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Evolutionarily informed machine learning enhances
the power of predictive gene-to-phenotype
relationships
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Inferring phenotypic outcomes from genomic features is both a promise and challenge for
systems biology. Using gene expression data to predict phenotypic outcomes, and func-
tionally validating the genes with predictive powers are two challenges we address in this
study. We applied an evolutionarily informed machine learning approach to predict pheno-
types based on transcriptome responses shared both within and across species. Specifically,
we exploited the phenotypic diversity in nitrogen use efficiency and evolutionarily conserved
transcriptome responses to nitrogen treatments across Arabidopsis accessions and maize
varieties. We demonstrate that using evolutionarily conserved nitrogen responsive genes is a
biologically principled approach to reduce the feature dimensionality in machine learning that
ultimately improved the predictive power of our gene-to-trait models. Further, we functionally
validated seven candidate transcription factors with predictive power for NUE outcomes in
Arabidopsis and one in maize. Moreover, application of our evolutionarily informed pipeline
to other species including rice and mice models underscores its potential to uncover genes
affecting any physiological or clinical traits of interest across biology, agriculture, or medicine.
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ARTICLE

eing able exploit genomic data to predict organismal out-

comes in response to changes in nutrition, toxin, and

pathogen exposure could inform crop improvement, dis-
ease prognosis, epidemiology, and public health. To this end,
machine learning methods have been developed and applied to
infer phenotypes from genomic and epigenetic features associated
with such conditions using changes in mRNA/protein expression
levels, single nucleotide polymorphisms, chromatin modifica-
tions, and more. Despite the compelling motivation and cumu-
lative efforts, accurately predicting complex phenotypic traits
from genome-scale information remains both a promise and a
challenge.

Several factors contribute to these challenges. First, in contrast
to the increasing availability of omics data, collection of high-
quality phenotypic data from a genetically diverse population that
adequately represents the phenotypic diversity space has become
a major limiting factor!. In addition, phenotypic data is often
collected from experiments that are distinct from those used to
acquire the functional genomics data. To overcome these lim-
itations, phenotyping efforts should be expanded and performed
on the same materials that are the source of genetic/genomic
information2. Furthermore, the explosion of omics data means
that the features (e.g., numbers of genes) collected from a single
experiment inevitably outnumber the phenotype space (e.g.,
sample size), leading to problems in data sparsity, multi-
collinearity, multiple testing, and overfitting®. This can be coun-
teracted with increasing sample size, dimension reduction, or
feature selection methods such as Principal Component Analysis
(PCA), Least Absolute Shrinkage and Selection Operator
(LASSO) regularization, Canonical Correlation Analysis (CCA),
and so forth* Additionally, cross-species approaches have been
adopted in the machine learning context to improve the perfor-
mance of model-to-human knowledge translation”.

Herein, we address a number of these challenges by using an
evolutionarily informed machine learning approach that exploits
genetic diversity both within and across species. In a proof-of-
principle study with practical implications, we employ tran-
scriptome data of nitrogen response genes to predict nitrogen use
efficiency (NUE), an agronomic outcome critical for worldwide
food safety and sustainability>°. Nitrogen (N)—the main limiting
macronutrient for plant growth—is supplemented in agricultural
systems through application of N fertilizer. For major row crops
such as maize (Zea mays), less than 40% of supplied N is taken up
by the plants, while more than 60% of soil N is lost to the
atmosphere or water bodies through multiple processes such as
denitrification, ammonia volatilization, leaching etc’. Balancing
the need to further increase crop yields, while also mitigating the
environmental impacts associated with N fertilizer, is a challenge
for sustainable agriculture. Considering the polygenic nature of
NUE that involves the integration of developmental, physiologi-
cal, and metabolic processes?, machine learning is an appealing
strategy to tackle the mechanisms underlying this complex trait.

To this end, we collected transcriptomic and phenotypic NUE
data from two species—maize (a crop) and Arabidopsis (a model)
—each of which included a panel of genotypes with diverse
genetic background and NUE variation. We used genes, whose
response to N-treatments (N-DEGs) was conserved within and
across species as a dimension reduction approach for machine
learning. As maize and Arabidopsis are highly divergent phylo-
genetically, these evolutionarily conserved N-response genes
should represent essential/core functions contributing to NUE.
We show that models constructed using these evolutionarily
conserved N-DEGs significantly improved the prediction of NUE
traits from gene expression values, compared to an equal number
of top ranked N-DEGs or randomly selected expressed genes.
Importantly, the inclusion of the model species Arabidopsis in

our study enabled us to validate our findings using mutants. This
experimental evidence validated that the genes, whose expression
levels are important in predicting NUE in the machine learning
models are more than just markers, but functionally required for
the trait. Moreover, we show that our evolutionarily informed
machine learning pipeline is transferable to other species and
traits in plants and animals. Specifically, application of our
method to other matched transcriptome and phenotype datasets
related to drought in field grown rice or disease in mouse models
resulted in enhanced prediction accuracies of the learned models.
As such, our evolutionarily informed machine learning pipeline
has the potential to identify genes of importance for complex
phenotypes of interest across biology, agriculture, or medicine.

Results

Overview: evolutionarily informed machine learning pipeline
enhances the predictive power of a gene expression-to-trait
analysis. The goal of this work was to test whether the prediction
power of machine learning models could be enhanced by
exploiting the genetic diversity of gene responses and phenotypes
both within and across species. To this end, in our proof-of-
principle study, we tested whether using N-responsive differen-
tially expressed genes (N-DEGs) conserved both within and
across species as a biologically-principled means of dimension
reduction, could enhance our ability to learn genes of importance
to predicting NUE phenotypes from gene expression data across a
model (Arabidopsis) and crop (maize) plant. This model-to-crop
machine learning approach also allowed us to more rapidly
validate conserved features of importance to NUE in the crop
using the model species.

Genetic diversity for NUE phenotype. Within each species, we
selected a set of genotypes that exhibit a broad spectrum of
phenotypic variation in NUE. Our data included 18 Arabidopsis
accessions that were previously identified for their NUE
diversity8, which originated from a nested collection of 265 nat-
ural accessions found in a wide range of habitats differing notably
in soil nutrient richness’. The 23 maize genotypes used in our
study, correspond to 12 maize inbred lines and their 11 corre-
sponding hybrids with B73. We selected these 12 maize inbred
lines to represent the phenotypic diversity for NUE traits that we
measured among a population of 318 field-grown maize inbreds
(Supplementary Data 1 and Supplementary Fig. 1), which broadly
represent the current germplasm base for U.S. Corn Belt hybrids.
This maize population that we tested for NUE traits includes the
parents of the Nested Association Mapping (NAM) population!,
improved inbreds from different breeding programs described in
recently expired plant variety patents!?, and the Illinois Protein
Strains that display the known phenotypic extremes for NUE
traits in maize! 12 (Supplementary Data 1). The B73 inbred
maize line was chosen as the parent for the hybrids, because it is a
major founder of the Stiff-Stalk heterotic group used in the
production of nearly all commercial U.S. Corn Belt hybrids!3.
Furthermore, B73 displays high nitrogen utilization efficiency
(NUE) (Supplementary Data 1), and also serves as the reference
genome sequence assembly for maize!4.

Next, to test whether genome-wide responses to N-treatments
evolutionarily conserved across the model and crop could be a
biologically principled approach to enhance the model perfor-
mance of predicting NUE, we constructed a three-step machine
learning pipeline (Fig. 1).

