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Effects of Infrastructure Service Disruptions Following

Hurricane Irma: Multilevel Analysis of Postdisaster
Recovery Outcomes

Diana Mitsova'; Ann-Margaret Esnard?; Alka Sapat®; Alberto Lamadrid*;
Monica Escaleras®; and Catherine Velarde-Perez®

Abstract: Widespread power outages and related critical infrastructure disruptions after major storms can thwart household and community
recovery by limiting access to critical facilities and services. In this analysis, we examine the impact of infrastructure disruptions on the
individual, household, and community recovery using logistic regressions and multilevel mixed-effects models with a four-level hierarchical
structure: household, urban/rural, county, and region. Household-level recovery is assessed using responses from a cross sectional survey
(n = 988) collected through telephone landlines and an online platform in 29 Florida counties eight months after Hurricane Irma. We find that
the severity of the damage, number of days without electricity, insurance, and access to health services are significant predictors of household
recovery. At the county level, the percent of accounts served by rural and municipal cooperatives, as well as the percent of individuals with
disabilities, are statistically significant. The random intercepts for the region and the urban/rural divide are also statistically significant,
suggesting that the regional effects of disruptions play an important role in household recovery. The findings from this study provide insights
on the impact of infrastructure disruptions on household recovery and the importance of multilevel modeling, supporting the case for further,
more comprehensive interdisciplinary studies to reduce the power outage-related exposure of vulnerable populations. DOI: 10.1061/(ASCE)
NH.1527-6996.0000421. © 2020 American Society of Civil Engineers.

Introduction

Postdisaster recovery is complex, dynamic, multidimensional,
and occurs at multiple scales (i.e., individuals and households,
businesses, institutions, communities, and regions). In recent
years, emerging topics in postdisaster recovery increasingly focus
on the nexus between extreme events, dependency on critical in-
frastructures, and human and societal vulnerabilities to disrup-
tions of infrastructure services (Birkmann et al. 2016; Karakoc
et al. 2020). While there is a recognition that individual and
household recovery outcomes are indelibly linked to macroscale
processes that encompass social, economic, and infrastructure
resilience factors, as well as institutional arrangements and pol-
icies (Kapucu et al. 2010; Chandrasekhar et al. 2018; Gori
et al. 2020; Koliou and van de Lindt 2020), relatively few studies
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have focused on assessing the patterns of recovery across multiple
scales with a focus on infrastructure interdependencies.

Individual and household recovery are shaped by microlevel and
contextual or macrolevel factors but oftentimes these are consid-
ered independently. Empirical research tends to focus on explaining
individual- or household-level outcomes in terms of individual- or
household-level risk factors (Malmstrom et al. 1999; Diez-Roux
2000; Chakalian et al. 2019). Similarly, community-level and
regional analyses tend to rely on aggregate data with limited con-
sideration of individual or household-level recovery outcomes
(Diez-Roux 2000; Arcaya et al. 2018). Recent studies have high-
lighted the need for a multiscale-type of analyses noting that past
studies generally focused on unique dimensions of recovery (such
as housing, healthcare delivery, or psychosocial factors) at a par-
ticular scale (individual, household, or region) while ignoring
the interdependencies between impacts, vulnerabilities, assets,
capacities, and recovery outcomes across multiple levels (NRC
2006; Chandrasekhar et al. 2018). As noted in a report by the Na-
tional Research Council (NRC 2006, p. 151), “studies generally
focus on particular units of analysis and outcomes, such as house-
hold, business, economic, or community recovery, rather than
how these different aspects of recovery are interrelated.”

In this paper, we report on the effects of electric power disruptions
after Hurricane Irma (August 30-September 14, 2017) on short-term
household recovery using multilevel analysis that allows for the si-
multaneous examination of the associations between household and
macrolevel variables to elicit their independent and interdependent
effects on the individual and household recovery outcomes. More
specifically, we pool survey data with additional secondary source
datasets, including demographic characteristics, the average duration
of power outages at the county level, and type of electric service
providers to make inferences about the probability of household
recovery given household-level characteristics as well as local
and regional factors affecting recovery. Household-level data were
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collected using a survey population drawn from both random (via
telephone landlines) and nonrandom (via the Internet) sampling.
Contextual and macrolevel factors related to physical exposure to
hurricanes, demographic characteristics, type of electric service
providers, and aggregated counts of accounts without service were
added to the modeling framework with the notion that contextual
factors are relevant to and affect household recovery in ways that
are pertinent to understanding the underlying factors of the reported
recovery outcomes.

The paper begins with a brief literature overview followed by a
description of the rationale, methods, and results of the multilevel
analysis of recovery outcomes. The statistical analysis involves two
types of models: (1) bivariate logistic regression models based on
individual/household-level covariates only; and (2) multilevel
mixed-effects models with both individual/household-level and
macrolevel covariates. Appendix provides details on the statistical
methods used to combine probability (randomized) and nonprob-
ability (nonrandomized) survey samples used in the analysis.

Infrastructure Disruptions and Recovery

Prior research has shown that power outages can have cascading
impacts on numerous other critical infrastructures such as water,
communication, transportation, healthcare, and emergency man-
agement (Han et al. 2009; Hasan and Foliente 2015; FEMA 2017,
Zimmerman et al. 2017; Mitsova et al. 2018, 2019, 2020), which
can affect access to these critical infrastructures and related percep-
tions of recovery. Recent studies examining infrastructure disrup-
tions and risk disparities reveal that households with low
socioeconomic status, particularly among racial minority groups,
had a low zone of tolerance for power service disruptions (Mitsova
et al. 2018; Coleman et al. 2020). Coleman et al. (2020) highlighted
the link between the duration of the service disruptions caused by
Hurricane Harvey (August 17-September 2, 2017) in Harris
County, Texas (i.e., extent of exposure), and the residents’ ability
to withstand service disruptions (i.e., tolerance). Their findings sug-
gested that infrastructure service disruptions caused a significant
disparity in terms of hardship and coping capacity, particularly
among the most vulnerable segments of the population (Coleman
et al. 2020). Miles et al. (2016) quantified the multiplicative effects
of power outages on transportation, business continuity, communi-
cations, fuel availability, water and wastewater systems, backup
power generation, school closures, healthcare facilities, and evacu-
ation in the aftermath of Hurricane Isaac. In such circumstances,
homebound medically fragile and chronically ill high-risk individ-
uals are particularly vulnerable because of their reliance on power-
dependent durable medical equipment and inability to self-relocate
during a mass power outage (FEMA 2017).

