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Abstract

Phonetic analysis often requires reliable estimation of formants,
but estimates provided by popular programs can be unreliable.
Recently, Dissen et al. [1] described DNN-based formant
trackers that produced more accurate frequency estimates than
several others, but require manually-corrected formant data for
training. Here we describe a novel unsupervised training
method for corpus-based DNN formant parameter estimation
and tracking with accuracy similar to [1]. Frame-wise spectral
envelopes serve as the input. The output is estimates of the
frequencies and bandwidths plus amplitude adjustments for a
prespecified number of poles and zeros, hereafter referred to as
“formant parameters.” A custom loss measure based on the
difference between the input envelope and one generated from
the estimated formant parameters is calculated and back-
propagated through the network to establish the gradients with
respect to the formant parameters. The approach is similar to
that of autoencoders, in that the model is trained to reproduce
its input in order to discover latent features, in this case, the
formant parameters. Our results demonstrate that a reliable
formant tracker can be constructed for a speech corpus without
the need for hand-corrected training data.

Index Terms: speech analysis, formant estimation, formant
tracking, deep learning, acoustic models of speech

1. Introduction

Formant estimation is a crucial component in acoustic phonetic
studies of human speech, but rarely used in other areas of
speech science such as speech recognition or modern speech
synthesis systems. In large measure this may be due to the
difficulty of reliably estimating formant frequencies within a
single windowed frame of natural speech. Moreover, tracking
continuous trajectories of formants as they vary over time in
natural utterances is notably error-prone, typically requiring
manual review and correction when high accuracy is required.
There are, consequently, few large datasets of precisely tracked
formants (and those that exist typically include only the first 2-
4 formants). One such dataset is VIR-TIMIT [2], a 516-
utterance subset of TIMIT [3] whose first three formant
frequencies were first derived automatically and then hand-
corrected. Although other datasets exist, e.g. [4, 5], most are
smaller and contain only measurements of isolated words or
single vowels.

For these reasons, the development of automatic formant
measurement algorithms is still an ongoing topic of research [1,
6-12]. [13] compared the automatically estimated formant
tracks from three commonly used formant trackers [14-16]
against the hand-corrected VTR-TIMIT trajectories for F1 —F3,
and found they can be off by hundreds of Hertz on average if
default parameters are used. Parameter tuning is possible for
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many of these and other trackers, but speaker-specific tuning
may be impractical for large datasets.

Most formant tracking algorithms begin with independently
obtained formant frequency estimates for every analysis frame
within an utterance. The individual frame-by-frame estimates
are then collected into consistent formant trajectories over time
using techniques such as dynamic programming or statistical
clustering methods. Most work focuses on improving the
formant estimation step [7-9, 11], the trajectory formation step
[6, 17], or both [10, 18]. For example, the MSR algorithm of
[18] (used for the initial estimation of VTR-TIMIT) involves
iterative Kalman filtering of LPC cepstra. Likewise, the
“KARMA” algorithm [17] uses Kalman inference on
autoregressive moving average (ARMA) cepstral coefficients.
Recently [7, 9] compared several LPC-based algorithms and
demonstrated a new approach, called quasi-closed phase
forward-backward covariance-based (QCP-FBCOV) linear
prediction analysis, for which they showed lower error rates on
VTR-TIMIT and synthetic data.

More recently, Dissen et al. [1] approached the task using
supervised machine learning. They trained two neural network
models—one an LSTM-based RNN model they call
“DeepFormants” (henceforth called DF-RNN) and one a
combined RNN-CNN model (henceforth DF-RCNN)—on the
384-utterance training subset of VTR-TIMIT to predict the first
3 formant frequencies, and tested on the 192-utterance test
subset. The input features of DF-RNN were 350 cepstral
coefficients of various types, while those of DF-RCNN were
55*50 raw spectrograms. Their results showed lower error rates
on the VTR-TIMIT test set than other trackers [14, 17, 19], and
at least on par with MSR [18]. Likewise, [13] included DF-
RNN in their study, and found it generally performed better
than the three LPC-based automatic trackers [14-16]. However,
the models trained on VTR-TIMIT had higher error rates on
two other datasets [4, 5]. [1] present a domain adaptation
method that successfully reduces the error rates down to the
VTR-TIMIT level, but the adaptation method requires formant
measures from the new datasets. Hence, using their approach
on other datasets, either from scratch or via adaptation, requires
some amount of hand-labeled data.