Step 1 feature selection. We collected and analyzed matched
phenotypic and transcriptomic data from the same replicate
plants for each N-treatment conducted in a controlled laboratory
setting  (Arabidopsis) or field conditions (maize) and

2 | (2021)12:5627 | https://doi.org/10.1038/541467-021-25893-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Evolutionarily informed machine learning pipeline

Feature Selection
Identification of
evolutionarily conserved
N-response genes

Feature Importance
Gene ranking based on
XGBoost-derived gene-

trait importance and

GENIE3-derived TF

Matched phenotypic and transcriptomic datasets for NUE

Crop: < 18 Genotypes

w Maize % N m =.. L
o . @ mn. |
= Model: 5 =
| Arabidopsis /\// im e
g . 4 Fum S S me
= [=4
g ‘p( 'vC grm m m oms
£ o 1 LowN

l Genotypes High N

‘\(_/

Conserved N-response genes  Gene regulatory
used for NUE prediction network

Trait Gene Expression

Test (left-out genotype)

Genotypes

Training (n-1 genotypes)

v Ty

connectivity m ! :sf::::e
NF-YA6 37.9 WRKY4 28
DIV 15.2 WRKY50 27
UNE12 12.8 NF-YB12 22

Feature Validation
Validation of gene
function in NUE using
Arabidopsis and maize
mutants

Phenotype {

NooA X
& ) Q}\@ Q}(@
g 9 9
mutant

Fig. 1 Evolutionarily informed machine learning approach enhances the
predictive power of gene-to-phenotype relationships. Step 1 feature
selection: Phenotypic and transcriptomic data of N-responses were
generated from Arabidopsis (lab-grown) and maize (field-grown) under
low-N vs. high-N conditions. The expression levels of N-response
differentially expressed genes (N-DEGs) conserved in both species were
identified via “leave-out-one” approach (Fig. 4) and used as gene features
in the machine learning methods in Step 2. This biologically principled
approach to reduce the feature dimensions ultimately improved the model
performance (Table 1). Step 2 feature importance: We ranked the genes
based on (i) the XGBoost-derived feature importance score (left) and (ii)
the TF connectivity in a GENIE3 regulatory network (right) constructed
from the N-response TFs (Step 1) as regulators and the XGBoost important
features as targets. Step 3 feature validation: We validated the role of NUE
for eight TFs in planta using Arabidopsis and maize loss-of-function
mutants.

(Supplementary Fig. 2). Using linear models, we identified
N-response differentially expressed genes (N-DEGs) in parallel
for maize and Arabidopsis, and retained the N-DEGs conserved
both within and across species as gene features used in machine
learning. Step 2 feature importance. We selectively used the
expression levels of these evolutionarily conserved N-DEGs, as a
biologically-principled approach to feature reduction in the
gradient boosting-based method XGBoost!> predictive models.
The outcome of the machine learning enabled us to rank the
N-DEGs whose expression levels best predicted the NUE traits
measured in the same set of plants. Moreover, we inferred the
transcription factors (TF) regulating these genes of importance to
NUE and measured their connectivity in the NUE network by
constructing a NUE gene regulatory network (GRN) using a
Random Forest-based method GENIE31°. Through integration of

the results of these complementary means, we generated ranked
lists of: (i) gene features based on their contribution to the trait
prediction (XGBoost-based importance score), and (ii) TFs based
on their level of connectivity in the GRN for each species
(GENIE3-based connectivity). Step 3 feature validation. We
validated the function of eight candidate TFs in Arabidopsis or
maize based on their importance score to the NUE trait and/or
their degree of connectivity in the GRN. We experimentally
confirmed the function of these eight TFs in regulation of NUE in
planta using loss-of-function mutants in Arabidopsis, as well as in
maize, where available. Detailed descriptions of our evolutionarily
informed cross-species machine learning analysis pipeline can be
found in “Methods” section.

Quantifying NUE phenotypes across Arabidopsis and maize
varieties. In our phenotypic analysis, we quantified nitrogen use
efficiency (NUE) as the efficiency of converting supplied N to
biomass/grain yield. For Arabidopsis, NUE was calculated as the
efficiency with which each plant converted supplied N into shoot
biomass (NUE = Above ground dry weight/Applied N). This
measure of NUE is achieved by providing each plant with a
trackable/contained amount of N in pots in a lab setting, as a
proxy for the field agricultural setting?. Indeed, we found the
Arabidopsis accessions previously selected for NUE diversity®
present a broad range of NUE variation in our own experiments,
as evidenced by the coefficient of variation (CV = 0.58) (Fig. 2a).
The correlation of traits shows that NUE at the pre-bolting stage
is highly correlated with NUpE (r = 0.88), and to a lesser extent
with NUtE (r=0.39) (Fig. 2b). The NUE variation among the
Arabidopsis accessions is primarily explained by nitrogen levels,
followed by accession and nitrogen-by-accession interaction
(Two-way ANOVA P-value: G, <2E—16; N, <2E—16; G x N,
9.93E—07). This indicates the N-level explains the phenotypic
variation in NUE in this collection of Arabidopsis ecotypes.

For field-grown maize, we used Total NUtE, (stover biomass +
grain biomass)/(stover N content + grain N content), as the
target trait (Fig. 3a). We chose this because Total NUtE is more
robust to the effects of maturity and photoperiod in the field!”
(Supplementary Fig. 3), and remains highly correlated to grain
NUE (Fig. 3b). We measured total NUtE across 318 maize inbred
lines in a field experiment where soil N supply was not limiting,
and observed a nearly three-fold range in total NUtE (56-156 kg
biomass/g plant N) (Supplementary Data 1 and Supplementary
Fig. 1). To illustrate the influence of soil N-supply on total NUtE,
in a pilot study, 25 inbred maize lines chosen to represent both
historical (NAM parents)! and elite genetic diversity!® were
grown in adjacent plots that received either no N fertilizer or were
N-fertilized as the larger population (see “Methods” section).
When grown with sufficient N, the distribution of NUE values
for these 25 maize inbreds overlaps with that observed from the
larger population of 318 maize genotypes (Supplementary Fig. 2).
For this study, we selected 12 (from the 25 above) maize inbreds,
which exhibited a similar coefficient of variation for NUtE
phenotypic values (CV =0.19) as the larger population of 318
genotypes (CV = 0.15) for matched transcriptome profiling and
detailed phenotyping in N-responsive field plots, over three field
seasons (Supplementary Data 1).

ANOVA results revealed that 55% of the total NUtE variation
in this maize experiment was attributed to genetic effects (Fig. 3c).
Our two-way ANOVA analysis of the maize data shows that in
addition to G (P-value = 8.6E—11) and N (P-value = 2.9E—13),
G x N was also a significant factor (P-value = 2.28E—07)
explaining 19% of the variation in Total NUtE (Fig. 3c). This is
distinct from our findings for Arabidopsis, where N is the main
explanatory variable (Fig. 2c). This difference likely reflects not
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Fig. 2 Nitrogen is the leading factor explaining the NUE variation across Arabidopsis natural acesssions. a Boxplot of NUE among the Arabidopsis
genotypes measured in three independent batches. The coefficients of variation demonstrate the broad range of phenotype of this panel of genotypes,
which has been widely used in NUE studies. The X-axis is ordered in the increasing value of average NUE. In the box plots, the box represents the 25th to
75th percentile and the line within the box marks the median. Whiskers above and below the box indicate the 10th and 90th percentiles. Points above and
below the whisers indicate outliers outside 10th and 90th percentiles. b The correlation of traits measured in this study. NUE at the pre-bolting stage is
highly correlated with NUpE. Biomass, g/plant; N uptake, mg N/plant; N%, N uptake/Biomass; E%, 15N uptake/N uptake; NUE, Biomass/applied N; NUpE,
15N uptake/applied 15N; NUtE, Biomass/N uptake. ¢ The NUE variation is primarily explained by nitrogen levels, followed by accession and nitrogen by
accession interaction. Two-way ANOVA P-value: G, < 2E—16; N, < 2E—16; G x N, 9.93E—07. For each genotype n>10 biologically independent plants
examined over three independent experiments. The source data for this figure is provided in Supplementary Data 1.

only the overall greater genetic diversity in the maize varieties, but
also suggests that intensive breeding and selection for
N-responsive grain yields in maize!® may have expanded the
phenotypic variation for NUE beyond that observed among
the Arabidopsis natural accessions. We therefore included these
important interactions of maize genotype with nitrogen supply on
the NUE phenotype as a factor in our computational pipeline
described below.

