


infectious period, and increased case fatality ratios. Thus, not only
does a decline in quality of care affect individual outcomes, it
poses problems for controlling the epidemic at a population
level, likely increasing the number of cases, the number of deaths
and the severity and duration of the outbreak.

Conventional epidemic models often fail to take into consider-
ation these potentially dynamic epidemic rates, and thus neglect
the potential impact of declining quality of care [12]. As a result,
such models may underestimate epidemic burdens, especially in
circumstances where health system collapse is possible. The
decline in quality of care over the course of a general epidemic
is difficult to characterise empirically and is likely context-specific.
Thus, to maintain generality, we model the quality of care func-
tion with a sigmoidal function in this paper, as this function
can incorporate both linear and exponential changes to the qual-
ity of care as the proportion of uninfected individuals or unin-
fected HCWs change. We examine the effect of the specific
parameterisation of the quality of care function on case counts
and mortality, in terms of both a loss impact parameter,
which quantifies how much quality of care declines if a single
HCW becomes infected, and a system redundancy parameters,
which quantifies what proportion of HCWs can be lost before
quality of care sees serious decline. We compare outcomes pro-
duced by four models to assess the differences in predictions
yielded by explicit consideration of healthcare as a dynamic
resource, with HCWs either modelled explicitly or within the
general population. We show that the inclusion of the quality
of care may significantly impact predicted epidemic outcomes,
and can therefore inform planning and management.

Methods

We aim to investigate the direct impact of the loss of HCWs on
outbreak outcomes. To this end, we developed four susceptible,
infected and recovered (SIR)-type [13] models to highlight the
impact that quality of care delivered over the course of an epi-
demic may have on outcomes. In our full model (Fig. 1A), we dis-
tinguish HCWs from the general population, since HCWs may
have higher infection rates, associated with more frequent contact
with infected individuals [14], and may also be priority targets for
interventions such as vaccines [3]. We further account for the
quality of care delivered by HCWs through an outbreak as a func-
tion of the uninfected fraction of the initial HCW population. In
our alternate models, we relax these assumptions. For alternate
model I (Fig. 1B), we assume that HCWs are a fraction of the gen-
eral population rather than a distinct population, and quality of
care is a function of total uninfected fraction of the population.
For alternate models II and III, we neglect quality of care, but
keep HCWs as a distinct population as in the main model (alter-
nate model II, Fig. 1C) or as a fraction of the total population
(alternate model III, Fig. 1D). Note that the alternate models II
and III are nested within the full model and alternate model I,
respectively. Thus, there are four model variants: with or without
HCWs modelled explicitly, and with or without quality of care
dependent on HCW status. For the two model variants in
which quality of care can change, we further explore four different
ways in which quality of care might decline. In the following, we
outline and discuss specifically the full model and how we model
quality of care as a function of HCW population. Details of the
remaining, alternate models are provided in the Supplementary
Material.

Model assumptions

For all models, susceptible individuals, S, are infected at rate β

multiplied by the frequency of their contact with infected indivi-
duals such that the force of infection is βSI/N. Infected indivi-
duals, I, may die before recovering with probability ρ or recover
with probability 1−ρ, at recovery rate γ [15]. Note that this is
not a closed system, and since we ignore other demographics,
disease-induced mortality decreases the population in our
model. We assume that once infected individuals have recovered,
R, they cannot be re-infected. Further, we assume that vaccines
also grant lasting immunity, so the susceptible individuals, vacci-
nated at rate ν, will remain in the vaccinated class, V, at least for
the duration of the outbreak. Finally, we assume that non-HCWs
are vaccinated at a fraction r of the rate at which HCWs are vac-
cinated. While many other parameters may also vary during the
course of an outbreak, we keep most parameters fixed so that
we can isolate the focal aspects of interest, i.e. the effects of quality
of care by HCWs. Nevertheless, for completeness, we include sen-
sitivity analyses (see the Supplementary Material). Baseline par-
ameter values are given in Table 1.

