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ABSTRACT 
The existence of multiple stable states of higher order 𝑚: 𝑛 

locking in coupled limit cycle oscillators has been studied by 
prior authors in the context of injection-locking in systems driven 
by an external periodic force. The current work builds on this 
concept to study the higher order locking characteristics of pairs 
of limit cycle oscillators self-synchronizing under coupling 
forces. To this end we analyze three oscillator systems: Van der 
Pol oscillators using numerical analysis, a simplified model for 
MEMS oscillators using numerical analysis as well as 
perturbation theory, and a full model of thermo-optically driven 
MEMS oscillators using numerical analysis. For the Van der Pol 
system, higher order locking is observed for the strongly 
nonlinear case corresponding to relaxation oscillations and the 
transition from weak to strong nonlinearity is studied using a 
parameter sweep. Additionally, coupling of a different nature 
such as quadratic coupling is also capable of inducing higher 
order coupling in Van der Pol oscillators. For the MEMS systems 
with linear coupling, higher order locking is observed when a 
strong cubic stiffness nonlinearity exists. Devil’s staircase-like 
structures are obtained for the coupling strength-frequency ratio 
parameter space which suggest overlapping Arnold locking 
regions for 𝑚: 𝑛 locks corresponding to different integers.   

Keywords: Higher order locking, 𝑚: 𝑛 locking, MEMS 
oscillators, Coupled limit cycle oscillators 
 
1. INTRODUCTION 

Self-synchronization of limit cycle oscillators in the 
presence of a weak coupling field has a rich body of literature 
[1,2]. In such systems, typical problems of interest are 1: 1 
frequency self-synchronization in a network of two or more 
coupled oscillators and 1: 1 frequency entrainment of one or 
more oscillators to an external periodic force. The problem of 
𝑚: 𝑛 synchronization, where 𝑚 and 𝑛 are integers, is widely 
studied for systems of limit cycle oscillators that are driven by 
an external periodic force. Some of the practical 
implementations of such systems are coupled Boolean phase 
oscillators [3], optomechanical cavities [4] and spintronic 
feedback nano-oscillators [5]. Studies on the higher order 

locking of pulse-coupled oscillators [6] and Josephson junctions 
[7] reveal the prevalence of 𝑚: 𝑛 locking in network of 
oscillators. A general theory of 𝑚: 𝑛 locking in externally driven 
systems along with specific examples of simple nonlinear 
oscillators and phase-only Integrate and Fire models is given in 
[8]. The concept of utilizing nonlinearities in the system to 
achieve 𝑚: 𝑛 locking is demonstrated for the simplest case of 
phase-only oscillators using the Adler model [2]. The Adler 
model is a first order phase-only model with a sinusoidal 
nonlinear term. In this system, non-uniformities in the 
oscillations i.e. a nonlinear increase in the phase of the oscillation 
with time, induced by increasing the strength of the sinusoidal 
term, promotes locking at an 𝑚: 𝑛 ratio. Higher order locking in 
an externally driven system is given in a recent work [9]. 
Nonlinearities in the system have also been used to achieve 
intermodal coupling via internal resonance [10].  

In the current work, strong nonlinearities in the form of 
cubic stiffness terms are utilized to achieve a Devil’s staircase-
like structure in undriven, weakly and linearly coupled MEMS 
limit cycle oscillators. First, a system of two Van der Pol 
oscillators is studied for different types of coupling and 
nonlinearity regimes. The time series, phase portraits, power 
spectra, and phase evolutions are used to determine the nature of 
locking. Next, a system of two simplified MEMS oscillators is 
analyzed numerically as well as using the two-variable 
expansion method for parameters for which it shows 𝑚: 𝑛 
locking. Building upon the results from these two models, finally 
a system of two thermo-optical MEMS oscillators is analyzed for 
higher order locking and the necessity for the presence of cubic 
nonlinearities to achieve 𝑚: 𝑛 locking is emphasized. 
 
2. VAN DER POL OSCILLATOR SYSTEM 

The archetypal self-sustaining oscillator in the literature is 
the Van der Pol oscillator with a damping term that is modulated 
with amplitude of oscillation. The equations describing two Van 
der Pol oscillators frequency-detuned with respect to each other 
and interacting via linear coupling is given by Eq. (1). 

 
𝑧1̈ + 𝑧1 − 𝜀(1 − 𝑧1

2)�̇�1 = 𝜀𝛼(𝑧2 − 𝑧1), 
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𝑧2̈ + 𝜅𝑧2 − 𝜀(1 − 𝑧2
2)�̇�2 = 𝜀𝛼(𝑧1 − 𝑧2). 