Evolutionarily conserved transcriptome response to N-treat-
ment used for feature reduction in machine learning. Feature
reduction is an essential pre-processing step in machine learning,
as too many irrelevant features may interfere with prediction
performance’. Given the fact that the N level is a significant factor
explaining NUE variation in both Arabidopsis and maize (Figs. 2c
and 3c), we used negative binomial Generalized Linear Mixed
models (GLMs) in edgeR R-package!® and identified N-DEGs

(Gene expression ~ Condition 4+ Genotype) in the training data (n
—1 genotype). Importantly, we note that the testing data sets (the
held-out genotype) were never used to select the N-DEGs. This
was repeated in a round-robin manner across genotypes for each
species (Supplementary Fig. 4). Next, we retained the evolutiona-
rily conserved N-DEGs by mapping the Arabidopsis N-DEGs to
their corresponding maize homologs using Phytozome 10 20 (Fig. 4
and Supplementary Data 8, Cross-species Feature Reduction). This
cross-species analysis enabled us to (i) apply an evolutionarily
guided filter to reduce the dimensionality of gene features used in
machine learning, and (ii) enhance our ability to perform rapid
validation testing of candidate NUE genes with relevance to the
crop in the model species.

The resulting conserved N-DEGs from Arabidopsis (n = 610)
(Supplementary Data 3) were used as gene features in the
machine learning model (Fig. 5). We further subjected the
conserved N-DEGs from maize to a second round of filtering to
identify those also responding to N x G interaction (Fig. 4,
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Fig. 3 Genotype is the leading factor explaining the NUE variation in maize breeding lines. a Boxplot of total nitrogen utilization (NUtE) values among
the maize genotype panel measured in three consecutive years. The X-axis is ordered by increasing value of average total NUtE. The coefficients of

variation demonstrate the broad range of phenotype of this smaller panel of maize genotypes, which spans the distribution of NutE values measured in a
larger representative germplasm collection (Supplementary Fig. 2). In the box plots, the box represents the 25th to 75th percentile and the line within the
box marks the median. Whiskers above and below the box indicate the 10th and 90th percentiles. Points above and below the whisers indicate outliers
outside 10th and 90th percentiles. b The correlation of traits measured in this study.c The total NUtE variance of 2014, the year when the RNA samples
were harvested, is primarily explained by Genotype (G), followed by N, and G x N effect. Two-way ANOVA P-value: G, 8.6E—11; N, 2.9E—13; G x N, 2.28E
—07. For each genotype n > 5 biologically independent plants examined over three independent experiments. The source data for this figure is provided in

Supplementary Data 1.

Within-species Feature Reduction). This second filter aimed to
account for the significant N x G effect that we observed in the
maize NUE phenotypes (Fig. 3c), resulted in a list of maize
N-DEGs responsive to N x G interaction (n = 248) (Supplemen-
tary Data 3). Next, these two sets of conserved N-DEGs from
Arabidopsis and maize were used as features in the machine
learning model (Fig. 5).

We then tested the hypothesis that the expression levels of
N-DEGs conserved across model and crop species could enhance
our ability to infer NUE phenotypes—compared to non-selected
genes—using machine learning algorithms. This data-driven
hypothesis is supported by the fact that: (i) the expression levels
of N-DEGs have been used as biomarkers of N status across maize
genotypes?!, and (ii) our phenotypic data shows that N level is a
significant factor explaining the NUE variation in both maize and
Arabidopsis (Figs. 2c¢ and 3c). Indeed, this analysis enabled us to
determine that the predictive performance of our models learned
is significantly better at predicting NUE outcomes when the

evolutionarily conserved N-DEGs are used, compared to the same
number of top-ranked N-DEGs with the lowest P-value, or
randomly selected expressed genes (Table 1), as detailed below.

Evolutionarily conserved N-responsive genes have enhanced
predictive power in machine learning. For each species, we used
the gene expression values (N-DEGs) as features (gene features
hereafter) to predict NUE traits through XGBoost regression
models. XGBoost!® is a implementation of the gradient boosting
algorithm?2, that uses a boosting algorithm to combine multiple
weak learners, i.e. shallow trees, into a strong one (Fig. 5, Step 2).
Lastly, we used the trained XGBoost models to predict NUE for
the left-out genotype and evaluated the model performance using
correlation between the observed- and the predicted-NUE in the
left-out test set (Fig. 5, Step 3). In summary, we repeated the
above steps and constructed 18 models for Arabidopsis, and 16
models for maize, corresponding to each genotype analyzed (See
Supplementary Fig. 4 for a detailed illustration).
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Fig. 4 Evolutionarily conserved N-response genes across Arabidopsis-maize used as a biologically principled feature reduction method for the
XGboost machine learning pipeline. The RNA-seq reads from leaves of Arabidopsis and maize N-treated samples were aligned to reference genome
assemblies using BBMap and the read counts were generated using featureCounts. The N-response DEGs (N-DEGs) were identified using generalized
linear models in edgeR and leave-out-one method: one genotype (out of 18) was left out during each round of analysis and the intersection of 18 DEG lists
was used for feature reduction (For details, see Fig. S4). The overlap of N-DEGs from Arabidopsis (n = 2123) with maize (n=6914) resulted in a set of
evolutionarily conserved N-response Arabidopsis genes (n = 610), which were used as features in the machine learning model. The corresponding
conserved N-response genes in maize were further intersected with genes responding to nitrogen by genotype effects (n=3664), resulting in 248 maize
genes that were used as features in the machine learning model to predict NUE. The complete ranking of DEGs is provided in Supplementary Data 2.

For maize, using the N-DEGs (n = 248) conserved with their
Arabidopsis homologs, resulted in a mean Pearson’s correlation
coefficient r of 0.79 for the XGBoost models predicting NUE
across 16 maize lines (Fig. 5, Step 3). The r was above 0.6 for all
but two maize genotypes, Illinois High Protein (IHP1) and
Illinois Low Protein (ILP1). These two maize inbred line are
derived from more than 100 cycles of divergent selection for seed
protein concentration and other component traits of nitrogen use
efficiency!>12. Thus, it is not surprising that the models showed
lower accuracy in predicting the NUE phenotypes of IHP1 and
ILP1, compared to other maize inbreds and the hybrids that each
share the B73 parent.

Importantly, our analysis showed that the overall predictive
performance of learned models that used the evolutionarily
conserved maize N-DEGs is significantly better than that obtained
using the same number of top-ranked N-DEGs with the lowest
P-value (0.68, Mann-Whitney U-test P-value = 1.06E—3), or ones
randomly selected from total expressed genes (0.62, Mann-Whitney
U-test, P-value = 1.5E—5) (Table 1). In addition, our comparison of
the feature importance score, an XGBoost!> output which reveals
the influence of each feature (gene) in the predicted value (NUE)!>,
with the P-value in DEG analysis, uncovered only a weak correlation
(Spearman’s rank correlation coefficient p=0.19, Supplementary
Fig. 5b). These comparisons support the interpretation that
XGBoost models capture non-linear gene-trait relationships and
our hypothesis that evolutionarily conserved N-DEGs enhance the
machine learning outcome.

In parallel, we used the Arabidopsis N-DEGs (n =610) whose
N-response is conserved with their maize homologs, as the features
to predict NUE in the same XGBoost machine learning pipeline
(Fig. 5). Our machine learning results show that the mean Pearson’s
correlation coefficient r across all 18 Arabidopsis genotypes was 0.65
(Fig. 5, Step 3). Moreover, we found that this overall model
performance is significantly better than that obtained using the same
number of top-ranked N-DEGs with the lowest P-value (r=0.59,
Mann-Whitney U-test P-value = 1.64E—4), or ones randomly
selected from total expressed genes (r=0.53, Mann-Whitney U-
test, P-value = 3.82E—6) (Table 1). Similarly, we found that the
feature importance ranking was weakly correlated with the edgeR-
based P-value ranking of DEGs (Spearman’s rank correlation
coefficient p = 0.14, Supplementary Fig. 5a).

Overall, our results from both maize and Arabidopsis data show
that using the evolutionarily conserved N-responsive differentially
expressed genes significantly improved performance of the machine
learning models predicting NUE and that this improvement is not
due to a simple numerical reduction in the gene features (Table 1).
Furthermore, the weak correlation between the XGBoost-based
feature importance ranking and the edgeR-based P-value ranking
(Supplementary Fig. 5), indicates that XGBoost can capture non-
linear gene-trait relationship beyond single variable DEG analysis.
It is also worth emphasizing that we used one set of hyperpara-
meters for each species to achieve a consistent performance across
genotypes, suggesting that the model is generalized and likely
applicable to additional genotypes. Taken together, our results
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demonstrate that NUE—a polygenic trait—could be predicted from
gene expression levels of N-DEGs, and that using an evolutionarily
principled approach to feature reduction significantly improved the

model performance.