Full model

In our full model (Fig. 1A), we extend a standard SIR-type model
with a vaccinated class. Further, since HCWs are often subject to
different dynamics, e.g. more frequent exposure to infected indi-
viduals or higher vaccination rates, we model HCWs as a separate
population. Finally, we modulate vaccination, recovery and death
rates by a quality of care function, Q(P(t)), of the uninfected frac-
tion, P(t), in the HCW population. We will compare predictions
with alternate models I−III (Figs 1B–D) wherein we relax these
assumptions, with alternate model III as the simplest, SIR-type
model with vaccination (see Supplementary Material for details),
which will permit us to explore the different dynamics resulting
from the inclusion of quality of care. Differential equations
describing dynamics for our full model (Fig. 1A) are given
below, with all parameters defined in Table 1:

Ṡ(t) = −
b(I(t)+ Ih(t))

N(t)
S(t)− Q(P(t))rvS(t) (1)

İ(t) =
b(I(t)+ Ih(t))

N(t)
S(t)−

gI(t)Q(P(t))

(1− r)Q(P(t))
(2)

Ṙ(t) = Q(P(t))gI(t) (3)

V̇(t) = Q(P(t))rvS(t) (4)

Ṡh(t) = −
bh(I(t)+ Ih(t))

N(t)
− Q(P(t))vSh(t) (5)

İh(t) =
bh(I(t)+ Ih(t))

N(t)
−

gQ(P(t))Ih(t)

(1− r)Q(P(t))
(6)

Ṙh(t) = Q(P(t))gIh(t) (7)

2 I. Phadke et al.

https://doi.org/10.1017/S0950268821000297
Downloaded from https://www.cambridge.org/core. IP address: 68.232.117.82, on 19 Nov 2021 at 16:30:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



V̇h(t) = Q(P(t))vSh(t) (8)

N(t) = S(t)+ I(t)+ R(t)+ V(t)+ Sh(t)+ Ih(t)+ Rh(t)

+ Vh(t) (9)

where N(t) is the total population at time t.
The full model describes a system that is overwhelmed only

when HCWs decline. Three alternate models (Fig. 1), that include
or exclude explicit quality of care functions and HCW compart-
ments are presented in the Supplementary Material.

Quality of care function

The WHO defines quality of care as ‘the extent to which health
care services provided to individuals and patient populations
improve desired health outcomes’. We model the quality of
care, Q(P(t)), as a function of the proportion of HCWs, P(t),

that are uninfected and able to provide care. Thus, for our main
model, P(t) is given by the proportion of uninfected HCWs,
P(t) = ((Sh + Rh +Vh)/(Sh(0) + Ih(0) + Rh(0) +Vh(0))). We choose Q
(P(t)) to be a sigmoidal function, Q(P(t))∼ (1/(1 + e−k(P(t)−(1−m)))).
In the mathematical interpretation of this function, k corresponds
to the shape of the sigmoid (and the slope around the midpoint)
and m corresponds to the location of the midpoint. In this
analysis, we interpret these two shape parameters associated
with Q(P(t)), as describing loss impact (k) and the health system
redundancy (m). We normalise so that Q(P(t)) ranges from 0 to 1,
which allows us to showcase healthcare systems working at levels
from 0 to 100%.

Q(t) = Q(P(t))

=
(1/(1+ e−k(P(t)−(1−m))))− (1/(1+ ek(1−m)))

(1/(1+ e−k(m)))− (1/(1+ ek(1−m)))
. (10)

When all HCWs are infected (P(t) = 0), the healthcare system
can provide no care (Q(P(t)) = 0) and is said to be operating at

Fig. 1. Model schematics. We visually highlight the differences between the four models being considered, formed by including or excluding quality of care deliv-

ered by HCWs, taking HCWs as members of the general population or a distinct population. β (Beta) is the rate of transmission, γ (gamma) is the recovery rate, ρ

(rho) is the probability of dying due to disease and v (vaccination rate) is the rate of a fully effective vaccine. A: Full model, where the HCWs, denoted with subscript

h, are a separate group from the rest of the population. Dashed lines indicate rates affected by a proportional quality of care function. B: Alternate model I, where

HCWs are part of the general population and the dashed lines indicate rates affected by a proportional quality of care function. C: Alternate model II, where the

HCWs are a separate group, denoted with subscript h, from the rest of the population and there is no effect of HCW loss on quality of care. D: Alternate model III

where HCWs are part of the general population and there is no effect of HCW loss on quality of care.
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0%, while if no HCWs are infected (P(t) = 1), the quality of care
that the health system can provide is its best (Q(P(t)) = 1) and is
operating at its full capacity of 100%. We choose a sigmoidal func-
tion because of the range of dynamics it captures via the shape
parameters, m and k. Sample quality of care functions, for a few
parameterisations, are provided in the Supplementary Material,
with a discussion of the impact of normalisation.

