

cell with the periodicity being [1 1 2
�

0�=3 and 1 1
�

0 0
h i

along

two orthogonal crystal directions; when the GSF data is applied
to the MPF model, it needs to be extended according to the simu-
lation cell (i.e., GB plane indicated in Fig. 1(b)).
3. Results and discussion

3.1. Model validation: Calculating the stress field of a single screw
dislocation

Based on the fundamental of phase-field method, the screw dis-
location with the initial configuration is shown in Fig. 1(a). The left
and right halves divided by the dislocation line represent the
slipped and non-slipped regions, wherein the order parameters
are set as / ¼ 1 and / ¼ 0 (unit: b), respectively. When the system
starts to evolve under the interplay of the crystalline energy and
elastic strain energy, the sharp dividing interface containing the
initial dislocation line gradually becomes a diffused region with a
certain width. Assuming that the elastic state along the dislocation



Table 1
Model parameters for the single screw dislocation in Al and the twist GB network in Mg.

Model parameters Single screw dislocation in {111}Al Twist GB network in {0 0 0 1}Mg Unit

Lattice parameter a0 0.405 a0, c0 0.321, 0.521 nm
Grid size l0 0.0234 l0 0.0261 nm
System size l1, l2,l3 10240l0, 1024l0,l0 l1, l2,l3 1024l0, 244l0, 140l0 nm
Elastic constants C11, C12,C44 108.2, 61.3, 28.5 [28] C11, C33, C44, C12,C13 60.0, 61.0, 18.1, 21.0, 20.0 [29] GPa

Fig. 1. The crystallographic characters of (a) single screw dislocation in Al and (b) pure twist (0 0 0 1)-GB in Mg; (c) and (d) are the original and fitted GSF profiles of Mg.
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line is identical, the cross section of the 2-D dash square (in Fig. 1
(a)) perpendicular to the dislocation line is taken as our simulation
cell. The profile of the disresgistry (i.e., the profile of order param-
eter /) and the density of Burgers vector across the core center of
the dislocation at the equilibrium are plotted in Fig. 2(a). When
moving far away from the initial place of the dislocation (y ¼ 0),
the density of Burgers vector decays to 0, indicating no distortion
remains at the far-field.

Substituting order parameter profile into Eq. (4) gives the
inelastic energy field eTij rð Þ. By solving the equilibrium equation
(Eq. (9)) numerically, we obtain the stress field of the screw dislo-
cation, of which the components, r12 and r13, are shown in Fig. 2
(b) and (c). The analytical solution of the stress field for the screw
dislocation (Fig. 1(a)) with a singular core has been derived based
on anisotropic elasticity [28], the results of which are plotted in
Fig. 2(b) and (c) (in red) to compare with our MPF calculation. Note
that owing to the singularity, stresses from the analytical solution
clearly show divergence in the core region, as indicated in Fig. 2(b)
and (c). Comparing the numerical calculation based on the MPF
with the analytical solutions, it is obvious that the former exhibits
a smooth and finite variation across the core region with the
absence of stress singularity. Outside the core, the stresses decay
quickly to zero as moving towards the far field in both cases; the
4

numerical results of the MPF method fit well with those by the
analytical solutions in regions with a distance 	 2:5b from the core
center. This is consistent with the assumption that the elasticity
theory is only validate out of the core region with a radius of
� 2b [28]. Therefore, the current MPF description provides an accu-
rate description of dislocation structures, which allows us to fur-
ther apply it to predicting more complex configurations of
dislocation networks. In addition, since the microstructures are
described using order parameters, by employing the numerical
method presented in Section 2.2, one can obtain the stress field
of dislocations or other defects of arbitrary configurations, which
is difficult to calculate using the linear elasticity method as the cor-
responding analytical solution is only available when the geometry
of the dislocation configuration satisfies certain symmetry require-
ments [28].

3.2. Dislocation network structure of pure twist (0001) grain boundary
in Mg

Consider a pure-screw twist GB parallel to the basal plane with
a misorientation angle h (h ¼ 5

�
in this work), whose construction

has been outlined in Section 2.3 and illustrated in Fig. 1(b). This
results in a relative displacement



Fig. 2. The calculated configuration and stress fields of a single dislocation: (a) disregistry (in blue) and density of Burgers vector (in red), (b) and (c) the comparison between
the stress field components from numerical calculations based on phase-field method (in blue) and from analytical solutions (in red) [28]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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uR x; yð Þ ¼ R hð Þ � I½ � x; yð Þ ð10Þ
where R hð Þ is the rotation matrix and I is the identity matrix. Such
rigid-body rotation corresponds to the initial field of u x; yð Þ in Eq.
(2), which gives rise to the inelastic displacement field localized
in the GBP but does not contribute to the elastic energy. In the
MPF framework, the displacement uR can also be expressed in the
form of Eq. (3). It has been proved in our previous work [24] that
the choice of the basis displacement vectors in Eq. (3) can be arbi-
trary as long as they are all lying in the basal plane and non-
collinear. The corresponding order parameter / x; yð Þ, known as
the ‘‘background field” [23] and can be derived immediately by
equating Eq. (3) and Eq. (10), provides the characteristic geometric
constraint (i.e., the prescribed twist angle h in the current case) to
regulate the energy minimization process in our MPF simulation.

