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Antiretroviral therapy (ART) effectively controls HIV infection, suppressing

HIV viral loads. Typically suspension of therapy is rapidly followed by

rebound of viral loads to high, pre-therapy levels. Indeed, a recent study

showed that approximately 90% of treatment interruption study participants

show viral rebound within at most a few months of therapy suspension, but

the remaining 10%, showed viral rebound some months, or years, after ART

suspension. Some may even never rebound. We investigate and compare

branching process models aimed at gaining insight into these viral dynamics.

Specifically, we provide a theory that explains both short- and long-term viral

rebounds, and post-treatment control, via a multitype branching process with

time-inhomogeneous rates, validated with data from Li et al. (Li et al. 2016

AIDS 30, 343–353. (doi:10.1097/QAD.0000000000000953)). We discuss the

associated biological interpretation and implications of our best-fit model.

To test the effectiveness of an experimental intervention in delaying or pre-

venting rebound, the standard practice is to suspend therapy and monitor

the study participants for rebound. We close with a discussion of an

important application of our modelling in the design of such clinical trials.

1. Introduction
With the advent of antiretroviral therapy (ART), the prospects of people living

with HIV (PLWH) improved immeasurably, with ART improving both the

quality and length of life [1,2]. However ART is not a cure; while regular

dosing with ART does effectively control the infection and hold the amount

of circulating virus below the level detectable by clinical assays, suspension

of therapy is typically followed by HIV rebound to high viral loads [3].

Recent results give significant nuance to ‘typical’ viral rebound following ana-

lytic treatment interruption (ATI). In a 2013 prospective study, a cohort of 14 PLWH

(the VISCONTI cohort) were identified, whowere able to control HIV infection for

a prolonged period—upwards of a decade—after stopping ART [4]. Results from

the VISCONTI study and others suggest that post-treatment controllers (PTCs)

may control HIV using a mechanism distinct from that of spontaneous HIV con-

trollers [5,6]. Li et al. identified a distinct cohort of PTCs, who maintained viral

loads less than or equal to 400 HIV RNA copiesml−1 for greater than or equal to

24 weeks [7,8], in a pooled analysis of participants from AIDS Clinical Trials

Group (ACTG) studies, theMontreal PrimaryHIV Infection cohort, the Seattle Pri-

mary Infection Program, and the Ragon HIV Controllers cohort. Since ART comes

with a number of drawbacks including side-effects and cost, the search for biologi-

cal indicators (biomarkers) of lasting ART-free HIV remission has become a

priority in HIV cure research [9,10], with some good progress made [11–15].
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Another significant priority is to find treatments and treatment

strategies that may induce ART-free remission or even HIV

cure [16,17]. Recently, two promising strategies were described,

employing latency-reversing agents and immune system

modulators [18,19].

When investigating the efficacy of interventions intending

to delay or prevent rebound, the standard is stop therapy

and observe whether rebound occurs via regular viral load

tests. However, there is significant heterogeneity in HIV

viral dynamics following ATI: in a pooled analysis of out-

comes from six ACTG ATI studies, Li et al. reported widely

varying times to viral rebound, with a significant number

of participants maintaining viral suppression to undetectable

levels for up to two or more months in the absence of ART

[12]. A good characterization of such dynamics would be of

significant use in demonstrating efficacy of interventions

that may delay rebound.

An obvious toolset would be survival analysis, which is

used to analyse the expected duration of time until one

or more events—in this case, duration until viral rebound.

However viral rebound dynamics are not well predicted by

standard stylized survival distributions, e.g. the Weibull or

the lognormal distribution, as we show in the Results (§3.1,

figure 2). More specifically, they reasonably predict short-

term viral rebounds, within a few months, but fail to describe

delayed viral rebound that occurs after many months or

years. To make up for this deficit, we derive a mechanistically

motivated survival function that more accurately describes

both short- and long-term viral rebound.

Within-hostmodelling ofHIV infection is awell-established

field [20–29]. Much of our quantitative understanding of

HIV dynamics within a host, e.g. the infected cell death rate,

the rate of viral clearance, and the number of progeny virions

released from an infected cell, i.e. the burst size, derive from

models fit to data [30–32]. Existingmodels havemainly focused

on the kinetics of early infection and the effects of treatment.