The widespread devastation caused by the catastrophic hurri-
canes of 2017 and 2018 provided further evidence of the linkages
between infrastructure disruptions, short-term household recovery,
and the need to address impacts across multiple scales. Hurricane
Irma left millions of people from the Florida Keys to the Florida
Panhandle without electricity for several days. Hurricane Michael
(October 7-16, 2018) severely damaged over 700 structures in the
Mexico Beach area (Davis et al. 2019) while leaving thousands
without electricity for nearly a month. In Puerto Rico, Hurricane
Maria (September 16—October 2, 2017) severely damaged the al-
ready fragile infrastructure systems, causing widespread loss of
infrastructure services. Almost a month after the hurricane, 90%
of Puerto Rico’s 1.23 million households remained without power,
and half of them had no water or cell phone service (Roman 2018;
Zorrilla 2018). The lack of electrical service, communications,

© ASCE

04020055-2

water and fuel, remoteness of towns and villages, inaccessible roads,
and delays in federal response and aid coordination resulted in a
humanitarian crisis that lasted for months (Roman 2018; Zorrilla 2018).

In the critical days following the landfall of Hurricane Maria,
only 10% of the island’s major hospitals were operational as doc-
tors, patients, caregivers, and families were struggling to reconnect
(Zorrilla 2018). Kishore et al. (2018, p.162) quantified the death toll
in Puerto Rico after Hurricane Maria, noting that roughly one-third
of the excess deaths were due to “delayed or interrupted health care”
resulting from the disruptions of infrastructure services. Similarly, in
an analysis of Hurricane Irma-related mortality in Florida, Georgia,
and North Carolina, the Centers for Disease Control and Prevention
found that the most common circumstances-of-death were related to
power outages that contributed to the exacerbation of existing medi-
cal conditions, heat stress, and failure of oxygen-dependent thera-
pies for homebound patients (Issa et al. 2018).

Multilevel Analysis of Recovery

Within disaster recovery studies, significant attention has been given
to disparities based on income, race, gender, ethnicity, and age
as determinants of poor recovery outcomes at individual, household,
and community levels (Dash et al. 1997; Fothergill et al. 1999; Cutter
et al. 2001, 2003; Esnard et al. 2011). Research on individual and
household recovery from natural disasters have also centered on sta-
bilizing individual housing needs (Comerio 1998, 2017; Cutter et al.
2001; Wu and Lindell 2004), hazard adjustments (Lindell and Prater
2000, 2002; Peek et al. 2011), health-related effects, and access to
health and social services (Rhodes et al. 2010; Sutley et al. 2016;
Shin et al. 2017; CDC 2017). The Hazards and Vulnerability Re-
search Institute based at the University of South Carolina is a good
source for a broader list of population characteristics, socioeconomic
variables, and resilience indicators that influence the social burdens
of risk factors in urban and rural areas (HVRI 2020 website; Cutter
et al. 2016).

At the household level, traditional social and demographic vul-
nerability risk factors include female gender, housing tenancy,
minority racial status, educational attainment, poverty, and age
(Peacock and Girard 1997; Cutter et al. 2003; Laska and Morrow
2006; Cutter et al. 2010, 2016; Esnard et al. 2011; Peacock et al.
2012; Chakalian et al. 2019). Chakalian et al. (2019) examined the
social implications of power failures and household experiences
with infrastructure service provisions in the aftermath of Hurricane
Irma. The authors conducted semistructured interviews in two
counties in Florida and calculated the relative risk of poor recovery
outcomes as a function of the household socioeconomic and dem-
ographic characteristics and prolonged power failure. The authors
found that the household size, gender, race, and ethnicity were sig-
nificant predictors of relative risk associated with various types of
exposure resulting from electrical service interruptions (Chakalian
et al. 2019).

At the macro/regional level, recovery outcomes are shaped by a
number of interdependent processes. An example is the regional-
level restoration of infrastructure services, including electrical
power, transportation, water, wastewater, and communications.
Repair and restoration of critical infrastructure in a region can also
serve as indicators of community recovery (Rubin et al. 1985;
Chandrasekhar et al. 2018) and can affect the perceptions of indi-
vidual and household recovery. In their study of household recov-
ery after Hurricane Sandy (October 22-November 2, 2012),
Chandrasekhar et al. (2018) highlighted the linkages between
household and neighborhood recovery. The authors noted that re-
covery is a complex and interconnected phenomenon and that
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neighborhood and infrastructure restoration can be critical to
household recovery by helping households return to normalcy and
reestablish a sense of communality (p. 17). When the restoration of
infrastructure services occurs, it builds positive perceptions of
neighborhood vitality, as was found in a study of evacuees after
Hurricane Katrina (Henry 2013). Regional restoration and recovery
of infrastructure can encourage businesses to reopen, and this can
affect the return of households to the hardest hit areas (Xiao and
Van Zandt 2012).

Location in urban or rural areas is another important regional
consideration. Preliminary data from the Florida Public Service
Commission (2017) indicated that the rural Calhoun and Jackson
counties that did not experience a direct hit from Hurricane Michael
had longer power outages than the coastal counties located directly
on the path of the hurricane. Some of these findings could be ex-
plained by the differences between electricity providers by region.
In Florida, for example, three types of utility service providers serve
residential, commercial, and industrial sectors: investor-owned elec-
tric utilities, municipal electric utilities, and rural-electrical cooper-
atives (Florida Public Service Commission 2017). Mitsova et al.
(2018) found a strong relationship between the duration of exten-
ded power outages and electricity provision by cooperatives and
municipally-owned utilities.

In multilevel analysis, the variation in the dependent variable is
explained as a cross level interaction between individual-level co-
variates (microfactors) and contextual macrolevel factors (Diez-
Roux 2000; Congdon 2009; Owen et al. 2016). Congdon (2009)
used data from the 2005 Behavioral Risk Factor Surveillance Sys-
tem to estimate a prevalence model that considers person-level risk
factors and the effect of geographic disparities across states, re-
gions, and the rural/urban divide. Arcaya et al. (2018) examined
residential segregation in the United States using a random inter-
cept multilevel logistic regression model. The model effectively
predicted the proportion of nonwhite population accounting for
the variation in demographic composition across a nested hierarchi-
cal model structure including random intercepts for metropolitan
statistical areas, census tracts, and census block groups (Arcaya
et al. 2018, p. 1094). When data are systematically organized as
nested structures, multilevel models provide the necessary tools
to account for statistical dependency across each level of the cova-
riates (O’Dwyer and Parker 2014). Clusters or dependencies based on
both individual and contextual factors are included in the analytical
framework to model outcomes and test hypotheses about cross level
effects and interactions (Gelman 2006; O’Dwyer and Parker 2014).

Respondent and Household Characteristics

In this study, we consider both respondent and household-level data
(see also Chakalian et al. 2019). Respondent characteristics include
age, gender, race/ethnicity, and language while household charac-
teristics encompass housing tenure (rent or own), income, damage
to the place of residence, loss of infrastructure services, and home-
owner’s insurance. Respondent and household-level data were col-
lected using a survey, consisting of 30 questions divided into five
sections: (1) damage to structures and duration of infrastructure dis-
ruptions, (2) access to food, water, healthcare, prescriptions, and
transportation, (3) insurance coverage and disaster assistance,
(4) evacuation decisions, and (5) demographic and socioeconomic
characteristics. The survey was administered in 29 counties in cen-
tral and south Florida (Fig. 1).

