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Abstract 

Phonetic analysis often requires reliable estimation of formants, 

but estimates provided by popular programs can be unreliable. 

Recently, Dissen et al. [1] described DNN-based formant 

trackers that produced more accurate frequency estimates than 

several others, but require manually-corrected formant data for 

training. Here we describe a novel unsupervised training 

method for corpus-based DNN formant parameter estimation 

and tracking with accuracy similar to [1]. Frame-wise spectral 

envelopes serve as the input. The output is estimates of the 

frequencies and bandwidths plus amplitude adjustments for a 

prespecified number of poles and zeros, hereafter referred to as 

“formant parameters.” A custom loss measure based on the 

difference between the input envelope and one generated from 

the estimated formant parameters is calculated and back-

propagated through the network to establish the gradients with 

respect to the formant parameters. The approach is similar to 

that of autoencoders, in that the model is trained to reproduce 

its input in order to discover latent features, in this case, the 

formant parameters. Our results demonstrate that a reliable 

formant tracker can be constructed for a speech corpus without 

the need for hand-corrected training data. 

Index Terms: speech analysis, formant estimation, formant 

tracking, deep learning, acoustic models of speech 

1. Introduction 

Formant estimation is a crucial component in acoustic phonetic 

studies of human speech, but rarely used in other areas of 

speech science such as speech recognition or modern speech 

synthesis systems. In large measure this may be due to the 

difficulty of reliably estimating formant frequencies within a 

single windowed frame of natural speech. Moreover, tracking 

continuous trajectories of formants as they vary over time in 

natural utterances is notably error-prone, typically requiring 

manual review and correction when high accuracy is required. 

There are, consequently, few large datasets of precisely tracked 

formants (and those that exist typically include only the first 2-

4 formants). One such dataset is VTR-TIMIT [2], a 516-

utterance subset of TIMIT [3] whose first three formant 

frequencies were first derived automatically and then hand-

corrected. Although other datasets exist, e.g. [4, 5], most are 

smaller and contain only measurements of isolated words or 

single vowels. 

For these reasons, the development of automatic formant 

measurement algorithms is still an ongoing topic of research [1, 

6-12]. [13] compared the automatically estimated formant 

tracks from three commonly used formant trackers [14-16] 

against the hand-corrected VTR-TIMIT trajectories for F1 – F3, 

and found they can be off by hundreds of Hertz on average if 

default parameters are used. Parameter tuning is possible for 

many of these and other trackers, but speaker-specific tuning 

may be impractical for large datasets. 

Most formant tracking algorithms begin with independently 

obtained formant frequency estimates for every analysis frame 

within an utterance. The individual frame-by-frame estimates 

are then collected into consistent formant trajectories over time 

using techniques such as dynamic programming or statistical 

clustering methods. Most work focuses on improving the 

formant estimation step [7-9, 11], the trajectory formation step 

[6, 17], or both [10, 18]. For example, the MSR algorithm of 

[18] (used for the initial estimation of VTR-TIMIT) involves 

iterative Kalman filtering of LPC cepstra. Likewise, the 

“KARMA” algorithm [17] uses Kalman inference on 

autoregressive moving average (ARMA) cepstral coefficients. 

Recently [7, 9] compared several LPC-based algorithms and 

demonstrated a new approach, called quasi-closed phase 

forward-backward covariance-based (QCP-FBCOV) linear 

prediction analysis, for which they showed lower error rates on 

VTR-TIMIT and synthetic data. 

More recently, Dissen et al. [1] approached the task using 

supervised machine learning. They trained two neural network 

models—one an LSTM-based RNN model they call 

“DeepFormants” (henceforth called DF-RNN) and one a 

combined RNN-CNN model (henceforth DF-RCNN)—on the 

384-utterance training subset of VTR-TIMIT to predict the first 

3 formant frequencies, and tested on the 192-utterance test 

subset. The input features of DF-RNN were 350 cepstral 

coefficients of various types, while those of DF-RCNN were 

55*50 raw spectrograms. Their results showed lower error rates 

on the VTR-TIMIT test set than other trackers [14, 17, 19], and 

at least on par with MSR [18]. Likewise, [13] included DF-

RNN in their study, and found it generally performed better 

than the three LPC-based automatic trackers [14-16]. However, 

the models trained on VTR-TIMIT had higher error rates on 

two other datasets [4, 5]. [1] present a domain adaptation 

method that successfully reduces the error rates down to the 

VTR-TIMIT level, but the adaptation method requires formant 

measures from the new datasets. Hence, using their approach 

on other datasets, either from scratch or via adaptation, requires 

some amount of hand-labeled data. 

