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Abstract

We present a multi-fidelity black-box optimization approach for integrated design
and control (IDC) of constrained nonlinear systems in the presence of uncertainty.
The IDC framework is becoming increasingly important for the systematic design
of next-generation (flexible) manufacturing and energy systems. However, identify-
ing optimal solutions to realistic IDC problems is intractable when (i) the dynamics
occur on much shorter timescales than the system lifetime, (ii) the uncertainties are
described by continuous random variables with high variance, and (iii) operational
decisions involve a mixture of discrete and continuous variables. Instead of aggres-
sively simplifying the problem to improve tractability, we develop a simulation-based
optimization procedure using high-quality decision rules that map information that
can be measured online to optimal control actions. In particular, we rely on the
Bayesian optimization (BO) framework that has been shown to perform very well on
noisy and expensive-to-evaluate objective functions. We also discuss how BO can be
extended to take advantage of computationally cheaper low-fidelity approximations
to the high-fidelity IDC cost function. Three major low-fidelity approximation strate-
gies are described in this work, which are related to the simplification of the system
simulator, decision rule solution method, and time grid. Lastly, we demonstrate the
advantages of multi-fidelity BO on the design of a solar-powered building heating/-
cooling system (with battery and grid support) under uncertain weather and demand
conditions with hourly variation over a year-long planning horizon.
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1 INTRODUCTION

With the significant increase in global energy demand and the advent of next-generation manufacturing and energy systems,

such as combined heat and power (CHP) plants1, smart grids2, and multi-product chemical plants3, the necessity for a paradigm

shift in energy production and operations is paramount. This challenge is intensified by environmental concerns resulting from

the commonplace use of traditional energy sources, like fossil fuels and its derivatives, which are large contributors to climate

change4. To enable this shift into the next-generation, we need to able to design flexible energy production and manufacturing

processes that are to respond/adapt to highly dynamic and uncertain conditions in an optimalmanner. An effective design strategy

must be able to accommodate the following features that are known to complicate optimal design in the presence of realistic

models of flexible energy and manufacturing systems:

1. Relevant nonlinear dynamics and uncertainties can occur on much shorter timescales than the lifetime of the system. For

example, solar and wind energy profiles, electricity prices, and load demand are unpredictable quantities that can substantially

vary on the minute to hour timescale, whereas design decisions last for years or even decades.

2. Certain uncertainties are best described by continuous random variables with large variance including product demand,

processing times, and market prices. Considering only a few discrete scenarios may lead to overly optimistic predictions of

the performance (depending on how recourse decisions are represented).

3. Many key operational decisions are discrete including adaptive scheduling, unit commitment, and product selection. Since

these control actions can impact many variables, especially as processes become more integrated, this implies we need to rely

on advanced optimization-based control strategies to derive reasonably accurate predictions of overall system performance.

Systematically accounting for these features requires an integrated design and control (IDC) approach. In current practice, design

is typically tackled first, which has been known to produce heavily constrained processes with few degrees of freedom left

for control purposes5. Although it has been established that optimal IDC problems can be generally formulated as multistage

stochastic programs (MSPs)6, the MSP will be intractable whenever the features presented above are present in the formulation.

This is due to the fact that features 1 and 2 imply that a large number of operational periods and uncertainty scenarios need to be

considered in the MSP, which are known to suffer from the curse-of-dimensionality7. Feature 3, on the other hand, implies that

the system model is nonlinear and non-smooth, which generally results in a mixed-integer nonlinear programming (MINLP).

Putting these features together, we can deduce that scenario-based approximations to the MSP result in extremely large-scale

MINLPs (that co-optimize the design and control decisions for every time stage under every uncertainty scenario) that are far

beyond the capabilities of existing solvers (and even specialized solution methods).
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There is a large body of literature on different ways of addressing the IDC problem; a detailed summary of a variety of different

contributions is presented in Appendix A. These methods have certain shortcomings which prevent them from considering long

operational periods ormultiple uncertainty scenarios and allow only linear or steady-statemodels to approximate control metrics.

To overcome the limitations of previous methods, recent work has proposed the use of derivative-free simulation optimization

(SO) methods to tackle IDC formulations that consider all three features discussed above. The SO paradigm relies on an outer

optimization of the relevant design variables and an inner stochastic dynamic simulation that is used to evaluate the expected

long-term operating costs appearing in the outer problem. To ensure a well-defined inner simulation, we must specify a so-called

decision rule (DR), which can be loosely interpreted as a function that maps the measured data to the control inputs in every

operational period. In light of feature 3, it is critical to rely on high-quality DR that can flexibly handle scheduling and control

decisions.Model predictive control (MPC)8 is an optimization-based control strategy that is widely used for controlling complex,

large-scale systems that have significant multivariable interactions and safety-critical and/or quality constraints. There has been a

significant amount of work on the development of specialized MPC methods in the context of energy systems9,10,11,12, including

recent contributions that directly incorporate nonlinear effects13,14 and online adaptation of the internal model15. In our previous

work16, we showed how a mixed-integer extension of MPC could be used as a much higher-quality DR than simplified PID or

linear MPC structures. Regardless of the specific controller structure that is selected, there remain some “tuning parameters”

that can have a strong influence on performance and must be adequately chosen to ensure good closed-loop performance. We

have demonstrated that the Bayesian optimization (BO) methodology is able to effectively co-optimize the design and controller

tuning variables using significantly fewer closed-loop simulations than alternative SO methods, even when we can only obtain

noisy observations of the cost function. The key advantage of this proposed BO framework is that it can be generally applied

to any system model (including computationally expensive models defined over multiple space/time scales) and any controller

structure (including any of the advanced forms of MPC mentioned above or innovations developed in the future).

Although we obtained good results with the standard BO approach on problems with a reasonable number of time steps, it still

required on the order of 30 high-fidelity evaluations on an IDC problem with a 4-dimensional design space. When only a limited

computational budget is available, the maximum number of evaluations may be as few as 5-10, especially as the planning horizon

increases to the yearly scale. As discussed in Appendix A, we can develop a wide-variety of approximations to this high-fidelity

simulator that can be evaluated in significantly less time. Thus, our main motivation in this work is the following question:

Can we use these computationally cheaper approximations to more effectively guide the BO search process? It turns out the

answer to this question is yes, as we demonstrate in this paper using recent developments in multi-fidelity BO. In particular, we

study the multi-fidelity Gaussian process upper confidence bound (MF-GP-UCB) algorithm recently proposed by Kandasamy

et al.17. To apply MF-GP-UCB, we need to develop a sequence of lower-fidelity approximations to our high-fidelity MPC-based

IDC problem. We propose three novel strategies for deriving such approximations that can be categorized based on how they
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reduce computational cost. The first approach involves building a surrogate model for the system dynamics, which is valuable

whenever the process simulator is itself expensive. The second approach is related to simplification of the MPC-based DR that

can be quite expensive depending on the complexity of the underlying optimization problem. The third and final approach is

based on coarsening the time grid, so that the simulation can be completed in fewer time steps. To demonstrate the advantages

of MF-GP-UCB over single-fidelity BO, we apply these methods to the design of a solar-powered building heating and cooling

system, with grid and battery support, under uncertainty weather and demand conditions. To ensure the system is realistically

modeled, we consider disturbance profiles for Columbus, Ohio that vary on the hour scale over a year-long horizon.

The rest of the paper is organized as follows. In Section 2, we introduce our proposed formulation of the IDC problem

that is based on a high-quality estimate of the operating cost found by running detailed closed-loop simulations with control

decisions made by an advanced MPC controller. In Section 3, we summarize our previous work on efficiently tackling this

challenging problem using BO. Section 4 provides an overview of the MF-GP-UCB algorithm, while Section 5 presents the

three different proposed approximation strategies for MPC-based IDC. The proposed algorithm is applied to the solar-powered

building heating/cooling system case study in Section 6 and we conclude the article in Section 7.

2 PROBLEM FORMULATION: INTEGRATED DESIGN AND PREDICTIVE CONTROL

In this work, we are interested in integrated design and control (IDC) problems that can be generally stated in terms of the

following stochastic optimization problem

min
(d,z)∈×

C(d) + E!{O(d, z,!)}, (1)

where d ∈ ℝnd are the design variables that are restricted to the known compact set  ⊂ ℝnd ; z ∈ ℝnz are parameters related

to the control decisions that are restricted to the known compact set  ⊂ ℝnz ; ! ∈ ℝn! is the set of uncertain variables that

are modeled as a random vector with known probability density function p! ∶ Ω → ℝ+ and finite support Ω; C ∶  → ℝ is

the capital cost function that depends only on the design variables; O ∶  ×  × Ω → ℝ is the operating cost function that

can generally depend on the realization of the design variables, control parameters, and uncertainties; and E!{⋅} denotes the

expected value with respect to !. The high-level representation (1) can represent a large class of IDC problems through the

proper specification of the variables {d, z,!} and functions {C(⋅), O(⋅), p!(⋅)}. Furthermore, the best choice of algorithm will

heavily depend on the properties of these variables and functions. Two of the most aggressive simplifications would involve

assuming the uncertain variables are deterministic with known values, i.e., p!(!) = �(!− !̂) and assuming the system remains

at a fixed steady state so that the operating cost could easily be computed by multiplying the steady-state cost times the number

of time stages. Although this would greatly simplify the problem and allow us to use efficient solvers, it clearly would miss the
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key aspects discussed in the introduction. In particular, our model would completely miss out on the adaptation that is inherent

to any flexible system due to unexpected changes in the market, environment, and equipment. In other words, the estimated

operating cost under these approximations is likely to be highly unrealistic, which leads to potentially poor design choices, even

when a global solution to the problem can be found.