Top ranked maize TFs in predicting NUtE

hb75
nlp17$
gras37
sbp23
hb66
abi28
bbx6
arr8
cazp10
bhlh159%
myb38
nlp13
myb74$
c3h39
myb34%

T

20 40 60
Feature importance score

Predicting additional traits demonstrates the general applic-
ability of the evolutionarily informed machine learning pipe-
line. To further test whether our pipeline can be applied to

predict additional traits from transcriptome data, we used the
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Fig. 5 Evolutionarily informed machine learning models uncover genes-of-importance and predictive of NUE. Step 1. The evolutionarily conserved

N-DEGs between Arabidopsis and maize (see Fig. 4) and NUE data from n genotypes are split into training (n—1 genotypes) and test (left-out genotype)
set (for details see Supplementary Fig. 4). Step 2. The training set was used to optimize the XGBoost model, which then predicts the NUE using the gene
expression in the test set. Step 3. The model performance was evaluated by calculating the Pearson’s correlation coefficient r between the predicted and
actual NUE values. In Arabidopsis, the dots indicate the Pearson's r of 100 individual iterations and the pointranges indicate mean +/— SD. In maize, there
are only two data points for each genotype thus the Pearson’s r was calculated from the pooled predicted and actual NUE from 100 iteration. Step 4. The
TF features were ranked based on their contribution to the NUE. The complete ranking of gene features is provided in Supplementary Data 3. $These genes

are functionally validated in this study.

Table 1 Evolutionary conservation of gene responsiveness enhances machine learning outcomes.

Maize features Random expressed genes Top N-DEGs Cross species N-DEGs
Pearson's r r=0.62 r=0.68 r=0.79

Random expressed genes 6.56e—04 1.5e—05

Top N-DEGs 6.56e—04 1.06E-03

Cross species N-DEGs 1.5e—05 1.06—-03

Arabidopsis features Random expressed genes Top N-DEGs Cross species N-DEGs
Pearson's r r=0.53 r=0.59 r=0.65

Random expressed genes 7.63E—06 3.82E-06

Top N-DEGs 7.63E—06 1.64E—-04

Cross species N-DEGs 3.82E-06 1.64E—-04

Comparison of the performance of maize (top) and Arabidopsis (bottom) XGBoost models using the same number of features from different sources: randomly selected expressed genes, top N-DEGs
based on FDR ranking in edgeR analysis, and the evolutionarily conserved N-DEGs. The numbers indicate the P-value of one-tailed Mann-Whitney U-test.

same conserved N-DEGs (Fig. 4), to predict two additional traits
for each species. For Arabidopsis, we found that the mean
Pearson’s r for predicting biomass and N-uptake was 0.68 and
0.69, respectively (Supplementary Fig. 6a), is comparable to that
for predicting NUE (r=0.65). Interestingly, the feature impor-
tance ranking appeared to be trait-specific, as the gene ranking for
NUE only weakly correlated with those for biomass (p = 0.09)
and N-uptake (p =0.08) (Supplementary Figs. 6¢c and 7b). This
result can be explained by the weak correlation between NUE and
biomass (r = 0.14), as well as that between NUE and N-uptake
(r=0.01) (Fig. 2b). Indeed, for highly correlated traits such as
biomass and N-uptake (r=0.97), the feature importance rank-
ings were also highly correlated (p=0.94) (Supplementary
Fig. 7a). For maize, the mean Pearson’s r for predicting biomass
and grain yield was 0.72 and 0.52, respectively (Supplementary
Fig. 6b). As with Arabidopsis, the feature importance rankings for
maize also appeared to be trait-specific, being greater (p = 0.59)
for highly correlated traits such as biomass and grain yield
(r=0.8), compared to Total NUtE—which is weakly correlated
with either biomass (r=—0.14; p=0.15) or grain vyield
(r=—0.19; p=0.33) (Fig. 3b and Supplementary Fig. 8). Taken
together, our results suggest that the feature importance ranking
can capture biological information represented by the degree of
phenotypic correlation among different component traits.

To extend our studies beyond our proof-of-principle dataset,
we also applied our evolutionarily informed machine learning
pipeline to two additional matched transcriptome and phenotype
datasets related to drought in field grown rice and disease
response in mouse models.

The rice data comprises matched transcriptomic and pheno-
typic information collected from 220 rice genotypes subjected to
drought treatment in field experiments?3. The 220 rice genotypes
consist of two major subspecies, Indica and Japonica, which
diverged ~440,000 years ago, with the genotypic and phenotypic
diversity of domesticated rice. From this large dataset, we retained
57 rice genotypes that had no missing data in the trait
measurement. We then used this set of 57 rice genotypes, and
randomly selected 20 genotypes to define drought-responsive

DEGs and used them as gene features for predicting the fecundity
in the 37 “left-out” rice genotypes. We repeated this process ten
times and the mean Pearson’s r was 0.62. The model performance
was consistent across the evolutionarily distant Japonica and
Indica rice sub-species (Supplementary Fig. 9 and Supplementary
Data 9), and better than using the same number of random
expressed genes (Mann-Whitney U-test, P-value <2.2e—16).

The mouse dataset comes from a highly genetically diverse
Collaborative Cross (CC) population that comprises 90% of the
genetic diversity across the entire laboratory Mus musculus
genome?4, The dataset we selected comprises matched transcrip-
tome and disease outcome after influenza virus infection of 11
genotypes from the CC mouse population study?*. We used
DEGs (mock vs. infected) identified across the 11 mouse CC
population genotypes to predict the disease outcome (asympto-
matic vs. symptomatic) and found the mean Pearson’s r to be
0.98. The models built using cross-genotype DEGs outperformed
the model using the same number of random expressed genes
(Mann-Whitney U-test, P-value = 3.3E—3).

Overall, our results for the matched transcriptome and
phenotype datasets for the rice and mice models provide two
use-case studies of our evolutionarily informed machine learning
pipeline applied to external data sets for traits in both plants and
animals. They also show that transcript-based prediction can be
achieved using a smaller population (20 and 11 genotypes in the
case of rice and mice, respectively) compared with the
requirement of hundreds of lines, which are needed for GWAS
and eQTL studies?>.

Validating the function of genes whose expression is influential
in models predicting NUE. The above studies established the
robustness of our evolutionarily informed machine learning
models in predicting trait outcomes based on conserved gene
responses within and across species. Next, we experimentally
validated gene features that are most influential in our predictive
models. To this end, we used the feature importance score, an
XGBoost!® output, which reveals the influence of each feature
(gene) in the predicted value (NUE) (Supplementary Data 3). We
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reasoned that if models built for multiple genotypes selected a
common set of gene features, this would indicate that those gene
features are robust to genotype in predicting NUE. In maize, over
81% (202/248) of the XGBoost “important gene features” for
predicting NUE were shared by models built for 16 genotypes,
and 91% (245/248) were shared by ten or more maize genotypes
(Supplementary Data 3). Similarly, for Arabidopsis 42% (257/
610) of the “important features” for predicting NUE were shared
by models built for 18 Arabidopsis accessions, and 85% (519/610)
were shared by ten or more Arabidopsis accessions (Supple-
mentary Data 3). These results are only consistent with the
polygenic nature of NUE trait, but also reveal that there is a core
set of influential N-DEGs, whose expression levels can accurately
predict NUE phenotypes for both species.

In maize, the top-ranked “important gene features” in
predicting NUE outcomes include the transcription factors
(NLP, MYB, and WRKY), members of N-uptake/assimilation
pathway (ammonium transporter, asparagine synthetase), and
genes involved in photosynthesis and amino acid metabolism
(Fig. 5, Step 4, Supplementary Data 3). In Arabidopsis, the top-
ranked “important gene features” in predicting NUE include
transcription factors (NF-Y, NLP, and MYB), members of the N-
uptake/assimilation pathway (nitrate transporter, asparagine
synthetase, and glutamine synthetase), tubulins, and chlorophyll
a-b binding proteins (Fig. 5, Step 4, Supplementary Data 3).
Several of the important features including the transcription
factors (NLPs, LBD37/LBD38) and genes involved in
N-metabolism (glutamine and asparagine synthetase) have been
implied or directly linked to affect NUE in planta®!-26-2%, This
consistency of our machine learning predictions of genes of
“importance” to NUE with published results in planta not only
validates the findings from our machine learning pipeline, but
also indicates the novel genes uncovered in this pipeline could
shed light on additional as yet unknown molecular components
and mechanisms underlying NUE.

