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Substituent-dependent reactivity and selectivity in the
intramolecular reactions of arynes tethered with an allene is
described. With a 1,3-disubstituted allene moiety, an Alder-
ene reaction of an allenic C-H bond is preferred over a [2 + 2]
cycloaddition, whereas a [2+2] cycloaddition of the terminal
7w-bond of the allene is preferred with a 1,1-disubstituted
allene. With a 1,1,3-trisubstituted allene-tethered aryne, an
Alder-ene reaction with an allylic C-H bond is preferred over
a [2 + 2] cycloaddition.

A wide variety of electron-deficient m-systems have been employed
as an ene-acceptor either in thermal or Lewis acid-catalyzed
conditions.! Due to the electrophilic nature of benzyne species,?
they can behave as an efficient ene-acceptor? to react with ene-
donors containing nt-systems such as alkynes, alkenes, and allenes
(Scheme 1). In 2006, Cheng reported intermolecular Alder-ene
reactions between benzyne and terminal and internal alkynes (Eq
1),% and the corresponding reaction with alkenes was also reported
by Yin in 2013 (Eq 2),° which was further extended to alkenes
containing a polar functional group® by employing arynes generated
from tetraynes via hexadehydro Diels-Alder reaction.” Recently, Lee
and coworkers also explored the Alder ene reaction between
benzyne and silylallenes (Eq 3).8

In 2011, Lautens and coworkers reported intramolecular Alder-
ene reactions of arynes generated via a strong based-mediated
elimination with aryl bromides.® Recently, Hoyel® and Leel!
reported the intramolecular Alder-ene reactions of arynes
generated from tri- and tetraynes under thermal conditions. At this
juncture, we want to further explore the scope and selectivity of
the intramolecular Alder-ene reactions by accommodating an allene
as the ene-donor (Eq 4).12 The main concern in this intramolecular
reaction would be the Alder-ene selectivity between the allylic and
allenic C-H bonds, which is expected to mainly depend on the
substituent pattern of the allene moiety. In this communication, we
describe the reactivity and selectivity trend of intramolecular Alder-
ene reactions that also compete with [2+2] cycloaddition of the
terminal nt-system of the allene.13
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Scheme 1. Alder-ene reactions of arynes

First, we examined the Alder-ene reaction by using
symmetrical tetraynes 1a-1c (Scheme 2). The reaction of tetrayne
1a that contains a three-atom tether with a gem-dimethylated
allene!* moiety (toluene, 90 °C, 8 h) afforded 7-membered ring
Alder-ene product 2a in 73% yield. On the other hand, tetrayne 1b
containing a four-atom tether with a tetrasubstituted allene moiety
did not provide either Type-l or Type-ll ene reaction product,
instead decomposition of 1b was observed. Under the identical
conditions, however, substrate 1c containing a terminal allene
moiety afforded only the [2 + 2] cycloadduct engaging the terminal
7-bond of the allene?® to generate 2c in 58% vyield, and Alder-ene
product was not observed.
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Scheme 2. Reactions of symmetrical tetraynes tethered with
an allene moiety.

On the basis of the drastic change of the reaction modes
depending on the substituent pattern in allenes, we further
explored the general trend of the reactivity of unsymmetrical
tetraynes 3a—3h that contain structurally different allene moieties
(Table 1). As expected, tetrayne 3a bearing a three-atom tether
with a gem-dimethyl allene moiety exclusively formed 7-membered
Alder-ene product 4a in 63% yield (entry 1). In stark contrast,
tetrayne 3b containing a 1,3-disubtituted allene!¢ moiety results in
decomposition of the starting material and neither Alder-ene
product 4b nor 4b’ of the allenic or allylic C-H bond was observed
(entry 2). Substrate 3c containing a 1,1-disubstituted terminal
allene also decomposed without providing either Type-I or Type-Il
ene product 4c or 4c’ (entry 3). Surprisingly, however, substrates 3d
and 3d’ containing a 1,3-disubtituted allene with an extra
methylene exclusively engaged in the Alder-ene reaction with an
allenic C-H bond® to afford 4d and 4d’ in 64 and 60% vyield,
respectively (entries 4 and 5), and the Type-1 ene product of the
corresponding allylic C-H bond was not observed. The reaction of
the mono-substituted allene in 3e induced the Type-I ene reaction
of an allenic C-H bond to provide a terminal alkyne-containing
product 4e in 55% vyield (entry 6). Substrate 3f containing a 1,1-
disubstituted terminal allene, which is identical with 3e but
containing a triethylsilyl group at the internal position of the allene
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Table 1. Reactions of ynamide-tethered tetraynes tethered
to different allene moieties
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afford [2 + 2] cycloadduct 4f in 62% yield and no Alder-ene product
was observed (entry 7). Both substrates 3g and 3h containing a
1,1,3- or 1,3,3-trisubstituted allene!” moiety, respectively, afforded
the corresponding Type-I Alder-ene products 4g and 4h in 34 and
58% yield, respectively (entries 4 and 5).

These examples suggest that the preference for the formation
of different modes of Alder-ene or [2 + 2] cycloaddition depends
subtly on the substituents on the allene moiety and the length of
the tether between the allene and the aryne. In general, Alder-ene
reaction of an allylic C—H bond is most favorable with trisubstituted
allenes (entries 1, 8 and 9) whereas that of an allenic C—-H bond
becomes more favorable with monosubstituted and 1,3-
disubstitued allenes (entries 4-6). Alternatively, 1,1-disubstituted
terminal allene induces [2 + 2] cycloaddition over an Alder-ene
reaction (entry 7).

