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Selectivity between an Alder-Ene Reaction and a [2+2] 

Cycloaddition in the Intramolecular Reactions of Allene-Tethered 

Arynes  

 Anh Le† and Daesung Lee†* 

Substituent-dependent reactivity and selectivity in the 

intramolecular reactions of arynes tethered with an allene is 

described. With a 1,3-disubstituted allene moiety, an Alder-

ene reaction of an allenic C–H bond is preferred over a [2 + 2] 

cycloaddition, whereas a [2+2] cycloaddition of the terminal 

p-bond of the allene is preferred with a 1,1-disubstituted 

allene. With a 1,1,3-trisubstituted allene-tethered aryne, an 

Alder-ene reaction with an allylic C–H bond is preferred over 

a [2 + 2] cycloaddition. 

 

A wide variety of electron-deficient p-systems have been employed 

as an ene-acceptor either in thermal or Lewis acid-catalyzed 

conditions.1 Due to the electrophilic nature of benzyne species,2 

they can behave as an efficient ene-acceptor3 to react with ene-

donors containing p-systems such as alkynes, alkenes, and allenes 

(Scheme 1). In 2006, Cheng reported intermolecular Alder-ene 

reactions between benzyne and terminal and internal alkynes (Eq 

1),4 and the corresponding reaction with alkenes was also reported 

by Yin in 2013 (Eq 2),5 which was further extended to alkenes 

containing a polar functional group6 by employing arynes generated 

from tetraynes via hexadehydro Diels-Alder reaction.7 Recently, Lee 

and coworkers also explored the Alder ene reaction between 

benzyne and silylallenes (Eq 3).8  

 In 2011, Lautens and coworkers reported intramolecular Alder-

ene reactions of arynes generated via a strong based-mediated 

elimination with aryl bromides.9 Recently, Hoye10 and Lee11 

reported the intramolecular Alder-ene reactions of arynes 

generated from tri- and tetraynes under thermal conditions. At this 

juncture, we want to further explore the scope and selectivity of 

the intramolecular Alder-ene reactions by accommodating an allene 

as the ene-donor (Eq 4).12 The main concern in this intramolecular 

reaction would be the Alder-ene selectivity between the allylic and 

allenic C–H bonds, which is expected to mainly depend on the 

substituent pattern of the allene moiety. In this communication, we 

describe the reactivity and selectivity trend of intramolecular Alder-

ene reactions that also compete with [2+2] cycloaddition of the 

terminal p-system of the allene.13  

 

Scheme 1. Alder-ene reactions of arynes 

 First, we examined the Alder-ene reaction by using 

symmetrical tetraynes 1a–1c (Scheme 2). The reaction of tetrayne 

1a that contains a three-atom tether with a gem-dimethylated 

allene14 moiety (toluene, 90 °C, 8 h) afforded 7-membered ring 

Alder-ene product 2a in 73% yield. On the other hand, tetrayne 1b 

containing a four-atom tether with a tetrasubstituted allene moiety 

did not provide either Type-I or Type-II ene reaction product, 

instead decomposition of 1b was observed. Under the identical 

conditions, however, substrate 1c containing a terminal allene 

moiety afforded only the [2 + 2] cycloadduct engaging the terminal 

p-bond of the allene15 to generate 2c in 58% yield, and Alder-ene 

product was not observed. 
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Scheme 2. Reactions of symmetrical tetraynes tethered with 

an allene moiety. 

 On the basis of the drastic change of the reaction modes 

depending on the substituent pattern in allenes, we further 

explored the general trend of the reactivity of unsymmetrical 

tetraynes 3a–3h that contain structurally different allene moieties 

(Table 1). As expected, tetrayne 3a bearing a three-atom tether 

with a gem-dimethyl allene moiety exclusively formed 7-membered 

Alder-ene product 4a in 63% yield (entry 1). In stark contrast, 

tetrayne 3b containing a 1,3-disubtituted allene16 moiety results in 

decomposition of the starting material and neither Alder-ene 

product 4b nor 4b′ of the allenic or allylic C–H bond was observed 

(entry 2). Substrate 3c containing a 1,1-disubstituted terminal 

allene also decomposed without providing either Type-I or Type-II 

ene product 4c or 4c′ (entry 3). Surprisingly, however, substrates 3d 

and 3d′ containing a 1,3-disubtituted allene with an extra 

methylene exclusively engaged in the Alder-ene reaction with an 

allenic C–H bond8 to afford 4d and 4d′ in 64 and 60% yield, 

respectively (entries 4 and 5), and the Type-1 ene product of the 

corresponding allylic C–H bond was not observed. The reaction of 

the mono-substituted allene in 3e induced the Type-I ene reaction 

of an allenic C–H bond to provide a terminal alkyne-containing 

product 4e in 55% yield (entry 6). Substrate 3f containing a 1,1-

disubstituted terminal allene, which is identical with 3e but 

containing a triethylsilyl group at the internal position of the allene 

Table 1. Reactions of ynamide-tethered tetraynes tethered 

to different allene moieties  

  
aIsolated Yield. bDecomposition of starting material. 
cDecomposition of starting material in toluene at 55 °C with 5 mol% 

of AgSbF6.  
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afford [2 + 2] cycloadduct 4f in 62% yield and no Alder-ene product 

was observed (entry 7). Both substrates 3g and 3h containing a 

1,1,3- or 1,3,3-trisubstituted allene17 moiety, respectively, afforded 

the corresponding Type-I Alder-ene products 4g and 4h in 34 and 

58% yield, respectively (entries 4 and 5).  