In the following, we present a corpus-based method of 

training a neural network to predict formant frequencies—as 

well as bandwidths and amplitudes—that requires no prior 

formant measurements as training data. Instead, spectral 

envelope estimates for each analysis frame are fed to a network 

that predicts vocal tract resonance features (pole and zero 

parameters) as output. Since the correct output features are not 

known in advance, the output feature predictions are used to 

generate a new estimate of the input spectral envelope from 

which a loss can be calculated for back propagation. This 

approach is similar in concept to an autoencoder [20, 21], 

except that in this case the “latent variables” are interpretable 

as vocal tract resonance features, and the “decoder” is a pre-



determined algorithmic reconstruction of the spectral envelope 

from the latent feature values. Without the need for prior 

measurements, large training datasets can be used, and the 

trained network can be used to generate formant trajectories on 

unseen speech data. We demonstrate this method, which we call 

FormantNet, on VTR-TIMIT, showing error rates on par with 

[1] and lower than other published methods on this dataset. 

2. Approach 

The FormantNet approach owes much of its theoretical 

motivation to early work on an analysis-by-synthesis approach 

described in [22]. That work used an iterative Newton-Raphson 

technique to solve simultaneous equations relating formant 

frequencies and bandwidths to spectral shape by minimizing the 

mean-squared error between a cepstral-smoothed input speech 

spectrum and the spectrum predicted by the formant 

parameters. For tractable computation on computers of that era, 

only three formants were predicted, with fixed bandwidths, and 

using 64-sample spectra in the range 0 – 5 kHz. Given advances 

in computer technology and machine learning over the past 50 

years, we can implement a related approach to identifying and 

tracking formant parameters using deep learning. 

As mentioned, although not an autoencoder, our approach 

resembles autoencoding strategies in which a bottleneck layer 

is used to force discovery of latent features that greatly reduce 

the dimensionality of the input feature set. However, rather than 

allow the network to discover the latent features, we constrain 

the latent features to be interpreted as formant parameters via a 

special loss function. The mapping from formant parameters to 

spectral features used in our model, due to [23], is given in (1), 

which describes the spectrum level h at frequency f for the 

impulse response of a single formant with resonant frequency 

F, bandwidth B, and amplitude weighting factor A.  
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To create a comparison spectrum, (1) is evaluated for each 

formant and for each 𝑓 in the discrete frequency spectrum. In 

the parallel formant model that we are using [24], the 

amplitude-weighted contributions of individual linear formant 

spectra are added to form the composite spectrum. When zeros 

are also included in the model to be trained, the final spectrum 

is the summed formant spectra divided by the summed zero 

spectra. The loss function used in training our models is the 

mean squared difference between this estimated spectrum and 

the input spectrum (both converted to decibels). 

One restriction of the approach we have used is that the 

number of formants and zeros to be learned for an entire corpus 

is fixed by the network design. This should be based on the 

average number of resonances expected for the corpus 

population in the input bandwidth. Our experiments found that 

networks with six poles and one zero tend to converge best over 

the speakers and sampling rate of VTR-TIMIT. With fewer 

formants, the full spectrum was not adequately modeled; with 

more, the network often tried to squeeze the extra formants 

where they were unneeded, such as between F2 and F3. 

3. Methods 

We outline our methods and procedures here; upon publication, 

full details and code will be made publicly available at 

https://github.com/NemoursResearch/FormantNet. 

3.1. Materials 

We developed our models with the training portion of TIMIT. 

Note that unlike [1], we used the entire TIMIT training set, not 

just the 324 files of the VTR-TIMIT training set. In fact, we 

made no use of the formant measurements of the VTR-TIMIT 

corpus, except in evaluation. To test model convergence, we 

selected 48 speakers (3 men and 3 women from each of the 8 

dialect regions; 480 utterances total) to be used as validation 

data; the remaining 4140 utterances were used for training. 

3.2. Input features 

The RMS amplitudes of the input waveforms were normalized 

to an overall 68 dB for the utterance before feature extraction. 