In Fig. 3(a)–(e) we plot the distribution of crystalline energy
that reflects the evolving structure of GB dislocations from the ini-
tial stage to the equilibrium. In these figures ‘‘O” represents the ori-
gin where the rotation axis passes through, i.e., the displacement at
‘‘O” is zero. At the early stage of t = 2 (where t is the dimensionless
time), the GB structure maintains the characteristics of the GSF
profile, where the high energy regions, the transition regions (with
relatively lower energy) and the non-slipped region (Ecryst ¼ 0) are
alternatingly arranged and a three-fold symmetry can be easily
5

identified. As the evolution advances, the high energy regions grad-
ually shrink and is connected by the transition regions, which
expand to form triangular areas. At the equilibrium state
(t = 100), it can be found that instead of sharp and well-defined dis-
location lines, the dislocations locate near the edges of the triangu-
lar areas and spread into the center of these triangular regions of
faulted material. The crystalline energy (see Fig. 3(f)) decreases
monotonically to a plateau but contributes the most to the GB
energy throughout the microstructural evolution, whereas the
elastic energy is initially zero and gradually increases to a steady
value. The interplay between the crystalline and elastic energy
leads to a monotonic decrease of the GB energy until the equilib-
rium is reached.
3.3. Geometric characteristics of GB dislocations

To identify the Burgers vectors of the ‘‘diffused” dislocations,
the displacement field is calculated according to Eq. (3) at
t = 100. The direction and magnitude of the displacement at each
field point is reflected by the white arrows in Fig. 4(a) with the
equilibrium dislocation structure of GB (Fig. 3(e)) shown as the
background. In general, the magnitude of displacement within
the unit cell is proportional to the distance between the field point



Fig. 3. Temporal evolution of crystalline energy (reflecting the temporal structure of GB dislocations) from t = 1 to t = 100 and the variations of energies (GB energy EGB, elastic
energy Eel and crystalline energy Ecryst) during this evolving process.
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and the origin. If we plot the displacement along OA and AB vectors

(corresponding to 1 2
�

1 0
h i

and 1
�

1
�

2 0
h i

, respectively), it can

be found that across the dislocation L1, the displacement
uOA ¼ �0:50;�0:28½ �a0, and across dislocation L2, the displacement
uAB ¼ 0;�0:58½ �a0, as shown in Fig. 4(b). This calculation indicates
that the Burgers vectors associated with L1 and L2 are

b1 ¼ 1
�

0 1 0
h i

=3 and b2 ¼ 1
�

1 0 0
h i

=3, respectively, which are

actually parallel to the dislocation lines of L1 and L2. Therefore,
both dislocations exhibit the character of pure screw. Similarly,
the Burgers vector of dislocation L3 can also be determined by cal-
culating the difference of the displacements between the centers of

adjacent triangular regions, which leads to b1 ¼ 0 1
�

1 0
h i

=3 and

thus confirms its screw character. Therefore, it is clear that for Mg
the dislocation network for pure twist (0 0 0 1)-GB is consisting of
pure screw dislocations with line direction and Burgers vectors
parallel to 1 1 0 0h i directions.

The areas surrounded by these dislocations (i.e., L1, L2 and L3)
are either the stacking fault (SF) or the perfect HCP structure
(non-slipped region), as has been schematically shown in Fig. 5
(a). Our calculation results are consistent with a previous atomistic
simulation [3]. On the other hand, the displacement between B and
O is also identified, uOB ¼ �0:50;�0:86½ �a0, corresponding to

1=3 1 1 2
�

0
D E

, which is also commonly observed Burgers vector

for twist (0 0 0 1)-GB. For example, Tochigi et al. [30] observed
pure screw dislocation network in the basal plane of a�Al2O3with
Fig. 4. (a) Displacement field and (b) variation of displacem

6

Burgers vectors being 1=3 1 1 2
�

0
D E

. Fig. 5(b) shows the mor-

phology of such dislocation network, with line direction indicated
by blue lines and Burgers vectors by black arrows. From the per-
spective of crystallography and similar to the idea of ‘‘O-lattice”
theory, non-slipped regions (indicated by O, O1, O2 and O3) are sep-
arated by dislocations located in the middle of adjacent O regions,
e.g., O-O1, O-O2 and O-O3. However, in the current study, the

1=3 1 1 2
�

0
D E

(bi in Fig. 5(b)) is not observed, which instead is

dissociated into two partial dislocations (bp
i ) due to the low stack-

ing fault energy (34 mJ/m2 according to the GSF data used in the
current work [29]), i.e.,

1=3 1 1 2
�

0
D E

! 1=3 0 1 1
�

0
D E

þ 1=3 1 0 1
�

0
D E

ð6Þ

The orientation and magnitude of the corresponding Burgers
vectors are shown in Fig. 5(c). Such dissociation allows for the

decomposition of screw dislocations along 1 1 2
�

0
D E

(indicated

by blue lines in Fig. 5(b)) and the formation of SF at the triple junc-
tions (indicated by yellow triangles in Fig. 5(b)).
3.4. Stress field of the GB dislocation network

The GB dislocations, whose structures have been calculated and
shown in Fig. 3(e), give rise to the GB energy as well as a long-
range stress field, which will affect the diffusion, precipitation
ent components along dislocation segments L1 and L2.



