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ABSTRACT: Phonons are fundamental to understanding the dynamical and thermal
properties of materials. However, first-principles phonon calculations are usually limited to
moderate-size systems due to their high computational requirements. We implemented the
finite displacement method (FDM) in the highly parallel real-space multigrid (RMG) suite of
codes to study phonon properties. RMG scales from desktops to clusters and supercomputers
containing thousands of nodes, fully supports graphics processing units (GPUs), including

multiple GPUs per node, and is very suitable for large-scale electronic structure calculations. It

is used as the core computational kernel to calculate the force constants matrix with FDM. By comparing with other widely used
density functional theory packages and experimental data from inelastic neutron scattering, we demonstrate that RMG is very
accurate in calculating forces at small displacements from equilibrium positions. The calculated phonon band structures and
vibrational spectra for a variety of different systems are in very good agreement with plane-wave-based density functional theory
codes, Quantum ESPRESSO, CASTEP and VASP, and these results have been validated comparing with inelastic neutron
scattering experimental data measured at the VISION spectrometer at the Spallation Neutron Source.

1. INTRODUCTION

Vibrational spectroscopy and phonon band structures play
central roles in studies of lattice dynamics and thermal
conductivity,' vibrational modes are routinely used as
fingerprints of chemical species and configuration of adsorbed
molecules in solids, etc. In the past few decades, several
different methods have been developed to perform phonon
calculations, and they have achieved significant success. Due to
the continuing development and implementation of theory for
phonon calculations within the framework of density func-
tional theory (DFT) as well as the fast development of high-
performance computers, researchers are now able to calculate
phonon band structures of many materials accurately, at an
affordable computational cost and in a reasonable time.
However, most procedures are only applicable to systems
with a moderate number of atoms, due to the O(N*) scalability
in the first-principles phonon calculations, where N is the
number of atoms in the system.

In phonon calculations within DFT, the most challenging
and time-consuming part is to build the force constant matrix
accurately. There are two common schemes to calculate the
force constant matrix. The linear response theory, also called
density functional perturbation theory (DFPT),>” is one of the
most popular methods. It provides an analytical formalism to
calculate the second derivatives of total energy with respect to
the atomic coordinates. The DFPT equations can be solved
iteratively” or variationally.” Both methods lead to the same
solution and have O(N*) scalability. The advantage of the
DFPT formalism is that the force constant matrix at a specific
wave vector can be obtained by calculations using only the
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primary unit cell. Therefore, this formalism is very efficient for
systems with a small primary unit cell. For a large system,
DFPT requires vast computational resources due to its
scalability and ineflicient parallelization.

Another scheme to calculate the force constant matrix is the
finite displacement method (FDM), in which the force
constant matrix is evaluated by numerically differentiating
the Hellmann—Feynman forces on atoms. We will discuss this
method in detail in Section 2. Although this method also scales
as O(N"), its natural parallelization over different displacement
configurations makes it suitable for large systems. Since the
force constants are calculated directly in real space, a supercell
is needed when the primary unit cell is so small that the effects
from periodic images cannot be neglected. Furthermore, the
force constant matrix is only exact at the wave vectors that are
commensurate with the supercell. In fact, the force constant
matrix at other wave vectors is an interpolation from those at
the commensurate wave vectors.” FDM is also straightforward
to employ in any DFT code that can calculate the forces
accurately. In this paper, we implement this method in our
real-space multigrid (RMG) suite of DFT codes.””” RMG uses
real-space meshes to represent the wave functions, the charge
density, and the ionic pseudopotentials. The real-space
formulation is advantageous for efficient parallelization via
domain decomposition because each processor can be assigned
a given region of space. The multigrid technique is used to
accelerate the convergence by attenuating errors on
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successively coarser grids, at which even long-wavelength
errors become oscillatory and, thus, are rapidly eliminated.
RMG implements both norm-conserving and ultrasoft
pseudopotentials.” RMG utilizes a mixed programming
mode, using a message passing interface (MPI) for
parallelization between nodes, while on-node parallelization
is handled via OpenMP and C++11 threads. For Nvidia
graphics processing unit (GPU) accelerators, Cuda-managed
memory is employed for data transfer between central
processing units and GPUs, while Cublas and Cusolver
libraries are extensively used for GPU acceleration. Due to
the extensive parallelization and excellent scaling, RMG is
particularly suitable for very large electronic structure
calculations and can handle several thousand atoms in a unit
cell.

