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We present a class of quantum dimer models on the kagome lattice with full translational invariance that fea-

ture a quantum many-body scar state of analytically known entanglement properties within their spectra. Using

exact diagonalization on lattices of up to 60 sites, we show that non-scar states conform to the eigenstate ther-

malization hypothesis. Specifically, we show that energies are distributed according to the Gaussian ensemble

expected of their respective symmetry sector, illustrate the existence of the scar from bipartite entanglement

properties, and demonstrate revival phenomena in studies of fidelity dynamics.

Properties of strongly interacting quantum systems away

from equilibrium are attracting a lot of attention in contempo-

rary condensed matter theory. Progress in experiments [1–5]

now allows for the preparation and study of quantum many-

body systems that are well isolated from the environment,

thereby giving access to non-equilibrium phenomena. One

such phenomenon is given by the so-called quantum-many

body scar states that were recently identified to be responsi-

ble for the unusual dynamics unexpectedly observed in one-

dimensional Rydberg atom systems [1, 6–8].

Progress concerning theoretical studies poses an interesting

and challenging task since the widely employed statistical me-

chanics tools fail to capture and describe relevant properties in

out-of-equilibrium systems, e.g., the concept of the eigenstate

thermalization hypothesis (ETH) breaks down. The ETH [9–

13] postulates that generic closed quantum many-body sys-

tems exhibit ergodicity. Nowadays it is widely known that

there are several important exceptions to this paradigm includ-

ing but not limited to strong ergodicity breaking many-body

localized states [14–16] and weak ergodicity breaking quan-

tum many-body states [6–8, 17–24], where only a finite num-

ber of eigenstates, the scar states, break ergodicity while the

majority of states respects the ETH.

In this Letter, we focus on the latter case. Multiple possi-

ble scenarios are being investigated in the current literature.

Progress has predominantly been made in one-dimensional

systems such as the celebrated PXP-model [6–8, 19–21, 24–

27] realized in the Rydberg atoms experiment [1]. Further

advances were made by analytically constructing scar eigen-

states [17, 18] in Affleck-Kennedy-Lieb-Tasaki (AKLT) spin

chains [28] and in the fractional quantum Hall thin-torus limit

[27]. Recently a few 2D systems have come under investiga-

tion [22, 23, 29]. The literature currently offers several pos-

sible scenarios with respect to the mechanism giving rise to

the quantum scars phenomenon, ranging from proximity to

integrability [20], “embedded” SU(2) dynamics [19, 30] and

magnon condensation [24]. At present, there seems to be a

scarcity of models on two-dimensional lattices with transla-

tional invariance and isolated quantum many-body scars that

are numerically well-documented in terms of level statistics,

entanglement entropy, and equilibration dynamics. Indeed,

numerical studies are often limited by the size of the configu-

ration space involved, particularly so in higher dimensions. In

the present work, we examine a simple strategy to introduce

an analytically known scar state given any class of frustration

free Hamiltonians, of which there are many examples in the

literature. Given this, we focus on quantum dimer models for

their relatively moderate (though still exponential) scaling be-

tween system size and Hilbert space dimension. Though gen-

eralization is straightforward, we will focus on the kagome

lattice, which unites several advantages in this context: Favor-

able Hilbert space size scaling (2(lattice sites)/3), analytically

accessible entanglement properties of the scar state, and a

large number of natural parameters per unit cell [31]. We also

note that dimer-related models in the kagome geometry have

recently been argued to offer an attractive route to the experi-

mental realization of exotic physics [32].

Our main results are as follows: (i) Following a gen-

eral strategy, we construct a class of quantum dimer models

on the kagome lattice containing quantum many-body scar

states in their spectrum that provably violate the ETH, having

sub-volume entanglement. (ii) Making use of the favorable

Hilbert-space scaling of kagome dimer models, we numeri-

cally demonstrate that the remaining states in the spectrum

thermalize by analyzing their level statistics and entanglement

entropy. We further study fidelity dynamics, demonstrating

the presence of scar states in the spectrum and their effects on

thermalization.

Quantum dimer models. — Rokhsar and Kivelson intro-

duced quantum dimer models (QDMs) [33] for the sake of

capturing the essential topological features of the short-ranged

variety of Anderson’s resonating valence bond states in a

model that is tractable. Originally designed to advance the

understanding of high-temperature superconductors, quantum

dimer models have played an increasing role in describing

new and unusual emergent phenomena in many-body systems

[34–38]. This includes, in particular, studies on many-body

localization in constrained systems [16]. We now proceed by

summarizing some key features of the quantum dimer model

on the kagome lattice introduced by Misguich et al. [36], be-

fore introducing a variant of this model that displays quantum

many-body scars in its spectrum.