The survey, conducted in both English and Spanish, was admin-
istered in May 2018 using random probabilistic sampling (landline
telephone users) and nonprobability sampling (online volunteers)
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to obtain respondents. The combined sample included 988 respond-
ents over the age of 18. The Zip Code Tabulation Areas (ZCTAs) of
residence were available for the reference (telephone) sample and
self-reported for the online sample, helping align individual and
household experiences with contextual and macrolevel factors.
The telephone survey was administered using automated telephone
interviewing (ATI) technology, which integrates automatic phone
systems and software that call individuals and conduct telephone
surveys. Telephone numbers were drawn randomly from a sample
of 100,000 Florida residents. The phone lists for ATI were supplied
by Aristotle International (2020). The ATI sample consisted of
n = 334 with a response rate of 8.9%. This response rate is not
uncommon as Pew Research Center reports that their response rates
for telephone (landline) surveys have declined dramatically over
time, from 37% in 1997 to 6% in 2018 (as cited in Valliant
et al. 2013). Valliant et al. (2013) highlight several methodological
approaches to using nonprobability sampling to supplement the
conventional probability sampling using phone surveys. In order
to have a representative sample and to reduce the problem of non-
response bias, we supplemented the telephone (landline) survey
with an online survey. The online sample was administered through
Survey Sampling International (SST) (2020) using a variety of dig-
ital sources such as online communities, social networks, emails,
in-app alerts, and websites. The online sample consisted of
n = 654, with a response rate of 27.5%. The approach to address
the methodological challenges of merging the two samples is dis-
cussed in the Appendix.

For the purposes of this study, we focus on recovery outcomes
that are defined as “the extent to which the recovery activities are
judged, either objectively or subjectively, as ‘complete’ or ‘success-
ful’” (NRC 2006, p. 148). The survey respondents were asked to
rate their overall recovery from Hurricane Irma eight months after
the storm’s landfall using the following categories: (1) completely
recovered; (2) mostly recovered; (3) somewhat recovered; (4) not
recovered at all; and (5) not affected by Hurricane Irma. The ordinal
categories were established under the assumption that there was a
natural ordering of recovery (low to high), but the distances be-
tween adjacent levels were unknown. Therefore, we collapsed
the outcome measure into a binary response variable to better
understand the effects of the predictors on the overall recovery pro-
cess. The cases in which the respondents said “they were not af-
fected by Hurricane Irma” were removed from further analysis.

The remaining responses were examined for completeness result-
ing in an adjusted count of n = 936 for the purposes of the statistical
modeling. The cases in which the survey respondents said they
“completely recovered” or “mostly recovered” were grouped in a
new category “recovered” and coded as 1. The cases in which
the respondents rated their overall recovery as “somewhat recovered”
or “not recovered at all” were grouped into a new category “not fully
recovered” and coded as 0. Further considerations in opting to use a
binary dependent variable included: (1) some dependent variables
levels by subpopulations had zero frequencies; and (2) in a propor-
tional odds model for ordered responses, the event being modeled
does not have an outcome in a single category (as in binomial or
multinomial model) but in any of the adjacent levels of the response
variable which, in this case, would confound the effects of the pre-
dictors on the outcome measure. See Table 1 for a list of the respond-
ent and household-level variables derived from survey questions.

Contextual Macrolevel Factors

In order to account for broader macrolevel factors, we used four
county-level variables: average duration of power outages, percent
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Fig. 1. Florida counties included in the study area together with hindcast of Hurricane Irma’s best track, wind swaths, and ADCIRC-generated
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Table 1. Selected survey questions, response frequencies, and percent by response category

Variable Question Response category Frequency Percent
Damage Did Hurricane Irma cause any Not at all 333 33.7
(n =988) damage to your place of residence? Minor damage (broken tree branches and debris) 357 36.1
Some damage (fallen trees, broken fences) 217 22.0
Severe damage (structural damage to the 81 8.2
roof or loss of business)
Power For how long did you lose Did not lose electricity 230 234
outage electricity? Less than a few hours 128 13.0
(n =982) 1 day or less 138 14.1
2-3 days 174 17.7
4-7 days 190 19.3
More than 7 days 122 12.4
Cell/Internet For how long did you lose cell Did not lose cell phone or Internet service 343 35.6
loss of service phone and Internet service? Less than a few hours 130 13.5
(n =964) 1 day or less 141 14.6
2-3 days 146 15.1
4-7 days 114 11.8
More than 7 days 90 9.3
Access to How much of a problem for you Not at all a problem 495 51.2
health care was getting access to health care A little problem 135 14.0
(n =967) services Somewhat of a problem 80 8.3
A big problem most of the time 84 8.7
I did not seek this type of service 173 17.9
Access to How much of a problem for you Not at all a problem 544 56.0
medications was getting medications A little problem 110 11.3
(n=972) Somewhat of a problem 77 7.9
A big problem most of the time 68 7.0
I did not seek this type of service 173 17.8
Recovery How would you rate your overall Completely recovered 609 61.6
(n = 988) recovery from Hurricane Irma? Mostly recovered 215 21.8
Somewhat recovered 89 9.0
Not recovered at all 53 5.4
I was not affected by Hurricane Irma 22 22

of accounts served by rural cooperatives and municipal providers,
hurricane return period, and percent of people with disabilities.
Table 2 describes the variables derived from secondary data sour-
ces. Florida’s residential, commercial, and industrial sectors are
served by three types of utility service providers: investor-owned
electric utilities, municipal electric utilities, and rural-electrical co-
operatives (Florida Public Service Commission 2017). The study
area also includes counties with high probabilities of hurricane
strikes. For the purposes of this analysis, we collected and proc-
essed hurricane strike data for the period 1851-2018 and calculated
the hurricane return period following the methodology reported in
Esnard et al. (2011).