To validate the accuracy of RMG for phonon calculations,
RMG results below are compared to those obtained using
traditional plane-wave-based DFT codes, Quantum ESPRES-
SO, VASP, and CASTEP. It is shown that all of the DFT codes
generate very similar results that compare equally well with
experimental data.

An open-source phonon package for pre- and post-
processing of FDM calculations, Phonopy,"” is used to prepare
the displacement configurations, extract the force constant
matrix, and calculate the phonon properties for all codes except
CASTEP.

Molecular dynamics (MD) can also be used to calculate the
vibrational spectrum. The phonon density of states is given by
the Fourier transform of the velocity—velocity autocorrelation
function'’

(@) = f 7 0(0)v()exp(—iwt)dt

(s8]

(1)

Since the harmonic approximation is not employed,
anharmonic effects are included in the classical molecular
dynamics limit. The phonon dispersion can also be obtained
from MD by evaluating the lattice Green’s function from
atomic displacements during the simulation.'' Recently, MD
was employed to study temperature effects on phonon spectra
by the temperature-dependent effective potential method
(TDEP).">" Similarly to the FDM, TDEP requires MD to
be performed in a supercell that is large enough to eliminate
periodic image effects. It uses fitting and symmetry analysis to
extract the force constant matrix and, optionally, anharmonic
higher-order terms in free-energy expansion, from MD data. A
disadvantage is that a long-time MD simulation is required to
obtain a converged vibrational spectrum. ALAMODE'" is an
open-source package that implements the TDEP method and
aims mainly at first-principles calculations for anharmonic
systems and evaluation of thermal properties.

Turning to the experiment, vibrational properties can be
obtained from diffuse X-ray scattering,"® infrared spectrosco-
py,16 Raman spectroscopy,17 and inelastic neutron scattering
(INS)."”"® In this paper, we compare the calculated results to
INS spectra'® measured by the VISION spectrometer at the
Spallation Neutron Source in the Oak Ridge National
Laboratory (ORNL). Compared with other spectroscopy
techniques, neutron scattering has advantages of wideband
coverage of full phonon spectra with no selection rules to obey
and the special capability of capturing hydrogen dynamics
because of the proton’s large cross-section for neutron
scattering. INS spectra measure the intensity variation with
energy and the momentum transfer between neutrons and
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phonons. The INS spectra usually focus on energy transfer.
The theoretical intensity spectra can be computed by the
OCLIMAX'??° software based on vibrational modes obtained
from the RMG or other codes.

2. METHODOLOGY

At a finite temperature, all atoms in a crystal or molecule
vibrate with small displacements around their equilibrium
positions. The system’s total energy can be Taylor-expanded in
terms of powers of the displacements. The linear term in the
Taylor expansion is zero, because at equilibrium, the first
derivatives of the total energy, i.e,, the forces, are zero on all of
the atoms. In the harmonic approximation, all of the powers of
displacements larger than two are neglected, and the total
energy can be written as

1 o
Etot(r) = Etot(rO) + E Z qﬁia,iﬂulaum
ia,jff

@)
where 4 is the displacement of atom i along the a direction,
i, is the second derivative of the total energy with respect to
atomic positions at equilibrium and is an element of the force
constant matrix. Eigenmodes of the dynamical matrix D,-W-/,(q)
can be determined by solving the equation

Z Dia,j[}(q)ejﬁ = 602((1)%
b ()
where @ is the frequencies and ¢, is the components of the
polarization vectors of phonons.

