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A stochastic quantum program
synthesis framework based
on Bayesian optimization

Yao Xiao®2, Shahin Nazarian'** & Paul Bogdan®**

Quantum computers and algorithms can offer exponential performance improvement over some
NP-complete programs which cannot be run efficiently through a Von Neumann computing approach.
In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and
Bayesian optimization to automatically generate quantum programs from high-level languages
subject to certain constraints. We find that stochastic synthesis can comparatively and efficiently
generate a program with a lower cost from the high dimensional program space. We also realize

that hyperparameters used in stochastic synthesis play a significant role in determining the optimal
program. Therefore, BayeSyn utilizes Bayesian optimization to fine-tune such parameters to generate
a suitable quantum program.

We have reached an era where the fundamental physical size limits of CMOS based transistors have dampened
the future of computing. Researchers have investigated the new non-silicon non-Von Neumann architectures'
such as neuromorphic and quantum computing®’. Especially in quantum computing, quantum supremacy has
been recognized as the goal of demonstrating that a quantum device can solve a problem which classical ones
cannot solve efficiently*. Quantum computers and algorithms® such as Shor’s algorithm® can offer exponential
performance improvement over some NP-complete programs which cannot be run efficiently through a Von
Neumann computing approach. However, there are some impediments to scientific advances in quantum com-
puting and algorithms”®. First, while there are some quantum programming languages®'2, it is still a burden
for programmers without a basic understanding of quantum computing to write quantum programs. Second,
instead of mapping computational tasks onto general-purpose quantum processors, one needs to determine how
to automatically synthesize quantum accelerators'>!* given an application.

Therefore, rather than compiling quantum circuits'® from quantum programs, in this paper, we aim to pro-
vide a mathematical and algorithmic framework that is capable of automatically designing quantum circuits/
accelerators from high-level languages such as C/C++ that are familiar to programmers. Specifically, we have
developed a stochastic synthesis'®!” in program super-optimization for x 86-64 to quantum programs. Instead
of focusing on quantum compilation optimization, we modify the techniques to synthesize quantum circuits
from high-level languages by applying input-output pairs obtained from them (c.f. Fig. 1). The experimental
results provide three important observations: Firstly, the total error between golden results and synthesized
results sometimes remains the same even if one operand is replaced with another. Hence, considering only the
synthesis error in the cost function can lead to a constant acceptance of a proposed program without providing
sufficient exploration of similar programs in a high dimensional space. Secondly, the hyper-parameters used in
stochastic synthesis dominate the performance efficiency and outcome of the program. In practice, it is extremely
difficult for humans to fine-tune such parameters. However, the proposed BayeSyn aims for optimality'®!® by
fine-tuning hyperparameters and achieves highly efficient results in terms of area and power consumption.
Thirdly, final local refinements are more challenging to achieve than initial global refinements, i.e. first several
thousand iterations can reach a low cost rapidly, however, further refining of the cost towards the optimality
is extremely challenging as it would take tens or hundreds of thousand iterations. Next, we will present how
BayeSyn effectively deals with such scenarios.
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Figure 1. The overview of the automatic quantum program synthesis from high-level languages. We first
prepare input—output pairs from high-level languages. These pairs guide the stochastic synthesizer with hyper-
parameters to search towards the quantum program with the lowest cost to best fit them. Inside the synthesizer,
a quantum program is initially proposed at random. Followed by acting on randomly chosen rules such as
replacement, insertion, and deletion, a new proposed program is generated and accepted with a probability
inversely proportional to the cost. This process is repeated until either the synthesizer finds the correct program,
or the budget is exhausted.