Then we used Iterative Adaptive Inverse Filtering (IAIF) [25] 

to remove the estimated contribution of the source signal from 

the speech signal. The remaining signal was then converted to 

Hann-windowed frames of 32 msec in length every 5 msec. The 

Discrete Fourier Transform was taken to convert the signals to 

257-point spectra. From these we approximate spectral 

envelopes by iteratively replacing narrow scale minima and 

applying a 3-point smoothing function to the raw harmonic 

spectra. This approach tends to trace a smooth curve over 

harmonic peaks while also retaining spectral valleys possibly 

associated with zeros. After a floor of 0.001 was added, the 

linear envelopes were converted to the decibel scale. These 

envelopes serve as both input and target for the model, except 

that the input spectra are normalized by subtracting the mean 

and dividing by standard deviation of the training set; the target 

spectra used in computing the loss are not. 

To give temporal context to the CNN models described 

below, the input to the model at each time step consisted of a 

window of 21 frames: the target frame whose formants are to 

be estimated, as well as the 10 preceding and 10 following 

frames (the initial or final frame was duplicated as needed to fill 

out this structure). For the LSTM models, which model 

temporal sequences directly, only the target frame was provided 

per time step, but we also experimented with bidirectional 

LSTM (BLSTM) models, to see if performances would 

improve with access to following frames as well as preceding 

ones. For both, the training sequence length was set to 64 time 

steps. 

3.3. DNN models 

We experimented with several different model architectures, 

including convolutional neural network (CNN) and recurrent 

neural network (RNN) architectures. All models were 

implemented in TensorFlow 2.3 [26]. 

The CNN models each had 3 convolutional layers of 16, 32, 

and 64 units. Each convolutional layer was followed by a max-

pooling layer. Both convolutional and pooling layers were two-

dimensional, operating over both the time and frequency axes 

of the input windows. The final pooling layer was followed by 

two hidden dense layers of 1024 and 256 units, respectively, 

followed finally by the output layer. The activation of all 

intermediate layers was ReLU. The RNN models consisted of 

either one or three LSTM layers of 512 units apiece, followed 

immediately by the output layer. For BLSTMs, the outputs of 

the forward and backward passes were concatenated before 

being passed to the output layer. 

The output layer of all models produced 3 values 

(frequency, bandwidth, and amplitude) per pole and 2 values 

(frequency and bandwidth) per zero (whose amplitude factors 



are fixed at 1.0), for a total of 20 output values in our 6-pole, 1-

zero models. For all models, the output activation layer was 

sigmoid, producing values between 0 and 1. The frequencies 

were rescaled to values between 0 and 8000 Hz, the bandwidths 

to 20-5020 Hz, and the amplitude adjustments to between -100 

and +100 dB.  

Models were trained using the Adam optimizer, with a 

learning rate of 0.0001, and the loss function described in 

Section 2. The batch size was 32. During training, models were 

tested on the validation set after every epoch; training was 

halted once the validation loss did not improve after 20 epochs, 

or for a maximum of 200 epochs. The model iteration with the 

lowest validation loss was used for evaluation.  

3.4. Evaluation method 

For evaluation, input spectra were calculated and normalized 

per Section 3.2, and model output was rescaled as per Section 

3.3. The formant outputs were sorted by mean frequency to 

determine which represents F1, which F2, and so on, and 10 

rounds of 3-point binomial smoothing were applied to reduce 

frame-to-frame jitter in formant frequency values. 

4. Results  

Table 1 presents some of the models we constructed and 

evaluated, as well as their performance on the test set of VTR-

TIMIT. The “Arch” column indicates the basic architecture of 

the model; e.g., “CNN3” indicates a model with 3 convolutional 

layers. 

Our results indicated that despite their larger size and the 

surrounding context frames provided as input, the CNN models 

did not do as well as the LSTM models in our tests. A simple 

one-layer LSTM was sufficient to produce lower error rates, 

and in fact, adding two more layers did not improve 

performance. Note also that the bidirectional LSTM model was 

no better than the simple LSTM, indicating that the following 

context was not necessary for formant tracking. Figure 1 

illustrates the output of the LSTM1 model on a test VTR-

TIMIT utterance, alongside the hand-measured formants for 

comparison. 