For a crystal with periodic boundary conditions, the
dynamical matrix can be represented in the reciprocal space

1

Z D, iR, p expliq(R + r, — r’-)]
R

Dia,j/}(q) = -
i

(4)

where q is the wave vector in the first Brillouin zone, R is the
lattice vector, and r; and r; are the atomic positions in the
primitive cell.

If the system is in a stable state under the harmonic
assumption, the force constant matrix is positive definite and
the eigenvalues a)j2 are positive. Eigenvalues with negative
frequencies usually indicate that the system has not attained
the state with the minimum energy, ie., the structure is
dynamically unstable, and could further indicate the possibility
of phase transition' or certain physical rules are not satisfied
due to numerical errors (e.g., the acoustic sum rule to be
discussed below), or even that the harmonic approximation is
not applicable, in which case the system can alternatively be
analyzed using the MD method.”'

Focusing on the FDM, we evaluate the interatomic force
constant by using the following formula

0°E

_ aFl/} _ P}/j(rla + uia) - F]/)’(rm - ui(l)
()ria()rjﬁ

or, 2u,

i ia

¢ia,;‘ﬂ =
(%)

where Fj; is the force on atom j along the § direction after a
small displacement u;, of atom i, which can be accurately and
easily calculated by the Hellmann—Feynman theorem as
shown in eq 6, where H is the Hamiltonian operator and y
is the wavefunction of H.
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Alternatively, one may directly calculate force constants from
the second derivative of the total energy, without calculating
forces explicitly. However, the energy-based method will
require more computational cost as it needs more displace-
ment configurations and higher accuracy in DFT calculations
(due to the second derivatives) than the force-based method in
eq S.

The advantage of the FDM can be clearly seen from the
above formula. Without a new algorithm, any DFT code can be
used to calculate the force constant matrix by evaluating the
forces at appropriate displacement configurations. In the real
space, the interatomic force constants decay quickly to zero
with distance. In our implementation, a force constant is set to
zero when the distance between two atoms is larger than the
cutoff radius R¢. R, thus, varies for different systems and also
depends on the desired accuracy. For a system with periodic
boundary conditions, the primitive unit cell may not be large
enough to calculate all of the non-negligible force constants
with a finite displacement configuration. In this case, one must
choose a supercell, which will contain the sphere described by
the cutoft radius.

For a system with a primitive unit cell containing N atoms,
we need to calculate forces in a supercell by perturbing each
atom in the primitive unit cell. For each atom, two
displacements are required to get accurate force constants. In
total, 6N different displacement configurations need to be
considered to extract the force constant matrix. The resulting
matrix in the real space has dimensions 3N X 3NM, where M is
the number of primitive unit cells in the supercell.

Symmetry operation can be used to reduce the number of
displacement configurations. If the atoms j, j transform to their
equivalent atoms is, js under a symmetry operation S, the force
constants between these two pairs of atoms satisfy the
following relation™”

0)

is,js

-1
=S5@,S (7)
Mathematically, the force constant matrix should satisfy two
rules. The first is the symmetry of the matrix

q>‘/i S

q)u, B = %

1

(8)

because the second derivative operators commute in eq 5. The
second is the acoustic sum rule (ASR)

2 (Dia,;'/} =0
ij

which is the result of translational invariance.

In calculations, the interatomic force constants are extracted
from total energy and force calculations with different atomic
displacements and are set to zero when the distance between
two atoms is larger than the cutoff radius R¢. Therefore, these
two rules are broken due to numerical errors. The symmetry
rule can be restored by averaging the off-diagonal elements.
The ASR can be imposed in three possible ways. The first one
is to subtract the corresponding fraction of the sum residuals
from the diagonal elements @, 5 only, the second one is to
adjust each nonzero element by the same amount, and the
third one is to adjust the nonzero elements proportionally to
their magnitudes. We will use the first option because it usually

)
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outperforms the other two options.”> When the ASR is
imposed, the symmetry rule may be broken again. Therefore,
we iteratively impose these two rules until both conditions are
satisfied.