But recent years have seen the development of models of HIV

post-treatment control [28] and the time to viral rebound after

treatment cessation. Hill et al. [33,34] provided estimates of

viral rebound time distributions, used in combination with

careful and thoughtful consideration ofwithin-host parameters,

to evaluate the needed efficacy of therapeutic agents that might

one day yield HIV cure. First estimates of HIV recrudescence

rates were provided by Pinkevych et al. [35,36]. Fennessey

et al. investigated SIV viral rebound in macaques infected

with barcoded virus, to generate more detailed insights into

viral rebound [37]. Building on these insights, we integrated

biomarkers, specifically an individual’s levels of cell-associated

HIV RNA (HIV CA-RNA) and ART regimen pre-analytic treat-

ment interruption (ATI) [12,38], into a stochastic model to start

to move towards personalized viral rebound time predictions

[39]. Working towards more personalization, Bing et al. [40]

recently demonstrated that both empirical and mechanistic

modelling approaches with post-ATI viral load data identify

the same predictors of viral rebound, giving modelling support

to identification of rebound delay predictors including pre-ATI

ART regimen [12,38,39], time of initiation of ART [12] and

higher nadir CD4+ T-cell counts [40]. And in a different vein,

Wu et al. used the barcoded virus data from [37] to investigate

the impact of hypothesized fluctuations in activation rates over

time [41]. Notably, these models have mainly emphasized viral

rebound over short timescales, in part because rebound datasets

are small and therefore seldom include data on rare long-term

viral rebounds. In this present study, we use data from

Li et al.’s pooled analysis of six ATI studies [12], with 235 total

study participants, large enough to begin to characterize both

short-term rebound and long-term rebound simultaneously.

As with previous models, we rely primarily on the hypo-

thesis that viral rebound is driven by latent cell activation

[28,33–36,39,40]. However, the latent reservoir is hetero-

geneous, with recent studies suggesting it is composed of

clones with different antigen specificity [42,43] and different

integration sites [44], factors that can influence the propensity

of latently infected cells to reactivate and produce replication

competent virus. Further there are indications that immune

responses play a role in determining rebound times, with

studies suggesting that significantly delayed rebounds may

be associated with additional mechanisms of infection control,

such as anti-HIV immune responses [28], and T-cell exhaus-

tion markers are predictive of a shorter time to viral rebound

[15]. To model the impact that this heterogeneity may have

on latent cell activation inducing viral rebound, we will inves-

tigate models of latent cell activation that are heterogeneous in

time, which serves as a contrast to most previous studies

[35,36,39,40,45] which assumed constant latent cell activation

rates, with Wu et al. [41] being an exception. Thus, we aim to

capture both short- and long-term viral rebound.

In the following, we will investigate models of viral

rebound that offer improved survival distributions, i.e. a

cumulative probability density function for the probability

of an individual’s viral rebound at time t. Armed with an

effective simple model we will discuss the biological insight

offered by parameter estimates obtained by fitting the model

to data. In particular, we show that one can derive from our

model the number of patients in an ATI clinical trial needed

to detect an intervention-associated viral rebound delay

relative to baseline.

2. Methods

2.1. Description of data
The description of the data we employ and associated collection

methodologies are fully explained in [12]. Briefly, participants in

six ACTG ATI studies (ACTG 371 [46], A5024 [47], A5068 [48],

A5170 [49], A5187 [50] and A5197 [51]) were included if they

were on suppressive ART, received no immunologic interventions

(e.g. therapeutic vaccination, interleukin-2), and had HIV-1 RNA

less than 50 copies ml−1 at the time of ATI (N = 235 participants).

Early after treatment interruption, most studies reported weekly

viral load measurements, with the exception of A5170 for which

the median interval between viral load measurements was

5 days within six weeks ATI, though the interquartile range is

broad, from 2 to 20 days. Viral rebound was defined as

sustained viral loads of at least 200 HIV RNA copies ml−1.

In a previous study [39], we restricted our analysis to the

subset of participants that had peripheral blood mononuclear

cells (PBMCs) and plasma available for HIV reservoir quantifi-

cation while on ART prior to the ATI, that had CA-RNA above

the level of detection at ATI, and who showed viral rebound

less than or equal to 60 days after ART cessation (N = 84 partici-

pants). However, here we aim to develop a mechanistically

motivated, phenomenological model that describes both short-

and long-term viral rebound in all patients that undergo ATI

and analyse data from all N = 235 study participants.