(1) 
In Eq. (1), 𝑧 denotes the oscillation variable, 𝜅 is the linear 
stiffness parameter that controls the detuning in the system, 𝜀 is 
a scaling parameter, and 𝛼 is the bi-directional coupling strength 
acting between the two oscillators. The scaling parameter 
determines the effects of nonlinearity in the system; a small value 
of 𝜀 results in quasi-harmonic oscillations of the uncoupled Van 
der Pol system with an approximately linear phase evolution 
whereas a high value of 𝜀 results in a highly nonlinear system 
exhibiting relaxation-type limit cycle oscillations. In the 
literature, relaxation-type oscillators are also sometimes referred 
to as Integrate and Fire oscillators. A system of weakly-coupled 
limit cycle oscillators exhibits self-synchronization at a 1: 1 
frequency lock for small detuning and sufficiently high coupling 
strengths. The detuning-coupling parameter space famously 
consists of tongue-like structures of synchronization called 
Arnold tongues. We now look at the synchronization 
characteristics of the system of coupled Van der Pol oscillators 
at different integer ratios 𝑚: 𝑛 and how these characteristics 
depend on the nonlinearity in the system and the nature of 
coupling.  

For the first set of numerical calculations, the scaling 
parameter is fixed at a small value, 𝜀 = 0.01, such that the 
system is weakly nonlinear. The detuning parameter is fixed at 
𝜅 = 0.26 such that the computed uncoupled drifting frequencies 
of the oscillators are 𝑓1 = 1 and 𝑓2 = 0.51 and are close to a 2: 1 
ratio.  When linear coupling is used, as given in Eq. (1), we 
observe via direct numerical integration that the system does not 
lock at a 2: 1 ratio for any coupling strength.  

Next, the nature of coupling is changed to quadratic 
coupling with the model given by Eq. (2). 

 
𝑧1̈ + 𝑧1 − 𝜀(1 − 𝑧1

2)�̇�1 = 𝜀𝛼(𝑧2 − 𝑧1)2, 
𝑧2̈ + 𝜅𝑧2 − 𝜀(1 − 𝑧2

2)�̇�2 = 𝜀𝛼(𝑧1 − 𝑧2)2. 
(2) 

For the system given by Eq. (2), a locking at 2: 1 ratio is observed 
for a coupling strength of 𝛼 = 1 with locked frequencies 𝑓1 =
1.005 and 𝑓2 = 0.502. The corresponding time series, phase 
portrait, power spectrum, and phase evolution are given in Fig. 
(1). The time series is plotted with a sampling rate of 10 samples 
per unit time and the power spectra, calculated using the discrete 
Fourier transform, have a resolution of 10−4 (1/time units). The 
numerical integration is done using the odeint function in SciPy. 
The instantaneous phase of the signal is computed using the 
analytic signal obtained from the Hilbert transform. Frequency 
locking is established by considering the Fourier frequencies 
corresponding to the dominant peaks in the power spectra. It can 
be noted that 1: 1 locking is not observed for this system even at 
higher coupling strengths. The calculations suggest that for 
weakly nonlinear (𝜀 ≪ 1) coupled oscillators, the nature of the 
coupling can determine the presence of 𝑚: 𝑛 locking.  

 
FIGURE 1: 2: 1 locking in a system of two quadratically coupled 

weakly nonlinear Van der Pol oscillators given by Eq. (2). The time 
series shows that there are two peaks of the first oscillator for every peak 
of the second. The phase portrait has a closed loop which implies that 
the relative motion of the two oscillators is periodic. The frequencies of 
the oscillators corresponding to the peaks in the power spectrum and the 
slopes of the instantaneous phase evolution are in the ratio 2: 1.  

 
The system given by Eq. (1) is then studied for a higher 

value of the scaling parameter 𝜀 = 10, which corresponds to a 
strongly nonlinear system with relaxation oscillations. This 
implies that there are two distinct time scales in the oscillations, 
fast time and slow time. The detuning parameter is fixed at 𝜅 =
0.26 such that the uncoupled (drifting) frequencies of the 
oscillators are 𝑓1 = 0.33 and 𝑓2 = 0.094. The nature of 
oscillations for 𝛼 = 0.07  is shown in Fig. (2) and it corresponds 
to 2:1 locking with frequencies 𝑓1 = 0.43 and 𝑓2 = 0.215. The 
non-uniformity in oscillations can be seen in the time series and 
the phase evolution. 