Stochastic quantum program synthesis from HLLs
To minimize the burdens on the programmers and improve programming efficiency, we develop a stochastic
synthesis to generate a series of quantum gates that perform exact tasks guided by high-level languages (HLLs)
as shown in Fig. 1. Our synthesizer generates a random or exhaustive set of testcases (input-output pairs) by
analyzing HLLs written in C or C++, and a set of hyperparameters used for the synthesis. It first randomly
synthesizes a program of a given length. Next, it iteratively generates new programs by randomly selecting the
rewrite rules, and it improves the search by generating a program that performs better under a set of testcases.
The goal of the BayeSyn is to synthesize a corresponding quantum program by drawing an optimal element from a
probability density function (PDF) based on an input application. It guarantees that regions of higher probability
are sampled more often, which allows the synthesizer to locally refine and search for the optimized program.
Each program is described in an irregular and high dimensional space and is associated with a cost func-
tion to capture different requirements such as correctness, soundness, and resource efficiency. In this paper, we
focus on the correctness of quantum programs and performance efficiency of the synthesizer by designing a
cost function as follows:

n

C® = [a(Ple) 0] + 3" 1(aPh) # 50)

i=1

where C(P) is the total cost associated with a program P; a(P|t;) is an actual result of the program P under the
i-th testcase; g(#;) is a golden result from input-output pairs; 1(s) is the indicator function, which equals 1 if s is
true, and 0 otherwise. Therefore, the first term measures the total sum of differences between actual results and
golden results, which helps BayeSyn to search for a cost-optimized program. However, as learned from experi-
ments, sometimes a synthesizer may choose a rewrite rule which acts on some correlated operands to generate a
new program P* from P. This rule makes the first term identical for P and P*, causing the synthesizer to always
accept the new proposal P* without fully exploring local refinements of P. The random walk phenomenon is
carefully prevented in BayeSyn by the second term which measures the number of failed testcases. This helps
BayeSyn search for a better program P*, which is in the proximity of the old program P in a high dimensional
space. One approach is to convert any cost function into a PDF as follows:

_ 1 _pecep)
pP) = e 1)

where Z is a normalizing term and f3 is a hyperparameter to tune.
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A new proposed program P* with rewrites from the synthesizer is either rejected or accepted with a probabil-
ity a. If it is accepted, P* becomes the current program used for the next iteration. Otherwise, BayeSyn continues

to explore the optimized program from the old program P. This acceptance probability?**! is designed as follows

P(P*)q(PIP*))
p(P)q(P*|P)

where p(e) comes from Eq. (1); g¢(P*|P) is the proposed distribution from which P* is sampled based on P.

In our stochastic program synthesis, we design probabilities of transforming one program into another in
such a way that probabilities of rewrite rules are the same as those of undoing rules. Therefore, Eq. (2) can be
simplified as

a(P— P¥) = min(l, )

a(P — P*) = min (1 P(P*)) (3)

" p(P)

— min{l,e*ﬁ[C(P*)*C(P)]}

The rewritten program P* is always accepted (i.e., « (P — P*) = 1) if it is better (i.e., C(P*) < C(P)) compared
to P. With a small probability «, it can still be accepted if it is worse, to prevent the search from falling into local
optima. Occasional acceptance of worse proposals can help the search jump out of local optima. In addition,
B plays a significant role in choosing the optimal solution. If 8 is too small, the search follows a random walk
where each proposed program is accepted. However, if 8 is too large, the search becomes local hill climbing
where finding the global optimum cannot be guaranteed. Therefore, we discuss next, an approach to autotune
such parameters.

A new program P* is proposed from P based on rewrite rules. We design a set of rewrite rules in such a way
to globally adjust program structures such as instruction swap and deletion, and locally refine partially correct
programs such as operand replacement. Each rule is assigned with a probability to determine how often it is
selected in the synthesizer. However, compared to all existing program synthesizers in the literature, we adap-
tively adjust these probabilities to make sure that in the beginning, frequent global modifications can quickly
find an optimum; in the end, frequent local refinements can perturb programs to reach the optimum. In the
implementation, we choose the following rules to act on programs:

1. Replace an operand: Randomly select an instruction from the quantum program, and randomly pick one of
its operand (qubits). With probability p,,, the operand is replaced with a new randomly generated operand
from a set of available qubits.

2. Replace all operands: Randomly select an instruction from the quantum program. With probability p,4,, all
the operands are replaced with new randomly generated operands from a set of available qubits.

3. Replace a gate: Randomly select an instruction from the quantum program. With probability p,,, the gate is
replaced with a new randomly generated gate from a set of available gates in a universal quantum gate set.
However, this must satisfy that the number of required qubits from the old gate is the same as that of the
new one. There are different types of universal sets. In our implementation, we use the Toffoli and Hadamard
gates as a universal quantum gate set.

