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Antiretroviral therapy (ART) effectively controls HIV infection, suppressing
HIV viral loads. Typically suspension of therapy is rapidly followed by
rebound of viral loads to high, pre-therapy levels. Indeed, a recent study
showed that approximately 90% of treatment interruption study participants
show viral rebound within at most a few months of therapy suspension, but
the remaining 10%, showed viral rebound some months, or years, after ART
suspension. Some may even never rebound. We investigate and compare
branching process models aimed at gaining insight into these viral dynamics.
Specifically, we provide a theory that explains both short- and long-term viral
rebounds, and post-treatment control, via a multitype branching process with
time-inhomogeneous rates, validated with data from Li et al. (Li et al. 2016
AIDS 30, 343-353. (doi:10.1097 /QAD.0000000000000953)). We discuss the
associated biological interpretation and implications of our best-fit model.
To test the effectiveness of an experimental intervention in delaying or pre-
venting rebound, the standard practice is to suspend therapy and monitor
the study participants for rebound. We close with a discussion of an
important application of our modelling in the design of such clinical trials.

1. Introduction

With the advent of antiretroviral therapy (ART), the prospects of people living
with HIV (PLWH) improved immeasurably, with ART improving both the
quality and length of life [1,2]. However ART is not a cure; while regular
dosing with ART does effectively control the infection and hold the amount
of circulating virus below the level detectable by clinical assays, suspension
of therapy is typically followed by HIV rebound to high viral loads [3].
Recent results give significant nuance to ‘typical’ viral rebound following ana-
lytic treatment interruption (ATT). In a 2013 prospective study, a cohort of 14 PLWH
(the VISCONTI cohort) were identified, who were able to control HIV infection for
a prolonged period—upwards of a decade—after stopping ART [4]. Results from
the VISCONTI study and others suggest that post-treatment controllers (PTCs)
may control HIV using a mechanism distinct from that of spontaneous HIV con-
trollers [5,6]. Li et al. identified a distinct cohort of PTCs, who maintained viral
loads less than or equal to 400 HIV RNA copies ml™" for greater than or equal to
24 weeks [7,8], in a pooled analysis of participants from AIDS Clinical Trials
Group (ACTG) studies, the Montreal Primary HIV Infection cohort, the Seattle Pri-
mary Infection Program, and the Ragon HIV Controllers cohort. Since ART comes
with a number of drawbacks including side-effects and cost, the search for biologi-
cal indicators (biomarkers) of lasting ART-free HIV remission has become a
priority in HIV cure research [9,10], with some good progress made [11-15].
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Another significant priority is to find treatments and treatment
strategies that may induce ART-free remission or even HIV
cure [16,17]. Recently, two promising strategies were described,
employing latency-reversing agents and immune system
modulators [18,19].

When investigating the efficacy of interventions intending
to delay or prevent rebound, the standard is stop therapy
and observe whether rebound occurs via regular viral load
tests. However, there is significant heterogeneity in HIV
viral dynamics following ATI: in a pooled analysis of out-
comes from six ACTG ATT studies, Li et al. reported widely
varying times to viral rebound, with a significant number
of participants maintaining viral suppression to undetectable
levels for up to two or more months in the absence of ART
[12]. A good characterization of such dynamics would be of
significant use in demonstrating efficacy of interventions
that may delay rebound.

An obvious toolset would be survival analysis, which is
used to analyse the expected duration of time until one
or more events—in this case, duration until viral rebound.
However viral rebound dynamics are not well predicted by
standard stylized survival distributions, e.g. the Weibull or
the lognormal distribution, as we show in the Results (§3.1,
figure 2). More specifically, they reasonably predict short-
term viral rebounds, within a few months, but fail to describe
delayed viral rebound that occurs after many months or
years. To make up for this deficit, we derive a mechanistically
motivated survival function that more accurately describes
both short- and long-term viral rebound.