Instead of pursuing other more detailed approximations, we would like to develop an optimization algorithm that can account

for as accurate evaluations of the operating cost E!{O(d, z,!)} as possible – at least as accurate as we can expect given our

most detailed model of the system dynamics. We assume the system dynamics can be represented by the following general

time-varying nonlinear system under uncertainty

xt+1(d, z,!) = ℎt(xt(d, z,!), ut(d, z,!), wt, d), x0(d, z,!) = b0(d), (2)

where t ∈  ∶= {0,… , T −1} is the discrete time index that ranges over a finite number of T time stages; ! = {w0,… , wT−1}

is the sequence of random disturbanceswt ∈ ⊂ ℝnw that are assumed to be measurable at each t ∈  ; ut(d, z,!) ∈  ⊂ ℝnu

are the control inputs that are assumed to be parametrized by z; and xt(d, z,!) ∈  ⊂ ℝnx are the system state variables with

initial condition b0(d) that can depend on the design variables. It is important to note we do not make any assumptions about the

function ℎt ∶  × × × →  . Our main assumption is that we are able to simulate the system for any particular {d, z,!}

to compute the future state sequence {x0(d, z,!),… , xT (d, z,!)}. This implies that (2) can be any black-box simulator derived

from, e.g., open-source or proprietary computer codes that are being increasingly used to reduce model development time and

to account for multi-scale phenomena. To achieve the goal of an accurate representation of the operating cost, we clearly need

to incorporate a realistic control policy into our system model that is able to make “optimal” decisions at any given time given

the most recently available data. In this work, we represent the control policy as follows

ut(d, z,!) = �t(xt(d, z,!), wt, z), (3)

where �t ∶ ×× →  has a fixed structure (with tuning parameters z) for all t ∈  . We can interpret (3) as a parametrized

decision rule (DR) that directly enforces causality (i.e., cannot make use of knowledge of future disturbances). For the structure

of �t(⋅), wemake use ofmodel predictive control (MPC), which is themost widely-usedmethods for advanced control of complex

systems with multivariate interactions and safety-critical and/or quality constraints. Even though MPC has been traditionally

applied to steady-state tracking problems, recent advances have enabled its application to a significantly broader class of systems

including those with nonlinear models, constraints, integer variables, and objectives that can be used to handle much more

complicated physical equations as well as economic cost functions. Due to the black-box nature of the methodology pursued in

this paper, we can straightforwardly accommodate any of these advanced forms of MPC. A complete mathematical description

of the specific MPC formulation used in our case study is provided in Section 6.
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Given the closed-loop system in (2) and (3), we can develop a much more accurate representation of the operating cost over

the system lifetime T as follows

O(d, z,!) =
T−1
∑

t=0
lt(xt(d, z,!), ut(d, z,!), wt, d) + lT (xT (d, z,!, �), d), (4)

where lt ∶  ×  ×  ×  → ℝ is the time-varying stage cost function that represents the individual contribution to

the operating cost from time step t ∈  and lT ∶  ×  → ℝ is the final cost function that represents the cost of the

state at the end of the system lifetime. Under this choice of operating cost (4), the IDC problem (1) is intractable for practical

problems of interest in this work for three reasons. First, the expectation operator E!{⋅} cannot be exactly computed for general

nonlinear functions and continuous random variables. Second, relevant operational details and realizations of the uncertainty

often occur at timescales that are significantly shorter than the lifetime of the system, which implies that T can be very large

(e.g., T = 219, 000 when decisions need to be made at each hour for 25 years). Lastly, the dynamics may involve a mixture

of continuous and discrete decisions, which implies (2) is a hybrid system that is not continuously differentiable and thus not

amenable to derivative-based solvers. In our recent work16, we demonstrated how Bayesian optimization can help overcome

these limitations by simultaneously sampling values of {d, z} (co-optimizing design and MPC tuning) in an intelligent fashion

to search for the global solution to (1) as quickly as possible. After summarizing this idea in the next section, we extend the

concept to account for multiple cheaper approximate models to better guide the search in Sections 4 and 5.

3 PRACTICAL IDCWITHMPCUSING SIMULATION-BASED BAYESIANOPTIMIZATION

3.1 Overview of Derivative-free Simulation Optimization

Even though the IDC problem (1), with detailed operating cost (4) evaluated via a closed-loop simulation with an embedded

MPC controller, has a relatively small number of time-invariant decision variables, it remains intractable due to the stochastic

uncertainties as well as the complexity and potential non-smoothness in the system model (2) for which we may not be able

to estimate derivatives of the cost with respect to d and z, if they even exist. One of the main alternatives, when gradient

information is not readily available, is to rely on so-called derivative-free optimization (DFO) methods18,19 (also known as

black-box optimization) that can be broadly categorized as stochastic or deterministic. Before selecting a specific DFO method,

let us first convert (1) into a more standard form, as follows

f⋆ = max
�∈Θ

f (�) ∶= E!{J (�,!)}, (5)

where � = [d⊤, z⊤]⊤ ∈ Θ =  ×  ⊂ ℝn� is the concatenated vector of design and MPC tuning parameters with n� = nd + nz

being the total number of decision variables; J (�,!) = −(C(d)+O(d, z,!)) is the performance function defined as the negative
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of the total capital plus operating cost of the system; and f⋆ = f (�⋆) is the true (unknown) maximum performance value

corresponding to the (unknown) global solution �⋆ ∈ argmax�∈Θ f (�). This problem can be interpreted in the simulation-

optimization context as an “outer” optimization over � and an “inner” stochastic simulation needed to approximate f (�).

Due to the expensiveness of the long-time closed-loop simulations, we are interested in finding �⋆ using as few simulations as

possible, which requires careful selection of a DFOmethod. Stochastic DFOmethods are based on evolutionary-like algorithms,

such as genetic algorithm (GA)20 and particle swarm optimization (PSO)21, which are known to require a large number of func-

tion evaluations as they search for the global optimum. This suggests stochastic DFO is not a viable choice for MPC-based IDC

problems since each function evaluation is computationally intensive. Deterministic DFO methods, on the other hand, are often

motivated by the optimization of expensive objective functions and can be divided into direct search ormodel-based approaches.

The main difference between these categories are that direct search methods use the evaluations of the objective directly to deter-

mine the next search direction whereas model-based methods construct a surrogate model to better guide the search process.

Whenever an accurate surrogate model can be constructed, model-based DFO methods have the ability to converge to nearly

global solutions in a limited number of iterations.

A wide-variety of model-based DFO methods have been proposed in the literature, which mainly differ by the choice of scale

(local versus global approximation) and the type of surrogate model (e.g., polynomial, neural network, linear interpolation). A

key challenge in these approaches is the selection of the “right” type of surrogate model when little is known about the structure

of the objective. Gaussian process (GP) models22 are a particularly attractive class of surrogates since they are both probabilistic

and non-parametric. Given a set of function evaluations, a GP model can be easily derived by placing a prior over the set of

possible objective functions and updating this prior with the available data using Bayes’ rule. The Bayesian optimization (BO)

framework23 leverages a GP model of the objective function and an expected utility (or acquisition) function, defined in terms

of the GP-predicted posterior distribution, to sequentially select the next evaluation point as the one that maximizes the chosen

acquisition function. As discussed next, this is our preferred method since it not only addresses the exploration/exploitation

tradeoff, but also handles noisy estimates of the objective function, which is of critical importance in IDC problems due to the

presence of the high-dimensional uncertainty !.

3.2 The Bayesian Optimization Framework

We now introduce the BO framework, which is our preferred DFO method. The main idea underlying BO is to place a GP prior

on the objective function f (⋅) ∼ (m(⋅), k(⋅, ⋅)), which is fully specified by its mean function m(⋅) and covariance kernel k(⋅, ⋅).

In essence, GPs are an uncountable collection of random variables of which any finite subset have a joint Gaussian distribution,

i.e., generalizes the notion of multivariate Gaussian distributions to “distributions over functions”22. The mean function and
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covariance kernel are defined such that, for any pairs of input points �, �′ ∈ ℝn� , we have

m(�) = Ef{f (�)}, (6a)

k(�, �′) = Ef{(f (�) − m(�))(f (�′) − m(�′))}, (6b)

where the expectation is taken over the function space. To update the GP prior, wemust evaluate the objective function at specific

values of �. Since we cannot evaluate the expectation in (5) exactly, we must rely on Monte Carlo (MC) estimates as follows

y = 1
K

K
∑

i=1
J (�,!(i)), (7)

whereW = {!(1),… ,!(K)} is a set of K independent and indentically distributed (i.i.d.) samples of the random vector ! ∼ p!.

