Topological Quantum Many-Body Scars in Quantum Dimer Models on the Kagome Lattice
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We present a class of quantum dimer models on the kagome lattice with full translational invariance that fea-
ture a quantum many-body scar state of analytically known entanglement properties within their spectra. Using
exact diagonalization on lattices of up to 60 sites, we show that non-scar states conform to the eigenstate ther-
malization hypothesis. Specifically, we show that energies are distributed according to the Gaussian ensemble
expected of their respective symmetry sector, illustrate the existence of the scar from bipartite entanglement
properties, and demonstrate revival phenomena in studies of fidelity dynamics.

Properties of strongly interacting quantum systems away
from equilibrium are attracting a lot of attention in contempo-
rary condensed matter theory. Progress in experiments [1-5]
now allows for the preparation and study of quantum many-
body systems that are well isolated from the environment,
thereby giving access to non-equilibrium phenomena. One
such phenomenon is given by the so-called quantum-many
body scar states that were recently identified to be responsi-
ble for the unusual dynamics unexpectedly observed in one-
dimensional Rydberg atom systems [1, 6-8].

Progress concerning theoretical studies poses an interesting
and challenging task since the widely employed statistical me-
chanics tools fail to capture and describe relevant properties in
out-of-equilibrium systems, e.g., the concept of the eigenstate
thermalization hypothesis (ETH) breaks down. The ETH [9-
13] postulates that generic closed quantum many-body sys-
tems exhibit ergodicity. Nowadays it is widely known that
there are several important exceptions to this paradigm includ-
ing but not limited to strong ergodicity breaking many-body
localized states [14—16] and weak ergodicity breaking quan-
tum many-body states [6—8, 17-24], where only a finite num-
ber of eigenstates, the scar states, break ergodicity while the
majority of states respects the ETH.

In this Letter, we focus on the latter case. Multiple possi-
ble scenarios are being investigated in the current literature.
Progress has predominantly been made in one-dimensional
systems such as the celebrated PXP-model [6-8, 19-21, 24—
27] realized in the Rydberg atoms experiment [1]. Further
advances were made by analytically constructing scar eigen-
states [17, 18] in Affleck-Kennedy-Lieb-Tasaki (AKLT) spin
chains [28] and in the fractional quantum Hall thin-torus limit
[27]. Recently a few 2D systems have come under investiga-
tion [22, 23, 29]. The literature currently offers several pos-
sible scenarios with respect to the mechanism giving rise to
the quantum scars phenomenon, ranging from proximity to
integrability [20], “embedded” SU(2) dynamics [19, 30] and
magnon condensation [24]. At present, there seems to be a
scarcity of models on two-dimensional lattices with transla-
tional invariance and isolated quantum many-body scars that
are numerically well-documented in terms of level statistics,
entanglement entropy, and equilibration dynamics. Indeed,
numerical studies are often limited by the size of the configu-

ration space involved, particularly so in higher dimensions. In
the present work, we examine a simple strategy to introduce
an analytically known scar state given any class of frustration
free Hamiltonians, of which there are many examples in the
literature. Given this, we focus on quantum dimer models for
their relatively moderate (though still exponential) scaling be-
tween system size and Hilbert space dimension. Though gen-
eralization is straightforward, we will focus on the kagome
lattice, which unites several advantages in this context: Favor-
able Hilbert space size scaling (2(1attice sites)/3) " analytically
accessible entanglement properties of the scar state, and a
large number of natural parameters per unit cell [31]. We also
note that dimer-related models in the kagome geometry have
recently been argued to offer an attractive route to the experi-
mental realization of exotic physics [32].

Our main results are as follows: (i) Following a gen-
eral strategy, we construct a class of quantum dimer models
on the kagome lattice containing quantum many-body scar
states in their spectrum that provably violate the ETH, having
sub-volume entanglement. (ii) Making use of the favorable
Hilbert-space scaling of kagome dimer models, we numeri-
cally demonstrate that the remaining states in the spectrum
thermalize by analyzing their level statistics and entanglement
entropy. We further study fidelity dynamics, demonstrating
the presence of scar states in the spectrum and their effects on
thermalization.

Quantum dimer models. — Rokhsar and Kivelson intro-
duced quantum dimer models (QDMs) [33] for the sake of
capturing the essential topological features of the short-ranged
variety of Anderson’s resonating valence bond states in a
model that is tractable. Originally designed to advance the
understanding of high-temperature superconductors, quantum
dimer models have played an increasing role in describing
new and unusual emergent phenomena in many-body systems
[34-38]. This includes, in particular, studies on many-body
localization in constrained systems [16]. We now proceed by
summarizing some key features of the quantum dimer model
on the kagome lattice introduced by Misguich et al. [36], be-
fore introducing a variant of this model that displays quantum
many-body scars in its spectrum.