Within-host modelling of HIV infection is a well-established
field [20-29]. Much of our quantitative understanding of
HIV dynamics within a host, e.g. the infected cell death rate,
the rate of viral clearance, and the number of progeny virions
released from an infected cell, i.e. the burst size, derive from
models fit to data [30-32]. Existing models have mainly focused
on the kinetics of early infection and the effects of treatment.
But recent years have seen the development of models of HIV
post-treatment control [28] and the time to viral rebound after
treatment cessation. Hill ef al. [33,34] provided estimates of
viral rebound time distributions, used in combination with
careful and thoughtful consideration of within-host parameters,
to evaluate the needed efficacy of therapeutic agents that might
one day yield HIV cure. First estimates of HIV recrudescence
rates were provided by Pinkevych et al. [35,36]. Fennessey
et al. investigated SIV viral rebound in macaques infected
with barcoded virus, to generate more detailed insights into
viral rebound [37]. Building on these insights, we integrated
biomarkers, specifically an individual’s levels of cell-associated
HIV RNA (HIV CA-RNA) and ART regimen pre-analytic treat-
ment interruption (ATI) [12,38], into a stochastic model to start
to move towards personalized viral rebound time predictions
[39]. Working towards more personalization, Bing et al. [40]
recently demonstrated that both empirical and mechanistic
modelling approaches with post-ATI viral load data identify
the same predictors of viral rebound, giving modelling support
to identification of rebound delay predictors including pre-ATI
ART regimen [12,38,39], time of initiation of ART [12] and
higher nadir CD4+ T-cell counts [40]. And in a different vein,
Wau et al. used the barcoded virus data from [37] to investigate
the impact of hypothesized fluctuations in activation rates over
time [41]. Notably, these models have mainly emphasized viral
rebound over short timescales, in part because rebound datasets
are small and therefore seldom include data on rare long-term

viral rebounds. In this present study, we use data from [ 2 |

Li et al’s pooled analysis of six ATI studies [12], with 235 total
study participants, large enough to begin to characterize both
short-term rebound and long-term rebound simultaneously.

As with previous models, we rely primarily on the hypo-
thesis that viral rebound is driven by latent cell activation
[28,33-36,39,40]. However, the latent reservoir is hetero-
geneous, with recent studies suggesting it is composed of
clones with different antigen specificity [42,43] and different
integration sites [44], factors that can influence the propensity
of latently infected cells to reactivate and produce replication
competent virus. Further there are indications that immune
responses play a role in determining rebound times, with
studies suggesting that significantly delayed rebounds may
be associated with additional mechanisms of infection control,
such as anti-HIV immune responses [28], and T-cell exhaus-
tion markers are predictive of a shorter time to viral rebound
[15]. To model the impact that this heterogeneity may have
on latent cell activation inducing viral rebound, we will inves-
tigate models of latent cell activation that are heterogeneous in
time, which serves as a contrast to most previous studies
[35,36,39,40,45] which assumed constant latent cell activation
rates, with Wu et al. [41] being an exception. Thus, we aim to
capture both short- and long-term viral rebound.

In the following, we will investigate models of viral
rebound that offer improved survival distributions, i.e. a
cumulative probability density function for the probability
of an individual’s viral rebound at time t. Armed with an
effective simple model we will discuss the biological insight
offered by parameter estimates obtained by fitting the model
to data. In particular, we show that one can derive from our
model the number of patients in an ATT clinical trial needed
to detect an intervention-associated viral rebound delay
relative to baseline.

2. Methods
2.1. Description of data

The description of the data we employ and associated collection
methodologies are fully explained in [12]. Briefly, participants in
six ACTG ATI studies (ACTG 371 [46], A5024 [47], A5068 [48],
A5170 [49], A5187 [50] and A5197 [51]) were included if they
were on suppressive ART, received no immunologic interventions
(e.g. therapeutic vaccination, interleukin-2), and had HIV-1 RNA
less than 50 copies ml™" at the time of ATT (N =235 participants).
Early after treatment interruption, most studies reported weekly
viral load measurements, with the exception of A5170 for which
the median interval between viral load measurements was
5 days within six weeks ATI, though the interquartile range is
broad, from 2 to 20 days. Viral rebound was defined as
sustained viral loads of at least 200 HIV RNA copies ml™".