Previous studies have shown that demographic, socioeco-
nomic, health, and disability status are important determinants
of hurricane vulnerability (Esnard et al. 2011; Chandrasekhar
et al. 2018). Additional data were collected at the county level
from the US Census Bureau: population, percent of individuals
below the federal poverty level, percent of county households
on the Supplemental Nutrition Assistance Program (SNAP), per-
cent of people with disabilities, percent of people 65 and over, and
unemployment rate. In a previous study, we found that the percent
of the population with a sensory, physical, and mental disability
was a highly statistically significant predictor of the effect of
power outages (Mitsova et al. 2018), and consequently, this var-
iable was considered for inclusion in the model. Additionally,
Florida zip code-level data for gender, age, race, ethnic group,
and educational attainment were obtained from the US Census
Bureau. These data were used to calculate the survey weights.
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Multilevel Modeling of Recovery Outcomes

Multilevel models are generalized regression models to predict an
outcome when the covariates are structured hierarchically (Witte
et al. 2000; Congdon 2009; O’Dwyer and Parker 2014; Weinmayr
et al. 2017; Evans et al. 2018). To predict the odds of household
recovery, we fitted two types of models: (1) bivariate logistic re-
gression models based on household-level covariates only; and
(2) multilevel mixed-effects models with both household-level
covariates and macrolevel covariates. All models were estimated
using STATA version 15 statistical software. We used bivariate
logistic regression models to predict the odds of recovery using
the independent variables derived from the survey responses to
the questions included in Table 1. The independent variables in-
clude the level of hurricane damage with four response categories
(from none to severe); duration of power outages (with five response
categories from less than an hour to more than seven days); disrup-
tions of Internet and cell phone service (with five response categories
similar to the previous category), and access to healthcare services
and medications (each with four response categories, respectively).
We considered a set of control variables, including age, gender, edu-
cational attainment, race, ethnicity, housing tenure, insurance cover-
age, and language spoken by the respondent. Several of the control
variables initially included in the regression analysis (e.g., gender,
educational attainment, and age) were omitted from the final models
since they were not found to be statistically significant predictors of
recovery when considering disruptions of infrastructure services.
When asked what helped the respondents the most to resume
their normal daily routines after Irma, the overwhelming majority
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Table 2. County and regional-level (geographic) variables

Variable/level

Description

Data source

Return period (county)

Average power outage

duration (in days) (county)

Percent of accounts served by

municipal/rural providers (county)

Wind swath (county)

Region

Urban/rural classification

Measure of exposure of county to hurricanes
(Categories 1-5 and tropical storms) and tropical
storms for 1851-2018.

Number of days of power outages recorded for each
county for period September 9-29, 2017.

Percent of customers served by rural and municipally
owned utility cooperatives for each county. See
FEMA (2017) for detailed descriptions of municipal
electric utilities and rural electric cooperatives.
Counties with centroids within areas affected by
hurricane-force wind swath coded as 1. Counties with
centroid within areas affected by tropical storm wind
swath coded as O (variable wind swath).

Regions were based on the Regional Planning
Councils’ jurisdictional boundaries and coded from 1
to 6. The area of interest included South Florida,
Southwest Florida, Treasure Coast, and parts of
Central Florida, East Central Florida, and Tampa Bay.
Urban/rural classification using CDC’s 2013 NCHS
six-level urban—rural classification scheme.
Classifications 1-4 coded as 1 (urban). Classifications

Hurricane strike data (1851-2017) was downloaded
from the Atlantic hurricane database (HURDAT?2).
The best track data for Hurricane Michael which
made landfall near Mexico Beach, Florida, in October
2018 was obtained from the Tropical Cyclone Report
(Beven et al. 2019)

Florida Division of Emergency Management
(originally downloaded December 2017)

Florida Division of Emergency Management
(originally downloaded December 2017)

National Hurricane Center GIS Archive

Florida Regional Planning Councils

CDC National Center for Health Statistics (NCHS)

5-6 coded as O (rural).

N
Probability sample | [Non-probability sample Hurricane return period
(telephone survey) (opt-in Internet survey) 1y county P
N=325 N=653 U
l Proportion of persons with
Propensity scores estimation l GG Sys 5

and matching (Appendix I)

Code for region

Adjusted* pooled

sample N = 936 zip codes of respondents

County code based on the

l Code for urban/rural

Logistic regression

f

county

Multilevel mixed-effects

Percent accounts served
—{ by rural and municipal
providers by county

Multilevel mixed-effects

linear model Average power outage
duration (in days)

by county

Individual-level fixed effects Random effects

Contextual macro-level fixed effects

Fig. 2. Analytical framework (*The sample size was adjusted by removing the cases in which the respondents said they “were not affected by

Hurricane Irma” and those that did not meet the criteria for completeness).

(66.7%, n = 936) identified power restoration as the most impor-
tant factor. Since restoring grid function after a major disruption
was identified by the respondents as a significant recovery factor,
we consider a linear mixed-effects model with a fixed predictor for
power restoration (based on survey responses) and randomly vary-
ing intercepts and slopes for county-level variables (Table 2), re-
gions, and the effect of the urban/rural divide. We held power
restoration as a fixed predictor while allowing the slopes for power
outage duration to vary across counties, regions, and the urban/rural
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continuum. Additionally, we estimated a multilevel probit regres-
sion with fixed household-level and contextual predictors and a
Bayesian multilevel mixed-effects probit model with Metropolis—
Hastings random-walk sampling. The models included county-
level covariates for hurricane return period, average power outage
duration, percent accounts served by rural electrical cooperatives
and municipal providers, and percent persons with a disability sta-
tus as contextual variables. Fig. 2 provides an overview of the ana-
lytical framework.
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Household-Level Effects

During Hurricane Irma, nearly half of the survey respondents did
lose electrical service. Among those who were affected by power
outages, 12.4% remained without electrical service for more than
seven days. Overall, 36.3% of the survey respondents did not have
a cell phone or Internet service for more than two days. Among
them, 9.3% were without cell phone service or the Internet for more
than seven days. Approximately 17.0% of the survey participants
reported difficulties with getting access to health care services. Ad-
ditionally, 14.9% said that they experienced difficulties obtaining
prescription medications. Among those affected by Hurricane Irma,
36.1% reported minor damages to their place of residence, 22.0%
had some damage, while 8.2% suffered severe damage. The respond-
ents were also asked to rate their overall recovery from Hurricane
Irma. Overall, 61.6% responded that they completely recovered,
and 21.8% said that they mostly recovered. Nearly 9% responded
that they somewhat recovered, while 5.4% said that they did not re-
cover at all.

Our survey sample consisted of both probability and nonprob-
ability samples. The literature suggests care should be exercised
when pooling two datasets derived from random and nonrandom
sampling (Valliant et al. 2013; Valliant and Dever 2018; Valliant
2019). To reduce the selection bias inherent to nonrandom samples,
we used propensity score estimation to match the respondents in the
nonprobability sample to those in the probability sample and ad-
justed survey weights. See Appendix for a related scholarship,
the methodological approach used, and the results of the propensity
scores estimation and matching.