We relate ‘loss impact parameter’ (k) to each HCW’s impact
on the health force system. When this parameter is smaller, a
steady decline is evident in the healthcare system for each
HCW that is infected, while declines with HCW infected propor-
tion are more extreme when the loss impact parameter is larger
(Figs. S1 and S2). The ‘health system redundancy parameter’
(m) accounts for the minimum health system provision, which
is the minimum fraction of HCWs needed to provide adequate
care. A higher health system redundancy parameter represents a
healthcare system that is safeguarded compared to a lower redun-
dancy parameter, as it is able to withstand the loss of more HCWs
before it cannot provide adequate care (Fig. S1). When considered
simultaneously, along with the normalisation of the function, the
two parameters interact. In systems with low loss impact, quality
of care declines linearly with the proportion of healthy HCWs,
regardless of the choice of redundancy parameter. The result is
that quality of care is largely similar with low loss impact, and
redundancy is comparatively unimportant. However, when the
loss impact parameter is high, system redundancy becomes
more important, and a high redundancy parameter (large m)
overall leads a stronger quality of care provided by the health
force compared to systems with a low redundancy parameter
(small m) (Figs. S1 and S2). These issues are discussed further
in the Supplementary Material.

Since the quality of care Q(P(t)) directly depends on the num-
ber of HCWs that are able to provide care, it can modulate para-
meters describing the recovery rate and mortality risk for infected
individuals, and population vaccination rate. We assume that the
decline in quality of care will affect all of these parameters
simultaneously.

Parameter assumptions and initial conditions

The complete set of initial conditions and parameters are pro-
vided in Table 1. We assume that we have a basic reproduction
ratio, R0, of roughly 2, analogous to recent outbreaks of
COVID-19, Ebola [18], pandemic flu[19] and severe acute
respiratory syndrome (SARS) [16]. Further, we assume the base-
line probability of dying from disease is 0.01, a value lower than
that for Ebola, 0.7 [17] and SARS, 0.15 [20], but a conservative
estimate of mortality rates associated with COVID-19. We assume
an initial population of 1000 individuals, and that 2% of the
population are HCWs in the full model and alternate model II,
a representative value chosen from data provided by the WHO
[21]. We assume that the outbreak is triggered by a single infected
individual, and that this first case is in the general population, i.e.
not an HCW.

Results

Underestimated epidemic outcomes (cases and deaths)

In Figure 2, we show a comparison between model-predicted
cumulative infection across ranges in the redundancy parameter
(m) and loss impact parameter (k) for our different model

Table 1. Baseline parameters and initial conditions main model and alternate models I−III

Symbol Parameter Baseline value [range] Meaning

v Vaccination rate 0.02 week−1 Rate of vaccination

β Transmission rate 1 week−1 Rate of transmission

βh Transmission rate for HCW 1 week−1 Rate of transmission

γ Recovery rate 0.5 weeks−1 Rate of recovery

ρ Probability of dying 0.01 Minimum probability of dying once infected (see text)[16, 17]

r Vaccine difference 0.5 [0,1] Proportionate rate at which the general population is vaccinated
compared to HCWs.

Q(P(t)) Quality of care function [0,1] Quality of care function - HCW ratio

k Loss impact parameter 4.5 [0–5] Affects how steep sigmoid function is

m Redundancy parameter 0.9 [0–1] Affects midpoint of sigmoid function

N(0) Population 1000 Starting total population

S(0) Susceptible gen pop 979 Initial number of susceptible general group

I(0) Infected gen pop 1 Initial number of infected general group

R(0) Recovered gen pop 0 Initial number of recovered general group

V(0) Vaccinated gen pop 0 Initial number of vaccinated general group

Sh(0) Susceptible med pop 20 Initial number of susceptible HCWs (see text)