4. Replace an instruction: Randomly select an instruction from the quantum program. With probability p,;,
the instruction (gate plus operands) is replaced with a new randomly generated instruction.

5. Swap two instructions: Two instructions are randomly selected and with the probability ps;, the two instruc-
tions are swapped.

6. Insert an instruction: Randomly select an instruction i from the quantum program. With probability p;;, a
new instruction is randomly generated and inserted after the instruction i.

7. Delete an instruction: Randomly select an instruction from the quantum program. With probability p;, this
instruction is removed from the program.

All of the probabilities (i.e., pro> Praos Prg> Pris Psis Pii» and pg;) are considered as hyperparameters. While tra-
ditionally in the literature, these hyperparameters are tuned by humans through a very time-consuming process,
we introduce a Bayesian optimization approach to autotune them. In contrast to prior work, we adaptively vary
these probabilities during program synthesis. For example, a low cost means that a generated quantum program
is globally almost correct, but requires local refinements. Therefore, we increase the probabilities of p,, and py,
and lower the rest of the probabilities.

We applied different benchmarks to demonstrate the validity of our BayeSyn framework: the quantum adder,
multiplier, Grover’s algorithm, and Shor’s algorithm. As shown in Fig. 2, we measure the average costs of the
current, new, and best programs for different B values. Figure 2a shows different costs when g = 0.1. The current
program cost is randomly distributed compared to the best program cost, which validates that small 8 allows the
synthesizer to randomly explore the program space. Figure 2b, instead, shows different costs when 8 = 4.6. The
current program cost is the same as the best program cost. This is because large 8 means hill climbing, which
guides the synthesizer to always follow the best move. Figure 2¢,d demonstrate the trend of different program
costs for the first 60 iterations. Figure 2e compares the best program costs when 8 = 0.1 and 4.6. This validates
our statement that 8 plays a partial role for the synthesizer in quickly converging to the optimal program.
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Figure 2. Experimental results on stochastic quantum program synthesis. (a) shows the average cost of the best,
new, and current programs when f equals 0.1. Small f means random exploration, which can be demonstrated
by the current program cost. (b) shows the average cost of the best, new, and current programs when f equals
4.6. Large 3 means hill climbing, which can be demonstrated by the current program cost, which is equal to the
best program cost. (c,d) show the first 60 iterations to illustrate the variation of different costs. (e) compares the
best program costs when S equals 0.1 and 4.6, which validates that f3 plays a partial role in the convergence of
stochastic synthesis.

Autotuning hyperparameters for efficient quantum program synthesis

As discussed previously, the hyperparameters such as g and the probabilities (i.e., pro> Prao> Prg»> Pris Psis Piis
and py;) determine the final optimal quantum program. Of note, § is different for different applications. It is
extremely difficult for humans to tune such parameters. Therefore, we propose a Bayesian optimization (BO) to
autotune parameters. The goal of this BO approach is to find the extrema of black-box objective functions that
are expensive to evaluate, but cheap to sample'®'®. BO requires two components: (1) prior beliefs and likelihood
to guide the sampling and derive the posterior; (2) the acquisition function to trade off exploration and exploi-
tation of the search space. Priors capture our beliefs on properties of the black-box objective function such as
smoothness and extrema locations. The acquisition function determines where to sample next to minimize the
number of evaluations.

The black-box objective function is the accuracy of the current program on a set of testcases. The domain X
is a high dimensional space of (8, probabilities) values. The goal is to find the hyperparameters to maximize the
accuracy. We use the Beta distribution rather than the Gaussian distribution as prior knowledge concerning the
probability of success in sampling:

fla,B) = X711 —x)f ! (4)

B(a, B)

Scientific Reports |

(2021) 11:13138 | https://doi.org/10.1038/s41598-021-91035-3 nature portfolio



www.nature.com/scientificreports/

Fixed Budget | "= | === =F Accept Rules

Applications }—>|Input-0utputPairs

Thread 1 Thread 2 Thread N

> Programs

Rewrite

Program

—> Proposals

Analyzer Hyperparameters

Bayesian Optimization Stochastic Synthesis

Figure 3. Bayesian Optimization (BO) to fine-tune hyper-parameters. Instead of randomly guessing the hyper-
parameters, a BO approach systematically searches for the best parameters. First, we run several synthesizers

in parallel with a fixed budget (e.g., 10 min or 10,000 iterations) and input-output pairs to collect statistics