Once the probability and nonprobability samples were merged,
we estimated three logistic regression models to predict the prob-
ability of full recovery considering the severity of damage as well
as the effects and duration of disrupted infrastructure services.
Table 3 shows the logistic regression coefficients, standard errors,
and odds ratios for each of the predictors. Levels of damage, num-
ber of days without electricity, insurance, and access to health serv-
ices were found to be significant predictors of household recovery.
All three models indicated that “severe damage” significantly de-
creased the odds of recovery (‘“some damage” was found to be stat-
istically significant at & = 0.05 in Model 3 only). In contrast, there
is no statistically significant association between “minor damage”
and postdisaster recovery. The odds ratios for power duration in-
dicated that when holding all other variables constant, households
that experienced more prolonged power outages were less likely to
recover in the short-run (e.g., within a few months after a major
hurricane strike). Power outage duration of more than two days was
found to be statistically significant in both Model 1 and Model 2.
The results indicated that the magnitude of the negative effect in-
creased as the duration of the power interruption increased. There
was a highly statistically significant association (p-value = 0.001)
between postdisaster recovery and power outages of more than
three days (specifically, as it refers to categories four to seven days
and more than seven days). A similar association was observed for
loss of cell phone and Internet service (p-value < 0.1). The dummy
variable for power restoration was found to be a significant predic-
tor of recovery in all three models with the greatest observed effect
in Model 2, which included access to prescriptions as one of the
predictor variables.

The results also showed evidence that there was a statistically
significant association between postdisaster recovery and the abil-
ity to access healthcare services. We found a strong statistically
significant association between full recovery and concerns for
access to medications (Model 2). Additionally, our findings indi-
cated that there was a statistically significant association between
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recovery and low to medium income range. The association was not
found to be statistically significant for the higher-level income
brackets. According to the survey results, renting decreased the
odds of full recovery while having homeowners’ insurance in-
creased the likelihood of recovery.

Among the control variables, race was found to be a strong pre-
dictor of a decreased likelihood of recovery. In particular, being
Black/African American decreased the odds of a full recovery in
the months following Hurricane Irma almost by half compared
to the reference group of White/Caucasian. There was no evidence
of a statistically significant association between recovery and being
Hispanic or Latino. However, for those who opted to take the sur-
vey in Spanish, the odds of a full recovery were significantly lower.
These seemingly contradictory findings could be explained by the
fact that in South and Central Florida, ethnic differentials may not
necessarily convey socioeconomic disadvantage. Conversely, lin-
guistic competence is often correlated with issues of educational
attainment as a proxy for earnings as well as “health literacy”
(Congdon 2009, p. 7). We found a strong negative statistically sig-
nificant association (Kendall’s tau-c = —4.012; p-value < 0.001)
between preferred language and educational attainment.

Fixed and Random Effects across Scales

The effects of the geographic context were modeled at the county
and regional levels as well as along the urban/rural divide. We esti-
mated three mixed-effects linear models (Models 4-6) with a fixed
predictor for power restoration and randomly varying intercepts
and slopes for power outage duration using recovery as the depen-
dent variable (whereas 1 denotes recovered and 0 denotes not fully
recovered). We found a highly statistically significant fixed effect
for power restoration in all three models. The variance estimates for
the residuals for the dependent variable (recovery) indicated that
they were significantly different from zero across the three models.
The level variables for the random effects equation included
the urban/rural divide (Model 4), region (Model 5), and county
(Model 6). Model 4 and Model 5 included a power outage of more
than three days (as reported by the survey respondents) as a fixed
predictor for the random effects’ equation, whereas in Model 6, the
predictor variable was average power outage by county. By setting
power outage duration as the predictor variable for the random ef-
fects’ equation, we allowed the slope for that variable to vary across
the specified levels. The varying slopes for the power outage du-
rations (as reported by the respondents) were highly statistically
significant (p-value < 0.001). The slope for the average power out-
age by county was statistically significant at the 90% significance
level. These results suggested that the power outage differentials at
a finer scale (e.g., household) might not follow the patterns revealed
at an aggregate (county) level. The variance estimates for the inter-
cept and slope provided evidence that the random effects across the
level variables (urban/rural divide, region, and county), although
small in magnitude, were statistically significant (Table 4). The larg-
est observed effect was found along the urban/rural divide, followed
by region.

Furthermore, we estimate a mixed-effect probit model and a
Bayesian multilevel probit regression model with Metropolis—
Hastings (MH) random-walk sampling, both of which include both
survey responses and contextual variables (Table 5). County-level
contextual variables consist of the hurricane return period, percent
of people with disabilities, percent accounts served by rural elec-
trical cooperatives and municipal providers, and average duration
of power outages. The results, shown in Table 5, indicate that at
the household level, the estimated parameters for the multilevel
probit regression (Model 7) are similar to those found in the logistic
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Table 3. Results from the logistic regression models

Model 1 Model 2 Model 3
Coefficient Coefficient Coefficient
Predictor variables (standard error) Odds ratio (standard error) Odds ratio (standard error) Odds ratio
Damage (no damage®)
Minor damage —0.146 0.864 —0.212 0.809 —0.422 0.656
(0.446) (0.454) 0.419)
Some damage —0.712 0.491 —0.761 0.467 —1.117%* 0.327
(0.497) (0.511) (0.469)
Severe damage —2.817%*% 0.060 —2. 747 *** 0.064 —2.976%** 0.051
(0.519) (0.526) (0.511)
Power outage duration (did not lose electricity®)
Less than few hours —0.574 0.563 —0.616 0.540 — —
(0.656) (0.685)
1 day or less —1.272%* 0.280 —1.279%* 0.278 — —
(0.596) (0.582)
2-3 days —1.750%* 0.174 —1.761 %% 0.172 — —
(0.579) (0.569)
4-7 days —2.260%* 0.104 —0.254 %% 0.105 — —
(0.619) (0.608)
More than 7 days —2.255% %% 0.105 —2.300%*%* 0.100 — —
0.621) (0.600)
Loss of cell/Internet service (did not lose service®)
Less than a few hours — — — — —0.321 0.725
(0.464)
1 day or less — — — — 0.038 1.039
(0.565)
2-3 days — — — — —0.393 0.675
(0.476)
4-7 days — — — — —0.736%* 0.479
(0.420)
More than 7 days — — — — —0.812% 0.444
(0.482)
Problem getting healthcare (not a problem at all*)
Minor problem —0.108 0.898 — — —0.315 0.730
(0.465) (0.420)
Somewhat of a problem —1.013** 0.363 — — —1.083%* 0.338
(0.459) 0.517)
Serious problem —1.672%** 0.188 — — —1.624%** 0.197
(0.482) (0.468)
Did not seek assistance —0.267 0.766 — — —0.443 0.642
(0.410) (0.395)
Problem getting medications (not a problem at all*)
Minor problem — — —0.597 0.550 — —
(0.403)
Somewhat of a problem — — —0.767 0.465 — —
(0.562)
Serious problem — — —2.102%%%* 0.122 — —
(0.533)
Did not seek assistance — — 0.146 1.157 — —
(0.388)
Power restoration 1.079%%* 2.943 1.112%** 3.039 0.725%%* 2.065
(0.340) (0.347) (0.300)
Race/ethnicity (White®)
Black/African American —0.657%* 0.518 —0.771%* 0.462 —0.572%* 0.565
(0.338) (0.326) (0.325)
Hispanic/Latino —0.450 0.638 —0.471 0.624 —0.403 0.668
(0.344) (0.354) (0.334)
Other 0.657 1.929 0.566 1.762 0.728 2.072
(0.775) (0.828) (0.706)
Income ($0-$25,999%)
$26,000-$49,999 0.752%* 2.122 0.645 1.905 0.836%* 2.307
(0.394) (0.428) 0.417)
$50,000-$99,999 1.036%* 2.819 0.904%* 2.468 1.05 1% 2.861
(0.408) 0.411) (0.386)
© ASCE 04020055-8 Nat. Hazards Rev.
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Table 3. (Continued.)