In the following, we present a corpus-based method of
training a neural network to predict formant frequencies—as
well as bandwidths and amplitudes—that requires no prior
formant measurements as training data. Instead, spectral
envelope estimates for each analysis frame are fed to a network
that predicts vocal tract resonance features (pole and zero
parameters) as output. Since the correct output features are not
known in advance, the output feature predictions are used to
generate a new estimate of the input spectral envelope from
which a loss can be calculated for back propagation. This
approach is similar in concept to an autoencoder [20, 21],
except that in this case the “latent variables” are interpretable
as vocal tract resonance features, and the “decoder” is a pre-



determined algorithmic reconstruction of the spectral envelope
from the latent feature values. Without the need for prior
measurements, large training datasets can be used, and the
trained network can be used to generate formant trajectories on
unseen speech data. We demonstrate this method, which we call
FormantNet, on VTR-TIMIT, showing error rates on par with
[1] and lower than other published methods on this dataset.

2. Approach

The FormantNet approach owes much of its theoretical
motivation to early work on an analysis-by-synthesis approach
described in [22]. That work used an iterative Newton-Raphson
technique to solve simultaneous equations relating formant
frequencies and bandwidths to spectral shape by minimizing the
mean-squared error between a cepstral-smoothed input speech
spectrum and the spectrum predicted by the formant
parameters. For tractable computation on computers of that era,
only three formants were predicted, with fixed bandwidths, and
using 64-sample spectra in the range 0 — 5 kHz. Given advances
in computer technology and machine learning over the past 50
years, we can implement a related approach to identifying and
tracking formant parameters using deep learning.

As mentioned, although not an autoencoder, our approach
resembles autoencoding strategies in which a bottleneck layer
is used to force discovery of latent features that greatly reduce
the dimensionality of the input feature set. However, rather than
allow the network to discover the latent features, we constrain
the latent features to be interpreted as formant parameters via a
special loss function. The mapping from formant parameters to
spectral features used in our model, due to [23], is given in (1),
which describes the spectrum level 4 at frequency f for the
impulse response of a single formant with resonant frequency
F, bandwidth B, and amplitude weighting factor A.
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To create a comparison spectrum, (1) is evaluated for each
formant and for each f in the discrete frequency spectrum. In
the parallel formant model that we are using [24], the
amplitude-weighted contributions of individual linear formant
spectra are added to form the composite spectrum. When zeros
are also included in the model to be trained, the final spectrum
is the summed formant spectra divided by the summed zero
spectra. The loss function used in training our models is the
mean squared difference between this estimated spectrum and
the input spectrum (both converted to decibels).

One restriction of the approach we have used is that the
number of formants and zeros to be learned for an entire corpus
is fixed by the network design. This should be based on the
average number of resonances expected for the corpus
population in the input bandwidth. Our experiments found that
networks with six poles and one zero tend to converge best over
the speakers and sampling rate of VTR-TIMIT. With fewer
formants, the full spectrum was not adequately modeled; with
more, the network often tried to squeeze the extra formants
where they were unneeded, such as between F2 and F3.

3. Methods

We outline our methods and procedures here; upon publication,
full details and code will be made publicly available at
https://github.com/NemoursResearch/FormantNet.

3.1. Materials

We developed our models with the training portion of TIMIT.
Note that unlike [1], we used the entire TIMIT training set, not
just the 324 files of the VTR-TIMIT training set. In fact, we
made no use of the formant measurements of the VTR-TIMIT
corpus, except in evaluation. To test model convergence, we
selected 48 speakers (3 men and 3 women from each of the 8
dialect regions; 480 utterances total) to be used as validation
data; the remaining 4140 utterances were used for training.