Finally, we acknowledge that defining viral rebound is chal-

lenging when examining data from real study participants. We

define viral rebound as having occurred following a first viral
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load measurement above 50 copies ml−1 given all subsequent

viral load tests show detectable viraemia, ideally above 200

copies ml−1. Some judgement was applied in cases where those

conditions were not met (e.g. study participant 14 594, see elec-

tronic supplementary material figure S2). Viral dynamics for all

study participants under consideration are provided in electronic

supplementary material figure S2, with the last undetectable/

first detectable viral load measurements we employ for our

parameter estimation marked in blue and red, respectively.

2.2. Model
Our baseline model was described in [39]. In brief, as in previous

studies we assume that activation of latently infected cells drives

viral rebound [28,34,35,39].We envision ensuing dynamics as illus-

trated in figure 1. We do not assume that all latently infected cell

activations cause viral rebound. Rather, we assume that activation

is followed by rounds of viral replication, which may cause viral

populations to grow to detectable levels, thereby causing viral

rebound, or to die out. We define q as the probability of ‘die out’,

i.e. that the activation of a latently infected cell does not cause

viral rebound. Then 1− q is the probability of a ‘successful latent

cell activation’, which does cause viral rebound. Finally, we

assume that there is a delay between successful latent cell activation

and detectable infection, where ‘detectable infection’ corresponds

to the study participant’s viral loads exceeding 50 HIV RNA

copiesml−1. For simplicity, we take a fixed, delta-distributed

delay; in a previous study [39], we found that, while a Weibull dis-

tribution best described the delay, per the Akaike information

criterion (AIC), the improvement over other stylized distributions,

including a fixed delay, was not statistically significant [39].

Taking the latent reservoir size at the time of ATI and later to be

L0, and assuming that the latently infected cells are activated at per

capita rate a, infected cell influx occurs at the constant rate aL0. Then

the recrudescence (successful activation) rate is r = (1− q)aL0.

Because the latent reservoir has a half-life of approximately 44

months [52,53], and our dataset extends only about 2 years post-

ATI, assuming a constant latent reservoir may introduce little

error. Nonetheless, later we relax this assumption.

From a mathematical standpoint, we employ a branching

process framework to construct from these assumptions a prob-

ability of viral rebound at time t. Given the recrudescence rate

r = aL0(1− q), from a simple branching (immigration) process for-

mulation we can compute the cumulative probability of

successful activation at time t, PACT(t) = 1− exp (− (1− q)aL0t)

(see [39] for derivation). Then, assuming a fixed delay τ, i.e.

delta-distributed delay δ(t− τ), the probability of viral rebound

by time t predicted by our model is

PVR(t) ¼
0, 0 � t , t

1� e�(1�q)aL0(t�t), t � t

�

(2:1)

(see again [39]). We call this is the baseline model; below we will

also investigate alternate, time-inhomogeneous, formulations for

the recrudescence rates and derive the associated PVR(t). We will

use these to derive likelihood functions,

lik(u) ¼
Y

235

i¼1

(PVR(t
(i)
first; u)� PVR(t

(i)
last; u)), (2:2)

where PVR(t) is the cumulative probability of viral rebound,

multiplied over the 235 study participants, θ are the parameters,

and t(i)first and t(i)last are the times of the first detectable and last

undetectable viral load measurements, respectively, for the ith

study participant. Note that in using this likelihood function

equation (2.2), we do not estimate viral rebound times from the

data, e.g. by the mid-time point between the last undetectable

and first detectable viral load measurement, in advance of the

analysis.We therefore avoid the subtle uncertainty such pre-proces-

sing can create, particularly as we aim to use data that includes

study participants with viral load measurements that are months

apart. For all models, we estimate parameters using maximum-

likelihood methods, and compare model fits using the AIC [54].

Thus, we test how well the models explain observations of viral

rebound [12].