In a previous study [39], we restricted our analysis to the
subset of participants that had peripheral blood mononuclear
cells (PBMCs) and plasma available for HIV reservoir quantifi-
cation while on ART prior to the ATI, that had CA-RNA above
the level of detection at ATI, and who showed viral rebound
less than or equal to 60 days after ART cessation (N =84 partici-
pants). However, here we aim to develop a mechanistically
motivated, phenomenological model that describes both short-
and long-term viral rebound in all patients that undergo ATI
and analyse data from all N =235 study participants.

Finally, we acknowledge that defining viral rebound is chal-
lenging when examining data from real study participants. We
define viral rebound as having occurred following a first viral
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Figure 1. Model schematic [39]. Following ATI, we assume that latent cell
activations are followed by chains of infection that successfully re-establish
high viral loads associated with chronic infection, with probability 1— g,
or die out, with probability g. We assume further a delay = between a suc-
cessful activation and the time when plasma viraemia is detectable.

load measurement above 50 copiesml™ given all subsequent
viral load tests show detectable viraemia, ideally above 200
copies ml™". Some judgement was applied in cases where those
conditions were not met (e.g. study participant 14 594, see elec-
tronic supplementary material figure 52). Viral dynamics for all
study participants under consideration are provided in electronic
supplementary material figure S2, with the last undetectable/
first detectable viral load measurements we employ for our
parameter estimation marked in blue and red, respectively.

2.2. Model

Our baseline model was described in [39]. In brief, as in previous
studies we assume that activation of latently infected cells drives
viral rebound [28,34,35,39]. We envision ensuing dynamics as illus-
trated in figure 1. We do not assume that all latently infected cell
activations cause viral rebound. Rather, we assume that activation
is followed by rounds of viral replication, which may cause viral
populations to grow to detectable levels, thereby causing viral
rebound, or to die out. We define g as the probability of ‘die out’,
i.e. that the activation of a latently infected cell does not cause
viral rebound. Then 1 —g is the probability of a ‘successful latent
cell activation’, which does cause viral rebound. Finally, we
assume that there is a delay between successful latent cell activation
and detectable infection, where ‘detectable infection” corresponds
to the study participant’s viral loads exceeding 50 HIV RNA
copiesml™. For simplicity, we take a fixed, delta-distributed
delay; in a previous study [39], we found that, while a Weibull dis-
tribution best described the delay, per the Akaike information
criterion (AIC), the improvement over other stylized distributions,
including a fixed delay, was not statistically significant [39].

Taking the latent reservoir size at the time of ATI and later to be
Ly, and assuming that the latently infected cells are activated at per
capita rate a, infected cell influx occurs at the constant rate aL,. Then
the recrudescence (successful activation) rate is r=(1—qaLo.
Because the latent reservoir has a half-life of approximately 44
months [52,53], and our dataset extends only about 2 years post-
ATI, assuming a constant latent reservoir may introduce little
error. Nonetheless, later we relax this assumption.

From a mathematical standpoint, we employ a branching
process framework to construct from these assumptions a prob-
ability of viral rebound at time t. Given the recrudescence rate
r=aLo(1 — g), from a simple branching (immigration) process for-
mulation we can compute the cumulative probability of
successful activation at time t, Pacr(t) =1—exp (= (1 —qlaLot)
(see [39] for derivation). Then, assuming a fixed delay 7, ie.
delta-distributed delay &(t — 7), the probability of viral rebound
by time t predicted by our model is

0, 0<t<r
Pyr(t) = { 1 e-opilot—  §S o 2.1)

(see again [39]). We call this is the baseline model; below we will
also investigate alternate, time-inhomogeneous, formulations for
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Figure 2. Typical survival curve distributions fit to viral rebound data [12], shown
over (a) short timescales and (b) long timescales. The shaded region bounds the
empirical distributions for the times of last undetectable and first detectable viral
load tests across all study participants. To fit the distribution parameters, we define
a likelihood lik(0) = TT7, (Pw(t?.; 6) — Pig(t?; 6)) where Pig(t) is the
cumulative distribution (log-normal, log-logistic or Weibull), with parameters
6, and tl(gt and tgr)st correspond to the last undetectable and first detectable
viral load, respectively, for study participant i, summed over 235 study participants
for whom we have data [12]. To maximize the likelihood, we employed the
Davidon—Fletcher—Powell optimization algorithm implemented by the Bhat

package in R [55]. The data are described in §2.1.