3.2. Input features

The RMS amplitudes of the input waveforms were normalized
to an overall 68 dB for the utterance before feature extraction.
Then we used Iterative Adaptive Inverse Filtering (IAIF) [25]
to remove the estimated contribution of the source signal from
the speech signal. The remaining signal was then converted to
Hann-windowed frames of 32 msec in length every 5 msec. The
Discrete Fourier Transform was taken to convert the signals to
257-point spectra. From these we approximate spectral
envelopes by iteratively replacing narrow scale minima and
applying a 3-point smoothing function to the raw harmonic
spectra. This approach tends to trace a smooth curve over
harmonic peaks while also retaining spectral valleys possibly
associated with zeros. After a floor of 0.001 was added, the
linear envelopes were converted to the decibel scale. These
envelopes serve as both input and target for the model, except
that the input spectra are normalized by subtracting the mean
and dividing by standard deviation of the training set; the target
spectra used in computing the loss are not.

To give temporal context to the CNN models described
below, the input to the model at each time step consisted of a
window of 21 frames: the target frame whose formants are to
be estimated, as well as the 10 preceding and 10 following
frames (the initial or final frame was duplicated as needed to fill
out this structure). For the LSTM models, which model
temporal sequences directly, only the target frame was provided
per time step, but we also experimented with bidirectional
LSTM (BLSTM) models, to see if performances would
improve with access to following frames as well as preceding
ones. For both, the training sequence length was set to 64 time
steps.

3.3. DNN models

We experimented with several different model architectures,
including convolutional neural network (CNN) and recurrent
neural network (RNN) architectures. All models were
implemented in TensorFlow 2.3 [26].

The CNN models each had 3 convolutional layers of 16, 32,
and 64 units. Each convolutional layer was followed by a max-
pooling layer. Both convolutional and pooling layers were two-
dimensional, operating over both the time and frequency axes
of the input windows. The final pooling layer was followed by
two hidden dense layers of 1024 and 256 units, respectively,
followed finally by the output layer. The activation of all
intermediate layers was ReLU. The RNN models consisted of
either one or three LSTM layers of 512 units apiece, followed
immediately by the output layer. For BLSTMs, the outputs of
the forward and backward passes were concatenated before
being passed to the output layer.

The output layer of all models produced 3 values
(frequency, bandwidth, and amplitude) per pole and 2 values
(frequency and bandwidth) per zero (whose amplitude factors
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Figure 1: Spectrogram (0-4 KHz) of the utterance “The carpet cleaners shampooed our oriental rug.” Hand-corrected
formant tracks FI1-F3 in red; model-predicted tracks F1-F4 in blue.

are fixed at 1.0), for a total of 20 output values in our 6-pole, 1-
zero models. For all models, the output activation layer was
sigmoid, producing values between 0 and 1. The frequencies
were rescaled to values between 0 and 8000 Hz, the bandwidths
to 20-5020 Hz, and the amplitude adjustments to between -100
and +100 dB.

Models were trained using the Adam optimizer, with a
learning rate of 0.0001, and the loss function described in
Section 2. The batch size was 32. During training, models were
tested on the validation set after every epoch; training was
halted once the validation loss did not improve after 20 epochs,
or for a maximum of 200 epochs. The model iteration with the
lowest validation loss was used for evaluation.

3.4. Evaluation method

For evaluation, input spectra were calculated and normalized
per Section 3.2, and model output was rescaled as per Section
3.3. The formant outputs were sorted by mean frequency to
determine which represents F1, which F2, and so on, and 10
rounds of 3-point binomial smoothing were applied to reduce
frame-to-frame jitter in formant frequency values.

4. Results

Table 1 presents some of the models we constructed and
evaluated, as well as their performance on the test set of VTR-
TIMIT. The “Arch” column indicates the basic architecture of
the model; e.g., “CNN3” indicates a model with 3 convolutional
layers.