From eq S, the most time-consuming parts of the FDM
phonon calculations are the self-consistent calculations for all
atomic displacement configurations. An interface code between
Phonopy and RMG has been developed. The workflow is as
follows. First, the atomic structure of the system is optimized
with RMG using the primary unit cell. Second, a supercell is
determined by the cutoff radius of the force constants.
Phonopy is used to set up the displacement configurations
by taking into consideration the crystal symmetry of the
system. Third, the forces on atoms at each displacement
configuration are calculated by RMG. Fourth, the force
constant matrix is constructed by Phonopy and self-
consistently adjusted to satisfy the two rules discussed above.
The phonon band structure and the vibrational spectrum are
then calculated. For Quantum ESPRESSO and VASP, the
interfaces to Phonopy already exist and have been used in the
same workflow.

A different way to extract the force constant matrix is by
performing long-enough MD simulations in NVT/NVE
ensembles. The displacement—force dataset from the MD
trajectories is used to extract the force constant matrix by the
open-source package ALAMODE. The anharmonic effects can
also be included if needed. We have also written an interface
between ALAMODE and RMG. The workflow is the same as
RMG-Phonopy’s in the first step. Then, a sufficiently large
supercell is built with the optimized structure and MD
simulations are performed by RMG in NVT/NVE ensembles.
The displacement—force dataset extracted from the MD
trajectories is used to fit the effective force constant matrix
(@, 3N x 3N) by ALAMODE via minimizing the sum of
differences between the fitted (F(m) = U(m)®, 1 X 3N) and
the real forces (F(m), 1 X 3N) for all displacement
configurations M,"* where U(m) (1 x 3N) is the vector
composed of the mth atomic displacements

M
D= i 1U(m)® — E(m)IP.
arg n(l;n Z (m) (m)

m=1

(10)

3. RESULTS AND DISCUSSION

Phonon calculations have been performed on four systems
with increasingly larger unit cell sizes: silicon (Si), zirconium-
(II) hydride (ZrH,), carbazole (C,HisN,), and zeolitic
imidazolate frameworks (ZIF)-8 (Cy¢H,50N,3Zn,,). Since the
force constants are calculated by finite displacements in our
implementation, highly accurate total energy and force
calculations need to be performed. To validate the accuracy
of the RMG, the calculated phonon band structures and/or
vibrational spectra are compared with the results obtained
using other DFT packages, such as Quantum ESPRESSO
(QE),** VASP,** and CASTEP.” Different from the RMG
method, in which the wave functions are represented on a real-
space grid, the other three packages use plane waves to
represent the wave functions. In the examples discussed below,
for all of the supercell calculations, the small displacements are
set to 0.01 A and only the [ point is used for Brillouin
sampling, because the supercell must be large enough to
eliminate the periodic image effect in the force constants.
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3.1. Silicon. Silicon crystallizes in the diamond structure
and has very high symmetry. Its primary unit cell has only two
atoms, and its physical properties are well known. Therefore,
silicon is a very good candidate to benchmark the accuracy of
phonon calculations with RMG. Here, we use a supercell
consisting of 2 X 2 X 2 cubic cells to perform the FDM
calculations. Figure 1 shows the phonon band structures

W - w @
(=] o (=] (=]

Frequency (meV)

L
o

—— QE-Phonopy
—— RMG-Phonopy

L r K X W L K w X

Figure 1. Phonon dispersions of crystalline silicon calculated by QE-
Phonopy (blue) and RMG-Phonopy (red). The results are nearly
identical, and the two curves fall on top of each other.

calculated with RMG-Phonopy and QE-Phonopy. The same
norm-conserving pseudopotentials were used for both RMG
and QE. The real-space grid spacing was 0.17 A, and the plane-
wave cutoff was 40.0 Ry. The perfect agreement between the
two sets of results shows that the real-space method (RMG)
performs as accurately as the plane-wave based method.