Model 1 Model 2 Model 3
Coefficient Coefficient Coefficient
Predictor variables (standard error) Odds ratio (standard error) QOdds ratio (standard error) Odds ratio
$100,000-$149,999 0.738 2.091 0.660 1.935 0.912 2.488
(0.626) (0.615) (0.590)
More than $150,000 0.117 1.125 0.120 1.128 0.132 1.141
(0.502) (0.485) (0.488)
Housing tenure (own?)
Rent —0.683** 0.505 —0.809%* 0.445 —0.611* 0.543
(0.349) (0.369) (0.344)
Homeowners’ insurance 0.565* 1.759 0.572% 1.772 0.631* 1.879
(0.354) (0.367) (0.337)
Language (English®)
Spanish —0.995%* 0.370 —1.010%** 0.364 —0.898** 0.407
(0.331) (0.341) (0.366)
Constant 3.950%:#* 51.927 4.115%:** 61.226 2.99 ] %3k 19911
(0.650) (0.646) (0.643)
Number of observations — 936 — 936 — 936
Wald chi-square — 141.520 — 143.550 — 127.020
p-value — 0.000 — 0.000 — 0.000
Log-likelihood — —245.872 — —244.988 — —260.306
Pseudo R2 — 0.311 — 0.313 — 0.270
Note: *p < 0.1; **p < 0.05; and ***p < 0.01.
“Reference category.
Table 4. Fixed and random effects linear models®
Model 4 coefficient Model 5 coefficient Model 6 coefficient
Fixed effects (standard error) (standard error) (standard error)
Power restoration 0.125%3%%* 0.116%** 0.075%**
(0.023) (0.023) (0.023)
Constant (intercept) 0.956%%*%* 0.944%%* 0.826%%*
(0.024) (0.024) (0.019)
Random-effect® parameters
var (more than 3 days without electricity) 0.161%#%%* 0.019* 0.030*
(0.017) (0.013) (0.023)
var (intercept) 0.131%%* 0.098**#%* 0.023%#%*
(0.041) (0.013) (0.002)
var (residuals) 0.133%#%%* 0.102%%* 0.108%%*
(0.045) (0.005) (0.005)
Model parameters
Wald chi-square 29.710 25.250 10.840
Log-likelihood —260.302 —269.093 —286.952
Prob > chi-square 0.000 0.000 0.000

Note: *p < 0.1; **p < 0.05; and ***p < 0.01.
“In all models the dependent variable is a binary variable for recovery.

®Assuming independent variance-covariance structure of the random effects.

regression analysis (Table 5) except for the Hispanic/Latino ethnic
group for which we found a statistically significant negative asso-
ciation with the odds of recovery. Among the county-level varia-
bles, there was a statistically significant association between
recovery and two of the contextual predictors: percent accounts
served by rural electrical cooperatives and municipal providers
(p < 0.05) and percent of people with disabilities (p < 0.10). The
association between self-reported recovery status and the hurricane
return period (which is used as a proxy for previous experience with
major natural disasters) was not found to be statistically significant.
Similarly, the association between the duration of the average
power outage at the county level and recovery was not statistically

significant. The results suggested that aggregate measures (such as
the average number of days without power at a county level) did
reflect experiences with power outages at a household or individual
level, which were found to be highly statistically significant, espe-
cially for longer durations.

Table 5 shows the posterior means, standard deviations (STDs),
Monte Carlo standard errors (MCSE), medians, and posterior
means of the odds ratios [Exp(f)] for the fixed effect parameters
of the Bayesian multilevel probit regression (Model 8). The accep-
tance rate of 0.427 for the Bayesian model falls within the 0.2-0.5
interval, which is typical for the random-walk MH algorithm. The
maximum efficiency of 19.3% indicates that autocorrelation is
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relatively low. Fig. 3 displays the trace, autocorrelation, and density
plots for the random intercepts for the region [UUO: Region] and
the urban—rural divide [UUO: Urban_Rural]. The trace plots for
both parameters demonstrate proper mixing. The autocorrelation
becomes negligible fairly quickly, and the density plots indicate a
close match between the analytical and sampling posterior distribu-
tions, indicating that there are no immediate convergence problems.

The estimated posterior means for severe damage, power outage
durations, power restoration, and access to health care in Model 8
were found to be closer to the probit regression estimates (Model 7)
but lower than the logistic regression estimates (Models 1 and 2).
However, the standard errors (MCSE) in the Bayesian model were
much smaller than those in the logistic regression and probit regres-
sion models. The results from the bootstrapping using an MCMC
sample size of 10,000 indicated that the magnitude of the negative
effect of power outages increased with duration. Those who expe-
rienced difficulties with access to health care services were, on
average, 2.5 times (1/0.401) less likely to recover within the study
period. The most significant variable among the county-level var-
iables was the percent of people with disabilities. The county-level
fixed effect showed that the posterior odds exp(/3) for a full recov-
ery are about six times (1/0.164) lower for areas with a higher per-
centage of people with disabilities.

Summary and Conclusions

In disaster studies, both individual and contextual factors are likely
to be relevant in explaining variations in recovery outcomes. It is
important to understand household-to-household variation as well
as group-to-group or community-to-community variation simulta-
neously to fine-tune decision-making and recommend appropriate
policies. A multilevel analysis provides a tool to overcome the lim-
itations inherent to approaches focusing on a particular level of
analysis and can play a key role in decision-making for a number
of reasons: (1) pooling relevant information from multiple levels of
data at various scales; (2) providing an analytical framework to
evaluate and draw inferences about multiple experiences, expo-
sures, stressors, and outcomes; and (3) developing a method to
characterize the extent to which microlevel versus mesolevel and
macrolevel processes drive the overall variability in recovery out-
comes. A multilevel analysis offers an analytical framework that
allows researchers to account for the multiplicity of outcomes con-
sidering both scale and perspective. As noted in NRC (2006,
p. 149), “[a] community may be considered ‘recovered’ on the ba-
sis of objective social or economic indicators, while constituent

social units may not be faring as well, in either objective or sub-
jective terms.” In such cases, conventional approaches would draw
either household-level or broad macroscale inferences but overlook
the interaction that exists between these levels.