 
FIGURE 2: 2: 1 locking in a system of two linearly coupled 

strongly nonlinear Van der Pol oscillators given by Eq. (1). The 
coupling strength is 𝛼 = 0.07. The locking frequencies are 𝑓1 = 0.43 
and 𝑓2 = 0.215. The time series shows that there are two peaks of the 
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first oscillator for every peak of the second. The phase portrait has a 
closed loop which implies that the relative motion of the two oscillators 
is periodic. The frequencies of the oscillators corresponding to the peaks 
in the power spectrum are in the ratio 2: 1. The time series and phase 
evolution plots reveal the highly nonlinear nature of relaxation 
oscillations. 

 
For a fixed detuning, 𝜅 = 0.26, as the coupling strength is 

increased starting from zero, the system goes through a cascade 
of 𝑚: 𝑛 locking regimes as shown in Fig. (3). The frequency 
ratio, 𝑓1: 𝑓2, is plotted as a function of the linear coupling 
strength, 𝛼. The uncoupled frequency ratio is about 3.5 and this 
ratio decreases with increasing coupling strength. The plateaus 
in the frequency ratio plot correspond to different regimes of 
𝑚: 𝑛 locking and the system goes from 3: 1 to 2: 1 to 1: 1 locking 
with relatively large plateaus while passing through intermediate 
locking states such as 5: 2, 7: 3, 5: 3 etc. with relatively small 
plateaus. The structure resembles that of a devil’s staircase found 
commonly in limit cycle oscillators that are externally driven by 
a forcing function. The plot suggests that the presence of non-
uniform oscillations, such as those exhibited by relaxation 
oscillators, promotes higher order locking between oscillators 
even in the presence of linear coupling.  

 
FIGURE 3: 𝑚: 𝑛 locking in a system of two linearly coupled 

strongly nonlinear Van der Pol oscillators given by Eq. (1). Other 𝑚: 𝑛 
integer locks might exist but the finite resolution of the numerical 
analysis limits the ability to observe them. 

 
We have seen that for the case of linear coupling, 𝑚: 𝑛 

locking is not seen in weakly nonlinear Van der Pol oscillators 
with  𝜀 = 0.01 but is present and has a rich structure for the case 
of strongly nonlinear Van der Pol oscillators with 𝜀 = 10. The 
transition from the weak to strong nonlinear case is of interest 
and is studied using a parameter sweep of the scaling parameter, 
𝜀 ∈ (0,10) and the coupling strength, 𝛼 ∈ (0,0.15). The system 
of equations is given by Eq. (1). The frequency ratios of the form 
𝑛: 1 are shown in Fig. (4). For low values of the scaling 
parameter, 𝜀, there is no 𝑛: 1 locking observed. Regions 
corresponding to 2: 1, 3: 1 and 1: 1 locking appear for higher 
values of 𝜀. The boundaries of the 𝑛: 1 locking regions are 
diffused because of sensitivity to initial conditions and the 
resolution of the numerical method. Between the regions 
corresponding to different 𝑛: 1 locks, there are bands 
corresponding to different frequency ratios 𝑚: 𝑛 that are not 
shown. The detuning between the oscillators, 𝜅 = 0.26, is kept 
fixed and changing the detuning parameter will change the 

structure of the locking regions. In the detuning-coupling space 
we would expect Arnold tongues corresponding to the various 
𝑚: 𝑛 locking regions overlapping for higher values of the 
coupling strength. It is also worth noting that Fig. (3) 
corresponds to the projection of the plot in Fig. (4) for 𝜀 = 10.  

In this section, we noted that higher order 𝑚: 𝑛 locking in 
coupled Van der Pol oscillators is promoted by the presence of 
strong nonlinearity and can also be induced by nonlinear 
coupling terms. In the following sections we focus on 
introducing nonlinearities in the system via the stiffness terms 
that arise in micro- and nano- systems in order to study their 
higher order locking behavior. 

 

 
FIGURE 4: 𝑛: 1 locking in a system of two linearly coupled Van 

der Pol oscillators given by Eq. (1). The plot sweeps the parameters 
from the weakly nonlinear case to the strongly nonlinear case via the 
scaling parameter 𝜀. Further, the coupling strength 𝛼 is varied. 

 
3. SIMPLIFIED MEMS OSCILLATOR SYSTEM 

Clamped-clamped beams fabricated from silicon wafers and 
illuminated by a focused laser beam are known to exhibit non-
linearities including stable limit cycle oscillations [11]. A 
simplified model to describe coupled MEMS oscillators is 
presented in Eq. (3) that can capture critical properties of such 
systems and is amenable to analytical treatment [12].  