the recrudescence rates and derive the associated Pyg(t). We will
use these to derive likelihood functions,

235
lik(0) = [ [ (Pvr(tly; 0) — Pvr(tl; 0)), .2)
i=1
where Pygr(t) is the cumulative probability of viral rebound,
multiplied over the 235 study participants, 6 are the parameters,
and t9  and £ are the times of the first detectable and last
undetectable viral load measurements, respectively, for the ith
study participant. Note that in using this likelihood function
equation (2.2), we do not estimate viral rebound times from the
data, e.g. by the mid-time point between the last undetectable
and first detectable viral load measurement, in advance of the
analysis. We therefore avoid the subtle uncertainty such pre-proces-
sing can create, particularly as we aim to use data that includes
study participants with viral load measurements that are months
apart. For all models, we estimate parameters using maximum-
likelihood methods, and compare model fits using the AIC [54].
Thus, we test how well the models explain observations of viral
rebound [12].

3. Results

We begin by providing a motivating result, showing that viral
rebound dynamics are not well predicted by standard stylized
survival distributions, e.g. the Weibull or the lognormal
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distribution, as alluded to in the Introduction (§1). This
observation provided the impetus for us to derive our
mechanistically based viral rebound time distribution.

We document our first effort, estimating model parameters
for the baseline model, equation (2.1), and show that this simple
model does not improve predictions of long-term viral rebound
relative to the standard survival distributions. We then discuss
and justify alternate hypotheses for recrudescence, showing
that a recrudescence rate which decreases with time explains
the data much better. Finally, we discuss how our model
predictions can be used to inform clinical trial design.

3.1. Viral rebound dynamics are not well predicted by
standard stylized survival distributions

Survival analysis provides a natural toolset to analyse time-to-
event data such as the HIV viral rebound data that forms the
focus of this present study. However, when fitting the data to
standard stylized survival distributions, i.e. Weibull, lognor-
mal, log-logistic or gamma distributions, we find that viral
rebound dynamics are not well predicted by these models.
While the log-logistic distribution gives the best fit per the
AIC (see electronic supplementary material, table S1), visual
inspection of the fits in figure 2 suggests that while they reason-
ably predict short-term rebound, within a few months of ATI,
they fail to describe delayed viral rebounds occurring after
many months or years. To estimate parameters for the survival
distributions, we use the likelihood function in equation (2.2)
with the cumulative density function of the desired distribution
as Pyg. To maximize the likelihood, we employed the Davidon-
Fletcher-Powell optimization algorithm implemented by the
Bhat package in R [55].

What follows is a derivation and justification of our
mechanistically motivated survival function that more accu-
rately describes both short- and long-term viral rebound to
make up for the deficit presented by stylized distributions.
Since the log-logistic distribution explains the data best, in
the following it will be used as a comparator to quantify
the improvements that our model brings.

3.2. Constant r fails to explain both short- and

long-term rebound

We start by fitting the baseline model, equation (2.1), to the
data, using maximum likelihood methods. Specifically we
use the Davidon-Fletcher-Powell optimization algorithm to
estimate model parameters, the recrudescence rate r =a(1 — q)L
and the delay 7. Note that we cannot fit 4 or g individually
because, with the infectious latent reservoir size L;, they
form a non-identifiable parameter combination. A summary
of these parameter estimates for the baseline model are pro-
vided in table 1 and the best fit of the model to the data is
shown in figure 3. Note that we found that the data for
long times was too sparse to characterize a delay, so to esti-
mate the delay 7 we used an estimate derived by fitting the
model only to rebounds within 60 days.

Assuming a constant recrudescence rate explains short-term
viral rebound data reasonably well (figure 3a). However, even a
visual inspection shows that the model only poorly explains
both short- and long-term viral rebound data simultaneously
(figure 3b). This is borne out in comparisons of AIC, which
shows poor performance relative to most survival distributions
(i.e. it increases the AIC such that AAIC >250 for best-fit,
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Figure 3. Baseline, constant recrudescence rate model, equation (2.1), fit to
viral rebound data (see §2.1), with parameters estimates for data on (a) short
timescales, less than or equal to 60 days only, and (b) short and long time-
scales, up to 800 days of observations. The shaded region bounds the
empirical distributions for the times of last undetectable and first detectable
viral load tests across all study participants.

log-logistic distribution), though it does offer an improvement
on the worst-fit gamma-distribution assumption (AAIC ~4)
(electronic supplementary material, table S1). Thus while our
model assuming a constant recrudescence rate does explain
short-term viral rebound (see also [39]) it does not explain
both short- and long-term viral rebound, nor does it offer any
improvement over standard survival analysis distributions.