This study contributes to scholarship on the multilevel modeling
of household vulnerability to disaster impacts by examining the
relationship between disruptions of infrastructure services and
household recovery outcomes. Specifically, we used mixed-effect
multilevel models to estimate variation in recovery outcomes con-
sidering contextual influences modeled as county, region, and
urban/rural effects. Household-level recovery outcomes were as-
sessed using responses from a cross sectional survey that included
both probability and nonprobability samples. The samples were
combined based on propensity score estimation and adjustment
of sampling weights (Appendix). The methodology contributes
to the scholarship on the application of methodological solutions
used to pool probability and nonprobability samples. We fitted a
logistic regression using the survey responses as independent var-
iables and the overall rating of recovery as the dependent variable.
The severity of the damage, number of days without electricity, in-
surance, and access to health services were found to be significant
predictors of household recovery. At the county level, percent ac-
counts served by rural and municipal cooperatives, as well as the
percent of people with disabilities, were found to be statistically
significant. The random intercepts for regions and urban/rural areas
were also statistically significant, suggesting that the regional ef-
fects of disruptions play an important role in household recovery.

In this study, we refer to multilevel analysis as a statistical ap-
proach that requires data structure groupings to unveil patterns at
multiple levels of analysis simultaneously (Malmstrom et al. 1999;
Congdon 2009; Weinmayr et al. 2017; Evans et al. 2018). The ap-
proach certainly has limitations. As with any statistical method, it
does not provide an explanation of causal relationships, which can
only come from broad-based theories and further empirical testing
(Diez-Roux 2000). We also acknowledge limitations related to in-
ferences from cross sectional survey data. Future research could
consider longitudinal analyses to develop measures of the rate
of change in individual and household recovery outcomes over time
as they relate to the effects of the evolving contextual factors. An-
other limitation stems from the relatively low response rate (8.9%)
of our reference sample based on telephone landlines. As noted by
Blumberg and Luke (2016), the number of households with tele-
phone landlines has decreased dramatically over the past 10 years,
especially among younger adults. Among those 65 and over, only
about 25% live with wireless-only service (Blumberg and Luke
2016). In order to reduce the problem of nonresponse bias and

Table 5. Estimated parameters for the multilevel probit regression (Model 7) and the Bayesian multilevel probit regression with random-walk Metropolis—

Hastings sampling (Model 8)

Model 7 Model 8
Predictor variables Coefficient Posterior  Posterior Posterior
(person-level) (standard error) 4 P> |z mean STD MCSE  median Exp(B)
Damage (no damage®)
Minor damage —0.073 —0.45 0.656 —0.059 0.202 0.010  —0.060 0.943
(0.163) — — — — — — —
Some damage —0.700%**  —3.25 0.001 —0.748 0.195 0.011 —0.743 0.473
(0.216) — — — — — — —
Severe damage —1.595%**  —6.28 0.000 —1.670 0.229 0.011 —1.664 0.188
(0.254) — — — — — — —
Power outage duration (did not lose electricity®)
Less than few hours —-0.210 —0.79 0.430 —0.262 0.324 0.017 —0.271 0.770
(0.266) — — — — — — —
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Table 5. (Continued.)

Model 7 Model 8
Predictor variables Coefticient Posterior  Posterior Posterior
(person-level) (standard error) zZ P> |z mean STD MCSE  median Exp(B)
1 day or less —0.723%%* —2.26 0.024 —0.768 0.284 0.020  —0.765 0.464
(0.319) — — — — — — —
2-3 days —0.814%%* —2.48 0.013 —0.856 0.265 0.017 —0.854 0.425
(0.328) — — — — — — —
4-7 days —1.073***  —5.88 0.000 —1.141 0.265 0.019 —1.136 0.319
(0.183) — — — — — — —
More than 7 days —1.289%**  —473 0.000 —1.339 0.276 0.019 —1.337 0.262
(0.273) — — — — — — —
Problem getting healthcare (not a problem at all*)
Minor problem —0.189 —1.120  0.261 —0.159 0.208 0.007 —0.159 0.853
(0.168) — — — — — — —
Somewhat of a problem —0.666%**  —3260  0.001 —0.684 0.218 0.007 —0.681 0.505
(0.204) — — — — — — —
Serious problem —0.889#**  —3.960  0.000 —0.914 0.229 0.008 —0.907 0.401
(0.224) — — — — — — —
Did not seek assistance —0.067 —0.330  0.741 —0.042 0.190 0.007 —0.041 0.959
(0.203) — — — — — — —
Power restoration 0.432%%% 3.810  0.000 0.485 0.143 0.006 0.486 1.624
(0.113) — — — — — — —
Race/ethnicity (White®)
Black/African American —0.345%* —2.300  0.021 —0.285 0.181 0.006 —0.284 0.752
(0.150) — — — — — — —
Hispanic/Latino —0.299%%* —2.710  0.007 —0.248 0.158 0.005 —0.251 0.780
(0.110) — — — — — — —
Other 0.378 1.460  0.144 0.410 0.368 0.009 0.400 1.507
(0.259) — — — — — — —
Income ($0-$25,999%)
$26,000-$49,999 0.509%%* 2.550  0.011 0.528 0.187 0.007 0.527 1.696
(0.200) — — — — — — —
$50,000-$99,999 0.537%%** 3.220  0.001 0.490 0.190 0.008 0.485 1.632
(0.167)** — — — — — — —
$100,000-$149,999 0.577 2.620  0.009 0.559 0.267 0.009 0.556 1.749
(0.220) — — — — — — —
More than $150,000 0.067 0.380  0.704 0.027 0.256 0.008 0.032 1.027
0.177) — — — — — — —
Housing tenure (own®) Rent —0.302%* —2.290  0.022 0.123 0.147 0.007 0.124 1.131
(0.132) — — — — — — —
Language (English®)
Spanish —0.632%**%  —4.930  0.000 —0.629 0.151 0.006 —0.629 0.533
(0.128) — — — — — — —
Predictor variables (county level)
Return period 0.001 0.360  0.717 0.052 0.008 0.000 0.045 1.053
(0.003) — — — — — — —
Percent persons with disability —0.077* —1.780  0.075 —3.576 1.530 0.447 —3.488 0.164
(0.026) — — — — — — —
Percent accounts served by municipal/rural providers —0.079%* —2.260  0.024 —0.011 0.004 0.001 —0.011 0.689
(0.003) — — — — — — —
Average power outage duration by county (days) 0.048 1.520  0.128 —1.213 0.733 0.185 —1.340 0.297
(0.031) — — — — — — —
Constant 1.589%%* 3.340  0.001 1.312 0.680 0.162 1.267 3.714
(0.475) — — — — — — —
Model parameters
Number of observations — — — 936 — — — 936
MCMC iterations —_ — — —_ —_ —_ —_ 12,500
Log-likelihood — — — 237112 — — — —432.571
DIC — — — — — — — 535.129
Acceptance rate — — — — — — — 0.427
Efficiency (max) — — — — — — — 0.193
Wald chi-square — — —  4,950.10 — — — —
Prob > chi-square — — — 0.000 — — — —

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation. MCMC = Markov chain Monte carlo;

criterion. *p < 0.1; **p < 0.05; and ***p < 0.01.
“Reference category.
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Fig. 3. Trace plots, histograms, and autocorrelation and density plots for the random intercepts for (a) the urban/rural divide; and (b) region.

obtain a representative sample given these discrepancies, we sup-
plemented the telephone (landline) survey with an online survey. A
discussion of the methodological considerations related to merging
the two samples can be found in Appendix.