The estimator (7) is unbiased for any positive integer value of K , which implies that EW{y} = f (�) such that we can develop a

relatively simple model the noisy measurements of the objective as follows

y = f (�) + �, (8)

where � ∼ (0, �2� ) is a normal random variables with mean zero and variance �2� . Assume we have n noisy objective function

evaluations from (8) denoted by y1∶n = {y1,… , yn} computed at corresponding inputs �1∶n = {�1,… , �n}. Based on the GP

prior assumption, y1∶n and f (�) at any test point � are jointly Gaussian with the following distribution

⎡
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⎤

⎥

⎥

⎥
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, (9)

where, in a standard fashion, we have overloaded the functions m(⋅) and k(⋅, ⋅) to include element-wise operations across their

inputs. Using the Gaussian conditional formula, the posterior distribution of f (�) at any test point �, conditioned on the data

{y1∶n, �1∶n}, can be analytically determined to be22

f (�)|y1∶n, �1∶n ∼ (�n(�), �2n (�)), (10)

with

�n(�) = m(�) + k(�1∶n, �)
(

k(�1∶n, �1∶n) + �2� In
)−1 (y1∶n − m(�1∶n)), (11a)

�2n (�) = k(�, �) − k(�, �1∶n)
(

k(�1∶n, �1∶n) + �2� In
)−1 k(�1∶n, �). (11b)

In practice, the mean function and covariance kernel are parametrized by some unknown hyperparameters. These hyperparame-

ters, along with the unknownmeasurement noise variance �2� , can be calibrated to the available data {y1∶n, �1∶n} using maximum

likelihood estimation (MLE), as discussed by, e.g., Bradford et al.24.
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Given this posterior distribution, we can define the acquisition function �n ∶ Θ → ℝ that plays a key role in BO, as it

must be designed in a way that tradeoffs exploration of regions where the surrogate model is uncertain and exploitation of the

model’s high-confidence predictions of good solutions. A popular choice is the expected improvement (EI) over a candidate

point25, which can be expressed analytically in terms of the posterior mean and variance in (11). A recent alternative, that will

be particularly relevant in this work, is the upper confidence bound (UCB) that can be defined as follows26

�n(�) = UCBn(�) = �n(�) +
√

�n�n(�), (12)

where �n > 0 is some user-specified constant at each iteration n (typically chosen to be �n = 0.2n� log(2(n − 1))27). Given

these choices, we can summarize the GP-UCB procedure (a particular instance of the BO framework) in Algorithm 1. The main

intuition behind this algorithm is that the mean �n(�) encourages querying where we know f (�) is high, while the standard

deviation �n(�) encourages querying at regions that we are most uncertain about f (�). As such, the factor �n directly controls

the tradeoff between exploration and exploitation. The performance of this algorithm has been studied on a variety of problems

and its convergence has been analyzed in Srinivas et al.26. In particular, bounds on the simple regret Sn

Sn = min
i∈{1,…,n}

(f⋆ − f (�i)) = f⋆ − max
i∈{1,…,n}

f (�i), (13)

have been established that show Sn ∼ O(1∕
√

n), which implies GP-UCB converges to function evaluations that are close to f⋆

as the number of iterations increases.

Algorithm 1 The GP-UCB algorithm under the BO framework26

1: Initialize: Input space Θ; GP prior m(⋅) and k(⋅, ⋅); and maximum number of iterationsN .
2: for n = 0 toN − 1 do
3: Construct GP surrogate model for f (�) given available data {y1∶n, �1∶n} via (10) and (11).
4: Maximize the acquisition function to find �n+1 = argmax�∈Θ �n(�) +

√

�n�n(�).
5: Perform expensive closed-loop simulations to evaluate objective yn+1 = f (�n+1) + �n+1 using (7).
6: end for

Remark 1. It should be noted that (8) is a simplified representation of the measurement process – although the random variable

� does have zero mean, it may not be normally distributed with constant variance for finite K . The estimator (7) does, however,

satisfy the central limit theorem (CLT):

√

K(y − f (�))⇒  (0, �2f (�)), (14)

where �2f (�) denotes the variance of the objective function in (5) for any fixed � ∈ Θ and⇒ denotes convergence in distribution.

Thus, we see that the measurement error process is asymptotically normal with variance that converges to zero as K → ∞.

Due to the expensiveness of the closed-loop simulations, however, we must select K to be very low, meaning we are not able to
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invoke the CLT (14) in practice. As long as the effect of the uncertainty ! is not too large, we have found that the assumption

(8) works well in practice, which was the case for our case study. In our future work, we plan to more systematically address

this issue by developing more detailed input-dependent (also known as heteroscedastic) noise models28.

4 REDUCING SIMULATION COST USINGMULTI-FIDELITY BAYESIANOPTIMIZATION

The main bottleneck in Algorithm 1 is thatK computationally expensive closed-loop simulations are required at every iteration.

An interesting idea for alleviating this bottleneck is the use of series of approximate models for the objective, as opposed to

a single high-fidelity model. This is often referred to as multi-fidelity optimization in the literature and has been successfully

applied in the context of automated machine learning29,30,31. Since the approximations are still correlated to the high-fidelity

evaluation, we can reasonably expect that these models may provide valuable information at a fraction of the cost, which can

be used to avoid “wasting” very expensive function evaluations on particularly poor designs. This discussion motivates the

following two questions, which we look to (partially) answer in the next two sections:

1. Can we come up with a systematic procedure to decide at what fidelity and location we should sample?

2. How should we construct lower-fidelity representations of the IDC performance function in (5)?

We address the first question using a recent extension to the GP-UCB algorithm, which we summarize in this section; the second

question is discussed further in Section 5.

4.1 Setting up the Multi-Fidelity Problem

The main difference from the traditional setup in Section 3.2 is that we assume access to a set ofM − 1 successively accurate

approximations, which we denote by f (1), f (2),… , f (M−1), to the true function of interest f (M) = f . Following Kandasamy et

al.17, these approximations (also known as fidelities) must satisfy two important conditions:

1. The functions f (1),… , f (M−1)are approximations of f (M) with bounded error that successively improves, i.e.,

‖f (m) − f (M)
‖∞ ≤ � (m), ∀m ∈ {1,… ,M}, (15)

where the bounds � (1) > � (2) >⋯ > � (M) = 0 are known.

2. The functions f (1),… , f (M−1) are cheaper to evaluate than f (M), i.e., 0 < �(1) < �(2) <⋯ < �(M) where �(m) denotes the

computational cost of querying at fidelity m ∈ {1,… ,M}.

Roughly speaking, these two conditions state that the approximations should become both more accurate and more costly, as the

level m increases. As opposed to just sampling {�n}n≥0, the multi-fidelity version of the algorithm must determine a sequence
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of query-fidelity pairs {(�n, mn)}n≥0 where, at any given time n, the algorithm can use information from the previous n − 1

query-observation-fidelity triples, i.e., {(�i, mi, yi)}n−1i=1 . Note that, similarly to (8), the observations are modeled as

yi = f (mi)(�i) + �i, (16)

where �i are independent noise realizations at every iteration i, with E{�i} = 0. Note that the cases of interest in this paper are

forM values that are fixed and relatively small (in the range of 2 to 4) and �(1) values that are comparable to �(M) – this implies

that the approximations to f (�) remain fairly expensive and still require an intelligent BO-like procedure to optimize.

Let Λ denote the maximum allowed resources that can be used by the multi-fidelity optimization procedure. The number of

iterations taken until the resources have been exhausted can be inferred from the evaluation cost of each fidelity above as follows

N = max{n ≥ 1 ∶
∑n
i=1 �

(mi) ≤ Λ}, (17)

for a given set of data {(�i, mi, yi)}i≥0 produced by some algorithm. It is important to note that N is an implicit function of the

initial data in this case. This means N cannot be computed a priori and will be a random variable whenever the algorithm is

seeded with some randomly selected initial function evaluations.

4.2 Multi-Fidelity Bayesian Optimization with Upper Confidence Bounds

Now, we discuss the extension of the GP-UCB algorithm to the multi-fidelity setting based on the algorithm presented by

Kandasamy et al.17. The main idea is to maintain an upper confidence bound for f (M) using the data available at all fidelity

levels. Due to the constraints (15), the posterior for any f (m) conditioned on all available data is not Gaussian. Let �(m)n (�) and

�(m)n (�) denote the posterior GP mean and standard deviation for f (m) conditioned on only the previous data points available

at the mth fidelity. For a reasonably chosen �n value, we know that �(m)n (�) +
√

�n�(m)n (�) will upper bound f (m)(�) with high

probability. Combining this with the bounds in (15), we know

'(m)n (�) = �(m)n (�) +
√

�n�
(m)
n (�) + � (m), ∀m ∈ {1,… ,M}, (18)

represent a set ofM upper bounds for f (M). The best upper bound is then given by

'n(�) = min
m∈{1,…,M}

'(m)n (�). (19)

We use this upper confidence bound for our acquisition function, in place of the traditional single-fidelity GP-UCB in (12),

meaning that our next query point is at �n+1 = argmax�∈Θ 'n(�). To determine which fidelity to query, we find the smallest

fidelity such that the following inequality holds

√

�n�
(m)
n (�n+1) ≥ 
 (m), (20)
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where 
 (m) > 0 is a threshold value for all m ∈ {1,… ,M − 1}. If this is not satisfied for any m, then we query at mn+1 = M .