Further, we reasoned the regulatory genes (e.g., transcription
factors, TFs) controlling the levels of expression of multiple
XGBoost important features for predicting NUE would be ideal
candidates for functional validation for their role in NUE in
planta. To this end, we identified TFs predicted to regulate these
XGBoost gene features of importance to NUE by constructing
gene regulatory networks (GRNs) using GENIE3, which adopts
the random forest machine learning algorithm and was the best
performer in the DREAM4 and DREAMS5 Network Inference
Challenge!®.

To construct GRNs controlling NUE for each species, we first
identified the N-responsive TFs in maize (545 TFs) and
Arabidopsis (184 TFs) by intersecting the N-DEGs from our
study with the TFs for each species using published
databases®0-32, Next, we used our N-response TFs in GENIE3
as the “regulatory genes” (GENIE3 term) whose influence on the
evolutionarily conserved “target genes” in maize (248 gene
features) or Arabidopsis (610 gene features) were weighed on a
0 to 1 scale, where 0 = non-influential and 1 = strongly
influential. We kept the top 1% of the TF-target edges to
construct the NUE regulatory network (Supplementary Data 4)
and calculated the number of TF-target edges (connectivity) for
each TF as a measure to evaluate their influence within the GRN.

Next, we integrated our GRN analysis with the XGBoost results
to select candidate TFs that regulate genes of importance to NUE
phenotype for functional validation of their role in NUE (Table 2).
The selection and prioritization of TFs was based on one or more
of the following criteria: (i) XGBoost-based importance score, (ii)
GENIE3-based TF connectivity in the NUE GRN, (iii) curated
knowledge from the literature, and iv) the availability of multiple
mutant alleles. In Arabidopsis, the top TFs in the XGBoost-based

importance ranking listed in Table 2 include NF-YA6
(AT3G14020), DIVI (AT5G58900), UNEI2 (AT4G02590),
NLP5 (AT1G76350), and TCP2 (AT4G18390). The other two
Arabidopsis TFs prioritized for in planta validation studies
WRKY38 (AT5G22570) and WRKY50 (AT5G26170) (Table 2),
were selected based on their high connectivity in the GENIE3-
based GRN (Supplementary Data 4). For maize, we selected two
candidate TFs (Zm00001d006293 nlpl7, Zm00001d012544
myb74) for in planta validation studies that are hubs in the
GENIE3-based GRN (Supplementary Data 4). Since no maize
mutants were available for these genes, we took advantage of our
cross-species approach by validating the function of their
Arabidopsis homologs (AT1G76350 NLP5, AT5G06100
MYB33) in NUE. With the goal of cross-species validation, we
also selected the maize homolog (Zm00001d006835, NFYA3) of
the top-ranked Arabidopsis NF-YA6 (AT3G14020) for validation
in NUE (Table 2). This choice took into consideration the fact
that NF-Y transcription factors are enriched in Arabidopsis
XGBoost gene features and in the maize GRN (Supplementary
Data 3 and 4). Moreover, this selection was supported by previous
studies which showed that overexpressing a member of the NF-
YA family in wheat significantly increased N uptake and grain
yield under different levels of N supply®3. To discern the function
of maize NF-Y homologs in NUE, we characterized the NFYA3-
I:UfMu mutation with a Uniform Mu transposon insertion
(mul1003041)3* that does not produce a detectable full-length
transcript.

Our results on the eight Arabidopsis TFs selected for in planta
validation studies were classified into two groups based on our
NUE phenotypic results (Fig. 6). The Group I “important gene
features” in predicting NUE in Arabidopsis include MYB33
(AT5G06100) and TCP2 (AT4G18390), which when mutated
showed increased NUE phenotypes under both high-N and low-
N inputs (Fig. 6a). These validation results reveal that each TF
plays a non-redundant role as negative regulators of NUE, as the
loss-of-function T-DNA mutants displayed higher NUE under
both N-deplete and N-replete conditions. The Group II
“important gene features” in Arabidopsis include six TFs, which
when mutated show increased NUE phenotypes specifically under
low-N input: UNEI2 (AT4G02590), NLP5 (AT1G76350), NF-
YA6 (AT3G14020), WRKY38 (AT5G22570), WRKY50
(AT5G26170), and DIV1 (AT5G58900) (Fig. 6b). These valida-
tion results reveal that each of these Group II TFs plays a
non-redundant role as negative regulators of NUE, as the loss-
of-function T-DNA mutants displayed higher NUE, specifically
under N-deplete conditions (Fig. 6b and Supplementary Fig. 10),
suggesting that the function of these TFs in regulating NUE is
only required when N is limiting. Alternatively, their function
may be redundant with other TFs under N-replete conditions.
For maize, the NUE tests of the NFYA3-1::UfMu mutant in the
field showed that they accumulated less stalk and total N
compared to wild-type, yet grain biomass, and all other traits
dependent on grain biomass (grain yield, harvest index, NUtE)
increased when grown with sufficient N (Fig. 6¢). These results
show that loss of maize NFYA3 influences how developing seeds
sense and respond to plant N status, with the mutation reducing
the N requirement to promote grain, thereby enhancing the
NUtE. Observing phenotypes in the grain is also consistent with
the expression pattern of NFYA3, which is strongest in developing
seeds?”. No significant differences were observed for NUE traits
compared to wild-type maize (W22) when grown under
N-limiting conditions, except for slightly lower grain yield and
higher grain N concentration (Supplementary Data 5).

Taken together, our evolutionarily informed machine learning
predictions of genes of importance to NUE and validation results
for TF mutants for both Arabidopsis and maize demonstrate that:
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Table 2 Candidate TFs identified from XGBoost feature importance ranking for predicting NUE and/or hubs in GENIE3 network

constructed from XGBoost important gene features.

Gene ID Symbol Published functions Selection criteria

AT3G14020 NF-YA6  Male gametogenesis, embryogenesis, seed morphology, and seed At XGBoost gene-to-trait model
germination; ABA response®2, NF-YAs are predicted target of
miR16945

AT4G02590 UNE12 Temperature-responsive SA immunity regulator4’ At and Zm XGBoost gene-to-trait model

AT5G58900 DIV1 Nitrogen-response gene in the Arabidopsis seedling root and At and Zm XGBoost gene-to-trait model
shoot40

AT4G18390 TCP2 MicroRNA-mediated leaf morphogenesis#, photomorphogenesis At XGBoost gene-to-trait model
in Arabidopsis>©

AT5G22570 WRKY38 Basal defense48 At GENIE3 GRN

AT5G26170 WRKY50 Systemic Acquired Resistance?® At GENIE3 GRN

AT5G06100 MYB33 The Arabidopsis (MYB33), maize (Zm00001d012544) and rice Zm GENIE3 GRN, At and Zm XGBoost gene-to-
(0OsGAMYB) homologs are predicted target of miR15944, juvenile- trait model, conserved cross-species function in
to-adult transition#4, anther development43 anther development

AT1G76350 NLP5 The maize homolog of NLP5 (Zm00001d006293) is a marker for Zm GENIE3 GRN, At and Zm XGBoost gene-to-
N status'® and nutrient uptake?! trait model

Zm00001d006835 NFYA3 Photoperiod-dependent flowering and abiotic stress responses® At XGBoost gene-to-trait model

Our validation results confirming the roles of these eight TFs in NUE are provided in Fig. 6, Supplementary Fig 9, and Supplementary Data 5.

(i) Using evolutionarily conserved gene response significantly
enhances the ability of the XGBoost machine learning models to
predict NUE outcome across genotypes and species (plants and
animals), and (ii) The XGBoost-based important scores and
GENIE3-based connectivity are informative in selecting func-
tionally important features—including TFs—to control of a
complex physiological trait in crops—NUE—which has impor-
tant implications for sustainable agriculture.

Discussion

Our work addresses the primary, but often elusive, goal of
genome-to-phenome analysis—namely, predicting phenotypic
outcomes from genome-wide expression data. We show that
exploiting evolutionary conserved gene expression datasets—
within and across species—enhanced the machine learning model
performance in predicting NUE phenotypes in a model (Arabi-
dopsis) and a crop (maize), and also as applied to published
matched transcriptome/phenotype datasets from another crop
(rice) and model animal (mouse).