The QDM is defined on a Hilbert space of distinct orthonor-
mal states that represent the allowed hard-core dimer cover-



ings of the lattice such that each site participates in exactly
one dimer between nearest neighbors. The Hamiltonian is
then defined by local matrix elements between dimer states,
where we distinguish “potential” terms, V', that are diagonal
in the dimer basis and associate an interaction energy with var-
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Magenta bonds indicate occupancy by dimers. In the above,
we sum over all 12-site star plaquettes of the lattice. All ki-
netic terms execute “resonance moves’”’ along one of 32 loops
contained within the star, such that occupied links alternate
along the loop, and the move changes the occupancy along
the loop (cf. Table I). It is easy to see that each dimer cover-
ing results in precisely one such move being possible per star
[36]. The potential terms associate an energy with the associ-
ated loop.

For toroidal topology, i.e., periodic boundary conditions
(PBCs), dimer configurations can be classified according to
winding numbers W, and W,,. Dimer configurations with dif-
ferent winding numbers are thought of as belonging to differ-
ent topological sectors and cannot be connected by local res-
onance moves of dimers. To determine the winding number
Wz (Wy) one considers a horizontal (vertical) line around the
torus which intersects the links. W, (W,)) is then the parity of
the number of dimers intersected.

The special choice t; = ... =3 =V = ... = V32 >0
is an instance of a Rokhsar-Kivelson (RK) point. Here, the
ground state is the equal amplitude superposition of all ad-
missable dimer coverings
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where, for PBCs the sum may be restricted to one topological
sector, thus leading to a four-fold ground state degeneracy. On
the kagome lattice, this RK-point lies in the interior of a Zo
topological phase [36, 39, 40] and is fully integrable [36], ow-
ing to the fact that the sums of the operators in (1) associated
to any given star will commute for different stars. Further-
more, for the kagome lattice, the entanglement entropy of the
states (2) can be analytically calculated and shown to display
area law entanglement entropy [41].

The scar kagome dimer model. — The goal of this Letter is
to design a system made of dimer degrees of freedom on the
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ious local arrangements of dimers, and “kinetic” terms, ¢, that
facilitate a local rearrangement of a small number of dimers.
This Letter solely focuses on the kagome lattice where all lo-
cal interactions take place within twelve-site star-shaped cells,
Table L.

Graphically, the Hamiltonian is presented as:
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kagome lattice that admits quantum many-body scar states in
its spectrum. We begin by observing that the states (2) are
annihilated by the Hamiltonian (1) not only at the special in-
tegrable point t; = V; = 1, but whenever ¢; = V;. This is
so because each local term associated with ¢t; = V; annihi-
lates Eq. (2). Moving away from the integrable point while
preserving t; = V; destroys the integrability (all eigenstates
except Eq. (2) will not be known analytically), but preserves
the fact that Eq. (2) is an exact zero energy mode. For posi-
tive t; = V;, all associated local operators thus have a common
ground state in Eq. (2). This is then also the ground state of
H, the latter being the sum of these local operators. It is then
common to call H a frustration free Hamiltonian.
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TABLE I. A list of all eight possible type loops surrounding the cen-
tral hexagon within a star-shaped cell, up to rotational symmetry. In-
cluding all possible rotations of each type, there are 32 distinct loops.
Each dimerization realizes exactly one of these 32 loops, where the
links of the loop alternate between occupied and unoccupied, yield-
ing two possible realizations via dimers for each loop. The hexagons
shown in Fig. 1(a) are surrounded by loops of the types shown in the
last column.



FIG. 1. (a) A possible dimer covering and the analogous arrow rep-
resentation first introduced by Zeng and Elser [42]: The number of
incoming arrows at each triangle must be even (0 or 2), and dimers
are associated to links between two incoming arrows. (b) Labeling
convention for the links of the 12-site star-shaped cells of the kagome
lattice. The 12-site kagome star consists of a total of 18 links. We
label each link by a number [ such that its angle bisector from the
midpoint of the hexagon makes the angle ¢, = wl/12 (I “skips”
multiples of 4) with the x-axis, as shown.

The following strategy is expected to work generally for
frustration free Hamiltonians (though not always while pre-
serving all symmetries): We introduce t; = V; = «;, and
choose the «; different and nor all of the same sign. Eq. (2)
is still a zero mode of the resulting Hamiltonian, but it is not
a ground state, but rather a state somewhere in the middle of
the spectrum. We establish that this state is a true quantum
many-body scar by observing the following properties. First,
the state itself satisfies area-law entanglement, despite being
highly excited. This is usually inferred from the fact that it is
the ground state of some local Hamiltonian, and it is analyti-
cally provable for the kagome lattice state (2) considered here
[41] . We further show numerically that the surrounding states
in the energy spectrum behave “generically”, i.e., have much
larger entanglement entropy (expected to be volume law in the
thermodynamic limit), and satisfy the expected level statistics
appropriate to the respective symmetry sector they lie in. This
in particular means that the Hamiltonian is not “special” in the
sense of integrability.