The intuition behind (20) is that it is not worth spending resources in a region where the function f (m) has a small amount of

uncertainty since the bound � (m) caps off how much we can learn about the true function. As such, smaller values for 
 (m) result

in a larger number of queries at fidelity m to reduce the variance below this threshold. A summary of the multi-fidelity GP-UCB

(MF-GP-UCB) method is provided in Algorithm 2.

Algorithm 2 The MF-GP-UCB algorithm17

1: Initialize: Input space Θ; specify GP priors {m(m)(⋅), k(m)(⋅, ⋅)}Mm=1; bounds {�
(m)}Mm=1; thresholds {


(m)}Mm=1; initial datasets
(m)
0 = ∅ for all m = 1,… ,M ; and maximum allowed resources Λ.

2: for n = 0 toN − 1 do ⊳ N is defined implicitly based on spent resources according to (17).
3: for m = 1 toM do
4: Construct a GP surrogate model for f (m)(�) given available data (m)

n similar to (10) and (11). ⊳ only needed if
new data was added in previous iteration, otherwise can reuse previous mean and covariance functions.

5: end for
6: Maximize the MF acquisition function to find �n+1 = argmax�∈Θ 'n(�).
7: Select fidelity level based on mn+1 = min{m ∶

√

�n�(m)n (�n+1) ≥ 
 (m) or m =M}.
8: Query the function f (mn+1)(�n+1) to get observation yn+1.
9: Update (m)

n+1 ← (m)
n ∪ {(�n+1, yn+1)} and set 

(m)
n+1 ← (m)

n for all m ≠ mn+1.
10: end for

The 
 (1),… , 
 (M−1) values are tuning parameters of the algorithm, which are needed to ensure too much effort is not spent

at the lower fidelities. This is achieved in practice by setting 
 (m) to small values for all m ∈ {1,… ,M − 1}; however, if the

algorithm does not query above fidelity m for more than �(m+1)∕�(m) iterations, then 
 (m) ← 2
 (m). All of the 
 (m) values were

initialized to 1% of the range of the observations from the initial queries. Additionally, Algorithm 2 assumes that the bounds

� (1),… � (M−1) are given, which is hardly the case in most practical applications. In the available open-source implementation of

MF-GP-UCB, theseM − 1 values are converted into a single bound by making the following stronger assumption

‖f (m) − f (m−1)‖∞ ≤ �, ∀m ∈ {2,… ,M}. (21)

Note that this satisfies (15) by setting (� (1),… , � (M)) = ((M − 1)�,… , �). The value of � is initialized to 1% of the range of the

observations from the initial queries. In addition, whenever we query at any fidelity m > 1, we check if thee following condition

holds |f (m)(�n+1) − �(m−1)n (�n+1)| > � ; if so, then we also query at fidelity m − 1. If the difference between the evaluation at the

two fidelity levels exceeds the current bound, i.e., |f (m)(�n+1) − f (m−1)(�n+1)| > � , then the bound is doubled � ← 2� . Lastly,

we note that the required resources �(1),… , �(M) may not be known exactly, so that they must also be estimated as the average

computational cost for the initial set of queries at each fidelity level.
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Similarly to the single-fidelity case, simple regret bounds have been established for the multi-fidelity case shown in Algorithm

217. Since only the highest fidelity model is of interest to us, we need to modify the definition of the simple regret as follows

S(Λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minn∶mn=M,∀n∈{1,…,N} f⋆ − f (M)(�n) if we have queried at theM th fidelity at least once,

+∞ otherwise.
(22)

Note that this expression reduces to (13) when only f (M) is observed with n = N = ⌊Λ∕�(M)
⌋. The main remaining ingredient

of the MF-GP-UCB algorithm is how to select the different approximation methods to derive f (1),… , f (M−1). Several different

strategies for doing this in the context of DR-based IDC problems are discussed next.

5 PROPOSED LOWER FIDELITY MODELS FOR DR-BASED IDC PROBLEMS

In this section, we discuss three broad approaches for deriving lower fidelity representations of the MPC-based IDC problem in

(5), which requires cheaper approximations of the closed-loop cost function. Let �x and �u denote the cost of determining the

successor state in (2) and optimal control input in (3), respectively, which are assumed to be roughly constant at each time step

t ∈  . The total cost of a the high-fidelity simulation is then approximately

�(M) ∼ (�x + �u)T . (23)

The first approach involves the development of dynamic reduced models for (2) to speed up dynamic simulation of the overall

system by reducing �x. The second approach is based on reducing the complexity of the DR (i.e., lowering �u) which, in this

work, involves the repeated solution of the MPC optimization problem at every time step of the simulation. The third and final

approach derives a simplified representation of the time grid (i.e., reducing T ) using machine learning-based methods.

Note that the discussions provided in this section are not intended to be a comprehensive list of all possible reductions. The

main goal is to highlight the many different approximation avenues that are available in practically relevant MPC-based IDC

problems. Furthermore, these different strategies can easily be combined to develop any sequence of models that satisfy bounds

above in (15). As such, we are not advocating any particular approximation or sequencing strategy in this paper – we intend to

study this topic more in our future work. Here, we mainly want to highlight the value of lower-fidelity approximations and their

impact in the context of Algorithm 2 on a case study defined in Section 6.
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5.1 Surrogate System Models

Modern simulation models can cover a wide range of length- and time-scales depending on the system of interest. For example,

physics-based building energy and micogrid simulators, such as EnergyPlus32 and HOMER Pro33, require the solution to com-

plex systems of differential algebraic equations (DAEs) that can involve thousands tomillions of state variables. This is especially

true whenever the DAEs are derived from the spatial discretization of a partial differential equation that describes the evolution

of some states through both space and time. There is a large body of literature on how to construct reasonably fast and accu-

rate dynamic reduced models (D-RMs) from (2); however, the specific choice of method will depend on the characteristics of

the system representation. If we have access to the underlying DAE-based representation (also known as a white-box model),

then we are able to apply physics-based reductions that effectively project the high-dimensional DAE into a lower-dimensional

space34. This type of approach, which yields a DAE with many fewer unknown variables, is often referred to as reduced-order

D-RMwhere “order” refers to the number of effective states variables. Since the reduced-order DAE is defined in terms of fewer

variables, its cost will be lower than �x – the exact speedup will depend on the choice of solver and the ratio of the number of

states in the original and reduced DAE. Other white-box reduction methods include perturbation methods that convert the stiff

differential equations for the fast-varying states into simpler algebraic equations35.

If we do not have access to an equation-oriented representation of (2), then the main alternative is to construct a data-driven

D-RM from transient input-output data. This data can be generated from repeated simulation of the system under multiple step

changes in the input – system identification methods can then be used to build a surrogate model for (2) in the form of, e.g.,

a Volterra series, neural network, or nonlinear autoregressive moving average with exogenous input (NARMAX) model. An

important distinction in the IDC application, compared to traditional system identification, is that the surrogate model must be

constructed such that it can approximate the transient behavior under difference choices of the design variables � ∈ Θ. These

design variables can be accommodated within standard system identification methods by either building separate models for

a finite number of randomly sampled designs and interpolating between them or treating the design variables as an additional

time-varying control input that is changed at a slower rate than ut when constructing the identification dataset.

No matter how the D-RM is built, we expect significant gains in simulation time whenever �x is large since the evaluation

of these simplified models can be done in a very efficient manner. The main challenge in D-RM construction, however, is

that we need sufficiently informative identification data. Dynamic optimal experiment design (dOED) methods36 have been

established for DAEs with known structure, which can optimally select control inputs to maximize the information content

gained from running a simulation/experiment. The basic dOED framework could be applied to the parametrized black-box

model representations to sequentially obtain better parameter estimates, which would likely result in learning an accurate model

quicker than random exploration of the control input/design space.
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5.2 Reducing Decision Rule Complexity

As systems are becoming more complex and integrated, the control strategies needed to robustly ensure high performance in

the face of uncertainties must also increase in complexity. This is the main rationale for our choice of MPC is based on the fact

that it re-optimizes the control inputs as new data is collected. The upside of such a scheme is flexibility, as we can directly

handle multivariate interactions, multiple unit operations, time delays, general performance measures, and system constraints.

The downside, however, is the added complexity of the implicit representation of the control law, defined in terms of a potentially

large-scale, non-convex dynamic optimization problem to evaluate (3), that can be difficult to solve in real-time. Although a

significant amount of work has been done on the development of algorithms for real-time implementation of MPC under various

assumptions, computational cost is still a bottleneck in many large-scale applications.