Overall, adopting a multiscale approach addresses the need for a
broader perspective that will engage novel ways of thinking that
lead “to more holistic understanding of the multifaceted dynamics
of household recovery” (Chandrasekhar et al. 2018, p. 2). The find-
ings from this study provide insights on the impact of infrastructure
disruptions on household recovery, making a case for more com-
prehensive interdisciplinary studies to reduce power outage-related

© ASCE

04020055-12

exposure of vulnerable populations. The results indicate that certain
subpopulations, including Black/African Americans, those who
have limited English-speaking ability, or those who need timely
uninterrupted medical care are more at risk of a protracted partial
recovery. The findings draw attention to issues of equity in restor-
ing infrastructure services and the need for reassessment of infra-
structure asset lifecycle and investment in vulnerable communities
to increase their resilience to future disasters. As Coleman et al.
(2020, p. 12) point out, there needs to be “a paradigm shift” from
a policy perspective that will allow us to see the physical vulner-
abilities of infrastructure systems through the lenses of their
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Table 6. Parameters of the propensity score model and matching methods

Variables Coefficient (95% confidence interval)
Gender 0.3297%%* 0.149 0.508
— (0.091) — —
Age —0.834%** —0.950 —0.718
— (0.059) — —
Race/ethnicity —0.194%* —0.293 —0.095
— (0.051) — —
Constant 2.730%%* 2.200 3.260
— 0.271) — —
Number of respondents — — — — — 936
Number of respondents in the nonprobabilistic sample — 611
Number of respondents in the reference sample — — — 325
LR chi-square — — — — — 256.750
Prob > chi-square — — — — — 0.000
Log-likelihood — — — — — —476.007
Pseudo R2 — — — — — 0.212
Region of common support (min/max) — — — — 0.195 0.991
Estimated propensity scores
Mean 0.652 Median 50% 0.690
STD 0.234 Percentiles 1% 0.195 75% 0.872
Variance 0.055 5% 0.298 90% 0.936
Skewness —0.256 10% 0.319 95% 0.976
Kurtosis 1.777 25% 0.443 99% 0.991
Matching methods Treated cases in the Matched cases in the — ATT t Standard error
non-prob sample reference sample
Nearest nighbor 611 321 — 0.015 0.338 0.044
Radius matching 611 323 — 0.018 0.663 0.027
Kernel matching 611 323 — —0.001 —0.037 0.029
Stratification matching 611 323 — —0.009 —-0.275 0.031

Note: *p < 0.1; **p < 0.05; and ***p < 0.01. ATT = average treatment effect for the treated.

socioeconomic implications. This new paradigm calls for a systems
design approach that is multidisciplinary and problem-solving in
nature and takes into account technical and organizational as well
as economic, social, and public health needs across multiple scales.

Appendix. Propensity Scores Estimation to Pool
Probability and Nonprobability Samples

We used propensity score estimation to combine the random sam-
ple of respondents with the sample of volunteers by estimating
pseudoinclusion probabilities for the participants in the nonprob-
ability sample (DiSogra et al. 2011; Valliant et al. 2013; Valliant
and Dever 2018; Robbins et al. 2019). The probability sample
was weighted by gender, age, educational attainment, race, and eth-
nic group to reflect the distribution of the population in the study
area. The weights for the nonprobabilistic sample were estimated
using the approach proposed by Valliant et al. (2013), Valliant and
Dever (2018), and Valliant (2019). When controlling for propen-
sities, matched samples of volunteers and nonvolunteers will have
almost identical covariate distributions that fundamentally recon-
figure an observational study into a quasi-randomized block experi-
ment (DiSogra et al. 2011; Valliant et al. 2013; Kim and Steiner
2016; Valliant and Dever 2018; Robbins et al. 2019). In order
to estimate the propensity scores, we coded the respondents in
the reference sample as 0 and the respondents in the online sample
as 1 (Valliant and Dever 2018, p. 117). Two assumptions need to be
considered when applying the proposed methodology. First, both
the reference and volunteer surveys must include the same cova-
riates (Valliant and Dever 2018, p. 116). Second, we must have
nonzero selection probabilities, also known as “common support”
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(Valliant and Dever 2018, p. 118). Given that both requirements
were satisfied, we fitted a binary logistic regression using the mode
of data collection as the response variable while controlling for a set
of covariates on which the two samples would be matched. In this
study, gender, age, race, and ethnicity were used as covariates for
the propensity score matching. Four matching methods were con-
sidered, including nearest-neighbor, radius, kernel, and stratifica-
tion matching. For all the matched cases, the sampling weights
assigned to the cases of the reference sample were assigned to the
matching cases in the nonprobability sample.

We conducted a series of diagnostic tests to understand whether
there were statistically significant differences in the mean response
of the two groups (i.e., the random telephone sample and the opt-in
Internet sample) using recovery as the dependent variable. In these
models, the mode of conducting the survey served as a dummy
independent variable (where the nonprobability sample using an
opt-in Internet survey is coded as 1, and the reference sample using
a telephone survey is coded as 0). These models are practically
equivalent to a two-sample t-test for unpaired data to determine
if the null hypothesis HO: p; = u, holds. The p-value of 0.186
suggested that the two groups were similar in terms of their re-
ported recovery outcomes (no evidence was found to reject the null
hypothesis). In the next step, we estimated a propensity score
matching model (Table 6) with common support. In this model,
the dependent variable was a binary variable for a mode of data
collection where the nonprobability sample is coded as 1 and the
reference sample is coded as 0. The propensity scores were estimated
using a probit regression model with an LR chi-square of 256.75
(p-value < 0.001) and a log-likelihood of —476.007. The small
p-value associated with the LR test led us to reject the null hypoth-
esis that at least one of the regression coefficients included in the
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model was equal to zero. The model results indicated a region of
common support between 0.195 and 0.991. Table 6 provides a sum-
mary of the estimated propensity scores by percentile. The estimated
propensity scores facilitated the process of matching the records in
the probability sample with the records in the nonprobability sample.
Overall, 611 records in the nonprobability sample were matched to
321 records in the probability sample using the nearest-neighbor
method. The same number of nonprobability records were matched
to 323 cases in the reference sample using the radius, kernel, and
stratification matching methods. After the two samples were
matched, the survey weights computed from the census data for
the reference sample were assigned to the cases in the nonprob-
ability sample using the estimated propensity scores. The weights
were calibrated to the survey population counts.
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