3.2. Zirconium(ll) Hydride. Zirconium alloys with hydro-
gen are of great interest to researchers for their promising
potential to store hydrogen atoms as well as their applications
in nuclear reactors and neutron scattering science.”®*’
Zirconium hydride has different crystalline phases depending
on hydrogen concentration. At a very low hydrogen
concentration, the most stable structure is the metallic phase
a-Zirconium with the hcp structure. As the hydrogen
concentration increases, its crystal structure transitions to the
face-centered cubic (§-Zr) and then the face-centered
tetragonal (&-Zr). Here, we focus on the high-concentration
&-Zr phase, ZrH,, which contains the most H. It has the body-
centered tetragonal (bct) structure with the space group of 14/
mmm and ¢/a = 1.2639.

The supercell for the displacement configurations contains 3
X 3 X 2 primary unit cells and 108 atoms. The valence electron
configuration of Zr was set to Ss4d.

Figure 2 shows the phonon band structures calculated by
RMG and QE, which are also in excellent agreement with each
other. The grid spacing of 0.111 A is used in RMG, and the
plane-wave cutoff of 80 Ry for wave functions is used in QE.

160
__lao
3
E 1206~ —— QE-Phonopy -
= 4o —— RMG-Phonopy ,,.
&
o
2
o
20
i
0z T X P r N

Figure 2. Phonon dispersions of ZrH, calculated by RMG-Phonopy
(red) and QE-Phonopy (blue).
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Figure 3 shows the calculated vibrational spectra compared
to the results of neutron scattering experiments performed with

—— RMG-Phonopy
—— VISION at SNS, ORNL

[

—— QE-Phonopy

% —— VISION at SNS, ORNL

RMG-ALAMODE
— VISION at S5N5, ORNL

o

Normalized Intensity
(=] —

=

o

"800

0 200 1000

400 600
Energy transfer(meV)
Figure 3. Vibrational spectra from RMG-Phonopy (red), QE-
Phonopy (blue), RMG-ALAMODE (cyan), and VISION’s exper-
imental data (black) at S K for ZrH,. Overtone peaks, which
correspond to multiple phonon scattering events, are generated by the
convolution of the DFT-calculated fundamental peaks by the
OCLIMAX software. The peaks below 200 meV are from one-
phonon scattering events, while those above 200 meV result from the
scattering of two or more phonons. Extra sharp peaks marked by black
arrows might be due to anharmonic effects.

VISION. The intensities from theory are normalized to the
experimental spectrum. The FDM results from RMG and QE
are very similar and agree equally well with the experimental
data. The calculated one-phonon scattering spectra around 150
meV are in good agreement with the experimental data, while
there are some discrepancies between the theory and
experiment when two or more phonons are emitted. For the
sharp peaks marked by arrows in the experimental data, the
significantly decreasing interpeak spacing strongly suggests
anharmonic effects. Kolesnikov et al. attributed it to bound-
state multiphonons.’® Since our current calculations are based
on the harmonic approximation, we are not able to include
anharmonicity in the multiphonon scattering spectrum.

The bottom panel in Figure 3 shows the phonon spectrum
computed from molecular dynamics using RMG and
ALAMODE. There is a slight improvement over the RMG-
Phonopy results, confirming that the extraction of force
constants from molecular dynamics is practical for these
systems. While thermal and anharmonic effects are quite small
for these materials, the RMG-ALAMODE procedure can also
be used for phases that would not be stable at 0 K and would,
thus, exhibit negative phonon modes if the FDM was used.