Explicitly, we introduce a scar dimer model Hamiltonian as
follows

HSC“’”:ZiaE(lDw |De)) ((Del — (De) - (3

w (=1

The sums in (3) go over all 12-site kagome stars and over
all 32 loop coverings. D, and D, represent the dimeriza-
tions associated with loop £. We could easily follow the strat-
egy described above while preserving all lattice symmetries.
However, the level statistics we are interested in make sense
only within symmetry sectors, as there is no level repulsion
rule between different sectors. To avoid an over-abundance of
symmetry sectors, we preserve only translational symmetry
by choosing
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FIG. 2. (a) Distribution of energy levels for the time-reversal invari-
ant zero-momentum, (W, W,) = (0, 0) topological sector, which
contains a scar state (2). The inset shows the 60-site kagome lattice
(with unit cell shaded) used in the calculation. An unfolding tech-
nique using 4378 groups containing 12 energies each has been used
for binning the data (cf., e.g., Ref. [43]). The resulting data closely
resemble a GOE distribution (solid curve), indicating that almost all
states thermalize. (b) The von Neumann entanglement entropy for
all states within the zero momentum sector of topological winding
numbers (0, 0) for a 48 site kagome lattice, bi-partitioned into two
24-site “ribbons” (inset). The scar state has S*N = 7 and is marked
by a blue star. Thermalizing eigenstates of similar energy are well
separated and have S*M ~ 10. (c) Overlap O(t) = |{$(0)|#(¢)}| for
a special initial configuration |¢™*°™") (see (d)), both for the original
Hamiltonian and deformations parametrized by - (see text). Pro-
nounced recurrence phenomena are observed, clearly distinct from
a typical initial configuration (|¢*™*™), shown in blue), where the
overlap decays rapidly. (d) The special, non-thermalizing initial con-
figuration |¢"°*"} along with the typical, thermalizing state |¢™*"™)
discussed in (c). Other non-thermalizing initial configuration are re-
lated to the one shown here by lattice symmetries.

which simulates the influence of a substrate with 5-fold rota-
tional symmetry. Here, [ refers to the link labels defined in
the caption of Fig. 1 along with the associated angles ¢;. We
choose C' = —0.05 to make dimer-loops with inversion sym-
metry contribute, and § = 0.1 to render the mirror axes of the
“substrate” different from those of the lattice.

Level statistics. — While the scar state of the model and its
properties are analytically under control, we proceed by nu-
merically investigating the genericity of its other levels. We
focus on (translational) symmetry sectors with time reversal
symmetry, which contain the scar state. Fig 2(a) shows the
distribution of energy eigenvalues for a 60 site kagome lat-
tice with PBCs, within the zero-momentum sector that has
the scar state located roughly in the middle of the spectrum
(see Fig 2(b)). Here, we work within the (W, W) = (0, 0)
topological sector and use an unfolding technique to bin the
data (cf., e.g., [43]). One observes that the distribution is
well described by the Gaussian orthogonal ensemble (GOE),
as expected for generic real matrices. This can be quanti-



fied further as follows [44, 45]. Introducing level spacings
sn = E, — E,_1, one defines quantities r,, = 8,/S$p_1
and 7, = min(r,,1/r,). With this, we find the average of
the quantities 7, over all symmetry-inequivalent time-reversal
invariant momentum sectors within the (W, W,) = (0,0)
topological sector to be (7) = 0.5333. This is quite close
to the exact value of 7gog = 0.5359 [12], and markedly dif-
ferent from the corresponding value 7poisson = 0.3863 [44] for
the Poisson distribution. The average r,, value tends to require
larger samples owing to the possibility of small denominators,
but at (r) = 1.7626 is likewise very close to the exact value
of rgop = 1.7781. Had we at least retained inversion sym-
metry, all symmetry sectors would be described by real ma-
trices, and one would expect to find similar values in all sec-
tors. However, inversion being absent, there are time-reversal
non-invariant momentum sectors in this model, not contain-
ing the scar state (2), which, for sufficiently generic models,
can be expected to be described by the Gaussian unitary en-
semble. To test this, we carried out the analogous analysis for
these sectors, finding 7 = 0.5996 and » = 1.3709, again very
close to the exact values 7gyg = 0.60266 and rgug = 1.3607.
These findings lend strong support to the hypothesis that the
majority of the high energy states in the spectrum of Hamilto-
nian (3) are ergodic, i.e., they thermalize.