Ih(0) Infected med pop 0 Initial number of infected HCWs

Rh(0) Recovered med pop 0 Initial number of recovered HCWs

Vh(0) Vaccinated med pop 0 Initial number of vaccinated HCWs
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formulations. In Figure 2A, we contrast model-predicted cumula-
tive infections for models with no quality of care component, i.e.
alternate model II (Figs 1C; Eqs. S6–S14) (black line in Fig. 2A)
with cumulative infections for all parameterisations of m and k
in our models that do account for the quality of care function
from the full model (Fig. 1A; Eqs. 1–9) (grey cloud in Fig. 2A).
Note that, so long as both HCWs and the general population
have the same parameters and the parameter for vaccine differ-
ence is set to 1, alternate model II generates identical outcomes
to alternative model III (Fig. 1D; Eqs. S15–S19). The same is
true for the main model and alternate model I (Fig. 1B; Eqs.
S1–S5), both of which include proportional quality of care.
Models that consider dynamic quality of care (full model and
alternate model I) generate different outcomes than models that
neglect it (alternate models II and III), regardless of parameters.
Notably, the projected range of total cases increases when declin-
ing quality of care is included, leading to an increase of up to 15%
in total infections (grey cloud in Fig. 2A) for the baseline param-
eterisation (Table 1) and in the range of consideration for our loss
impact (k) and redundancy (m) parameters.

However, HCW’s infection dynamics may differ from those of
the general population. For example, they may be at greater risk of
infection due to increased contact with infected individuals. In
Figure 2B, the light grey cloud (overlapped by the grey cloud),
we present cumulative infections for all combinations of k and
m of the quality of care function considered from the full
model, while assuming infection rates are 50% higher for
HCWs compared to the general population, achieved by assuming
that the infection rate, βh, is 50% greater for HCWs than for the
general population. We compare this to alternate model I (grey
cloud in Fig. 2B), where there is a proportional quality of care
based on the uninfected population, but with no differences
between HCW and general population parameters, as HCW are
considered to be part of the general population. A higher infection
rate, associated with increased exposure to infected individuals,
may explain cases in which an unprecedented number of
HCWs have been infected [1]. Thus, the choice of quality of
care function, driven by the uninfected population or uninfected

HCW saturation, results in a higher number of cumulative infec-
tions when HCWs have a higher infection rate.

We conclude that the inclusion of quality of care has a sub-
stantial impact on the resulting epidemic outcomes (Fig. 2A).

Impacts of redundancy and loss impact parameters on case
counts and deaths

Figure 3 shows the final epidemic size (Fig. 3A), mortality
(Fig. 3B), and case fatality ratio (CFR) (Fig. 3C), predicted
using the full model (Eqs. 1–9), assuming identical transmission
rates between HCWs and the general population, β = βh (see
Table 1 for parameters), as a function of the loss impact and
redundancy parameters in the quality of care function (Eq. 10).

Each quadrant of the contour panels in Figure 3 relates to one
of four sample quality of care functions (Fig. S1) describing: (i)
low loss impact/high redundancy (modelled with low k and
high m, respectively, lower right quadrant); (ii) low loss impact/
low redundancy (modelled with low k and low m, respectively,
lower left quadrant); (iii) high loss impact/low redundancy (mod-
elled with high k and low m, respectively, upper left quadrant);
and (iv) high loss impact/high redundancy (modelled with high
k and low m, respectively, upper right quadrant). From
Figure S1, we can rank the strength of a healthcare system
based on the quality of care functions described above, from
most resilient (iv) through (i) then (ii) to most fragile (iii).
Thus, we investigate the impact that quality of care parameters
k and m, modelling loss impact and redundancy, respectively,
have on epidemic burdens. High loss impact paired with a low
redundancy (upper left corner in Fig. 3A–C) causes the most
severe epidemic outcomes with respect to case counts (Fig. 3A)
and mortality (Fig. 3B), as this represents a fragile health system
that has a rapid decrease in quality of care, Q(P(t)), as few
HCWs are infected (Q(P(t)) the dotted black line in Fig. S1).
Conversely, the mildest epidemic predictions result from the com-
bination of high system redundancy and high loss impact (upper
right corner in Fig. 3A–C), as this represents a strong health sys-
tem, due to the normalisation used to obtain the quality of care