Next, we explored the reactivity of arynes generated from
triynes 5a—5f containing different allene moieties (Table 2). The
reaction of triynes 5a and 5b bearing a gem-dimethyl-containing
trisubstituted allene or a 1,3-disubstituted allene moiety led to only
decomposition without generating the expected 7-membered ring
Type-I Alder-ene product 6a and 6b (entries 1 and 2). On the other
hand, triynes 5c with a longer tether bearing a 1,3-disubstituted
allene moiety provided Type-l ene product 6¢ in 72% yield, where
only an allenic C—H bond participated in the reaction (entry 3). As
expected, substrate 5d bearing a gem-dimethyl-containing
trisubstituted allene provided an 8-membered ring Type-I Alder-ene
product 6d in 50% yield (entry 4). It is quite surprising to find that
5e containing a 1,1-disubstituted terminal allene moiety did not
participate in the expected [2+2] cycloaddition between the allene
and aryne, instead the toluene moiety of NTs group participated in
a Diels-Alder reaction to generate benzobarrelene!® 6e, where the
allene moiety remains intact (entry 5). The preference of a Diels-
Alder reaction is further demonstrated with triyne 5f devoid of the
allene moiety, which provided benzobarrelene 6f in 58% vyield
(entry 6). Despite the identical allene moieties in tetraynes 3f and
triynes 5e, their reaction outcomes are quite different, which
strongly suggests that the reactivity of the putative aryne
intermediates are intricately affected by multiple factors including
the substituents on the aryne core moiety. In comparison, a gem-
dimethyl allene-containing propiolated triynes 5g exclusively
provided Alder-ene reaction product 6g in marginal yields (entry 7).
The formation of product 6g suggests that the hexadehydro Diels-
Alder reaction of 5g require higher activation barrier than the Alder-
ene reaction between the alkyne moiety and the tethered allene
segment. It was assumed that the low yield from this reaction is
the consequence of the instability of the propiolate ester
functionality at the elevated temperature. Indeed, when 1,3-diynyl
propargyl alcohol 5h was subjected to the identical conditions, the
corresponding Alder-ene product 6h was obtained in 62% yield
(entry 8).

Having recognized the significant impact of the structure of the
tether, alkynes and allene moiety, we employed various substrates
that contain a 1,3-diyne (7a=7f) and monoynes (7ga-7gd) tethered
with differently substituted allene moieties to further explore the
selectivity between the Alder-ene and a [2+2] cycloaddition (Table
3). Upon heating (150 °C, toluene, 12 h), all 1,3-diyne-tethered
allenes 7a-7f provided [2 + 2] cycloadducts 8a—8f in good yields
(entries 1-6), whereas monoynes 7ga-7gd only led to
decomposition under the identical conditions (entries 7-10) and
none of the expected [2 + 2] cycloadducts 8ga—8gd were observed.
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Table 2. Reactivity of benzene-tethered triynes containing different
allene moieties

[0}
toluene  Alder-ene product or

90 °C [2 + 2] cycloadduct

6-7h
Entries R Product Yield (%)?
SiMe;
N NTs
1 5a - __ 6a obe
SiMes
N NTs
2 5b - _/ &b 0be
—
SiMe;
AN NTs
3 5¢ - 6c 72
N
SiMe; Ts
- N
4 5d - —" &d 50
SiMe; SiEty

6 5f 58
,,,,,,,,, .
7 5g,R = o
I /T |
f
Il
N 5h,R=H
Ts

9lsolated yield. "Decomposition of starting material. ‘Decomposition
of starting material in toluene_at, 55 °C with 5 mol% of AgSbFe,

dReaction at 150 °C for 12 h.

J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

’ (Deleted: presence of

NI AN AN

: ’CDeIeted: as catalyst




Please do not adjust margins

Journal Name

Table 3. Reactivity of sulfoamide-tethered alkyne containing
different allene moieties
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It is worthy to note the activating role of the extra alkynyl
substituent at the terminal position of the alkyne in these [2 + 2]
cycloadditions.19

In summary, we have systematically investigated the
intramolecular reaction between allenes and arynes by employing
allene-tethered tetraynes and triynes as the aryne precursors. From
the data accumulated in Scheme 2 and Tables 1-3, a general
reactivity and selectivity trend has emerged (Scheme 3). Allenes
containing gem-dimethyl group at the distal carbon exclusively
participate in the Type-l ene reaction regardless of the substituent
at the proximal carbon (Eq 5). 1,3-Disubstituted allene favorably
participate in the Alder-ene reaction with an allenic C-H bond (Eq
6), whereas 1,1,3-trisubstituted allene prefers to generate the
Alder-ene with an allylic—H bond (Eq 7). The reaction between a 1,1-
disubstituted terminal allene and an aryne favor for a [2+2]
cycloaddition (Eq 8). On the other hand, the reaction between 1,3-
diyne and an allene moiety provide [2+2] cycloaddition product
irrespective of the substituent pattern of the allene (Eq 9). This
general reactivity trend would be a useful guide for further
investigation of aryne chemistry involving allene counterparts.

~ @ Type-l Alder-ene
LN (R=H or RH)
R
Type-l Alder-ene
R=H
! (Allenic C-H)
jog
R
(Allylic C-H)
R#H
Type-l Alder-ene
@ ez
N cycloaddltlon
(distal n-bond)
R————
NTs [2 +2]
Ry cycloaddmon Ry
&, Rs (distal w-bond)

Scheme 3. A general trend of selectivity in the intramolecular reac-
tion of allenes with an aryne
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