In cases that �u is large, there are several strategies that can be employed to approximate (3) in order to develop a lower-fidelity

representation of the MPC-based IDC problem (5). One of the most obvious strategies is to reduce the prediction horizon Np,

which directly reduces the number of variables that need to be considered in the MPC optimization. To visually demonstrate

this effect, we plotted the simple regret and overall closed-loop simulation time versus Np ∈ {8,… , 24} in Figure 1 for the

case study presented in Section 6. Note that the results have been averaged over ten random disturbance realizations, with error

bars depicting the standard error estimates. The main thing to note is that we see a clear tradeoff emerge between approximation

error (measured in terms of simple regret) and simulation cost as the prediction horizon changes – and this relationship is highly

nonlinear with respect to quality of the approximation. For example, there is a fairly big reduction in the objective value as

Np decrease from 20 to 16, while there is a negligible change in the objective value when Np decreases from 12 to 8. This

suggests that there likely exists an “optimal” approximation method, though it would be difficult to derive such a method in

general, especially since it will depend on the specifics of the multi-fidelity optimization approach (e.g., Algorithm 2). Other

general approximation strategies include increasing the solver tolerance (or limiting the maximum number of iterations) as well

as replacing the cost, system, and/or constraints with convex approximations, so that the resulting approximate optimization

can be solved to global optimality using state-of-the-art convex programming solvers. Another emerging strategy to reduce

complexity of MPC laws is to construct a data-driven approximation of �t(⋅) using deep neural networks (DNNs)37,38. DNNs

are a particularly attractive because they are universal function approximators39 and there have been significant advances in

training algorithms/software so that they can effectively scale to high-dimensional problems40.

Lastly we note that, although the strategies discussed above are meant for generic MPC problems, many problem-specific

approximations can also be developed that might be valuable. The one that is likely most relevant in energy and smart-grid

applications is relaxing any integer control decisions to be continuous (e.g., relaxing ut ∈ {0, 1} to ut ∈ [0, 1]). In this case,

the MPC optimization would reduce to either a nonlinear or quadratic program for which efficient solvers are readily available.

The solution to this continuous optimization can then be rounded to satisfy the integer input constraints, which is a commonly
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used heuristic. Similarly, distributed optimization methods, such as alternating direction method of multipliers (ADMM), can be

applied to structured nonlinear programs as an inexact version of themethod of multipliers41, which is expected to be particularly

useful in reducing �u in systems composed of many weakly interacting subsystems.
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FIGURE 1 Simple regret and normalized simulation time (averaged over 10 random disturbance realizations) versus MPC
prediction horizon for the case study presented in Section 6. We clearly see a tradeoff between regret and computational cost as
the prediction horizon changes.

5.3 Coarsening the Time Grid Representation

As mentioned previously, one of the key advantages of IDC is considering the transient response of the system to disturbances

that are inherently multi-scale in nature. This is an especially large challenge in the context of energy systems where the design

decisions last for years (or even decades), while the operational decisions occur on the order of minutes to hours. As renewable

energy integration continues to increase in scope, the coupling between these different time scales will only increase in impor-

tance. An emerging strategy to include short time scale phenomena in long-term planning problems is to aggregate time-series

data into representative periods, which directly reduces the number of time steps T needed to complete one closed-loop simu-

lation. It is not uncommon to be able to represent an entire year (365 days) with a set of 5-10 days, which easily produces 1-2

orders of magnitude reduction in computational cost42. Representative periods can be created using time series-based clustering

methods that have been developed within the machine learning community – the basic idea is to group periods (usually days)

into a small number of groups that are similar. A wide-variety of clustering methods have been used for deriving representative
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periods, which includes k-means, k-medoids, hierarchical, and dynamic time warping barycenter averaging (DBA) clustering.

A detailed comparison between these different clustering methods was recently performed by Teichgraeber et al.42.
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FIGURE 2Clustering one year of weather data into 5 representative days using k-means clustering. The top, middle, and bottom
rows represent DHI, DNI, and temperature, respectively, while the left and right columns represent the year-long and clustered
data, respectively. The fraction of occurrence for each representative day in the year is shown next to each curve in (f).

Here, we focus on k-mean clustering approach for simplicity. To illustrate the method, we consider one year worth of ambient

temperature and solar irradiation data for Columbus, Ohio from January 2015 to December 2015. Solar irradiation was repre-

sented by the direct normal irradiance (DNI) and direct horizontal irradiance (DHI) values. Temperature, DNI, and DHI profiles

over this time period were obtained from the publicly available National Solar Radiation Data Base43 maintained by by the

National Renewable Energy Laboratory. Daily profiles for these quantities over this two-year period are shown in Figure 2ace.

To preserve any existing correlation between these quantities, the three datasets are combined together into a 72-element vector

before applying the k-means clustering algorithm. To determine the “best” number of representative days, we successively run



18 F. Sorouifar ET AL

0 5 10 15 20
number of representative days

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
ed

 e
rr

or

FIGURE 3 Elbow plot showing how well the disturbance dataset for the case study in Section 6 is represented as a function of
the number of clusters.

the algorithm for increasing number of clusters k = 2, 3,… , 20 and calculate the normalized sum of squared errors between the

clustered and actual days, as shown in Figure 3. In this case, we see that 5 representative days reduces the error to acceptable

levels (below 10%). The resulting temperature, DNI, and DHI profiles for the 5 representative days (corresponding to the cen-

troid of the 5 clusters) are shown in Figures 2bdf, along with the fraction of the year that each day represents. We are now able

to use these representative days, weighted by their fraction of occurrence, as a lower-fidelity approximation of (5).

6 CASE STUDY: DESIGN OF A BUILDING HEATING AND COOLING SYSTEMWITH

PHOTOVOLTAIC POWER GENERATION, BATTERY STORAGE, AND GRID SUPPORT

6.1 Description of System Model and IDC Problem

We consider the design of a building heating and cooling (HC) system that is connected to a photovoltaic (PV) array and battery

energy storage device, with grid support, as depicted in Figure 4. The main system design variables of interest are the battery

capacity dB and the PV area dPV . We also have three key control inputs ut = {uHCt , uBt , u
G
t } where uHCt is the net heating

energy supplied to the building (which will be positive when heating and negative when cooling), uBt is the energy sourced from

the battery, and uGt is the energy sourced from the grid. As depicted in Figure 4, these variables must always satisfy an energy

balance uHCt = uGt +u
B
t . We model the grid as an infinite reservoir, meaning that energy may purchased and stored in the battery,

used directly for the HC load, or drawn from the battery and sold for profit. Positive values uGt > 0 indicate electricity has been

purchased from the grid, while negative values uGt < 0 indicate electricity is being sold to the grid. All electricity lines are

assumed to be limited to 1500 kWh.
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FIGURE 4 Schematic overview of solar-powered building heating and cooling system with battery storage and grid support.

The building and battery models are represented in terms of discretized differential equations that are provided in detail in

Appendix B.1. The building model is adapted from Gondhalekar et al.44 that describes the dynamic evolution of temperature

inside of a single room in a larger office building and is composed of three states xHCt = {xHCt,1 , x
HC
t,2 , x

HC
t,3 } that represent the

indoor building temperature, average interior wall temperature and exterior wall temperature, respectively. The battery model is

composted of a single state xBt that represents the state-of-charge (SOC) of the battery. Although a simplified battery model was

used here to reduce computational burden in the extensive testing performed, the proposed DR-based IDC and MF-GP-UCB

approaches are generally applicable to sophisticated physics-based models including those available in the Simulink toolbox

that explicitly model chemistry-specific degradation rates. All relevant parameters in the building and battery models, including

the bounds on the design variables and control inputs, are summarized in Appendix B.2 in Table B2.

Several disturbances also enter into different components of the model . The PV can only absorb so much energy from the

sunlight based on the direct horizontal irradiance (DHI), denoted by wPV
t . Only a fraction of the DHI can then be stored by the

battery in every time instance (assuming capacity is available), which is given bywB
t = d

PVwPV
t �PV where �PV denotes the PV

efficiency. The external temperature wHC
t,1 , direct normal irradiance (DNI) wHC

t,2 , and internal heat sources wHC
t,3 also impact the

system. Historical weather data for Columbus, Ohio was used to representwPV
t ,wHC

t,1 , andwHC
t,2 , as discussed in Section 5.3. The

internal heat sources wHC
t,3 , on the other hand, were modeled as a uniform random variable between the bounds given in Table

B2 whenever the time period satisfies t mod 24 ∈ {8,… , 18} (represents business hours from 8am to 6pm) and zero otherwise.

The overall system model can then be cast in the form of (2) with states xt = {xHCt , xBt }, control inputs ut = {uHCt , uBt , u
G
t },
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disturbances wt = {wPV
t , wB

t , w
HC
t,1 , w

HC
t,2 , w

HC
t,3 }, and design variables d = {dB , dPV } using a forward Euler discretization

scheme with a 1 hour sampling time. We also assume a fixed initial condition b0(d) = {21◦C, 20◦C, 4◦C, 50%}.

We now formulate our cost function in the IDC problem (1), which is composed of the capital cost C(d) and operating cost

O(d, z,!). The capital cost function is the sum of the battery and PV costs, which is given by

C(d) = �BdB + �PV dPV , (24)

where �B and �PV are the per unit costs of the battery and PV, respectively, reported in Table B2. The operating costs, on the

other hand, are computed using (4) for a one-year planning horizon corresponding to T = 8760 time steps. The stage cost is

assumed to be a weighted combination of the electricity cost and violation of time-varying temperature and SOC constraints.