3.3. Exponentially decaying a(t) explains both
short- and long-term viral rebound

The failure of our baseline model, which assumes a constant
recrudescence rate, is not really a surprise. For one, it relies
on the assumption of a constant replication-competent latent
reservoir size, and studies have shown that the latent reservoir
size usually decays over time in the presence of effective therapy
[52,53]. Presumably, the reservoir would similarly continue to
decay post-ATI but pre-rebound, since the viral load remaining
undetectable implies that robust viral replication, which may
replenish the reservoir, is unlikely. Further, we recently
showed that short-term viral rebounds are actually better
explained by multiple successful latent cell activations in succes-
sion, with detectable viraemia composed of virus arising from
replication in multiple lineages [56]. Lastly and importantly,
we completely neglected the inherent heterogeneity of the
latent reservoir. Post-ATT viral rebound can occur in PLWH
with markers indicating small viral reservoirs [12,57,58],
suggesting reservoir characteristics beyond size are associated
with rebound. The latent reservoir is composed primarily of
memory cells [59], each of which may be specific for a pathogen
or set of pathogens. Recent characterization suggests that the
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Table 1. Parameter estimates for the baseline model equation (2.1), assuming a constant recrudescence rate r. AAIC is computed relative to the best stylized [}
distribution, the log-logistic, see electronic supplementary material, table S1. Note that when estimating the recrudescence rate from all the data, we used the
delay 7 estimated using data restricted to rebounds less than 60 days from ATI.

time window parameters estimates (95% Cl) AAIC

rebound within 60 days of ATl r=(1-q)al, 0.0902 (0.0771,0.1054) per day n.a. (restricted data)
delay 7 4.93 (4.24,5.70) days

rebound across all observed times r=(1—qal, 0.0278 (0.0231,0.0335) per day 252.6 (with one parameter)
delay 7 4.93 days fixed

Table 2. Parameter estimates for viral rebound models assuming different time-dependent recrudescence rates. AAIC is computed relative to the best-fit

Downloaded from https://royalsocietypublishing.org/ on 19 November 2021

stylized distribution, the log-logistic, with parameter estimates in electronic supplementary material, table S1.

recrudescence rate (r(t)) model parameters estimate (95% () AAIC
(1) r(t) = ry e K2 o 0.058 (0.049,0.069) per day 777
. smglephasedecaywnh o (00090014)perday e
rt)—>0ast— oo T 4.04 (3.28,4.94) days
(2) R r(t)=r°o+ (ro';'roé,)'e""""'f" R ro R oo (00730106)perday S
single-phase decay, with l'so 0.002 (0.001, 0.004) per day
} r(t)—»roo;EOaSt—>oo T (00220040)perday e
; g 498 (458541) days
(3) R r(bi)“;ro; S + b('r(’)';”ro;)'é'*b"‘*("‘*”ﬂ';“ R ro s (00680113)per day e
where k, < k; I 0.002 (0.001,0.004) per day
. b|pha5|c decayW|th S k1 e (00190053)perday e
ft) > 0 as t = oo ky 5xe” (1x e 0.002) per day

reservoir is largely made up of clonal populations [60-62], with
different antigen specificities [42,43], so there may be genetically
homogeneous subsets of cells. While in principle, we can neglect
this heterogeneity in favour of a mean activation rate given that
the latent reservoir is large in most PLWH, perhaps depletion of
clones with higher activation rates, e.g. those that recognize
common antigen, changes the average activation time in a
manner that is significant over longer timescales.