3. Results
We begin by providing a motivating result, showing that viral

rebound dynamics are not well predicted by standard stylized

survival distributions, e.g. the Weibull or the lognormal

delay, t 

activation; success
w/prob. 1 – q

Det. threshold
H

IV
 R

N
A

time

ATI
activation; failed

rebound w/prob. q

Figure 1. Model schematic [39]. Following ATI, we assume that latent cell

activations are followed by chains of infection that successfully re-establish

high viral loads associated with chronic infection, with probability 1− q,

or die out, with probability q. We assume further a delay τ between a suc-

cessful activation and the time when plasma viraemia is detectable.
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Figure 2. Typical survival curve distributions fit to viral rebound data [12], shown

over (a) short timescales and (b) long timescales. The shaded region bounds the

empirical distributions for the times of last undetectable and first detectable viral

load tests across all study participants. To fit the distribution parameters, we define

a likelihood lik(u) ¼
Q235

i¼1 (PVR(t
(i)
first; u)� PVR(t

(i)
last; u)) where PVR(t) is the

cumulative distribution (log-normal, log-logistic or Weibull), with parameters

θ, and t(i)last and t
(i)
first correspond to the last undetectable and first detectable

viral load, respectively, for study participant i, summed over 235 study participants

for whom we have data [12]. To maximize the likelihood, we employed the

Davidon–Fletcher–Powell optimization algorithm implemented by the Bhat

package in R [55]. The data are described in §2.1.
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distribution, as alluded to in the Introduction (§1). This

observation provided the impetus for us to derive our

mechanistically based viral rebound time distribution.

We document our first effort, estimating model parameters

for the baselinemodel, equation (2.1), and show that this simple

model does not improve predictions of long-term viral rebound

relative to the standard survival distributions. We then discuss

and justify alternate hypotheses for recrudescence, showing

that a recrudescence rate which decreases with time explains

the data much better. Finally, we discuss how our model

predictions can be used to inform clinical trial design.

3.1. Viral rebound dynamics are not well predicted by

standard stylized survival distributions
Survival analysis provides a natural toolset to analyse time-to-

event data such as the HIV viral rebound data that forms the

focus of this present study. However, when fitting the data to

standard stylized survival distributions, i.e. Weibull, lognor-

mal, log-logistic or gamma distributions, we find that viral

rebound dynamics are not well predicted by these models.

While the log-logistic distribution gives the best fit per the

AIC (see electronic supplementary material, table S1), visual

inspection of the fits in figure 2 suggests that while they reason-

ably predict short-term rebound, within a few months of ATI,

they fail to describe delayed viral rebounds occurring after

many months or years. To estimate parameters for the survival

distributions, we use the likelihood function in equation (2.2)

with the cumulative density function of the desired distribution

asPVR. Tomaximize the likelihood,we employed theDavidon–

Fletcher–Powell optimization algorithm implemented by the

Bhat package in R [55].

What follows is a derivation and justification of our

mechanistically motivated survival function that more accu-

rately describes both short- and long-term viral rebound to

make up for the deficit presented by stylized distributions.

Since the log-logistic distribution explains the data best, in

the following it will be used as a comparator to quantify

the improvements that our model brings.

3.2. Constant r fails to explain both short- and

long-term rebound
We start by fitting the baseline model, equation (2.1), to the

data, using maximum likelihood methods. Specifically we

use the Davidon–Fletcher–Powell optimization algorithm to

estimate model parameters, the recrudescence rate r = a(1− q)L0
and the delay τ. Note that we cannot fit a or q individually

because, with the infectious latent reservoir size L0, they

form a non-identifiable parameter combination. A summary

of these parameter estimates for the baseline model are pro-

vided in table 1 and the best fit of the model to the data is

shown in figure 3. Note that we found that the data for

long times was too sparse to characterize a delay, so to esti-

mate the delay τ we used an estimate derived by fitting the

model only to rebounds within 60 days.

Assuming a constant recrudescence rate explains short-term

viral rebound data reasonablywell (figure 3a). However, even a

visual inspection shows that the model only poorly explains

both short- and long-term viral rebound data simultaneously

(figure 3b). This is borne out in comparisons of AIC, which

shows poor performance relative to most survival distributions

(i.e. it increases the AIC such that ΔAIC > 250 for best-fit,

log-logistic distribution), though it does offer an improvement

on the worst-fit gamma-distribution assumption (ΔAIC≈ 4)

(electronic supplementary material, table S1). Thus while our

model assuming a constant recrudescence rate does explain

short-term viral rebound (see also [39]) it does not explain

both short- and long-term viral rebound, nor does it offer any

improvement over standard survival analysis distributions.