Table 1: Model architectures, and their mean absolute 

error on the VTR-TIMIT test set. 

 All segments Vowels 

Arch. All F1 F2 F3 F1 F2 F3 

CNN3 129 105 117 165 65 81 111 

LSTM1 114 100 115 126 64 75 90 

BLSTM1 114 102 115 126 65 77 90 

LSTM3 131 102 146 146 65 81 96 

 

Below we focus on the LSTM1 model, redubbed 

FormantNet below, and compare its performance with that the 

DeepFormants (DF) models of [1], as well as other results 

published in the literature on the VTR-TIMIT database. Table 

2 reproduces results published in Table VI of [1], showing mean 

absolute error by formant and phonetic class. The two models 

of [1] are presented, as well as the popular tool WaveSurfer 

[19], and MSR [18], which was used for the initial frequency 

estimations before hand-correction. (For space we omit Praat, 

which had the highest error rates.) Note that FormantNet 

produced lower error rates than the other three methods for F3 

of both vowels and semivowels, as well as F2 of semivowels. 

Some other F2 and F3 consonant measures (underlined) were 

also lower than the two DF models, though not lower than the 

MSR method. 

Table 3 reproduces Table VII of [1], in which the DF 

models are compared to previous published results for KARMA 

Table 2: Mean absolute error over all speech in test set, divided by phonetic class.  

 WaveSurfer MSR DeepFormants DF-RCNN FormantNet 

Class F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

vowel 70 94 154 64 105 125 54 81 112 53 72 108 64 75 90 

semivowel 89 126 222 83 122 154 67 114 168 68 111 160 79 93 124 

nasal 96 229 239 67 120 112 66 175 151 69 191 158 98 213 143 

fricative 209 263 439 129 108 131 131 135 159 139 142 167 160 135 161 

affricate 292 407 390 141 129 149 164 162 189 174 173 195 186 186 186 

stop 168 210 286 130 113 119 131 135 168 123 135 170 135 158 166 

 

 

 

Figure 1: Spectrogram (0-4 KHz) of the utterance “The carpet cleaners shampooed our oriental rug.” Hand-corrected 

formant tracks F1-F3 in red; model-predicted tracks F1-F4 in blue. 
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[17] in terms of root mean square error (RMSE); the RMSE for 

LSTM1 has been appended. FormantNet has a lower error for 

F3, and is in the middle of the pack on F2 and overall, but shows 

a somewhat higher error rate for F1. 

Table 3: Root mean square error over all segments, 

test set.  

Method All F1 F2 F3 

KARMA 220 114 226 320 

DF-RNN 163 118 169 204 

DF-RCNN 173 127 180 213 

FormantNet 173 143 177 195 

 

[13] compared DF-RNN and three LPC-based trackers 

(Praat [14], SNACK [15], and assp [16]). Using the default 

parameters for each tracker, [13] measured RMSE for voiced 

frames only, and split the results by gender, noting the default 

parameters for each tracker tend to favor one gender. Since DF-

RNN was trained on the training set, it was only evaluated on 

the test set, while the other methods were evaluated on the entire 

VTR-TIMIT dataset. Their results are reproduced in Table 4, 

along with comparable results for FormantNet, which has the 

lowest error rate for almost all measures. 

Table 4: Root mean square error over all segments, 

split by gender, voiced frames only.  

 F1 F2 F3 

Tracker f m f m f m 

All utterances: 

SNACK 126 100 291 227 313 375 

ASSP 113 96 479 211 512 225 

PRAAT 116 234 217 338 249 404 

FormantNet 108 99 180 129 178 149 

Test utterances: 

DF-RNN 120 97 195 167 252 169 

FormantNet 104 93 182 132 192 157 

 

Finally, we compare our results with the quasi-closed phase 

(QCP) LPC method of [9], who examined only vowels and 

semivowels. Their formant detection rate (FDR) measure is 

defined as the percentage of frames in which the difference 

between estimated and reference formant frequencies is both 

lower than a specified absolute value, and within a specified 

percentage deviation from the reference value. Table 5 

reproduces their results at three FDR thresholds, along with the 

comparable values for FormantNet. We see that the FDRs for 

FormantNet are better for F2 and F3 but a bit lower for F1. 

Table 5: Formant detection rates (FDR) at different 

thresholds, for vowels and semivowels in the test set.  