Before defining lt(⋅), let us first define the desired state constraints in the form of gt(xt, ut, wt) ≤ 0 with gt(⋅) defined as follows

gt(xt, ut, wt) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xHCt,1 − xHCt,1

xHCt,1 − xHCt,1

xBt − x
B

xB − xBt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (25)

where xHCt,1 and xHCt,1 are the time-varying upper and lower bounds for the internal building temperature and xB and xB are the

fixed upper and lower bounds for the SOC. These constraints will be directly enforced in the MPC problem defined later, but

are simply penalized with an appropriate cost factor when defining the operating cost. As such, the stage cost in (4) is given by

the following expression in this example

lt(xt, ut, wt, d) = �Gt u
G
t + �

HC
t

(

[xHCt,1 − xHCt,1 ]
+ + [xHCt,1 − xHCt,1 ]

+
)

+ �SOCt

(

[xBt − x
B]+ + [xB − xBt ]

+
)

, (26)

where [a]+ = max{a, 0} and �Gt , �
HC
t and �SOCt are the time-varying per unit time costs of electricity, temperature constraint

violations, and SOC constraint violations, respectively. We assume the terminal cost is equal to zero, i.e., lT (⋅) = 0. All relevant

price and constraint values are reported in Tables B2 and B3. Note that �HCt is chosen so that higher penalties are incurred

during business hours. We have not specified a control law of the form (3) yet, as we will explore two different cases below.

Note that we have provided all code, data, and results at: https://github.com/PaulsonLab/MF-GP-UCB_for_IDC.git

for each of the parts of this case study discussed in detail next.

Remark 2. We have implicitly assumed that we have access to an HC system that offers continuous modes of operation between

the maximum and minimum net energy input in our formulation of the system model. In practice, several smaller HC units may

be required to satisfy the load – if each unit has a fixed duty cycle, then we would need to include discrete/integer decisions

https://github.com/PaulsonLab/MF-GP-UCB_for_IDC.git
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in the model that represent, for example, turning on or off certain units in certain time periods. This assumption was made for

simplicity, but our framework can easily accommodate such decision as shown in our previous work16.

6.2 Comparing MF-GP-UCB to Alternative Black-Box Optimization Methods

In this section, we benchmark the MF-GP-UCB algorithm relative to alternative widely-used black-box optimizers. To avoid

the complexity added by the stochastic uncertainties, we initially focus on the simplified case p!(!) = �(! − !̂) where the

uncertainties are fixed to their nominal values !̂. In this case, we can avoid the use of MPC and instead select the optimal control

actions from the following large-scale optimization problem

{u⋆0 (d, !̂),… , u⋆T−1(d, !̂)} = argmin
u0,…,uT−1

C(d) +
T−1
∑

t=0
lt(xt(d, !̂), ut, ŵt, d), (27a)

s.t. xt+1(d, !̂) = ℎt(xt(d, !̂), ut, ŵt, d), ∀t ∈  , (27b)

x0(d, !̂) = b0(d), (27c)

gt(xt(d, !̂), ut, ŵt) ≤ 0, ∀t ∈  , (27d)

ut ∈  , ∀t ∈  . (27e)

In this case, � = d since there are no additional tuning parameters considered in (27). We then specify our control inputs as

u⋆0 (d, !̂),… , u⋆T−1(d, !̂) over the entire simulation time, as opposed to using (3), since there is no need to adapt these control

actions when fixed disturbance values are considered. For any fixed value of � = d, (27) can be written as a large-scale linear

program based on the assumed systemmodel in Appendix B that can easily be represented in theYalmip45 modeling environment

and efficiently solved using Gurobi46. One high-fidelity evaluation of (27) with T = 8760 took approximately 1 minutes on a

MacBook Pro with a 2.3 GHz Intel Core i9 and 16 GB of RAM. To develop a low-fidelity model, we used the time series-based

clustering strategy presented in Section 5.3 that resulted in 5 representative days (Figure 2). Evaluating the low-fidelity model,

which is equivalent to (27) with T = 120 and !̂ replaced with the clustered disturbance sequences, reduced the computational

cost by a factor of 50 (estimated as the average over ten separate runs at each fidelity level). As such, we were able to set the cost

values to �(1) = 0.02 and �(2) = 1, with �(2) representing the high-fidelity cost that we normalize to 1. We set our total budget to

Λ = 12, corresponding to 12 equivalent high-fidelity evaluations. Note 4 out of the 12 maximum budget units are allocated to a

set of evaluations at randomly sampled points, which are needed to construct an initial GP as well as estimate the bounds in (15).

We compare the MF-GP-UCB algorithm to three alternatives; note that we focus on the BO framework since this has already

been demonstrated to be effective in reasonably low-dimensional spaces compared to alternatives (see Section 3 for further

discussion). The three alternatives are single-fidelity GP-UCB, expected improvement (EI), and random search. The EI approach

was implemented using bayesopt 47 within the Matlab Optimization Toolbox, while the others were executed in an open-source



22 F. Sorouifar ET AL

0 0.2 0.4 0.6 0.8 1
fraction of spent budget

10-1

100

101

si
m

pl
e 

re
gr

et

MF-GP-UCB
GP-UCB
RAND
EI

FIGURE 5 The simple regret S(Λ) versus fraction of budget spent for four different optimizers. Each approach was repeated
for 10 sets of random seed points. The mean of these 10 runs are shown in bold and confidence intervals shown with error bars.

implementation of MF-GB-UCB available at: https://github.com/kirthevasank/mf-gp-ucb. We use simple regret (22)

as our performance metric to compare these different methods. Due to the random initialization, simple regret is a random

variable and thus it is not informative to show results for a single initialization. Instead, we repeat each experiment 10 times to

estimate the average simple regret for each algorithm – error bars are computed by estimating the confidence intervals as 1.96

times the standard deviation divided by the square root of the number of repeats.

The expected simple regret versus fraction of the maximum budget spent for all four algorithms is shown in Figure 5. We

clearly see that MF-GB-UCB converges faster than the other methods and does particularly well for budget fractions between 0.5

and 0.8. It is interesting to note that random search actually outperformed the single-fidelity GP-UCB approach in this case. We

believe this is due to a relatively small sample size of 10 repeats and the tendency for GP-UCB to over explore. EI, on the other

hand, does result in similar quality solutions at the end of the budget; however, it does considerably worse at smaller budgets,

which suggests significantly worse anytime performance. To demonstrate that MF-GP-UCB was able to identify good designs,

we analyze the solution in more detail for the median of the 10 repeats. The year-long sequence of the day-averaged control

trajectories are shown in Figure 6. Although we see that the average net heating is higher during the summer than winter, there

is no clear trend in these results, which highlights the need to consider short time-scale phenomena when dealing with highly

variable disturbances. Based on these daily averaged profiles, we selected three consecutive summer and winter days to plot at

the hourly scale in Figure 7. From this figure, we can see the cyclic nature of the state and control profiles from day to day as

well as strong seasonal effects that result in vastly different control strategies.

https://github.com/kirthevasank/mf-gp-ucb
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FIGURE 6 Year-long trajectory of the daily average control strategy during business hours (8am to 6pm) for the MF-GP-UCB
solution to (27). Days 5-8 and 177-180 are highlighted in red, and are shown in detail in Figure 7 to highlight the differences in
winter versus summer operation

6.3 Applying MF-GP-UCB to MPC-based IDC under Different Levels of Uncertainty

In this section, we utilize a stochastic uncertainty sequence such that we must rely on MPC to adapt the control input under

different realizations of the uncertainty. The MPC problem, which we apply to the previously described building HC system

with renewable energy storage, can be defined as follows

min
xt+k|t,ut+k|t,"t+k|t

∑Np−1
k=0 �Gt+ku

G
t+k|t + �‖st+k|t‖1, (28a)

s.t. xt+k+1|t = ℎt+k(xt+k|t, ut+k|t, ŵt+k|t, d), ∀k ∈ {0,… , Np − 1}, (28b)

ŵt+k+1|t = qt+k(ŵt+k|t), ∀k ∈ {0,… , Np − 2}, (28c)

{xt|t, ŵt|t} = {xt(d, z,!), wt}, (28d)

gt+k(xt+k|t, ut+k|lt, ŵt+k|t) + zbackoff ≤ st+k|t, ∀k ∈ {0,… , Np − 1}, (28e)

ut+k|t ∈  , ∀k ∈ {0,… , Np − 1}, (28f)

st+k|t ≥ 0, ∀k ∈ {0,… , Np − 1}, (28g)
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FIGURE 7 State and control trajectories for three consecutive days in winter (blue) and summer (red) corresponding to Figure 6.

where the notation at+k|t denotes the predicted value of the variable a ∈ {x, u, ŵ} at time t + k given information up until

time t. Here, (28a) is the total cost to be minimized which is composed of the electricity price and soft constraint penalty over

the prediction horizon Np. The constraints (28b) define the predicted state sequence as a function of the predicted input and

estimated uncertainty values ŵ. Although we assumed exact knowledge of the structure of the dynamics ℎt+k(⋅) for simplicity,

this can easily be replaced with an approximate model derived from physics-based equations or black-box system identification.