3.3. Carbazole. Carbazole is an aromatic heterocyclic
organic compound. It consists of two six-membered benzene
rings and one five-membered nitrogen-containing rin§.
Polycarbazole can potentially be used as a blue light emitter.”'
In crystalline carbazole, four carbazole molecules form an
orthorhombic structure with lattice constants of 5.725 X 7.772
X 19.182 A,

In our calculations, the atomic structure is optimized using a
Brillouin Zone sampling mesh of 3 X 3 X 1, which reduces to
four irreducible k-points. The maximum residual force is set to
be 0.05 mHa/Bohr so that the force constants can be
calculated accurately by FDM. The supercell for displacement
configurations includes 3 X 3 X 1 primitive unit cells with 792
atoms in total. The same norm-conserving pseudopotentials
with the Perdew—Burke—Ernzerhof (PBE) exchange-correla-
tion functional are used in QE and RMG, while projector-

DOI: 10.1021/acs.jctc.9b00802
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26,32 ) .
augmented waves**>> and norm-conserving pseudopotentials

are used in VASP and CASTEDP, respectively. The grid spacing
in RMG is 0.159 A, while the plane-wave cutoffs are 40 Ry, 800
eV, and 800 eV in QE, VASP, and CASTEP, respectively.

In Figure 4, we show normalized intensity comparisons
between different codes and VISION’s measurements. Overall,

— RMG-Phonopy.
— VISION at SNS, ORNL

N

[=)

E-Phonopy
— VISION at SNS, ORNL

N

o

— VASP-Phonopy
— VISION at SNS, ORNL

N

Normalized Intensity
o

N

o

75 100 125
Energy transfer(meV)

Figure 4. Normalized intensity comparisons between RMG-Phonopy
(red), QE-Phonopy (blue), VASP-Phonopy (green), CASTEP
(magenta), and experimental data (black) at S K for carbazole.

there is a good agreement between all of the different codes
and the experiment, although some discrepancies exist at
various energy ranges. At 35 meV, VASP and CASTEP show
one peak, while RMG and QE show two peaks with a small
splitting. At 55 meV, the results from RMG and QE agree well
with each other and also with VASP but have a few meV shift
compared to the results from CASTEP. These subtle
differences may result from different implementations used in
different codes, e.g., in filtering pseudopotentials, the numerical
approximations for the Laplacian and gradient operators, etc.

3.4. ZIF-8. Zeolitic imidazolate frameworks (ZIFs) are
metal—organic frameworks that are topologically isomorphic
with zeolites. They have wide-ranging applications in carbon
capture due to their robust porosity, resistance to thermal
changes, and chemical stability. Among all of the ZIFs, ZIF-8
CosH120N4sZn,, has been further investigated for applications
in supercapacitors and as a catalyst, e.g., to reduce CO,.”

The crystal structure of the ZIF-8 is a simple cubic with I-
43m space group symmetry. There are 276 atoms in the unit
cell. The lattice constant is 16.992 A and the I' point is
sufficient to sample the Brillouin Zone. For the scalar-
relativistic Zn pseudopotential, 3d and 4s electrons were
treated as valence. The PBE functional is used, and the forces
are converged until the maximum residual force is smaller than
0.1 mHa/Bohr. The RMG grid spacing was 0.132 A, and the
plane-wave cutoffs were 80 Ry.

In Figure 5, the vibrational spectra calculated by RMG and
QE are shown together with VISION’s experimental results.
The calculated spectra agree with each other very well except
for discrepancies at very low energies. The simulated results
are also in very good agreement with the experimental results.

4. SUMMARY AND CONCLUSIONS

In summary, we have shown that the open-source real-space
multigrid (RMG) suite of codes can provide accurate total
energies and forces that can be used to obtain phonon spectra
in very good agreement with plane-wave-based codes and
experiment. An interface to Phonopy open-source phonon
calculations package has been developed, which allows for easy
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Figure S. Comparisons of low-frequency vibrational intensities among
RMG-Phonopy (red), QE-Phonopy (blue), and experimental data
(black) at S K for ZIF-8.

calculation of vibrational properties of a large range of
materials using RMG as the DFT computational kernel. We
have also developed an RMG interface to the ALAMODE
software for extraction of force constants from ab initio
molecular dynamics via the temperature-dependent effective
potential method to facilitate extraction of vibrational proper-
ties at finite temperatures and for anharmonic crystals. Since
RMG is highly scalable on supercomputers and clusters and
also offers scalable GPU support, it can be used in the future
for very large-scale phonon calculations.
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