These observations motivate investigation of time-
inhomogeneous recrudescence rates that decay in time. The
modelling attempt in the previous section supports this
choice: in comparing figure 3a,b, we note that the recrudes-
cence rate decreased in order to accommodate long-term
viral rebounds. For simplicity, we investigate exponentially
decaying recrudescence rates, both single- and biphasic
decay. We are guided in our choice by the exponential
decay, on average, of the latent reservoir size [52,53]. As the
time-dependent recrudescence rate r(t) = (1 — q(¢))a(t)L(t), the
source of the time-inhomogeneity may be in the activation
rate, the probability that a latent cell activation leads to
rebound, and the latent reservoir size. Thus, more generally,
the probability of viral rebound is given by

0, o<t<r
_ ¢
Pvr(®) = { 1—exp <7J r(s) ds), > SR

The results of fitting this model to the data are summar-
ized in table 2. First, across all models, the delay 7 is
remarkably consistent, on the order of 4-5 days (cf. tables 1
and 2, and electronic supplementary material table S1).
Further, the data are best explained by the recrudescence
rate model (2) in table 2, where the recrudescence rate
decays exponentially over time to a constant, non-zero rate.
Figure 4 shows that recrudescence rate model (2) effectively
recapitulates both the short- and long-term viral dynamics
simultaneously not only better than previous models, but
very well. We will use this model in our discussion of clinical
trial design that follows.

However, note that the estimated delay 7, the initial recru-
descence rate 1y, and the initial decay k are the same for
recrudescence models (2) and (3), and that the increased
AAIC of model (3) relative to model (2) results from the differ-
ence in the number of parameters (table 2). Moreover, there is
significant uncertainty—over many orders of magnitude—in
the second phase decay rate. A biphasic recrudescence rate
model that decays to a constant (not shown) shows the
same trends. From these observations, we conclude that
while the recrudescence rate model (2), with uniphasic
decay to a constant rate, is the most parsimonious model
with the data we have, a repeat of this analysis with more
data on post-ATI rebound times may yield a best model
with a multi-phasic recrudescence decay rate.
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Figure 4. Cumulative probability of viral rebound assuming a single-phase exponentially decaying recrudescence rate model (model (2), see table 2), (a) over all
time since ATI, (b) horizontally zoomed in to early times, to show quality of fit to early-rebound data, and (c) vertically zoomed in to highlight the quality of the fit
to late-rebound data, not captured by the standard survival distributions tested (figure 2) The shaded region bounds the empirical distributions for the times of last
undetectable and first detectable viral load tests across all study participants.
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Figure 5. Statistical power of a study to detect a therapy-induced viral rebound delay depending on the number of trial participants, assuming a 3-, 7- or 14-day
delay in median time to viral rebound, computed over 10 000 simulated clinical trials lasting 60 days (curves in red, green and blue, respectively), see electronic
supplementary material, section A.2 for calculation details. Here we focus on detecting the difference in median rebound time. The line type indicates the assumed
testing frequency: twice weekly (solid), weekly (dashed), bi-weekly (dotted). The delay here is generated by assuming that there is an intervention that reduces the
constant hazard ratio (HR) from HR =1 to HR ~ 0.8 (3 day delay); HR =~ 0.6 (1 week delay) and HR ~ 0.4 (2 week delay).

3.4. Application: clinical trial desig n rebound happens at time f, given that it has not yet occurred.
The improvement in how well our single-phase exponentially Thus, we have shown that the hazard rate
decaying recrudescence rate model explains the data relative

' s distributi h(t) = 1(t) = Teo + (rg — 1e) € K77
to standard survival analysis distributions as well as the

constant recrudescence rate model, and goodness of fit, best explains the current data (table 2). Incidentally, this is
are clear (see figure 4 and tables 1 and 2). We therefore envi- why the Gompertz—Makeham distribution [63] was excluded
sion an important application of our results to be ATI clinical among our stylized distributions (figure 2): its associated
trial design. Our model provides an analytic form and par- hazard rate has the same functional form but is exponentially
ameter estimates for the time to viral rebound in the increasing, rather than decreasing.
absence of any intervention. Here we offer a key example Figure 5 illustrates the type of useful predictions that we
application, predicting the number of study participants envision with our model. It shows the statistical significance
required to detect a viral rebound delay with some desired of a 60-day study depending on the number of ATII study
statistical power. participants required to detect an increased delay following
The role the recrudescence rate plays in our model of viral ATI, computed over 10000 in silico trials, see electronic