The recursion (28c) computes the predicted future disturbance sequence {ŵt+k|t} given some forecasting function qt+k(⋅), while

(28d) ensures the initial state and disturbance at time t start from their most recently measured values (coming from the detailed

closed-loop simulation). Similarly to the system dynamics, we can handle any choice of qt+k(⋅) in our framework as long as

it only uses previous data to make its predictions. The set of constraints in (28e) enforce the system constraints (25) for the

predicted uncertainty values where zbackoff ≥ 0 denotes backoff tuning parameters that are able to confer strong robustness

properties (at the cost of conservative performance) when properly calibrated48. To avoid feasibility issues, we still soften these

constraints in practice with slack variables {st+k|t} with a relatively large penalty � = 103. Lastly, the desired set of hard input

constraints and positivity of the slack variabels are enforced via (28f) and (28g), respectively. We fix the prediction horizon at

Np = 24, meaning that the additional MPC tuning parameters are the two backoff values z = zbackoff corresponding to the

temperature constraints in (28e) – thus the design and tuning variables � = {d, z} are co-optimized in this section.
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To highlight the fact that we can handle any type of disturbance, instead of deriving a specific forecasting function qt+k(⋅), we

replace (28c) with the following perturbed prediction at every time step t ∈ 

ŵt+k|t = wt+k + "t+k|t, ∀k ∈ {1,… , Np − 1}, (29)

where "t+k|t are the forecasting errors that are assumed to be independent and identically (i.i.d.) distributed in terms of a Gaussian

distribution with zero mean and covariance Σ". In this case, we can think of ! as the collection of all forecasting errors, with

larger values on the diagonal of Σ" implying more challenging to predict disturbances. This will allow us to more easily illustrate

the performance of MF-GP-UCB under different levels of uncertainty. We again take the clustered 5 representative day case

as our low-fidelity model. Before we can apply the MF-GP-UCB method (Algorithm 2), we need to estimate the difference in

computational cost of these two models. One high-fidelity evaluation of the MPC-based IDC objective in (5) was approximately

2 minutes, while the clustered solution took only around 5 seconds. This implies that the cost values should be set to �(1) = 0.04

and �(2) = 1 where we have again normalized the high-fidelity cost to 1. Due to the increased complexity, we accordingly

reduced the maximum budget to Λ = 9, which includes a random initialization budget of 3.

To analyze the robustness of MF-GP-UCB to noisy objective evaluations, we apply the algorithm under two different fore-

casting error noise levels, which we denote by low variance (LV) Σ" = ΣLV" = diag(1, 1002, 102) and high variance (HV)

Σ" = ΣHV" = 2ΣLV" . Let �⋆LV and �⋆HV denote the median optimal design identified by MFBO for 10 different random seed val-

ues under low and high variance, respectively. We analyzed the quality of these solutions by performing a set of closed-loop

validation runs using a set of i.i.d. samples of !. Here, we draw two sets of 270 realizations from the LV and HV distributions

and test �⋆LV and �⋆HV on both of these cases. The average performance value (negative of the cost), as defined in (5), is reported

in Table 1 for these four cases. It is interesting to note that all four cases were found to have profitable solutions due to the fact

that we could sell a significant amount of electricity to the grid to cover our capital cost. Although profit was higher when con-

sidering the LV model in the MF-GP-UCB algorithm, this comes at the cost of a greater frequency of temperature constraint

violations during business hours, as also shown in Table 1.

TABLE 1 Estimated performance and constraint violation for the optimal solutions �⋆LV and �⋆HV (denoted by S) applying a
scenario-based verification (denoted by V) under 270 separate LV and HV disturbance realizations.

S / V Estimated performance f (�) Probability of constraint violations during business hours
LV / LV 6.965290 ± 0.000948 0.184563 ± 0.009366
LV / HV 6.505025 ± 0.001489 0.247758 ± 0.011477
HV / LV 6.718205 ± 0.000773 0.115160 ± 0.005848
HV / HV 6.317560 ± 0.001288 0.155820 ± 0.008859
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In Table 2, we again zoom in on the three summer and winter days identified in Figure 7 for each of these four cases to better

understand the impact of forecasting errors on the results. We can clearly see how the control strategy changes in each season,

with summer days incurring more frequent/larger magnitude violations while selling more electricity.

TABLE 2 State and control trajectories for three consecutive days in winter (blue) and summer (red) corresponding to the red
boxes in Figure 6 for optimal solutions �⋆LV and �⋆HV (denoted by S) applying a scenario-based verification (denoted by V) under
270 separate LV and HV disturbance realizations.

S / V Temperature [◦C] Energy from Grid [kWh] Net Heating [kWh]
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6.4 Results for MF-GP-UCB on MPC-based IDC with Three Fidelity Levels

The previous sections only consideredM = 2 fidelity levels. Here, we want to study the impact of the particular sequence of

M = 3 reductions on the IDC problem with low variance forecasting errors. To do this, we look at two different orderings of the
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same type of approximations, mainly reducing the prediction horizon toNp = 12 and time series-based clustering that we refer

to as “Case 1” and “Case 2”. Both of these cases share the same high-fidelity m = 3 and low-fidelity model m = 1 models. The

main difference is the middle fidelity m = 2, which is constructed from the reduced prediction horizon only (full time horizon)

and the clustered shortened time horizon (full MPC prediction horizon) for Cases 1 and 2, respectively. The estimated costs for

the three different fidelity levels for each of the cases was found to be

1. Case 1: {�(1), �(2), �(3)} = {0.00998, 0.5794, 1};

2. Case 2: {�(1), �(2), �(3)} = {0.00998, 0.01637, 1}.

Thus, we clearly see that Case 2 has a significantly smaller cost for the middle fidelity model compared to Case 1. To observe

any potential effects that could arise in later iterations, we set a relatively large maximum budget of Λ = 30 equivalent high-

fidelity evaluations, with a random initialization budget of 3. The MF-GP-UCB algorithm was repeated 20 times for both Cases

1 and 2. The expected simple regret versus fraction of the budget spent for the two cases is shown in Figure 8. We can clearly

see that Case 2 begins to query the high-fidelity model earlier on and at much better points on average, though this gap does

seem to close as the budget is allowed to increase. This suggests that there can be a substantial benefit in designing particularly

cheap approximations to reduce the amount of costly exploration needed at the highest fidelity levels.
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FIGURE 8 Performance of MF-GP-UCB under two different fidelity sequences for M = 3 models. In Case 1, the middle
fidelity is constructed by only reducing the prediction horizon (Np = 12) whereas, in Case 2, the middle fidelity is constructed
by clustering the disturbance time series into 5 representative days.
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7 CONCLUSIONS

In this paper, we present an efficient approach for solving computationally expensive integrated design and control (IDC) prob-

lems using multi-fidelity simulation optimization. Such IDC formulations are needed to help enable the shift to next-generation

manufacturing and energy systems that can flexibly respond to highly dynamic and uncertain conditions arising from a variety

of sources including the increased integration with renewable energy technologies. However, realistic IDC problems are known

to be challenging to solve as they are naturally formulated as large-scale, non-convex, and non-smooth optimization problems

that cannot be tractably solved using currently available methods. We overcome these challenges in this work using two key

ideas: (i) approximating the complex recourse (wait-and-see) decisions using a high-quality decision rule (DR) derived from a

model predictive control (MPC) law and (ii) applying a multi-fidelity Bayesian optimization (MFBO) to tackle the MPC-based

IDC problem in a simulation-based manner. The MFBO paradigm builds up traditional BO by taking advantage of a sequence of

lower-fidelity approximations to the high-fidelity IDC problem that can be evaluated at a fraction of the cost. Using bounds on

the quality and estimates of the costs of the approximations, we can use MFBO to sequentially select the next design and fidelity

level at which we should evaluate. We also discuss three major ways to derive low-fidelity approximations of the MPC-based

IDC cost, which includes simplifications of the system model, decision rule, and time grid – it turns out that different machine

learning-based methods can be beneficial in each of these simplification categories.

To demonstrate the effectiveness of MFBO, we compare it to traditional BO on the design of a building heating and cooling

system with solar power generation, battery storage, and grid support. We consider several sources of uncertainty, including

weather and demand conditions, that can vary at the hour scale over a year-long planning horizon; the uncertainty data was

pulled from a national database for a region in Columbus, Ohio to emphasize the practical nature of the approach. We found that

MFBO consistently found better solutions with fewer expensive function evaluations than alternative methods, especially when

the budget is very limited (10 or less total high-fidelity runs). Additionally, we found that MFBO was able to suitably handle

random forecast errors in the key disturbances and reduce constraint violations by tuning backoff values in the MPC-based DR.