(the cost and the number of failed testcases), which are further used to guess the better parameters for the next
iteration by the acquisition function. Finally, the best parameters are applied to the final stochastic synthesizer to
generate the quantum program.

where B(a, B) = Fl}fx‘);Fﬂ )> is a normalization factor and I' (&) is the Gamma function. When o = B = 2, it reduces
to Gaussian. However, the improvement of the Beta distribution is that it can control where to sample more often
by adjusting « and 8. Especially the distribution is skewed when « isn't equal to B. The expected improvement
is the acquisition function:

¢ (x) = E(max{0,fi11(x) — f (x) }|Dy) (5)

where f represents the black-box function and x* = argmax, ... f(xi).

Figure 3 illustrates the implementation of BO on stochastic synthesis. We give a fixed budget to each synthe-
sizer such as one hour with different hyperparameters. After the budget is exhausted, we collect statistics such as
the number of failed testcases and the total error, combined with hyperparameters into D; used in Eq. (5). Next,
we use the acquisition function to decide how to choose the next set of hyperparameters to guide the search for
the optimum of the objective function.

Experimental results shown in Fig. 4 illustrate the results obtained with the above-mentioned BO approach
to auto-tune the parameters (e.g., ) as they determine the performance of a synthesizer. We find that 8 = 3.1
is a better choice compared to 8 = 0.1 or 4.6. Figures 4a—c show the best, current, and proposed program costs,
respectively. It is interesting to see that the trend of the current program cost in Fig. 4b sits between Fig. 2a,b.
In general, it follows the pattern of hill climbing as it continues to explore the program space to reject programs
with large costs. However, occasionally, the synthesizer accepts a worse program (demonstrated by a few bumps
in Fig. 4b) to explore a different region. That is, the synthesizer with 8 = 3.1 combines the random search (small
B) and hill climbing (large ). In addition, Fig. 4d compares the best program costs for different g values. 8 = 3.1
can quickly find a better program at a low cost compared to others.

Feedback directed search to accelerate quantum program synthesis
Local refinements require too many iterations for the cost function to reach to zero because of infinite possible
rewrite rules to act on a program. For example, from experiments, we notice that it only takes 1000 iterations
from the total cost to reduce from 20 down to 7, but the synthesizer spends about 107 ~ 108 iterations to make the
program correct (zero cost). This issue makes stochastic synthesis far from practical in quantum programming.

To reduce the number of iterations required during local explorations, we propose a feedback-directed search
within the stochastic synthesis. The general idea is that whenever a mismatch in the outcome occurs, the error is
backpropagated to find a set of wrong wired quantum gates. This information helps the synthesizer to randomly
select and adjust a gate from this set, reducing many iterations where unrelated gates are selected and evalu-
ated. For example, Fig. 5 compares both the normal mode and the acceleration mode. In the normal mode, the
synthesizer may delete the fourth quantum gate. However, since this rewrite rule does not improve the cost, in
the end, the proposed quantum program is rejected. In the acceleration mode, an error is backpropagated and
the synthesizer selects the fifth gate from the set of wrong gates. Eventually, the wrong gate is corrected, and the
proposed program is accepted.

Figure 6 shows the performance efficiency of error backpropagation (EB). EB allows the synthesizer to replace
a known faulty gate rather than guessing it at random. We show the number of iterations and the corresponding
speedup (in terms of iterations) for different synthesizers while varying the threshold. The threshold is used to
differentiate the normal mode and acceleration mode. If the threshold is too large, the speedup is unnotice-
able as the wrong gate list contains all the gates. Replacing a gate from this list is not different from randomly
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Figure 4. Parameter fine-tuning using Bayesian optimization. We use Bayesian optimization to auto-tune
parameters such as 3 and probabilities as they determine the performance of a synthesizer. We find out that

B = 3.1is a better choice compared to 8 = 0.1 and 4.6. (a—c) show the best, current, and proposal program
costs, respectively. It is interesting to see that a few bumps exist in the current program cost. This is because
the stochastic nature allows the synthesizer to accept a possibly worse case to explore. (d) compares the best
program costs of different § values. 8 = 3.1 can quickly find a better program at a low cost compared to others.

selecting it. However, if the threshold is too small, it is not effective as the synthesizer takes a long time to reach
the acceleration mode from the normal mode.