The QDM is defined on a Hilbert space of distinct orthonor-

mal states that represent the allowed hard-core dimer cover-
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ings of the lattice such that each site participates in exactly

one dimer between nearest neighbors. The Hamiltonian is

then defined by local matrix elements between dimer states,

where we distinguish “potential” terms, V , that are diagonal

in the dimer basis and associate an interaction energy with var-

ious local arrangements of dimers, and “kinetic” terms, t, that

facilitate a local rearrangement of a small number of dimers.

This Letter solely focuses on the kagome lattice where all lo-

cal interactions take place within twelve-site star-shaped cells,

Table I.

Graphically, the Hamiltonian is presented as:
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Magenta bonds indicate occupancy by dimers. In the above,

we sum over all 12-site star plaquettes of the lattice. All ki-

netic terms execute “resonance moves” along one of 32 loops

contained within the star, such that occupied links alternate

along the loop, and the move changes the occupancy along

the loop (cf. Table I). It is easy to see that each dimer cover-

ing results in precisely one such move being possible per star

[36]. The potential terms associate an energy with the associ-

ated loop.

For toroidal topology, i.e., periodic boundary conditions

(PBCs), dimer configurations can be classified according to

winding numbers Wx and Wy . Dimer configurations with dif-

ferent winding numbers are thought of as belonging to differ-

ent topological sectors and cannot be connected by local res-

onance moves of dimers. To determine the winding number

Wx (Wy) one considers a horizontal (vertical) line around the

torus which intersects the links. Wx (Wy) is then the parity of

the number of dimers intersected.

The special choice t1 = . . . = t32 = V1 = . . . = V32 > 0
is an instance of a Rokhsar-Kivelson (RK) point. Here, the

ground state is the equal amplitude superposition of all ad-

missable dimer coverings

|Ψ〉 =
∑

D

|D〉 , (2)

where, for PBCs the sum may be restricted to one topological

sector, thus leading to a four-fold ground state degeneracy. On

the kagome lattice, this RK-point lies in the interior of a Z2

topological phase [36, 39, 40] and is fully integrable [36], ow-

ing to the fact that the sums of the operators in (1) associated

to any given star will commute for different stars. Further-

more, for the kagome lattice, the entanglement entropy of the

states (2) can be analytically calculated and shown to display

area law entanglement entropy [41].

The scar kagome dimer model. — The goal of this Letter is

to design a system made of dimer degrees of freedom on the

kagome lattice that admits quantum many-body scar states in

its spectrum. We begin by observing that the states (2) are

annihilated by the Hamiltonian (1) not only at the special in-

tegrable point ti = Vi = 1, but whenever ti = Vi. This is

so because each local term associated with ti = Vi annihi-

lates Eq. (2). Moving away from the integrable point while

preserving ti = Vi destroys the integrability (all eigenstates

except Eq. (2) will not be known analytically), but preserves

the fact that Eq. (2) is an exact zero energy mode. For posi-

tive ti = Vi, all associated local operators thus have a common

ground state in Eq. (2). This is then also the ground state of

H , the latter being the sum of these local operators. It is then

common to call H a frustration free Hamiltonian.
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TABLE I. A list of all eight possible type loops surrounding the cen-

tral hexagon within a star-shaped cell, up to rotational symmetry. In-

cluding all possible rotations of each type, there are 32 distinct loops.

Each dimerization realizes exactly one of these 32 loops, where the

links of the loop alternate between occupied and unoccupied, yield-

ing two possible realizations via dimers for each loop. The hexagons

shown in Fig. 1(a) are surrounded by loops of the types shown in the

last column.
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fied further as follows [44, 45]. Introducing level spacings

sn = En − En−1, one defines quantities rn = sn/sn−1

and r̃n = min(rn, 1/rn). With this, we find the average of

the quantities r̃n over all symmetry-inequivalent time-reversal

invariant momentum sectors within the (Wx,Wy) = (0, 0)
topological sector to be 〈r̃〉 = 0.5333. This is quite close

to the exact value of r̃GOE = 0.5359 [12], and markedly dif-

ferent from the corresponding value r̃Poisson = 0.3863 [44] for

the Poisson distribution. The average rn value tends to require

larger samples owing to the possibility of small denominators,

but at 〈r〉 = 1.7626 is likewise very close to the exact value

of rGOE = 1.7781. Had we at least retained inversion sym-

metry, all symmetry sectors would be described by real ma-

trices, and one would expect to find similar values in all sec-

tors. However, inversion being absent, there are time-reversal

non-invariant momentum sectors in this model, not contain-

ing the scar state (2), which, for sufficiently generic models,

can be expected to be described by the Gaussian unitary en-

semble. To test this, we carried out the analogous analysis for

these sectors, finding r̃ = 0.5996 and r = 1.3709, again very

close to the exact values r̃GUE = 0.60266 and rGUE = 1.3607.

These findings lend strong support to the hypothesis that the

majority of the high energy states in the spectrum of Hamilto-

nian (3) are ergodic, i.e., they thermalize.