rebound is that of the hazard function, ie. the rate that supplementary material, section A.2 for calculation details.
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For the purposes of this illustration, we assumed an equal
number of participants in the intervention and placebo arms,
but in general that need not be the case. We predict, for example,
that to detect an intervention-derived 3-day delay in viral
rebound with 90% statistical power, our model predicts that
would require 210 study participants if testing was performed
every two weeks. With a higher frequency of testing, say
twice weekly, one would requires fewer study participants—
186—to achieve the same statistical power. The number of
study participants required to achieve the same power is also
decreased if the intervention has greater effect: our model
predicts that one would require 59 or 65 study participants,
given twice-weekly or bi-weekly testing, respectively, to
detect an intervention-induced delay of 7 days with 90% statisti-
cal power. For these estimates, we use our time-dependent
recrudescence model, which explains the data and therefore
provide the most reliable results. And even over a 60-day simu-
lated trial, the more approximate models, e.g. the constant
recrudescence model fit only to viral rebound occurring on or
before day 60 (figure 3a), or the best-fit distribution from survi-
val analysis, the log-logistic (figure 2), yield noticeable under-
or overestimates, respectively, for study participants required
to achieve some statistical power (see electronic supplementary
material, figure S1). Thus, the accuracy provided by our refined
model can provide a meaningful correction to simpler models
used in clinical trial design.

Note that the above calculation focuses on detecting if
rebound time samples are drawn from different distributions,
and not on resolving the rebound-time distributions; for that,
the number of required study participants would be higher.
For this illustration, to create a delay in silico we effectively
decreased the hazard ratio (HR),

hazard with intervention
HR

~ hazard without intervention

That is, we set the hazard with intervention, fl(t), to be the
scalar multiple HR of our estimated hazard function h(t), i.e.
h(t) = HRA(t). We then used a nonlinear solver to compute
HR so that the median time to rebound associated with h(t) is
delayed by 3, 7 and 14 days relative to the median time to
rebound associated with h(t). Thus, a constant HR of approxi-
mately 0.8, 0.6 and 0.4, yield median 3, 7 and 14 day delays,
respectively. However, with good support for the biological
hypotheses underlying our modelling, we can make similar
predictions for interventions that target specific rebound
mechanisms. For example, broadly neutralizing antibody inter-
ventions that improve immune control [64] would reduce g,
the probability that latent cell activation induces rebound (cf.
figure 1; recall that the recrudescence rate r(t) = a(H)L(£)(1 — ().

4. Discussion

In this study, we developed a model that captures the
distribution of times to both short- and long-term HIV viral
rebound after therapy interruption and demonstrated its
applicability to clinical trial design.

Our model predictions improve significantly upon standard
survival models (cf. figures 2 and 4) by considering the under-
lying biology. Specifically, we rely on the common assumption
that HIV viral rebound following treatment suspension is trig-
gered by activation of latently infected cells [28,33-35,39].
While the assumption that recrudescence resulting from such

activation occurs at a constant rate explains observations of -

short-term viral rebound (less than or equal to 60 days)
[35,39], it does not explain long-term observations (figure 3).
This failure is likely due to the high level of heterogeneity in
the latent reservoir. This heterogeneity comes from a variety
of sources. The cells in the reservoir each carry a HIV provirus
that potentially has a unique ability to reactivate due to a com-
bination of factors including its genetic sequence, the effects of
its integration site in the host cell genome [65] as well as epige-
netic modifications and the host cell phenotype, e.g. whether it
is a central memory, effector memory or transitional memory
cell [66]. Each of these cell subtypes have distinct transcriptional
and epigenetic programmes that could influence the activity of
the integrated HIV promoter. Additionally, biological noise and
stochastic fluctuations in transcriptional activity could play an
important role in the reversal of latency [67,68]. Lastly, a large
fraction of the reservoir is made up of T-cell clones with differ-
ent antigen specificity [42,43], leading to the possibility that
clones with specificity for more common antigens get activated
more frequently than clones with specificity for rare antigens.
Thus, to the extent that antigen drives proliferation and acti-
vation of cells in the reservoir, the reservoir composition
could evolve from containing a majority of memory cells to
common antigens to a reservoir containing a majority of cells
with specificity for rare infrequently encountered antigens
[69]. Also, because some are in a deeper state of latency than
other cells, possibly due to their integration site [65], the analo-
gous argument could be made that cells in a less deep state
of latency activate first successively leaving cells with deeper
and deeper latency in the reservoir. Either of these scenarios
would be consistent with our finding that the recrudescent
rate declines with time, and biologically would be due to a com-
bination of a decline in the per cell activation rate a(f) and in the
size of the reservoir L(f). We found that a single-phase decay to
a low, constant viral load best explained the data (figure 4 and
table 2, model (2)). However, the decay rate was more than an
order of magnitude larger than the observed rate of decline of
the latent reservoir [52,53] (table 2), consistent with the notion
that the activation rate is also decreasing.