3.3. Exponentially decaying a(t) explains both

short- and long-term viral rebound
The failure of our baseline model, which assumes a constant

recrudescence rate, is not really a surprise. For one, it relies

on the assumption of a constant replication-competent latent

reservoir size, and studies have shown that the latent reservoir

size usually decays over time in the presence of effective therapy

[52,53]. Presumably, the reservoir would similarly continue to

decay post-ATI but pre-rebound, since the viral load remaining

undetectable implies that robust viral replication, which may

replenish the reservoir, is unlikely. Further, we recently

showed that short-term viral rebounds are actually better

explained bymultiple successful latent cell activations in succes-

sion, with detectable viraemia composed of virus arising from

replication in multiple lineages [56]. Lastly and importantly,

we completely neglected the inherent heterogeneity of the

latent reservoir. Post-ATI viral rebound can occur in PLWH

with markers indicating small viral reservoirs [12,57,58],

suggesting reservoir characteristics beyond size are associated

with rebound. The latent reservoir is composed primarily of

memory cells [59], each of which may be specific for a pathogen

or set of pathogens. Recent characterization suggests that the
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Figure 3. Baseline, constant recrudescence rate model, equation (2.1), fit to

viral rebound data (see §2.1), with parameters estimates for data on (a) short

timescales, less than or equal to 60 days only, and (b) short and long time-

scales, up to 800 days of observations. The shaded region bounds the

empirical distributions for the times of last undetectable and first detectable

viral load tests across all study participants.
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reservoir is largely made up of clonal populations [60–62], with

different antigen specificities [42,43], so there may be genetically

homogeneous subsets of cells.While in principle, we can neglect

this heterogeneity in favour of a mean activation rate given that

the latent reservoir is large in most PLWH, perhaps depletion of

clones with higher activation rates, e.g. those that recognize

common antigen, changes the average activation time in a

manner that is significant over longer timescales.

These observations motivate investigation of time-

inhomogeneous recrudescence rates that decay in time. The

modelling attempt in the previous section supports this

choice: in comparing figure 3a,b, we note that the recrudes-

cence rate decreased in order to accommodate long-term

viral rebounds. For simplicity, we investigate exponentially

decaying recrudescence rates, both single- and biphasic

decay. We are guided in our choice by the exponential

decay, on average, of the latent reservoir size [52,53]. As the

time-dependent recrudescence rate r(t) = (1− q(t))a(t)L(t), the

source of the time-inhomogeneity may be in the activation

rate, the probability that a latent cell activation leads to

rebound, and the latent reservoir size. Thus, more generally,

the probability of viral rebound is given by

PVR(t) ¼

0, 0 � t , t

1� exp �

ðt

t

r(s) ds

� �

, t � t:

8

<

:

(3:1)

The results of fitting this model to the data are summar-

ized in table 2. First, across all models, the delay τ is

remarkably consistent, on the order of 4–5 days (cf. tables 1

and 2, and electronic supplementary material table S1).

Further, the data are best explained by the recrudescence

rate model (2) in table 2, where the recrudescence rate

decays exponentially over time to a constant, non-zero rate.

Figure 4 shows that recrudescence rate model (2) effectively

recapitulates both the short- and long-term viral dynamics

simultaneously not only better than previous models, but

very well. We will use this model in our discussion of clinical

trial design that follows.

However, note that the estimated delay τ, the initial recru-

descence rate r0, and the initial decay k are the same for

recrudescence models (2) and (3), and that the increased

ΔAIC of model (3) relative to model (2) results from the differ-

ence in the number of parameters (table 2). Moreover, there is

significant uncertainty—over many orders of magnitude—in

the second phase decay rate. A biphasic recrudescence rate

model that decays to a constant (not shown) shows the

same trends. From these observations, we conclude that

while the recrudescence rate model (2), with uniphasic

decay to a constant rate, is the most parsimonious model

with the data we have, a repeat of this analysis with more

data on post-ATI rebound times may yield a best model

with a multi-phasic recrudescence decay rate.