Our results indicated that despite their larger size and the
surrounding context frames provided as input, the CNN models
did not do as well as the LSTM models in our tests. A simple
one-layer LSTM was sufficient to produce lower error rates,
and in fact, adding two more layers did not improve

performance. Note also that the bidirectional LSTM model was
no better than the simple LSTM, indicating that the following
context was not necessary for formant tracking. Figure 1
illustrates the output of the LSTM1 model on a test VTR-
TIMIT utterance, alongside the hand-measured formants for
comparison.

Table 1: Model architectures, and their mean absolute
error on the VIR-TIMIT test set.

All segments Vowels
Arch. Al F1 F2 F3 |F1 F2 F3
CNN3 129 105 117 165 | 65 81 111
LSTM1 | 114 100 115 126 | 64 75 90
BLSTMI1 | 114 102 115 126 | 65 77 90
LSTM3 | 131 102 146 146 | 65 81 96
Below we focus on the LSTMI model, redubbed

FormantNet below, and compare its performance with that the
DeepFormants (DF) models of [1], as well as other results
published in the literature on the VTR-TIMIT database. Table
2 reproduces results published in Table VI of [1], showing mean
absolute error by formant and phonetic class. The two models
of [1] are presented, as well as the popular tool WaveSurfer
[19], and MSR [18], which was used for the initial frequency
estimations before hand-correction. (For space we omit Praat,
which had the highest error rates.) Note that FormantNet
produced lower error rates than the other three methods for F3
of both vowels and semivowels, as well as F2 of semivowels.
Some other F2 and F3 consonant measures (underlined) were
also lower than the two DF models, though not lower than the
MSR method.

Table 3 reproduces Table VII of [1], in which the DF
models are compared to previous published results for KARMA

Table 2: Mean absolute error over all speech in test set, divided by phonetic class.

WaveSurfer MSR DeepFormants DF-RCNN FormantNet
Class F1 F2 F3 | F1 F2 F3 | F1 F2 F3 | F1 F2 F3|F1 F2 F3
vowel 70 94 154 | 64 105 125| 54 81 112 53 72 108 | 64 75 90
semivowel | 89 126 222 | 83 122 154 | 67 114 168 | 68 111 160 | 79 93 124
nasal 96 229 239 | 67 120 112 | 66 175 151 | 69 191 158 | 98 213 143
fricative | 209 263 439 | 129 108 131 | 131 135 159 | 139 142 167 | 160 135 161
affricate | 292 407 390 | 141 129 149 | 164 162 189 | 174 173 195 | 186 186 186
stop 168 210 286 | 130 113 119 | 131 135 168 | 123 135 170 | 135 158 166




[17] in terms of root mean square error (RMSE); the RMSE for
LSTMI has been appended. FormantNet has a lower error for
F3, and is in the middle of the pack on F2 and overall, but shows
a somewhat higher error rate for F1.

Table 3: Root mean square error over all segments,
test set.

Method Al F1 F2 F3
KARMA 220 114 226 320
DF-RNN 163 118 169 204
DF-RCNN 173 127 180 213
FormantNet 173 143 177 195

[13] compared DF-RNN and three LPC-based trackers
(Praat [14], SNACK [15], and assp [16]). Using the default
parameters for each tracker, [13] measured RMSE for voiced
frames only, and split the results by gender, noting the default
parameters for each tracker tend to favor one gender. Since DF-
RNN was trained on the training set, it was only evaluated on
the test set, while the other methods were evaluated on the entire
VTR-TIMIT dataset. Their results are reproduced in Table 4,
along with comparable results for FormantNet, which has the
lowest error rate for almost all measures.

Table 4: Root mean square error over all segments,
split by gender, voiced frames only.