We predict an initial average recrudescence frequency of
once every 9.4-13.7 days (95% CI for 1/ry), which is less fre-
quent than predictions from Pinkevych et al. [35]. But this
result is not necessarily inconsistent: the difference is only a
few days, and our prediction reflects an average over all study
participants regardless of drug regimen. Li et al. showed in
this same cohort a statistically significant delay in rebound in
study participants whose ART regimen included NNRTIs
(99/235 individuals), which we plan to investigate in a separate
study. After several months, the frequency slows down to once
every approximately 260-1400 days (approx. 95% ClI for 1/7).
Thus, our modelling suggests that we can roughly consider the
latent reservoir as composed of two major populations: cells
that activate frequently and deplete rapidly, and cells that acti-
vate infrequently. The latter cell population may also include
cells in which proviral sequences were integrated further
away from transcriptional start sites, thereby producing less
virus on average following activation, or possess other struc-
tural correlates of viral control [44].

The uncertainty in the late-stage recrudescence rate or
frequency reflects the paucity of long-term rebounders in this
dataset (cf. table 2). Indeed, we showed that models with
more refined decay profiles, e.g. biphasic, yielded the same like-
lihood as our best-fit uniphasic model, and were judged worse

~
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only because the additional parameters did not provide a better
description of the data (cf. table 2). Further, our model, as well
as others, assumes that the source of rebound is the latent reser-
voir [28,33-36,39], which in the presence of ART shows an
average, slow decay [52,53]. Following ATI but before viral
rebound, it is reasonable to say that the reservoir continues to
decay since re-seeding can only be very limited [29], and there-
fore over long enough times the reservoir should be eliminated.
Thus, ultimately we would expect the recrudescence rate to
drop to zero. Therefore we anticipate, with the availability of
more data, that a more refined decay profile may best explain
the data, potentially reflecting sequential depletion of clonal
populations of latently infected cells [42,43].

As noted above with regards to drug regimen, in this
study we neglected potentially important covariates. Li ef al.
noticed that time of treatment relative to exposure, and pre-ATI
ART regimen, both had statistically significant impact on time-
to-rebound [12]. With regards to the ART regimen, inclusion of
non-nucleoside reverse transcriptase inhibitors (NNRTIs) was
associated with longer delays. Also, unsurprisingly, treatment
during acute HIV was associated with longer rebound delays
than treatment during chronic infection, for which one expla-
nation is a necessarily smaller reservoir [12]. But intriguingly,
early treatment initiation—defined in [12] as within six months
of exposure to HIV—was associated with still longer rebound
delays, pointing to adaptive immune responses as an important
actor too. A model accounting for these covariates may yield
better prediction and useful biological insights.

We anticipate that the most significant contribution of this
study is to ATI clinical trial design since our model offers a
marked improvement over survival and other models in
terms of explaining the observed distribution of times to viral
rebound. Different therapeutic strategies to extend or prevent
viral rebound are under investigation (e.g. at the time of this
writing, clinical trials include [70-77]). By uniting short- and
long-term viral rebound into a single model, well-validated
by data (figure 4), we provide an analytic form and parameter
estimates for the time to viral rebound in the absence of any
intervention. We demonstrated the utility of our model in a
power analysis to predict the number of study participants
required to detect short intervention-associated delays in viral
rebound relative to baseline, depending on the planned testing
frequency (figure 5). Our model is mechanistically motivated
and considers dynamics of viral rebound. Thus, we can make
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