Table 2. Parameter estimates for viral rebound models assuming different time-dependent recrudescence rates. ΔAIC is computed relative to the best-fit

stylized distribution, the log-logistic, with parameter estimates in electronic supplementary material, table S1.

recrudescence rate (r(t)) model parameters estimate (95% CI) ΔAIC

(1) r(t) = r0 e
−k(t−τ) r0 0.058 (0.049,0.069) per day 77.7

single-phase decay, with k 0.011 (0.009,0.014) per day

r(t)→ 0 as t→∞ τ 4.04 (3.28,4.94) days

(2) r(t) = r∞ + (r0− r∞)e
−k(t−τ) r0 0.088 (0.073,0.106) per day −10.7

single-phase decay, with r∞ 0.002 (0.001, 0.004) per day

r(t)→ r∞≠ 0 as t→∞ k 0.029 (0.022,0.040) per day

τ 4.98 (4.58,5.41) days

(3) r(t) ¼ r1 e�k2(t�t) þ (r0 � r1) e
�k1(t�t), r0 0.088 (0.068,0.113) per day −8.7

where k2 < k1 r∞ 0.002 (0.001,0.004) per day

biphasic decay, with k1 0.029 (0.019,0.053) per day

r(t)→ 0 as t→∞ k2 5 × e−07 (1 × e−10, 0.002) per day

τ 4.98 (4.57,5.42) days

Table 1. Parameter estimates for the baseline model equation (2.1), assuming a constant recrudescence rate r. ΔAIC is computed relative to the best stylized

distribution, the log-logistic, see electronic supplementary material, table S1. Note that when estimating the recrudescence rate from all the data, we used the

delay τ estimated using data restricted to rebounds less than 60 days from ATI.

time window parameters estimates (95% CI) ΔAIC

rebound within 60 days of ATI r = (1− q)aL0 0.0902 (0.0771,0.1054) per day n.a. (restricted data)

delay τ 4.93 (4.24,5.70) days

rebound across all observed times r = (1− q)aL0 0.0278 (0.0231,0.0335) per day 252.6 (with one parameter)

delay τ 4.93 days fixed
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3.4. Application: clinical trial design
The improvement in how well our single-phase exponentially

decaying recrudescence rate model explains the data relative

to standard survival analysis distributions as well as the

constant recrudescence rate model, and goodness of fit,

are clear (see figure 4 and tables 1 and 2). We therefore envi-

sion an important application of our results to be ATI clinical

trial design. Our model provides an analytic form and par-

ameter estimates for the time to viral rebound in the

absence of any intervention. Here we offer a key example

application, predicting the number of study participants

required to detect a viral rebound delay with some desired

statistical power.

The role the recrudescence rate plays in our model of viral

rebound is that of the hazard function, i.e. the rate that

rebound happens at time t, given that it has not yet occurred.

Thus, we have shown that the hazard rate

h(t) ; r(t) ¼ r1 þ (r0 � r1) e
�k(t�t)

best explains the current data (table 2). Incidentally, this is

why the Gompertz–Makeham distribution [63] was excluded

among our stylized distributions (figure 2): its associated

hazard rate has the same functional form but is exponentially

increasing, rather than decreasing.

Figure 5 illustrates the type of useful predictions that we

envision with our model. It shows the statistical significance

of a 60-day study depending on the number of ATI study

participants required to detect an increased delay following

ATI, computed over 10 000 in silico trials, see electronic

supplementary material, section A.2 for calculation details.
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Figure 4. Cumulative probability of viral rebound assuming a single-phase exponentially decaying recrudescence rate model (model (2), see table 2), (a) over all

time since ATI, (b) horizontally zoomed in to early times, to show quality of fit to early-rebound data, and (c) vertically zoomed in to highlight the quality of the fit

to late-rebound data, not captured by the standard survival distributions tested (figure 2) The shaded region bounds the empirical distributions for the times of last

undetectable and first detectable viral load tests across all study participants.
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Figure 5. Statistical power of a study to detect a therapy-induced viral rebound delay depending on the number of trial participants, assuming a 3-, 7- or 14-day

delay in median time to viral rebound, computed over 10 000 simulated clinical trials lasting 60 days (curves in red, green and blue, respectively), see electronic

supplementary material, section A.2 for calculation details. Here we focus on detecting the difference in median rebound time. The line type indicates the assumed

testing frequency: twice weekly (solid), weekly (dashed), bi-weekly (dotted). The delay here is generated by assuming that there is an intervention that reduces the

constant hazard ratio (HR) from HR = 1 to HR≈ 0.8 (3 day delay); HR≈ 0.6 (1 week delay) and HR≈ 0.4 (2 week delay).
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For the purposes of this illustration, we assumed an equal