F1 F2 F3

Tracker f m f m f m
All utterances:

SNACK 126 100 291 227 313 375

ASSP 113 96 479 211 512 225

PRAAT 116 234 217 338 249 404
FormantNet 108 99 180 129 178 149
Test utterances:

DF-RNN 120 97 195 167 252 169
FormantNet 104 93 182 132 192 157

Finally, we compare our results with the quasi-closed phase
(QCP) LPC method of [9], who examined only vowels and
semivowels. Their formant detection rate (FDR) measure is
defined as the percentage of frames in which the difference
between estimated and reference formant frequencies is both
lower than a specified absolute value, and within a specified
percentage deviation from the reference value. Table 5
reproduces their results at three FDR thresholds, along with the
comparable values for FormantNet. We see that the FDRs for
FormantNet are better for F2 and F3 but a bit lower for F1.

Table 5: Formant detection rates (FDR) at different
thresholds, for vowels and semivowels in the test set.

Ratio F1 F2 F3
FDR within 20% and 200 Hz dev
QCP-FBCOV 849 850 839
FormantNet 79.6 937 904
FDR within 25% and 250 Hz dev
QCP-FBCOV 904 90.5 89.1
FormantNet 859 96.5 93.8
FDR within 30% and 300 Hz dev
QCP-FBCOV 934 939 092.1
FormantNet 90.1 97.9 955

5. Discussion and Conclusions

In summary, we found that our unsupervised FormantNet
model produced error rates on VTR-TIMIT similar to those of
[1], and generally better than other methods. The model did
particularly well with F3, but often had somewhat higher error
rates than other methods on F1. This may be because there is
still interference from FO; the IAIF method may not be
sufficiently separating the source signal from the vocal tract
signal. In the future, we plan to explore other methods of
disentangling the source and vocal tract signals. We also found
that a model with just one LSTM layer outperformed larger
(B)LSTM and CNN models. It may be that a larger model needs
more data to produce better results; on the other hand, perhaps
the problem is not that difficult and thus cannot benefit much
from a larger model.

The acoustic model of speech described here (Eqn. 1) is
most appropriate for voiced speech, particularly vowels and
other sonorants, and Tables 2 and 5 show that our model was
most competitive with vowels and semivowels. On consonants,
FormantNet’s performance was comparable to the DF models,
but both the DF models and ours had higher error rates than
MSR. We point out that the MSR method was the one used as
the starting point for the hand-corrected measurements, and so
it is to be expected that there may be a bias in the dataset toward
the MSR measures. Similarly, the DF methods were also trained
on the same measurements, whereas FormantNet was trained
completely independently of those measurements. Moreover,
the contrast in results between Tables 2 and 4 suggests that DF-
RNN’s lower error rates on consonants are based largely if not
entirely on voiceless frames.

In general, there are advantages and disadvantages to the
available methods. Unlike the deep-learning methods of [1] and
this paper, existing LPC-based techniques require no training
data and are domain-independent, but generally have higher
error rates, and may be difficult to tune, particularly on multi-
speaker data or real-world data with variable audio quality.
Between the deep-learning methods, it is not surprising that
DNN models trained on hand-labeled data would perform better
than those that are not, and models trained on hand-labeled data
can be trained on a much smaller amount (only 324 utterances
for [1], versus 4620 for FormantNet). Yet hand-labeled data is
scarce, and unsupervised methods allow all available data to be
used for training, labeled or not. The DF models require
adaptation to new corpora; likewise, our models trained on
other corpora fare less well on the VTR-TIMIT dataset than
when trained on TIMIT data. But again, it may be more feasible
to train a new model with our method, without the need for
labeled data. Thus, the FormantNet method may be most
appropriate for large multi-speaker corpora, for which no hand-
labeled data exists and for which speaker-specific tuning of
automatic trackers may be infeasible.

Note also that the FormantNet method produces not only
frequency estimates of the lower formants, but also bandwidth
and amplitude correction estimates, as well as estimates of the
higher poles and zeros, all together comprising a model of the
entire vocal-tract signal within the input frequency range, which
has potential applications in speech synthesis, speaker
identification, and the analysis of disordered speech.
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