Fig. 2. Model-predicted cumulative infections over time for different model choices. A: The grey cloud shows the range of cumulative infections that result for

parameter combinations of the loss impact parameter, k = [0,5], and the redundancy parameter, m = [0,1], when a proportional quality of care function is included

(full model). The black line portrays the cumulative infections resulting from a model neglecting quality of care (alternate model II). Parameters are the baseline

parameters outlined in the table. B: The cloud shows the range of cumulative infections that result from parameter combinations of shape parameters when a

proportional quality of care function is included. In this simulation, the transmission rate has been increased by 50% for HCWs only. This impacts the simulations

for the full model and alternate model I, as HCWs are a separate population compared to the general population. All other parameters for both groups are the

same.
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function (see Fig. S2). This latter prediction arises is because there
is a minimal decrease in quality of care until nearly all HCWs are
infected, when there is a rapid decrease in quality of care. As that
many HCWs are rarely infected, this means quality of care is
rarely significantly reduced.

High loss impact describes a large decline in performance of
the healthcare system as an additional HCW is infected, after
some threshold determined by the redundancy parameter. Thus,
high loss impact paired with low redundancy (modelled by
small m) means that the healthcare system is not well safeguarded,
so a few infections amongst HCWs will cause the system to col-
lapse. If this combination is representative of a current system,
that system can mitigate epidemic burdens by either reducing
the loss impact parameter (perhaps through cross-training of
HCWs) or increasing redundancy in the system. It is important
to note that the strongest systems have high loss impact and
high redundancy; if both parameters are controllable, our model-
ling predicts that a focus on improving redundancy would offer
the most effective improvements in quality of care. For the mildest
predicted epidemic outcomes, in cases where loss impact is high,
our modelling predicts that a higher level of redundancy would
yield a healthcare system robust enough to withstand a large num-
ber of infections prior to rapid collapse only once a very high pro-
portion of HCWs are infected.

Parameters impacted by infected HCWs

As an epidemic progresses, inclusion of the dynamic quality of
care function clearly leads to drastic differences compared to static
quality of care, i.e. taking Q(P(t)) ≡ 1 (Fig. 4A). When decline in
the quality of care is considered in the model, the number of
cumulative deaths increase by 1716%, the number of vaccinations
administered decreases by 10.8%, and the number of individuals
that recover decreases by 8.9%. The quality of care used in
Figure 4A is one that is representative of a weak healthcare system
with a high loss impact and low redundancy (Fig. S1, dotted black
line). Figure 4B shows the impact inclusion of dynamic quality of
care has on cumulative deaths for the four general quality of care
functions described above (Fig. S1) and compares it to the result-
ing epidemic burdens when quality of care is static. While the pre-
dicted increase in cumulative deaths that result from modelling
quality of care in Figure 4B are not all as severe as seen in

Figure 4A, the inclusion does further showcase the impact its con-
sideration has on epidemic burdens.

Discussion

Conventional epidemic models generally do not consider quality
of care that changes as a disease outbreak proceeds, yet loss of
HCWs and other impacts on quality of care could potentially rad-
ically affect disease dynamics, as it may have in the 2014 Ebola
outbreak [1, 22], and as seen in the current COVID-19 pandemic.
In this paper, we demonstrate that evolving quality of care
impacts disease dynamics, and that inclusion of declining quality
of care negatively impacts epidemic burdens.

If quality of care is assumed to be static in a predictive model,
that model may dramatically underestimate epidemic burdens.
This underestimate is also dynamic; a model assuming static qual-
ity of care that fits well early in an outbreak will diverge in predic-
tions later in the outbreak. The magnitude of the impact that
declining quality of care has on disease dynamics depends
strongly on the way in which quality of care declines in response
to the proportion of HCWs affected; a wide range of relatively
mild to severe epidemic impacts may arise. Explicit consideration
of HCW dynamics (in contrast to assuming HCWs are well-
mixed with the general population) also generally leads to more
severe outcomes, suggesting that modelling them separately may
be necessary. Failing to include either of these aspects in epidemic
models may cause one to underestimate, in some cases severely,
epidemic burdens, especially in contexts where HCWs are a limit-
ing factor and likely to experience different dynamics than the rest
of the population.