number of participants in the intervention and placebo arms,

but in general that need not be the case.Wepredict, for example,

that to detect an intervention-derived 3-day delay in viral

rebound with 90% statistical power, our model predicts that

would require 210 study participants if testing was performed

every two weeks. With a higher frequency of testing, say

twice weekly, one would requires fewer study participants—

186—to achieve the same statistical power. The number of

study participants required to achieve the same power is also

decreased if the intervention has greater effect: our model

predicts that one would require 59 or 65 study participants,

given twice-weekly or bi-weekly testing, respectively, to

detect an intervention-induced delayof 7 dayswith 90% statisti-

cal power. For these estimates, we use our time-dependent

recrudescence model, which explains the data and therefore

provide the most reliable results. And even over a 60-day simu-

lated trial, the more approximate models, e.g. the constant

recrudescence model fit only to viral rebound occurring on or

before day 60 (figure 3a), or the best-fit distribution from survi-

val analysis, the log-logistic (figure 2), yield noticeable under-

or overestimates, respectively, for study participants required

to achieve some statistical power (see electronic supplementary

material, figure S1). Thus, the accuracy provided by our refined

model can provide a meaningful correction to simpler models

used in clinical trial design.

Note that the above calculation focuses on detecting if

rebound time samples are drawn from different distributions,

and not on resolving the rebound-time distributions; for that,

the number of required study participants would be higher.

For this illustration, to create a delay in silico we effectively

decreased the hazard ratio (HR),

HR ¼
hazard with intervention

hazard without intervention
:

That is, we set the hazard with intervention, ~h(t), to be the

scalar multiple HR of our estimated hazard function h(t), i.e.
~h(t) ¼ HR h(t). We then used a nonlinear solver to compute

HR so that the median time to rebound associated with ~h(t) is

delayed by 3, 7 and 14 days relative to the median time to

rebound associated with h(t). Thus, a constant HR of approxi-

mately 0.8, 0.6 and 0.4, yield median 3, 7 and 14 day delays,

respectively. However, with good support for the biological

hypotheses underlying our modelling, we can make similar

predictions for interventions that target specific rebound

mechanisms. For example, broadly neutralizing antibody inter-

ventions that improve immune control [64] would reduce q,

the probability that latent cell activation induces rebound (cf.

figure 1; recall that the recrudescence rate r(t) = a(t)L(t)(1− q(t))).

4. Discussion
In this study, we developed a model that captures the

distribution of times to both short- and long-term HIV viral

rebound after therapy interruption and demonstrated its

applicability to clinical trial design.

Ourmodel predictions improve significantly upon standard

survival models (cf. figures 2 and 4) by considering the under-

lying biology. Specifically, we rely on the common assumption

that HIV viral rebound following treatment suspension is trig-

gered by activation of latently infected cells [28,33–35,39].

While the assumption that recrudescence resulting from such

activation occurs at a constant rate explains observations of

short-term viral rebound (less than or equal to 60 days)

[35,39], it does not explain long-term observations (figure 3).

This failure is likely due to the high level of heterogeneity in

the latent reservoir. This heterogeneity comes from a variety

of sources. The cells in the reservoir each carry a HIV provirus

that potentially has a unique ability to reactivate due to a com-

bination of factors including its genetic sequence, the effects of

its integration site in the host cell genome [65] as well as epige-

netic modifications and the host cell phenotype, e.g. whether it

is a central memory, effector memory or transitional memory

cell [66]. Each of these cell subtypes have distinct transcriptional

and epigenetic programmes that could influence the activity of

the integratedHIV promoter. Additionally, biological noise and

stochastic fluctuations in transcriptional activity could play an

important role in the reversal of latency [67,68]. Lastly, a large

fraction of the reservoir is made up of T-cell clones with differ-

ent antigen specificity [42,43], leading to the possibility that

clones with specificity for more common antigens get activated

more frequently than clones with specificity for rare antigens.

Thus, to the extent that antigen drives proliferation and acti-

vation of cells in the reservoir, the reservoir composition

could evolve from containing a majority of memory cells to

common antigens to a reservoir containing a majority of cells

with specificity for rare infrequently encountered antigens

[69]. Also, because some are in a deeper state of latency than

other cells, possibly due to their integration site [65], the analo-

gous argument could be made that cells in a less deep state

of latency activate first successively leaving cells with deeper

and deeper latency in the reservoir. Either of these scenarios

would be consistent with our finding that the recrudescent

rate declineswith time, and biologicallywould be due to a com-

bination of a decline in the per cell activation rate a(t) and in the

size of the reservoir L(t). We found that a single-phase decay to

a low, constant viral load best explained the data (figure 4 and

table 2, model (2)). However, the decay rate was more than an

order of magnitude larger than the observed rate of decline of

the latent reservoir [52,53] (table 2), consistent with the notion

that the activation rate is also decreasing.