Discussion

We have demonstrated that the stochastic synthesis of our BayeSyn framework is a promising technique to
automatically synthesize quantum logic gates from high-level languages. Figure 7 shows a high-level workflow
of the framework. The requirement of the framework is to have a working C/C + + code which can be compiled
and executed in standard computers. Next, the framework explores the design space and selects the one that
meets our needs. Finally, the framework outputs the circuit. Therefore, compared with Qiskit and some other
quantum programming languages, one possible input program to our framework is a simple C code. Note that
programmers in this case do not need to know quantum computing to generate a circuit. However, the input
program to Qiskit could be related to quantum operations. Therefore, we believe the proposed BayeSyn provides
a fundamental path towards full automation in quantum computing.
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Figure 5. Two modes in stochastic synthesis. In the normal mode, a gate is randomly replaced with another
gate. Without knowing the erroneous gates, the new proposed program usually leads to rejection. This may end
up using thousands of iterations exploring the wrong regions. However, in the acceleration mode where it is
important to locally refine a program without globally dramatically modifying the structure of the program, we
calculate the error and backpropagate it to find the erroneous gates. We replace a gate in this set with another
to increase the probability of searching for a better program. For example, in this Fig., instead of choosing an
irrelevant gate 4, we replace gate 5 and the proposed program is accepted.
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Figure 6. Performance efficiency of error backpropagation (EB). EB allows the synthesizer to replace a
known faulty gate rather than guessing it at random. We show the number of iterations and the corresponding
speedup (in terms of iterations) for different synthesizers while varying the threshold. The threshold is used to
differentiate the normal mode and acceleration mode. If the threshold is too large, the speedup is unnoticeable
as the wrong gate list contains all the gates. Replacing a gate from this list is not different from randomly
selecting it. However, if the threshold is too small, it is not effective as the synthesizer takes a long time to reach
the acceleration mode from the normal mode.

However, there are several future research directions that require further consideration in order to improve
the quality of this quantum program synthesis.

This tool calls for a formal symbolic validator to speed up the run-time execution. Imagine a case where a
system requires 32 qubits, which means that 232 testcases are required in order to synthesize a quantum circuit
to fully function under different corner cases. However, if a formal validator such as KLEE?? used in x 86-64
assembly is proposed, the synthesis is only checked once, regardless of the number of qubits used in a system.
Therefore, the validator provides a formal and efficient approach to reason about the target circuits.

Here, we assume that we have some rewrite rules known to us, but we don’t know if these rules work well or
there is another set of rewrite rules, which work better. In theory, we can assume that rewrite rules may not be
available in advance. The idea is to develop new machine learning techniques (learning to optimize) to find the
best rewrite rules that work for quantum computing to maximize the overall performance without sacrificing
the correctness of the circuits.
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Figure 7. High-level workflow of the framework. The input to the framework is a program written in
conventional high-level languages such as C or C++. Next, the framework prepares input—output pairs to
represent this program and randomly generate a circuit. Then, the circuit is simulated to collect actual outputs
from inputs and calculate the cost. Finally, based on the cost, rewrite rules are selected, and the acceptance
probability is calculated to find the correct circuit implementation as the output of the framework.

Instead of using stochastic synthesis, some machine learning algorithms offer promising results in program

synthesis such as (recurrent) neural networks, reinforcement learning, and generative adversarial networks
(GANSs). For example, recently GAN s are used to synthesize images or tasks from what have previously learned
to offer improvements over previous techniques. We believe that GANs can also be used as a promising approach
to synthesize quantum programs.

Code availability
The prototype of BayeSyn is available from https://github.com/xiaoyao0512/BayeSyn.
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