 These examples suggest that the preference for the formation 

of different modes of Alder-ene or [2 + 2] cycloaddition depends 

subtly on the substituents on the allene moiety and the length of 

the tether between the allene and the aryne. In general, Alder-ene 

reaction of an allylic C–H bond is most favorable with trisubstituted 

allenes (entries 1, 8 and 9) whereas that of an allenic C–H bond 

becomes more favorable with monosubstituted and 1,3-

disubstitued allenes (entries 4–6). Alternatively, 1,1-disubstituted 

terminal allene induces [2 + 2] cycloaddition over an Alder-ene 

reaction (entry 7).           

 Next, we explored the reactivity of arynes generated from 

triynes 5a–5f containing different allene moieties (Table 2). The 

reaction of triynes 5a and 5b bearing a gem-dimethyl-containing 

trisubstituted allene or a 1,3-disubstituted allene moiety led to only 

decomposition without generating the expected 7-membered ring 

Type-I Alder-ene product 6a and 6b (entries 1 and 2). On the other 

hand, triynes 5c with a longer tether bearing a 1,3-disubstituted 

allene moiety provided Type-I ene product 6c in 72% yield, where 

only an allenic C–H bond participated in the reaction (entry 3). As 

expected, substrate 5d bearing a gem-dimethyl-containing 

trisubstituted allene provided an 8-membered ring Type-I Alder-ene 

product 6d in 50% yield (entry 4). It is quite surprising to find that 

5e containing a 1,1-disubstituted terminal allene moiety did not 

participate in the expected [2+2] cycloaddition between the allene 

and aryne, instead the toluene moiety of NTs group participated in 

a Diels-Alder reaction to generate benzobarrelene18 6e, where the 

allene moiety remains intact (entry 5). The preference of a Diels-

Alder reaction is further demonstrated with triyne 5f devoid of the 

allene moiety, which provided benzobarrelene 6f in 58% yield 

(entry 6). Despite the identical allene moieties in tetraynes 3f and 

triynes 5e, their reaction outcomes are quite different, which 

strongly suggests that the reactivity of the putative aryne 

intermediates are intricately affected by multiple factors including 

the substituents on the aryne core moiety. In comparison, a gem-

dimethyl allene-containing propiolated triynes 5g exclusively 

provided Alder-ene reaction product 6g in marginal yields (entry 7). 

The formation of product 6g suggests that the hexadehydro Diels-

Alder reaction of 5g require higher activation barrier than the Alder-

ene reaction between the alkyne moiety and the tethered allene 

segment.  It was assumed that the low yield from this reaction is 

the consequence of the instability of the propiolate ester 

functionality at the elevated temperature. Indeed, when 1,3-diynyl 

propargyl alcohol 5h was subjected to the identical conditions, the 

corresponding Alder-ene product 6h was obtained in 62% yield 

(entry 8).  

 Having recognized the significant impact of the structure of the 

tether, alkynes and allene moiety, we employed various substrates 

that contain a 1,3-diyne (7a–7f) and monoynes (7ga–7gd) tethered 

with differently substituted allene moieties to further explore the 

selectivity between the Alder-ene and a [2+2] cycloaddition (Table 

3).  Upon heating (150 °C, toluene, 12 h), all 1,3-diyne-tethered 

allenes 7a–7f provided [2 + 2] cycloadducts 8a–8f in good yields 

(entries 1–6), whereas monoynes 7ga–7gd only led to 

decomposition under the identical conditions (entries 7–10) and 

none of the expected [2 + 2] cycloadducts 8ga–8gd were observed. 

Table 2. Reactivity of benzene-tethered triynes containing different 

allene moieties  

  

aIsolated yield. bDecomposition of starting material. cDecomposition 

of starting material in toluene at 55 °C with 5 mol% of AgSbF6. 
dReaction at 150 °C for 12 h. 
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Deleted: presence of 

Deleted:  as catalyst



Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 4  

Please do not adjust margins 

Please do not adjust margins 

Table 3. Reactivity of sulfoamide-tethered alkyne containing 

different allene moieties 

 

aIsolated yield. bDecomposition of starting material 

 

 It is worthy to note the activating role of the extra alkynyl 

substituent at the terminal position of the alkyne in these [2 + 2] 

cycloadditions.19 
 

 In summary, we have systematically investigated the 

intramolecular reaction between allenes and arynes by employing 

allene-tethered tetraynes and triynes as the aryne precursors. From 

the data accumulated in Scheme 2 and Tables 1–3, a general 

reactivity and selectivity trend has emerged (Scheme 3). Allenes 

containing gem-dimethyl group at the distal carbon exclusively 

participate in the Type-I ene reaction regardless of the substituent 

at the proximal carbon (Eq 5). 1,3-Disubstituted allene favorably 

participate in the Alder-ene reaction with an allenic C–H bond (Eq 

6), whereas 1,1,3-trisubstituted allene prefers to generate the 

Alder-ene with an allylic–H bond (Eq 7). The reaction between a 1,1-

disubstituted terminal allene and an aryne favor for a [2+2] 

cycloaddition (Eq 8). On the other hand, the reaction between 1,3-

diyne and an allene moiety provide [2+2] cycloaddition product 

irrespective of the substituent pattern of the allene (Eq 9). This 

general reactivity trend would be a useful guide for further 

investigation of aryne chemistry involving allene counterparts. 

 

 

Scheme 3. A general trend of selectivity in the intramolecular reac-

tion of allenes with an aryne 
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