We predict an initial average recrudescence frequency of

once every 9.4–13.7 days (95% CI for 1/r0), which is less fre-

quent than predictions from Pinkevych et al. [35]. But this

result is not necessarily inconsistent: the difference is only a

few days, and our prediction reflects an average over all study

participants regardless of drug regimen. Li et al. showed in

this same cohort a statistically significant delay in rebound in

study participants whose ART regimen included NNRTIs

(99/235 individuals), which we plan to investigate in a separate

study. After several months, the frequency slows down to once

every approximately 260–1400 days (approx. 95% CI for 1/r∞).

Thus, our modelling suggests that we can roughly consider the

latent reservoir as composed of two major populations: cells

that activate frequently and deplete rapidly, and cells that acti-

vate infrequently. The latter cell population may also include

cells in which proviral sequences were integrated further

away from transcriptional start sites, thereby producing less

virus on average following activation, or possess other struc-

tural correlates of viral control [44].

The uncertainty in the late-stage recrudescence rate or

frequency reflects the paucity of long-term rebounders in this

dataset (cf. table 2). Indeed, we showed that models with

more refined decay profiles, e.g. biphasic, yielded the same like-

lihood as our best-fit uniphasic model, and were judged worse
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only because the additional parameters did not provide a better

description of the data (cf. table 2). Further, our model, as well

as others, assumes that the source of rebound is the latent reser-

voir [28,33–36,39], which in the presence of ART shows an

average, slow decay [52,53]. Following ATI but before viral

rebound, it is reasonable to say that the reservoir continues to

decay since re-seeding can only be very limited [29], and there-

fore over long enough times the reservoir should be eliminated.

Thus, ultimately we would expect the recrudescence rate to

drop to zero. Therefore we anticipate, with the availability of

more data, that a more refined decay profile may best explain

the data, potentially reflecting sequential depletion of clonal

populations of latently infected cells [42,43].

As noted above with regards to drug regimen, in this

study we neglected potentially important covariates. Li et al.

noticed that time of treatment relative to exposure, and pre-ATI

ART regimen, both had statistically significant impact on time-

to-rebound [12]. With regards to the ART regimen, inclusion of

non-nucleoside reverse transcriptase inhibitors (NNRTIs) was

associated with longer delays. Also, unsurprisingly, treatment

during acute HIV was associated with longer rebound delays

than treatment during chronic infection, for which one expla-

nation is a necessarily smaller reservoir [12]. But intriguingly,

early treatment initiation—defined in [12] as within six months

of exposure to HIV—was associated with still longer rebound

delays, pointing to adaptive immune responses as an important

actor too. A model accounting for these covariates may yield

better prediction and useful biological insights.

We anticipate that the most significant contribution of this

study is to ATI clinical trial design since our model offers a

marked improvement over survival and other models in

terms of explaining the observed distribution of times to viral

rebound. Different therapeutic strategies to extend or prevent

viral rebound are under investigation (e.g. at the time of this

writing, clinical trials include [70–77]). By uniting short- and

long-term viral rebound into a single model, well-validated

by data (figure 4), we provide an analytic form and parameter

estimates for the time to viral rebound in the absence of any

intervention. We demonstrated the utility of our model in a

power analysis to predict the number of study participants

required to detect short intervention-associated delays in viral

rebound relative to baseline, depending on the planned testing

frequency (figure 5). Our model is mechanistically motivated

and considers dynamics of viral rebound. Thus, we can make

predictions for interventions that target specific aspects influen-

cing viral rebound. For example, in our recrudescence rate

r(t) = a(t)L(t)(1− q(t)), q reflects the probability that latent cell

activation leads to rebound, as opposed to the engendered

viral lineage going extinct (figure 1). Thus, one could extend

our analysis and directly model how antibody interventions

improve immune control [64,78] and lead to reductions in q,

yielding more realistic analyses.
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