Our evolutionarily informed three-step machine learning
pipeline (Fig. 1) which integrates phenotypic traits, transcriptome
profiles, genetic variation, and environmental responses allowed
us to; (1) preselect a subset of transcripts based on an evolutio-
narily conserved transcriptome responses within and across
species, (2) employ this conservation as a biologically-principled
way to reduce the feature dimensionality to improve the machine
learning mmodel performance, and (3) rapidly validate the
function of ‘important gene features’ identified from XGBoost
models and GENIE3 gene regulatory network via the inclusion of
a model and crop species.

The implementation of machine learning in predicting phe-
notypes has advanced in the past few years. However, the avail-
able datasets do not always; (1) exploit the genetic diversity of the
organism(s) and (2) measure the phenotypes using same samples
from which the transcriptome response was captured. Our work
advances the field in both points, as we utilized a panel of gen-
otypes with diverse genetic backgrounds and measured pheno-
types from the same batch of plants that the transcriptome was
captured. We integrated genetic diversity, machine learning, and
cross-species approaches to identify genes of importance to an
agronomically important trait, NUE. The trait we selected for
study on NUE has the challenge of its underlying polygenic
nature and the difficulty in collecting high quality phenotypic

data®0. To this end, we designed a sufficiently large, but man-
ageable experimental space of N-treatments across a set to ~20
genotypes spanning NUE phenotypes in a model and crop spe-
cies. Our results presented herein, generated the largest matched
phenotypic and transcriptomic datasets from both a model and a
crop species. This dataset includes a large NUE phenotypic
dataset resource of 318 maize genotypes for the plant community,
and for 18 Arabidopsis accessions. We exploited the genetic
diversity in 18 Arabidopsis accessions and 23 maize genotypes
selected for broad phenotypic variation in NUE, and scored them
for both transcriptomic and physiological responses in the same
samples. Importantly, the selected maize genotypes represent the
range of NUE diversity observed among a comprehensive col-
lection of germplasm adapted to the U.S. Corn Belt, as confirmed
empirically in the first year of our experiment (Supplementary
Fig. 2 and Supplementary Data 1).

To extend this analysis beyond our proof-of-principle study of
NUE, we applied our evolutionarily informed machine learning
approach to other agricultural traits (e.g., drought resistance) in
another major crop, using published transcriptome and pheno-
type datasets of genetically diverse rice subspecies (Indica and
Japonica)?3. In our application to animals, we exploited the
growing awareness that host genetic variation has a major impact
on pathogen susceptibility. To this end, we used matched tran-
scriptome and phenotype data from a highly genetically diverse
Collaborative Cross (CC) population that comprises 90% of the
genetic diversity across the entire laboratory Mus musculus
genome?4, Models that we built using cross-genotype DEGs from
both these studies of these genetically diverse lines in plants (rice)
and animals (mice) lines, significantly outperformed the model
using the same number of random expressed genes. Importantly,
in these two additional case studies, and in our proof-of-principle
example, our evolutionary informed analysis of matched tran-
scriptome and phenome data allowed us to use a considerably
smaller sample size compared to those needed for GWAS or
eQTL studies?°.

The limitations of our study lie in the fact that the predictive
models we derived do not necessarily inform the gene-to-trait
causal relations. However, predictive accuracy and explanatory
power are two dimensions rather than extremes in deciphering
the complexity of the underlying mechanism3’. Predictive mod-
eling forecasts new or future observations, while explanatory
modeling tests causal explanations3’. Predictive models do not
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aim to explain the underlying mechanism; however, “the two-way cross-species validation strategy enabled us to verify the

soundest path is to go for predictive accuracy first, then try to
understand why”38. By providing accurate prediction, the pre-
dictive models reveal novel gene features for further investigation
of causality’”. We prove this principle using a reverse genetics
approach to validate the function of eight transcription factors
important to predicting NUE outcomes (Table 2). Notably, our
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function of genes involved in NUE for (i) two maize candidate
genes using mutants in their Arabidopsis homologs and (ii) one
Arabidopsis candidate TF via analysis of a mutant in its maize
homolog grown in the field (Table 2 and Fig. 6). The former
is particularly important, especially when knockout mutants are
less comprehensive for crop species. The use of a model species
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Fig. 6 Experimental validation of candidate TFs in NUE using loss-of-function mutants for Arabidopsis (lab) and maize (field). a The Arabidopsis
T-DNA mutants (Methods) in Group | genes displayed higher NUE compared to wild-type under N-replete (yellow, 10 MM KNO3) and N-deplete (gray,
2 mM KNO3) conditions. This suggests their non-redundant role(s) in regulating NUE regardless of the environmental N levels. b The Arabidopsis mutants
in Group |l genes displayed higher NUE specifically under N-deplete conditions. This indicates that the Group Il genes are either only required under
N-deplete conditions or are functionally redundant under N-replete conditions. The experiments were caried out three times with ten or more plants per
genotype per condition. ¢ Changes in NUE and component traits for the maize nfya3-1::Mu mutant compared to wild-type W22. Plants were grown in the
field supplied additional N (150 kg N fertilizer/ha). Trait values are the average of five plants sampled from each of three replicate field plots, 15 plants per
genotype (Methods). The higher total NUtE observed in the mutant was a combinatorial effect of lower stalk N (g/plant) (P=0.002), total N uptake
(P=0.05) and higher grain biomass (P = 0.1). The increased NUE phenotype was also observed in the Arabidopsis T-DNA mutant defective the homolog
gene NF-YA6 (AT3G14020) (b). The pointrange indicates mean +/— SD. The P-value was calculated between WT and indicated mutant allele using one-
sided t-test with unequal variance. The source data is provided in Supplementary Data 5.

provides genetics tools for functional characterization of candi-
date genes, given the fact that transforming Arabidopsis is far
more efficient than in any crop species.

One interesting result we obtained, was that the learned model
performance is more robust to maize genotype, compared with
the models learned in Arabidopsis (Fig. 5). This outcome was
obtained even though the maize genotypes selected for our study
possess greater genetic diversity of NUE (Fig. 3¢). Many factors
may contribute to this difference. For instance, the maize gene
features were applied to forecast NUE traits measured at later
development stages (Supplementary Fig. 1). By contrast, the
Arabidopsis gene features were applied to predict the NUE traits
measured at the same time as RNA samples (Supplementary
Fig. 1). An alternative, and not mutually exclusive explanation,
comes from the fact that the maize leaf samples were collected
from a specific developmental window with peak
N-responsiveness?, resulting in the apparent higher N-sensitiv-
ity, compared to the Arabidopsis samples. Our results support the
hypothesis that pinpointing a developmental stage when the
transcriptome response is most sensitive to the factor of interest
(e.g., N-treatment in our study), would be beneficial to the per-
formance of predictive models for the trait.

Our findings highlight the fact that genes affecting NUE are
involved in an array of processes (Table 2), including nutrient
response and uptake (DIVI40 and NLP5%2141), anther and pollen
development (NF-YA6* and MYB33*3), juvenile-to-adult tran-
sition (MYB33%%), microRNA-mediated growth and responses
(NE-YA*5, MYB33*4, and TCP2%), immune response (NF-YA642,
UNEI12%7, WRKY38%, and WRKY50%), and photomorphogenesis
(TCP2> and Zm00001d006835°1). These results not only provide
additional evidence supporting the notion that NUE is a poly-
genic trait and intertwined with diverse signaling pathways, but
further reveal a novel role of these genes in regulating NUE.
Notably, there are three transcription factor families, NF-Y, NLP,
and WRKY, whose members are enriched as the gene features of
XGBoost models and/or the regulators of GENIE3-based GRN:

Our results identified nine Arabidopsis and one maize NF-Y
genes as the features in XGBoost models, as well as 12 Arabi-
dopsis and 14 maize NF-Y genes, as potential regulators in the
GENIE3 NUE GRN (Supplementary Data 3 and 4). Moreover, we
validated the function of NF-YA6 in NUE—a top gene in Ara-
bidopsis XGBoost model—using mutants in Arabidopsis NF-YA6
(AT3G14020), as well as its maize homolog NFYA3 (Fig. 6). The
NE-Y family, found in nearly all eukaryotes®, encodes compo-
nents of an evolutionarily conserved trimeric transcription factor
complex. In humans, NF-Y binds to the CCAAT box in pro-
moters of large sets of genes overexpressed in breast, colon,
thyroid, and prostate cancer®3. In plants, the regulatory roles of
NE-Y have been revealed in flowering-time, early seed develop-
ment, nodulation, hormone signaling, and stress responses®2. NF-
Ys function as a multimeric protein complex (NF-YA/B/C(-CO/
bZIP/bHLH) to bind its canonical motif CCAAT and/or the

motif(s) of its partner TFs>. It is tempting to hypothesize that the
flexible cis-binding capacity makes NF-Ys versatile and context-
dependent TFs that can quickly adapt to nutrient fluctuations. It
is noteworthy that several NF-Y genes are targeted and down-
regulated by miR169°> and miR169 members respond tran-
scriptionally to N-starvation®®. Thus, our data supports a new
link between N-signaling, miRNA changes in N-responsive of
NE-Ys, to the phenotypic output of NUE: Nitrogen — miR169 —
NF-Y — NUE.