 
�̈� + 𝑧 = 𝑇, 

�̇� + 𝑇 = 𝑧(𝑧 − 𝑝). 
                          (3) 

Here, the dynamical variable 𝑧 is the displacement of the 
oscillator while 𝑇 represents the average temperature of the 
oscillator. Additionally, the parameter 𝑝 > 0 is derived from the 
equilibrium position of a corresponding laser-driven MEMS 
oscillator at minimum laser absorption. The model is a third 
order system, and the displacement and temperature variables are 
coupled to each other. In prior work [12], we have shown that 
this system exhibits a stable limit cycle having amplitude 
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√10𝑝/3. In further developments, we have considered two such 
oscillators coupled linearly and have charted the bifurcation 
structure when the two oscillators are identical [12] and detuned 
[13]. Here we investigate the nature of the coupling more 
generally. 

To study higher order locking we extend the model given in 
Eq. (3) to a system of coupled oscillators given in Eq. (4).  Our 
primary interest is in 2: 1 locking and we choose the uncoupled 
frequencies of the two oscillators to be close to this ratio. We 
also include cubic nonlinearity in the oscillators.  

 
𝑧1̈ + 𝑧1 + 𝜀2𝑧1

3 − 𝜀𝑇1 + 𝜀2ℎ(𝑧1 − 𝑧2) = 0, 
𝑇1̇ = −𝑇1 + 𝑧1(𝑧1 − 𝜀𝑝), 

𝑧2̈ + (
1

4
+ 𝜀2𝜅) 𝑧2 + (

1

4
+ 𝜀2𝜅) 𝜀2 𝑧2

3 − 𝜀𝑇2 + 𝜀2ℎ(𝑧2 − 𝑧1)

= 0, 
𝑇2̇ = −𝑇2 + 𝑧2(𝑧2 − 𝜀𝑝). 

                          (4) 
Here, ℎ(𝑧) denotes the coupling function, 𝜅 is a detuning 
parameter and 𝜀 is a small scaling parameter. We first consider 
the case where ℎ(𝑧) = 𝛼𝑧 i.e. linear coupling with scaling 
coefficient 𝛼, where 𝑚: 𝑛 locking is not observed in the 
numerical simulations with small cubic nonlinearity. We verify 
the numerical result using the method of two variable expansion 
to generate a slow flow system of equations given by Eq. (5). 
Here, 𝑟𝑖 and 𝜃𝑖 denote the amplitude and phase of the 
𝑖𝑡ℎoscillator. 

 
𝑑𝑟1

𝑑𝜁
=

𝑝𝑟1

4
−

9𝑟1
3

40
, 

𝑑𝑟2

𝑑𝜁
=

2𝑝𝑟2

5
−

6𝑟2
3

5
, 

𝑑𝜃1

𝑑𝜁
= −

7𝑟1
2

60
−

𝑝

4
−

𝛼

2
, 

𝑑𝜃2

𝑑𝜁
=

691𝑟2
2

240
−

4𝑝

5
− 𝛼 − 𝜅. 

                          (5) 
The system given by Eq. (5) does not have any fixed point such 
that 𝜃1 = 2𝜃2 + constant, confirming the absence of 2: 1 
locking. However, in the presence of quadratic coupling i.e., 
ℎ(𝑧) = 𝛼𝑧2, we obtain a different system of slow flow equations 
given by Eq. (6). 

 
𝑑𝑟1

𝑑𝜁
= −

αsin(2𝜃2 − 𝜃1) 𝑟2
2

4
+

𝑝𝑟1

4
−

9𝑟1
3

40
, 

𝑑𝑟2

𝑑𝜁
= −𝛼 sin(2𝜃2 − 𝜃1) 𝑟1𝑟2 +

2𝑝𝑟2

5
−

6𝑟2
3

5
, 

𝑑𝜃1

𝑑𝜁
=

𝛼 cos(2𝜃2 − 𝜃1) 𝑟2
2

4𝑟1

−
7𝑟1

2

60
−

𝑝

4
, 

𝑑𝜃2

𝑑𝜁
= −𝛼 cos(2𝜃2 − 𝜃1) 𝑟1 +

691𝑟2
2

240
−

4𝑝

5
− 𝜅. 

                          (6) 

For sufficiently high 𝛼, this system has a stable equilibrium with 
𝜃1 = 2𝜃2 + constant which implies the presence of 2: 1 locking. 
This is confirmed by numerical integration and analogous results 
for a phase-only model are described in a previous work [14].  