Ratio F1 F2 F3 

FDR within 20% and 200 Hz dev 

QCP-FBCOV 84.9 85.0 83.9 

FormantNet 79.6 93.7 90.4 

FDR within 25% and 250 Hz dev 

QCP-FBCOV 90.4 90.5 89.1 

FormantNet 85.9 96.5 93.8 

FDR within 30% and 300 Hz dev 

QCP-FBCOV 93.4 93.9 92.1 

FormantNet 90.1 97.9 95.5 

 

5. Discussion and Conclusions 

In summary, we found that our unsupervised FormantNet 

model produced error rates on VTR-TIMIT similar to those of 

[1], and generally better than other methods. The model did 

particularly well with F3, but often had somewhat higher error 

rates than other methods on F1. This may be because there is 

still interference from F0; the IAIF method may not be 

sufficiently separating the source signal from the vocal tract 

signal. In the future, we plan to explore other methods of 

disentangling the source and vocal tract signals. We also found 

that a model with just one LSTM layer outperformed larger 

(B)LSTM and CNN models. It may be that a larger model needs 

more data to produce better results; on the other hand, perhaps 

the problem is not that difficult and thus cannot benefit much 

from a larger model. 

The acoustic model of speech described here (Eqn. 1) is 

most appropriate for voiced speech, particularly vowels and 

other sonorants, and Tables 2 and 5 show that our model was 

most competitive with vowels and semivowels. On consonants, 

FormantNet’s performance was comparable to the DF models, 

but both the DF models and ours had higher error rates than 

MSR. We point out that the MSR method was the one used as 

the starting point for the hand-corrected measurements, and so 

it is to be expected that there may be a bias in the dataset toward 

the MSR measures. Similarly, the DF methods were also trained 

on the same measurements, whereas FormantNet was trained 

completely independently of those measurements. Moreover, 

the contrast in results between Tables 2 and 4 suggests that DF-

RNN’s lower error rates on consonants are based largely if not 

entirely on voiceless frames. 

In general, there are advantages and disadvantages to the 

available methods. Unlike the deep-learning methods of [1] and 

this paper, existing LPC-based techniques require no training 

data and are domain-independent, but generally have higher 

error rates, and may be difficult to tune, particularly on multi-

speaker data or real-world data with variable audio quality. 

Between the deep-learning methods, it is not surprising that 

DNN models trained on hand-labeled data would perform better 

than those that are not, and models trained on hand-labeled data 

can be trained on a much smaller amount (only 324 utterances 

for [1], versus 4620 for FormantNet). Yet hand-labeled data is 

scarce, and unsupervised methods allow all available data to be 

used for training, labeled or not. The DF models require 

adaptation to new corpora; likewise, our models trained on 

other corpora fare less well on the VTR-TIMIT dataset than 

when trained on TIMIT data. But again, it may be more feasible 

to train a new model with our method, without the need for 

labeled data. Thus, the FormantNet method may be most 

appropriate for large multi-speaker corpora, for which no hand-

labeled data exists and for which speaker-specific tuning of 

automatic trackers may be infeasible. 

Note also that the FormantNet method produces not only 

frequency estimates of the lower formants, but also bandwidth 

and amplitude correction estimates, as well as estimates of the 

higher poles and zeros, all together comprising a model of the 

entire vocal-tract signal within the input frequency range, which 

has potential applications in speech synthesis, speaker 

identification, and the analysis of disordered speech.  
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[15] K. Sjölander, Snack-Sound-Toolkit. 

http://www.speech.kth.se/snack  
[16] M. Scheffer, Advanced Speech Signal Processor (libassp). 

http://www.sourceforge.net/projects/libassp  

[17] D. D. Mehta, D. Rudoy, and P. J. Wolfe, “Kalman-based 
autoregressive moving average modeling and inference for 

formant and antiformant tracking,” Journal of the Acoustical 

Society of America, vol. 132, no. 3, pp. 1732-1746, 2012. 
[18] L. Deng, L. J. Lee, H. Attias, and A. Acero, “A structured speech 

model with continuous hidden dynamics and prediction-residual 

training for tracking vocal tract resonances,” in Proceedings of 
ICASSP 2004—IEEE International Conference on Acoustics, 

Speech and Signal Processing, vol. 1, pp. I-557, 2004. 
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