We identified six Arabidopsis and two maize NLP genes as
the features in XGBoost models to predict NUE, as well as five
Arabidopsis and 14 NLP genes as potential regulators in the
GENIE3 NUE GRN (Supplementary Data 3 and 4). Further,
using mutants, we validated the role of NLP5—a top gene feature
in maize XGBoost model and maize NUE GRN—as a negative
regulator of NUE specifically under low-N conditions (Fig. 6b
and Supplementary Fig. 9). The NLPs—which are plant-specific
TFs—are related to a core symbiotic gene Nin>/ and later iden-
tified as master regulators of nitrate signaling in ArabidopsisZ®.
Emerging evidence suggests their contribution to N-regulated
gene expression and developmental processes is common across
plant species®®. The results from our functional validation
experiment indicated that NLP5 is a negative regulator of NUE
under N-depleted conditions (Fig. 6b), which can be explained by
the fact that NLP5 is a target of NIGT1/HRS1, a master regulator
of N-starvation response genes®®0. Thus, the loss of NLP5 in the
Arabidopsis mutants could de-repress the N-starvation response,
leading to higher NUE.

We identified six Arabidopsis and six maize WRKY genes as
the features in XGBoost models, as well as 24 Arabidopsis and 11
WRKY genes as the regulators in GENIE3 NUE GRN (Supple-
mentary Data 3 and 4). Among them, WRKY38 and WRKY50
are the top-ranked TF hubs in the Arabidopsis NUE GRN. Our
functional analysis using Arabidopsis mutants validated a role of
WRKY38 and WRKY50 in mediating NUE (Fig. 6b). WRKYs,
occurring primarily in plants®!, are among the largest families of
transcription factors. Cumulative evidence has demonstrated the
important biological functions of WRKYs in plant developmental
processes (embryogenesis, germination, senescence etc.) as well as
response to biotic and abiotic stresses including defense, salt,
drought, nutrient starvation, and more®2, In addition to their
known functions in defense responses#84%, our results add a novel
aspect to WRKY38 and WRK50 in regulating NUE and make
them candidate TF hubs in coordinating plant responses to N
levels as well as biotic stress.

Our work demonstrates that the integration of genetic diver-
sity, cross-species transcriptome analysis, and machine learning
method enhances predictive modeling of genes affecting NUE.
Our results from reverse genetic analysis further show that those
genes predictive of NUE are not only biomarkers, but also are
functionally important in determining plant performance in
response to environmental nutrition. The pipeline presented in
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this work could complement the current approaches in identi-
fying important genes in a multigenic trait. Our validation of the
evolutionarily informed strategy for feature reduction across both
genetically diverse crop and animal datasets, supports its potential
to inform any system that seeks to uncover important genes
controlling a complex phenotype in biology, agriculture, or
medicine.

Methods

Plant materials, growth conditions, and phenotypic assays

Arabidopsis. All Arabidopsis seeds used in this study were obtained from ABRC
(https://abrc.osu.edu/) and listed in Supplementary Data 1. The 18 Arabidopsis
accessions are Akita, Bl-1, Bur-0, Col-0, Ct-1, Edi-0, Ge-0, Kn-0, Mh-1, Mr-0, Mt-
0, N13, Oy-0, Sakata, Shahdara, St-0, Stw-0, and Tsu-0, as previously studied for
NUES. The T-DNA mutants are all in the Col-0 background. The mutant lines®
are myb33-1 (SALK_056201), myb33-2 (SALK_065473), tcp2-2 (SALK_060818),
unel2-1 (SAlLseq_711_E09.1), nip5-1 (SALK_055211), nlp5-2 (SALK_063304),
nfya6-1 (SALK_005942), nfya6-2 (SAIL_159_E03), wrky38-1 (WiscDsLox489-
492C21), wrky38-3 (SAIL_749_B02), wrky50-1 (SAIL_115_C10), divi-1
(SALK_056735), and div1-2 (SALK_084867C). The mutants were genotyped to
confirm the homozygosity. The expression level of the inserted gene in the
homozygous mutants were below detection limit of real-time PCR (Supplementary
Fig. 11). The primer sequences are provided in the Supplementary Data 6.

For growth experiments, the Arabidopsis seeds were germinated on % MS with
MES Buffer and Vitamins (RPI cat M70800) plates for 7-10 days in on a 16h-light/8h-
dark photoperiod. The seedlings were then transferred to pre-washed nutrient-poor
matrix vermiculite under an 8 h light (120/umol%/s)/16 h dark diurnal cycle, at
temperatures 22 and 20 °C respectively and 40% humidity. We kept one plant per pot
and carried out the entire experiment using Arasystem (https://www.arasystem.com/).
To track the N supply for each plant, we treated each plant with the same amount of
low N (LN, 2mM KNO;) (Sigma cat P6083) or high N (HN, 10 mM KNO;) medium
(Caisson Labs cat. no. MSP10) using a syringe and recorded the volume. The
potassium concentration was maintained by supplementing KCl (Sigma cat P9333) to
the LN medium. On 40 and 42 DAS, the treatment was enriched with 10% atom
excess 1°N for 1°N influx analysis. To minimize the variation due to pot location in the
growth chambers, the HN row was located adjacent to the LN row, and the flats were
shuffled three times weekly. We repeated these experiments three times consecutively
to obtain biological replicates for phenotypic and transcriptomic samples. For each of
the 18 Arabidopsis accessions, mature leaves were harvested for transcriptome and the
above ground tissues for physiological traits at 43 DAS. The dried tissues were ground
and analyzed for total nitrogen using a PDZ Europa ANCA-GSL elemental analyzer
interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer at UC Davis Stable
Isotope Facility. The phenotypic data are provided in Supplementary Data 1.

Maize. Seeds for all maize inbreds used in this study were originally obtained from
the USDA-ARS North Central Plant Introduction Station in Ames, IA, except for
the inbreds derived from the Illinois Selection Experiment and FR1064 as described
in Uribelarrea et al.23. Inbred lines were subsequently increased by controlled self-
pollination, and hybrid seed produced by controlled crosses. We grew the maize
plants in N-managed field plots in Urbana, Illinois between May and September in
2014-2016. The soil type is a Drummer silty clay loam, pH 6.2, that received either
200 kg/Ha fertilizer N or no exogenous applied N when the plants reached the V3
growth stage. Subsequent soil testing and measures of plant N recovery estimate
approximately 60 kg N/ha were made available from the soil alone. The N fertilizer
was applied as granular ammonium sulfate banded adjacent to plants at the soil
surface. Plants were grown in a split-plot design, where individuals in each main
plot (2 rows 5.3 m long, 76 cm row spacing) were paired in adjacent rows of
N-replete or N-depleted condition to a final density of 49,000 plants per hectare for
inbreds and 77,000 plants per hectare for hybrids. Genotypes within main plots
were arranged by relative maturity to minimize its impact on NUE traits. Plots
were maintained weed free by a pre-plant application of herbicide (atrazine +
metalochlor) followed by hand weeding as needed.