Entanglement entropy. — To complement the above find-

ings, we calculate bipartite entanglement entropy for all states

of the scar-containing symmetry sector (fixing also the topo-

logical sector) for a 48 site kagome lattice with PBCs. By their

definition, quantum many-body scar states belong to the bulk

of the spectrum while simultaneously violating the ETH, i.e.,

they fail to thermalize and display low (sub-volume) entan-

glement behavior. In contrast, generic high-energy states do

thermalize and exhibit a volume-dependent entanglement be-

havior. We find that this contrast is starkly displayed already

on the 48 site lattice, which we cut into two 24 site ribbons

wrapping around the torus (Fig. 2(b), inset). For simplicity,

in doing so we regard the arrows of the Zeng-Elser represen-

tation of permissible dimerizations of the kagome lattice as

the physical local degrees of freedom (Fig. 1(b)). For the rib-

bon described, whose boundary passes eight unit cells on each

side, and in the presence of the topological sector constraint,

one may show that the (base 2) von Neumann entanglement

entropy, SvN = −
∑

w w log2 w, where the sum goes over the

eigenvalues w of the reduced density matrix, equals 7. Here,

the sum goes over the eigenvalues of the local density matrix

of the ribbon. Fig. 2(b) clearly shows that the scar state (blue

star) is isolated from the rest of the spectrum (purple dots)

in terms of its much lower entanglement as compared to sur-

rounding bulk energy eigenstates. This establishes the state

(2) as a bona fide quantum many-body scar.

Additional scars and fidelity dynamics. — Multiple fea-

tures in Fig. 2(b) suggest the presence of additional scars in

the spectrum that, while less removed from the continuum

of eigenstates than Eq. (2), are nonetheless distinct in their

entanglement properties. We test this hypothesis by study-

ing fidelity dynamics. Fig. 2(c) shows the overlap O(t) =

|〈φ(0)|φ(t)〉| for different initial states |φ(0)〉 and their time

evolved counterparts, |φ(t)〉. All initial states are chosen to be

simple product states of dimers. While for most such initial

configurations, the overlap O(t) rapidly decays to zero (the

“thermalizing” state |φtherm〉 in Fig.2(d)), some special ini-

tial states show remarkable recurrence oscillations. This is,

in particular, true for the initial configuration |φrecur〉 shown

in Fig.2(d) and configurations related to that by lattice sym-

metries (even though the latter are not symmetries of Hscar).

It is clear that the scar state (2) cannot by itself be responsi-

ble for the observed oscillations of |φrecur〉: Being the equal

amplitude superposition of all dimer basis states, it does not

render any particular basis states special. Moreover, the oscil-

lations displayed by the special initial states require multiple

isolated eigenstates at different energies to have exceptional

overlaps with these initial states. The observed phenomenol-

ogy is indeed highly consistent with the presence of multiple

scars [6, 7, 24, 29, 46–48]. Moreover, we find that it is sta-

ble toward small perturbations that remove the existence of

an RK-eigenstate: To this end, we increase the Vi-terms (as

defined in Eq. (1)) of Eq. (3) by a fraction γ relative to the

ti-terms: As shown in Fig. 2(c), the recurrence phenomena

and associated oscillations easily survive an increase by 20%.

Conclusion. — We investigated a general approach to turn-

ing classes of frustration free lattice Hamiltonians into ones

containing isolated quantum many-body scars in their spec-

trum while retaining most or all symmetries. In addition, the

introduction of disorder is straightforward, as is the general-

ization to other lattices. We applied this strategy to a two-

dimensional quantum dimer model on the kagome lattice, re-

taining full translational symmetry. We demonstrated that

this model contains an exactly known quantum many-body

scar with analytically accessible entanglement properties. We

established that the remainder of the eigenstates and energy

spectrum exhibit no “fine-tuned” behavior. Specifically, for

a 60-site kagome lattice, we showed that bulk energies con-

form to the Gaussian ensembles expected for their respective

symmetry sectors, and we calculated von Neumann entangle-

ment entropies for all states within the scar-sector of a 48 site

kagome lattice, exposing the scar’s isolated character. Due to

their quality of being numerically manageable on fairly large-

size lattices, quantum dimer models of the type considered

here should become a fertile playground for investigations of

this kind. Indeed, the existence of revival phenomena stable

toward generic perturbations suggests that the large parame-

ter space of the class of models given here will prove fruit-

ful for further studies of equilibration processes in 2D lattice

models. Lastly, the original, frustration-free quantum dimer

model stabilizes a Z2 topological phase. This lends a topo-

logical character to our scar states. It will be of interest to

contrast this with the universality class of the ground state of

our model, which is currently unknown. We are hopeful that

these observations will stipulate further investigation.
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Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Sci-

ence 349, 842 (2015).

[4] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,

P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nature Physics

12, 907 (2016).

[5] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,

H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,

and M. D. Lukin, Phys. Rev. Lett. 121, 023601 (2018).

[6] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and

Z. Papić, Physical Review B 98, 155134 (2018).

[7] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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