Entanglement entropy. — To complement the above find-
ings, we calculate bipartite entanglement entropy for all states
of the scar-containing symmetry sector (fixing also the topo-
logical sector) for a 48 site kagome lattice with PBCs. By their
definition, quantum many-body scar states belong to the bulk
of the spectrum while simultaneously violating the ETH, i.e.,
they fail to thermalize and display low (sub-volume) entan-
glement behavior. In contrast, generic high-energy states do
thermalize and exhibit a volume-dependent entanglement be-
havior. We find that this contrast is starkly displayed already
on the 48 site lattice, which we cut into two 24 site ribbons
wrapping around the torus (Fig. 2(b), inset). For simplicity,
in doing so we regard the arrows of the Zeng-Elser represen-
tation of permissible dimerizations of the kagome lattice as
the physical local degrees of freedom (Fig. 1(b)). For the rib-
bon described, whose boundary passes eight unit cells on each
side, and in the presence of the topological sector constraint,
one may show that the (base 2) von Neumann entanglement
entropy, SN = — 37 » Wlogy w, where the sum goes over the
eigenvalues w of the reduced density matrix, equals 7. Here,
the sum goes over the eigenvalues of the local density matrix
of the ribbon. Fig. 2(b) clearly shows that the scar state (blue
star) is isolated from the rest of the spectrum (purple dots)
in terms of its much lower entanglement as compared to sur-
rounding bulk energy eigenstates. This establishes the state
(2) as a bona fide quantum many-body scar.

Additional scars and fidelity dynamics. — Multiple fea-
tures in Fig. 2(b) suggest the presence of additional scars in
the spectrum that, while less removed from the continuum
of eigenstates than Eq. (2), are nonetheless distinct in their
entanglement properties. We test this hypothesis by study-
ing fidelity dynamics. Fig. 2(c) shows the overlap O(t) =
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[{#(0)|¢(t))] for different initial states |¢(0)) and their time
evolved counterparts, |¢(t)). All initial states are chosen to be
simple product states of dimers. While for most such initial
configurations, the overlap O(t) rapidly decays to zero (the
“thermalizing” state |¢*™) in Fig.2(d)), some special ini-
tial states show remarkable recurrence oscillations. This is,
in particular, true for the initial configuration |$**“"") shown
in Fig.2(d) and configurations related to that by lattice sym-
metries (even though the latter are not symmetries of H°*").
It is clear that the scar state (2) cannot by itself be responsi-
ble for the observed oscillations of |¢"""): Being the equal
amplitude superposition of all dimer basis states, it does not
render any particular basis states special. Moreover, the oscil-
lations displayed by the special initial states require multiple
isolated eigenstates at different energies to have exceptional
overlaps with these initial states. The observed phenomenol-
ogy is indeed highly consistent with the presence of multiple
scars [6, 7, 24, 29, 46-48]. Moreover, we find that it is sta-
ble toward small perturbations that remove the existence of
an RK-eigenstate: To this end, we increase the V;-terms (as
defined in Eq. (1)) of Eq. (3) by a fraction ~ relative to the
t;-terms: As shown in Fig. 2(c), the recurrence phenomena
and associated oscillations easily survive an increase by 20%.

Conclusion. — We investigated a general approach to turn-
ing classes of frustration free lattice Hamiltonians into ones
containing isolated quantum many-body scars in their spec-
trum while retaining most or all symmetries. In addition, the
introduction of disorder is straightforward, as is the general-
ization to other lattices. We applied this strategy to a two-
dimensional quantum dimer model on the kagome lattice, re-
taining full translational symmetry. We demonstrated that
this model contains an exactly known quantum many-body
scar with analytically accessible entanglement properties. We
established that the remainder of the eigenstates and energy
spectrum exhibit no “fine-tuned” behavior. Specifically, for
a 60-site kagome lattice, we showed that bulk energies con-
form to the Gaussian ensembles expected for their respective
symmetry sectors, and we calculated von Neumann entangle-
ment entropies for all states within the scar-sector of a 48 site
kagome lattice, exposing the scar’s isolated character. Due to
their quality of being numerically manageable on fairly large-
size lattices, quantum dimer models of the type considered
here should become a fertile playground for investigations of
this kind. Indeed, the existence of revival phenomena stable
toward generic perturbations suggests that the large parame-
ter space of the class of models given here will prove fruit-
ful for further studies of equilibration processes in 2D lattice
models. Lastly, the original, frustration-free quantum dimer
model stabilizes a Z5 topological phase. This lends a topo-
logical character to our scar states. It will be of interest to
contrast this with the universality class of the ground state of
our model, which is currently unknown. We are hopeful that
these observations will stipulate further investigation.
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