Maize phenotyping was performed at the R6 growth stage, when plants have
reached physiological maturity, but may not yet have fully senesced. Five plants
from each plot were cut at ground level, ears removed, and a fresh weight obtained
on the entire remaining plant material (stover, comprising mostly stalk by weight,
followed by leaves, tassels, and husks). The stover was then shredded in a Vermeer
wood chipper, a subsample was collected into a tared cloth bag, and the subsample
fresh weight was recorded. Stover samples were oven-dried to dryness at least three
days at 65 °C and the subsample dry weight used to estimate stover biomass.
The dried stover was further ground in a Wiley mill to pass through a 2 mm screen,
and approximately 100 mg used to estimate total nitrogen concentration by
combustion analysis with a Fisons EA-1108 N elemental analyzer. Grain samples
were dried for approximately one week at 37 °C, after which grain was shelled from
the cobs, and the cob weight recorded. The moisture content and N concentration
within each 5-plant grain sample was estimated using near-infrared reflectance
spectroscopy on a Perten DA7200 analyzer, using a custom calibration built with
samples possessing a broad range of variation in composition and color. The

nitrogen concentration calibration was established using data from total
combustion analysis of grain samples as described above for stover.

The NFYA3-1::Mu loss-of-function allele was generated by the UniformMu
insertion mul003041::Mu in the 5’ untranslated region the annotated gene model
Zm00001d006835. The UFMu-00332 seed stock was obtained from the Maize
Genetics Cooperation Stock Center and genotyped®* to identify homozygous for
the NFYA3-1::Mu mutant allele, which were then self-pollinated. The expression
level of the NFYA3 gene in the homozygous mutants was below detection limit of
real-time PCR (CT > 45) (Supplementary Fig. 10). The primer sequences are
provided in the Supplementary Data 6. The NFYA3 mutant and wildtype W22-
UniformMu plants were grown in 2020 at the same field site and using the same
experimental design, nitrogen treatments, and phenotyping methods described
above. The phenotypic data are provided in Supplementary Data 5.

RNA extraction, library preparation, and sequencing. For each of three Ara-
bidopsis RNA replicates, we harvested mature leaves from pre-bolting plants on 43
DAS between 9 and 11 AM from two plants, flash froze in liquid nitrogen and
stored in —80 °C. We isolated RNA using Direct-zol RNA Kits following manu-
facturer’s instructions (Zymo Research). RNA quality was assessed on an Agilent
Tape station using RNA ScreenTape (Agilent cat 5067-5576). All 108 stranded
RNA-seq libraries were made using the NEBNext® Ultra™ II Directional RNA
Library Prep Kit for Illumina® (NEB cat E7768) and assessed using DNA high
sensitivity D1000 ScreenTape system (Agilent cat 5067-5584). The RNA-Seq
libraries were sequenced using Illumina HiSeq 2500 v4 with 1 x 75 bp single-end
read chemistry at the GenCore Facility at New York University Center for
Genomics and Systems Biology.

For each of three maize RNA replicates, we collected leaf tissues from two inches
from the base of leaf 13 subtending the top ear at R1 stage between 9 and 11 AM, flash
froze in liquid nitrogen and stored in —80 °C. We extracted RNA from frozen leaf tissue
using CTAB-chloroform method. Genomic DNA was removed using DNAse I (NEB
cat M0303). RNA-seq libraries were prepared using a TruSeq Stranded mRNAseq
Sample Prep kit (Illumina cat RS-122-2101) according to the protocol provided. Single-
end 150 bp reads were generated using the Illumina HiSeq 4000 at the Roy J Carver
Biotechnology Center in the University of Illinois at Urbana-Champaign.

Identification of N response differentially expressed genes (N-DEGs). All
RNA-seq raw reads were processed using the same pipeline to remove optical
duplicates (Clumpify 37.24) and adapters (BBDuk 37.24)%°. The trimmed reads
were aligned to the latest genome in 2018, TAIR10 for Arabidopsis and Zm-B73-
REFERENCE-GRAMENE-4.0!4 for maize, using BBMap (37.24). The mapped
reads were assigned by featureCounts (1.5.1)%7 using the latest annotation in 2018:
Araport1198 for Arabidopsis and AGPv4.32! for maize. The parameters and
software versions for the above steps are available in Supplementary Data 7 and
GEO accession GSE152249. We identified N-DEGs in the training data set (n—1
genotypes) and repeated n times (n = number of genotypes in each species). In
each round of analysis, we first filtered out the lowly expressed genes (CPM > 1 in
less than ten samples) and normalized the data using upper-quantile (EDASeq
2.18.0)% and replicate samples (RUVSeq 1.18.0)70. Subsequently, we used edgeR
(3.26.8)19 to detect genes differentially expressed in high vs low N condition across
genotypes (FDR < 0.05). Lastly, we intersected the n lists of DEGs and only retained
the ones occurring on # lists as a common set of N-DEGs. These analyses resulted
in 2,123 Arabidopsis N-DEGs and 6914 maize N-DEGs (Fig. 4). The Arabidopsis-
Maize homolog mapping file is generated from Phytozome 1018 and available in
Supplementary Data 8. The code is available in the Coruzzi lab Open Science
Framework (https://osf.io/avjph/).

We held out a testing genotype before the DEG stage; and only training
genotypes (n-1 genotypes) were used in DEG analysis and XGBoost models (as
depicted in new Fig. S4). The held-out test genotypes were then used to validate the
model performance. This round robin approach (Fig. S4a(i) and b(i)), generated 18
and 16 independent DEG lists for Arabidopsis and maize, respectively. In approach
a, we identified a unified list of gene features by intersecting these independent lists
(e.g., 18 for Arabidopsis and 16 for maize) (Fig. S4a(ii)). By contrast, in approach b,
cross species analysis was performed on each independent DEG list (e.g., 18 for
Arabidopsis or 16 for maize).

To rule out the possibility that using the intersected DEGs (e.g., within species)
would overly optimize the XGBoost results, we further compared the XGBoost
performance using the intersected DEGs (Fig. S4a) with the alternative approach
that did not go through the within species list intersection (Fig. S4b). The results of
these two approaches are comparable (Fig. S4c). However, the advantage of
conducting the cross-genotype intersection (Fig. S4a, which we used in this
manuscript), has the benefit of resulting in a unified list of gene features, compared
to multiple independent lists of gene features. Generating a unified list of gene
features will enable the gene feature ranking across genotypes, rather than
restricted to an individual genotype.

Construction and evaluation of predictive machine learning models. We used a
tree model with gradient boosting, XGBoost!® R implementation, to train and test
the models. For each species, we split the data into training (n—1 phenotypes) and
testing (left-out genotype) sets. We used five-fold internal cross-validation to select
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the optimized hyperparameters. We tuned “nrounds” (number of trees), “col-
sample_bytree” (the proportion of features for constructing each tree), “sub-
samples” (the portion of training data samples for training each additional tree),
and “eta” (shrinkage of feature weights to make the boosting process more con-
servative and prevent overfitting) in an XGBoost:regression model. Subsequently,
we made predictions on each of the left-out genotype, assessed the model accuracy
by calculating the Pearson’s correlation coefficient r between the predicted and
actual values’!, and reported the r from 100 iterations.

Selection of candidate genes for functional validation in NUE. We used two
parallel procedures to select candidate genes for functional validation. First, we
used the XGBoost-generated feature importance score that indicates how useful
each feature was in the construction of model. We summed the score on a gene-by-
gene basis from 18 models for Arabidopsis and 16 models for maize and generated
a ranked list (Supplementary Data 3). Second, we used a Random Forest-based
algorithm GENIE3 to infer the transcription factors regulating the gene features.
We used the N-responsive TFs (184 Arabidopsis TFs and 545 maize TFs) as the
regulators and the gene features (610 Arabidopsis genes and 248 maize genes) as
the targets and kept the default parameters. We constructed the NUE regulatory
network using the top 1% of the edges and ranked the TFs based on their con-
nectivity (number of edges) (Supplementary Data 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw and processed data generated in this study including FASTQ, BAM, and read
counts have been deposited in the Gene Expression Omnibus (GEO) under accession
code GSE152249. Source data are provided with this paper and specified in the legend of
each figure. Source data are provided with this paper.

Code availability
The code used in this study is available at the Coruzzi lab Open Science Framework
(https://doi.org/10.17605/OSF.I0/AVJPH) 72.
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