Knowing the empirical response of the healthcare system to
loss of HCWs during the course of a serious outbreak would be
ideal, but such trajectories are likely highly dependent on both
context and pathogen. We avoid this issue here by assuming
that quality of care declines according to different, but plausible,
functional forms. We specifically consider the loss impact (each
HCW’s impact on the health system) and the level of built-in
redundancy in the health system (the minimum number of
HCWs required to provide adequate care); both are important,
but redundancy dominates outcomes, as seen in Supplementary
Material Fig. S2. Nevertheless, it is possible to learn about quality
of care decline for a particular situation. For example, data on

Fig. 3. Epidemic burden resulting from each combination of the loss impact parameter k, and the redundancy parameter, m, in the quality of care function. Each

panel is split into four quadrants representing choices of the quality of care function for the full model with the baseline parameters: A: Epidemic size is shown for

each combination of the loss impact parameter and redundancy parameter in the quality of care function. B: Mortality is shown for each combination of the loss

impact parameter and redundancy parameter in the quality of care function. C: Case fatality ratio (CFR) is shown for each combination of the loss impact param-

eter and redundancy parameter in the quality of care function.
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HCW infection and death rates in the initial part of the
COVID-19 pandemic in China, or in Europe might reasonably
have been extrapolated to the situation in other parts of the
world with similar health systems even before COVID-19 reached
those other nations.

Models that explicitly incorporate dynamic quality of care may
aid decision making to control an epidemic. By anticipating the
degree to which declining care quality might impact disease
dynamics, control methods may be tailored to mitigate a health-
care system’s redundancy and/or factors affecting loss impact,
depending on the existing structure of the healthcare system.
For example, the redundancy component of our quality of care
function did dominate outcomes and therefore is a likely initial
target for improvements. This could be useful for management;
for example, the level of effort put in to recruiting/training health-
care volunteers could be increased, which in turn would cause the
system’s redundancy to improve. In the current COVID-19 pan-
demic, movement of medical personnel from less-affected loca-
tions, recruitment of recently retired HCWs, and accelerated
graduation of final year medical students have all been used to
sustain the healthcare system in pandemic hotspots. It also may
be beneficial to manage HCWs differently from the rest of the
population to attempt to slow the decline in quality of care.
Arguments are already made to prioritise HCWs for vaccination
and/or other medical interventions as they are the primary source
of care in epidemics [23] and often are faced with higher rates of
infections compared to the general population [24]. Careful
exploration of other dynamic quality of care parameterisations
may also lead to the identification of alternative management
interventions. For example, information about quality of care
decline may inform outside interventions, such as how many
and when HCWs from NGOs are usefully to be deployed to assist

in times of crisis, as seen in HCWshortage during the Kenema
Hospital collapse [5] (e.g. in terms of when system collapse is
anticipated). This model is capable of distinguishing between
these strategies, and thus is able to estimate the efficacy of a
wider range of potential strategies.

As with any model, there are caveats. We have used a relatively
simple base model to assess the general insights that arise from a
first consideration of plausible declines in quality of care in epi-
demic settings; more complex model structures, and parameter-
isation for specific diseases are warranted in future work. We
also assume that other factors that might vary during an epidemic
are constant to isolate the effect of quality of care decline. For
example, future work should explore: that HCW infection rates
may decline (if infection prevention and control are improved
once a pathogen is recognised) or increase (as PPE becomes
scarce, as in COVID-19 in some settings); the effects of different
case fatality ratios and of HCW recovery in more complex models;
the impact of prioritised vaccination of HCWs; next-generation
calculations of R0; different contact structures in the HCW and
general population; and, the context of outbreaks in healthcare
systems in high income vs. low-/middle-income countries with
inherent differences in healthcare system structures. We used a
sigmoidal function to describe quality of care; in the future, we
could consider other functional forms bounded between 0 and
1, for example a Hill function [25], or a piecewise linear function.
It is important to note that quality of care is likely context specific,
due to the global heterogeneity in healthcare access; results may
thus depend on local circumstances. Furthermore, the way in
which the most complex models differentiate HCWs from the
general population is deserving of further exploration; we did
not fully consider how HCWs differ in infection risk and care
received. As mentioned earlier, empirical data would be