We found that the ability to handle noisy function evaluations, which are inherent in IDC in the context of energy systems,

is a key advantage of the MFBO methodology that is difficult to overcome with many alternative derivative-free optimization

methods. Lastly, we analyzed the impact on the sequence of approximations impacted the convergence of MFBO. We found that

the relative accuracy and computational cost of the fidelities play an important role in the performance of MFBO in the early

iterations (with less accurate, cheaper models being preferred), while the differences in performance tended to shrink as the

budget increased. Thus, we argue that an important direction for future work is to better quantify the impact of different fidelity

models and determine rules for deriving “optimal” low-fidelity approximations. This is especially important in the context of

MPC-based IDC since, as discussed in detail in Section 5, there are many ways to derive low-fidelity approximations and some
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approaches would clearly be preferred depending on the specific characteristics of the application of interest. In addition, it has

been recently shown that significant improvements in the convergence rate of BO can be achieved when the cost function can

be broken down into a composite function (i.e., f (�) = g(ℎ(�)) where g(⋅) is a known function and ℎ(⋅) is an unknown vector-

valued black-box function)49. It is expected that similar performance gains could be obtained in the multi-fidelity case, if this

structure (when present) can somehow be exploited by MF-GP-UCB.

DATA AVAILABILITY STATEMENT

A summary of the model equations is provided in Appendix B. The complete set of data that support the findings of this study

are openly available on Github at https://github.com/PaulsonLab/MF-GP-UCB_for_IDC.git.
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APPENDIX

A SUMMARY OF CONTRIBUTIONS IN INTEGRATED DESIGN AND CONTROL

Design and control have long been recognized as highly interdependent activities that should be performed simultaneously to

readily identify process designs with high operational flexibility. Integrated design and control (IDC) refers to a broad collec-

tion of methods that systematically account for the effect of the control actions/operational decisions on the process design.

Although optimal IDC problems can be generally formulated as multistage stochastic programs, these formulations are prac-

tically intractable whenever realistic problem features are considered (long system lifetimes, significant stochastic sources of

uncertainty, and mixed discrete-continuous decisions). There has been a significant amount of work on tractable IDC methods

is available; the vast majority of these methods can be interpreted in terms of how they go about simplifying features 1 to 3

provided in the introduction. We have attempted to organize these contributions into four main topic areas, starting with the

earliest attempts at the top and moving towards more recent solution methods at the bottom. Here, we will just provide a brief

discussion on the different alternatives to motivate our selected approach. Interested readers are referred to the several excellent

review articles on IDC provided in the last row of Table A1. The earliest work on IDC focused on controllability indices that can

be computed for a local linear dynamic approximation (in the form of a state-space or transfer function model) around a partic-

ular steady-state operating condition. These metrics could then be included as constraints (or penalized in the objective) within

a standard design optimization – the main downside to these type of approaches is that they are only applicable for a limited

range of operation and thus do not directly address flexibility by considering many different operating conditions depending on

the particular realizations of the uncertainties. To address this issue, the notion of a flexibility index was introduced by Swaney

and Grossmann50, which can be formulated as a two-stage robust optimization problem. When only a discrete set of uncer-

tainty scenarios are considered, the flexible design problem reduces to a multiperiod design problem, which assumes perfect

recourse to the uncertainties and instantaneous equilibration to a steady-state in each period. To more directly handle the gen-

erally nonlinear process dynamics, Mohideen et al.51 introduced a mixed-integer dynamic optimization (MIDO) formulation

of the IDC problem assuming a proportional-integral-derivative (PID) controller structure to counteract a nominal disturbance

profile. Since MIDOs take advantage of derivative-based optimization methods, it is not trivial to extend these approaches to

more advanced control strategies, such as model predictive control (MPC), in which the input values are represented implicitly

as the solution to an underlying optimization problem. Recent work has suggested to use multiparametric MPC (mpMPC) to

derive an explicit solution to the control law that can be substituted into the MIDO52; however, this is only possible for fairly

small-scale linear system models and quadratic cost functions, which limits its applicability to flexible energy systems.
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TABLE A1 Contributions to the field of integrated design and control (IDC).

Topic Control policy Author (Year) Contribution

Controllability and
stability metrics

Morari & co-workers (1982)53,
Perkins & co-workers (1991)54,
Bogle & co-workers (1989, 2000)55,56,
Douglas & co-workers (1988)57,58,59

Controllability metrics
included as constraints or
objectives within the
optimization formulation

Two-stage flexible
process design

Pistikopolous & co-workers
(1994, 1997, 2001)60,51,61,
Floudas & co-workers
(1994, 2000, 2001)62,63,64,
Romagnoli & co-workers (1996)65,
Perkins & co-workers (1994)66,
Floudas & co-workers (1998)67,
Exler & co-workers (2008)68,
Asteasuain & co-workers (2006)69,
Vega & co-workers (2009)70.

Flexibility, feasibility, and
resilience considerations
in steady state (MI)NLP
optimization under scenario
approximation of uncertainties

MIDO PID

Pistikopoulos & co-workers (2000, 2002)71,72,
Ricardez-Sandoval & co-workers
(2008, 2012, 2016, 2017)73,74,75,76,
Swartz & co-workers (2014)77,
Biegler & co-workers (2008, 2018)78,79

Substitutes explicit decision
rule and nominal disturbance
sequence and then converts
(MI)DO into (MI)NLP using
collocation or decomposition

Linear MPC

Pistikopoulos & co-workers
(2003, 2004, 2015g, 2017g)80,81,82,83,52,
Ricardez-Sandoval & co-workers
(2011, 2013, 2014, 2015)84,85,86,87,
Engell & co-workers (2004)88,

DR-SO Adaptive thresholding

Hakizimana (2019)6,
Zhang & co-workers (2016)89,
Evins & co-workers (2015)90,
Lambert & co-workers (2006)91

Substitutes decision rule for
control policy to derive
single-stage IDC problem
tackled via simulation
optimization method

Nonlinear MPC Paulson & co-workers (2021)16,
Li & co-workers (2017)92

Review articles

Sharifzadeh(2013)93,
Gani and co-workers(2012)94,
Vega and co-workers(2014)95,96,
Ricardez Sandoval and co-workers(2009)97,
Pistikopolous and co-workers
(2004, 2016, 2019)5,98,99
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B DETAILED MODEL EQUATIONS FOR BUILDING-BATTERY-GRID SYSTEM

B.1 Building and Battery Model Equations

The building models the temperature inside a single room in a larger office building and is adapted from Gondhalekar et al.44:

ẋHC1 = 1
C1
[K3(xHC2 − xHC1 ) +K1(wHC

1 − xHC1 ) +K4(xHC3 − xHC1 ) + �1wHC
2 + �ℎuℎ + �cuc +wHC

3 ], (B1a)

ẋHC2 = 1
C2
[K2(wHC

1 − xHC2 ) +K3(xHC1 − xHC2 ) +wHC
2 ], (B1b)

ẋHC3 = 1
C3
[K4(xHC1 − xHC3 )], (B1c)

where xHC1 , xHC2 , xHC3 are the indoor building temperature, average interior wall temperature and exterior wall temperature,

respectively. The battery state of charge (SOC) is modeled as

ẋB = 100
dB

(

−uHC + uG +wB) , (B2)

where xB is the SOC in percent. All parameters and variables for these models are defined in Table B2.

B.2 System, Economic, and Constraint Parameters

The variables appearing in the system model are summarized below in Table B2 and the time-varying constraint, price, and

MPC penalty values are listed in below Table B3.



40 F. Sorouifar ET AL

TABLE B2 System model states, inputs, disturbances, and parameters

Symbol Description Units Value or Range
dPV PV array size [m2] [0, 540]
dB battery capacity [kWh] [0, 1300]
xHC1 room air temperature [◦C] -
xHC2 exterior wall temperature [◦C] -
xHC3 interior wall temperature [◦C] -
xB state of charge [%] -
uHC net heating load [kW] [-1500,1500]
uG energy from grid [kW] [-1500,1500]
uB energy from battery [kW] [-1500,1500]
x̄B SOC upper bound [%] 95
xB SOC lower bound [%] 10
vB SOC violation penalty [$] 0
v̂B SOC violation penalty [$] 2 ⋅ 106

wHC
1 outside air temperature [◦C] [-23,35]

wHC
2 horizontal solar radiation [kW/m2] [0,1033]

wHC
3 internal heat sources [kW] [25,35]

�ℎ heating efficiency - 4
�c cooling efficiency - 2
�1 window radiation coefficient - 20
K1 heat conductivity [kW/◦ C] 16.48
K2 heat conductivity [kW/◦ C] 108.5
K3 heat conductivity [kW/◦ C] 5
K4 heat conductivity [kW/◦ C] 30.5
C1 heat capacity [kJ/◦ C] 9.356 × 105

C2 heat capacity [kJ/◦ C] 2.970 × 106

C3 heat capacity [kJ/◦ C] 6.695 × 105

�PV PV price per square meter [$/m2] 44
�B battery price per kWh [$/kWh] 13.6

TABLE B3 Time-varying constraint, price, and penalty parameter values

Time-varying parameters Values in terms of daily time index, q = t mod 24 Units

q ∈ {0,… , 7} q ∈ {8,… , 18} q ∈ {19, 20} q ∈ {21,… , 24}
xHCt 30 26 30 30 [◦C]
xHCt 19 21 19 19 [◦C]
�HCt 10−4 10−2 10−4 10−4 [$ / ◦C]
�SOC 0 0 0 0 [$ / %]
�Gt 0.01 0.025 0.025 0.01 [$ / kWh]
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