Fig. 5. Dissociation of basal dislocations: (a) three partial dislocations predicted by the current model, (b) illustration of the transformation in the basal dislocation networks
from the honeycomb structure into a triangular structure, (c) schematics of the dislocation reaction of every two ‘‘end to end” basal dislocations with bijj 1 1 2

�
0

D E
into

partial ones with bp
i jj 0 1 1

�
0

D E
.
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[10,11], and other processes associated with GBs. We use the
method discussed in Section 2.2 to calculate the resulting 3D stress
field based on the GB structure (Section 3.2) predicted by MPF,
which is similar to the calculation in Section 3.1 for a single screw
dislocation. The distributions of dislocation stress components are
shown in Fig. 6. By comparing the stress distribution in Fig. 6 with
the equilibrium configuration of dislocation work in Fig. 3(e), we
find that the stress concentration occurs along the dislocation seg-
ments or at the nodal points of the dislocation network for all
stress components. As has been studied in our previous work
[11,12], such stress field provides an extra driving force for the
subsequent nucleation of new phases and alters the microtexture
near dislocations and GBs. As for Mg alloys, the effect of stress
fields associated with basal dislocation networks on the formation
of novel structures of precipitates has also been investigated [10].
However, instead of superposing the stress fields of small and
straight dislocation segments using the linear elasticity theory
under the assumption of elastically isotropic medium, our calcula-
tion gives a more accurate description of the stress field, especially
that at the nodal point. In particular, the current method relies on
the GB dislocation networks predicted by MPF and thus contains
the possible nodal reactions and predicts a finite and smooth stress
Fig. 6. Three-dimensional stress field of (0 0 0 1
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variation across the dislocation cores. These features can be signif-
icant in the subsequent investigation of interaction between GBs
and other defects, which is believed to play a dominant role in
techniques based on grain boundary engineering [31,32]. In fact,
our analysis in Section 3.3 on the possible dislocation dissociation
reactions involved in the formation of GBs may imply a possible
route for manipulating Mg-alloy properties via grain boundary
engineering. Since the GSF energy is sensitive to the composition
of materials, we may also be able to control the GB structure and
hence the resulting stress field of Mg alloys by the addition of
alloying elements with different types and amount, which may in
turn affect the precipitation and segregation processes near GBs.
For example, our previous work has shown that during disloca-
tion/GB guided precipitation process in Ti- and Mg-alloys [10–
12], the dislocation type, line direction, as well as the configuration
of dislocation network will alter the nucleation sites and orienta-
tion of precipitates, thus leading to the formation of micro texture.
Moreover, our most recent work also shows that the Gd atoms tend
to segregate at the (0 0 0 1)-GBs in Mg-Gd alloy and form periodic
pattern at/near the GB dislocation network, which will be shown in
our future works.
)-GB dislocation networks (in unit of GPa).
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4. Conclusions

By establishing a general phase-field framework, we are able to
predict both the structures and micromechanical properties of
common crystalline defects such as a single dislocation (demon-
strated in aluminum) as well as dislocation networks of a grain
boundary (demonstrated in magnesium). The main findings
include:

(1) The stress field of a single dislocation with a finite-sized core
structure predicted by a microscopic phase-field model
agrees well with that obtained from analytical solutions out-
side the core region (with a radius of ~2b, where b is the
magnitude of Burgers vector), indicating a high precision
achieved by the current phase-field methodology in predict-
ing the structure of dislocations. Inside the core region, our
method predicts finite stress values with smooth variation,
suggesting its wider applicability than the classical analyti-
cal solution based on elasticity theory.

(2) In addition, the Burgers vectors associated with dislocations
are the output of the model rather than the input. Using the
predicted displacement fields of dislocations, phase-field
microelasticity can be directly used to calculate the stress
field of dislocations with arbitrary configurations, removing
the symmetry constraint imposed by the analytical solutions
due to elastic anisotropy.

(3) The twist (0 0 0 1)-GB in Mg consists of partial dislocations
of pure screw character with Burgers vectors of

bi¼1;2;3 ¼ 1 1
�

0 0
D E

=3, among which stacking faults are

formed. Full screw dislocations with

bi¼1;2;3 ¼ 1 1 2
�

0
D E

=3 are found unable to form due to the

high crystalline energy.

The current work presents a useful framework for calculating
the stress field and energy of dislocations and GBs using the ato-
mistic simulation data as the sole input, bridging the structural
description of crystal defects to the micromechanics of the defects.
The calculated stress field of these defects can be directly used in
mesoscopic analysis and simulations for investigating grain
boundary related phenomena such as grain boundary complexions
and guided precipitation.
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