Fig. 4. Impact of dynamic quality of care on cumulative infections and mortality predictions, due to changes in the infected HCW proportion. A: Comparison of

resultant cumulative infections when comparing rates affected by the proportional quality of care function: vaccination rate, recovery rate and likelihood of death

between a dynamic quality of care model and when the quality of care function is set to be maximal (Q(P(t))≡ 1), equivalent to models that do neglect it. Lines for

cumulative vaccinated, recovered and deaths are representative of the impact the infected HCWs have on those parameters for simulation with the full model with

baseline parameters. The model considered uses a quality of care function representing a weak healthcare system, i.e. high loss impact (k = 4.5) and low redun-

dancy parameter (m = 0.1). Lines representing rates followed by Q = 1 are representative of the assumption quality of care is 1, represented by simulation with

alternate model II with baseline parameters. B: Comparison between sample quality of care functions and their resulting cumulative deaths per simulation.

Cumulative deaths resulting from the simulation for the four sample sigmoidal quality of care functions from Figure S1 (see Supplementary Material) are

shown in addition to the number of deaths resulting from having the quality of care Q(P(t))≡ 1, equivalent to models that do neglect it. This subfigure highlights

the range of differences in cumulative deaths resulting from the shape of the quality of care function considered.
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immensely informative, but difficult to obtain in advance.
Nevertheless, with sufficient information it will be possible to
generate an empirically supported quality of care function for a
specific disease outbreak, and use it to examine likely dynamics
for future outbreaks of the same disease in similar healthcare set-
tings, and avoid the problems inherent in a just-in-time response.
It might also be possible to address multiple subclasses of HCWs
(e.g. physicians, nurses, janitorial staff, midwives, volunteers) with
different quality of care responses and different transmission
dynamics based on their roles [26]. This would further allow us
to explore various prioritisation methods for HCWs to minimise
impacts on quality of care provided [27].

The quality of care function might also be improved by includ-
ing information on HCWs’ behavioural responses to the status of
an epidemic. As an epidemic progresses further, the personal risk
of working increases for HCWs. Behavioural avoidance of risk by
HCWs, especially volunteer HCWs, may accelerate system col-
lapse in extreme situations [22]. Applying game theoretic
approaches may usefully address these tensions between personal
and population-level benefits and costs/risks as HCW risk prefer-
ences may vary over the course of an epidemic [28, 29]. Due to
the severity and nature of the HIV outbreak in the 1980s, there
were cases where HCWs felt overwhelmed, and in some cases
avoided practicing, due to fears and burdens of the disease [30].
Accounting for behavioural or related tendencies which may
impact HCW participation in the work force is essential to con-
sider their impacts to quality of care provided.

This study focuses on the healthcare system as it pertains to
the management of a generic disease, but clearly there are rami-
fications for the quality of care provided for other public health
issues. As healthcare declines, levels of care for other patients,
affected by other issues, will also suffer [31]. For example, health
seeking behaviour for malaria was impacted by concerns about
Ebola [32, 33]. During the COVID-19 pandemic, ‘non-essential’
surgeries and procedures are being cancelled in anticipation of
hospital surges or out of fear of infection; with significant indir-
ect ramifications for the health of those patients, and ironically
leading to HCW layoffs in some cases (which damages health
system redundancy). In this case, the implications of failing to
consider a declining quality of care function would be com-
pounded and models that account for it could be used to address
a potential major gap in standard epidemiological modelling
approaches.

In conclusion, we here demonstrate that consideration of the
potential for declining quality of care affects epidemic outcomes,
in some cases quite significantly. Addressing such declines in
quality of care explicitly will allow epidemiologists to anticipate,
plan for and mitigate changes in epidemic dynamics over the
course of an epidemic. While much work remains to be done,
addressing these critical issues offers significant potential public
health benefits. Given the crisis posed by the current
COVID-19 pandemic, the declines in quality of care arising
from HCW illness and death [34], and the lack of appropriate
PPE and medical equipment such as ventilators that also reduces
quality of care in many healthcare settings, such careful consider-
ation is warranted.
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