With strong cubic nonlinearities, however, we find from 
numerical integration, 𝑚: 𝑛 locking in the simplified oscillator 
pair given by Eq. (7) in the presence of linear coupling. In this 
case, the scaling parameters 𝛾1 and 𝛾2 are used to control the 
strength of the cubic nonlinearities in the two oscillators. For 
parameter values 𝛾1 = 3.5, 𝛾2 = 18, 𝑝 = 0.1, 𝜅 = 0.01, the 
uncoupled limit cycle frequencies, with 𝛼 = 0, are given by 𝑓1 =
1.243 and 𝑓2 = 0.788 and are close to a 3: 2 ratio. 

 
𝑧1̈ + 𝑧1 + 𝛾1𝑧1

3 − 𝑇1 + 𝛼(𝑧1 − 𝑧2) = 0, 
𝑇1̇ = −𝑇1 + 𝑧1(𝑧1 − 𝑝), 

𝑧2̈ + (1/4 + 𝜅)𝑧2 + 𝛾2(1/4 + 𝜅)𝑧2
3 − 𝑇2 + 𝛼(𝑧2 − 𝑧1) = 0, 

𝑇2̇ = −𝑇2 + 𝑧2(𝑧2 − 𝑝). 
                          (7) 

For the same parameter values but with coupling 
strength, 𝛼 = 0.2,  we find 3: 2 locking as shown in Fig. (5) and 
for the same parameter values but with  𝛼 = 0.5 we observe 1: 1 
locking. This observation agrees with the results from the 
previous section that strong nonlinearities promote 𝑚: 𝑛 locking 
in limit cycle oscillators.  

 
 

FIGURE 5: 3: 2 locking in a system of two linearly coupled strongly 
nonlinear simplified MEMS oscillators given by Eq. (7). The coupling 
strength is 𝛼 = 0.2. The locking frequencies are 𝑓1 = 1.345 and 𝑓2 =
0.897. The phase portrait has a closed loop which implies that the 
relative motion of the two oscillators is periodic. The frequencies of the 
oscillators corresponding to the peaks in the power spectrum and the 
slopes of the instantaneous phase evolution are in the ratio 3: 2. 

 
4. THERMO-OPTICAL MEMS OSCILLATOR SYSTEM 

The next system of interest describes the oscillations of 
thermo-optically driven MEMS limit cycle oscillators [15]. The 
system consists of two clamped-clamped beams that are driven 
by a continuous-wave laser source of constant power, 𝑃𝑙𝑎𝑠𝑒𝑟 , that 
causes the beams to bend in the out-of-plane direction due to 
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thermal effects. Part of the laser is absorbed by the silicon beam 
and part of it passes through and is reflected from the substrate 
underneath where it is reabsorbed thus setting up an 
interferometer cavity and feedback loop that drives the beams 
into limit cycle oscillations. Sufficiently high laser power is 
required to set the beams into self-oscillations. Neighboring 
beams are kept at a voltage difference of 𝑉 which sets up 
electrostatic fringing fields between them that result in coupling 
forces that are modulated by the relative out-of-plane 
displacement of the oscillators. The equations describing the 
opto-thermally driven oscillations and interaction of the MEMS 
beams via electrostatic coupling fields are given by Eq. (8). 
Beams at the microscopic scale exhibit strong nonlinearities that 
are represented by the large cubic stiffness factors 𝛽. From our 
discussion so far, we expect higher order frequency locking to be 
present in this system.  Like the previous models the detuning in 
the system is determined by the parameter 𝜅 which is pre-
multiplied with both the linear stiffness as well as the cubic 
stiffness term.  

 

𝑧1̈ +
𝑧1

𝑄

̇
+ (1 + 𝐶𝑇1)𝑧1 + 𝛽𝑧1

3 +
𝑉2(𝑧1 − 𝑧2)

1 + |𝑧1 − 𝑧2|𝑝
= 𝐷𝑇1, 

𝑇1̇ = −𝐵𝑇1 + 𝐻𝑃𝑙𝑎𝑠𝑒𝑟(𝛼 + 𝛾 sin2(2𝜋(𝑧1 − 𝑧)̅)), 

𝑧2̈ +
𝑧2

𝑄

̇
+ 𝜅(1 + 𝐶𝑇2)𝑧2 + 𝜅𝛽𝑧2

3 +
𝑉2(𝑧2 − 𝑧1)

1 + |𝑧2 − 𝑧1|𝑝
= 𝐷𝑇2, 

𝑇2̇ = −𝐵𝑇2 + 𝐻𝑃𝑙𝑎𝑠𝑒𝑟(𝛼 + 𝛾 sin2(2𝜋(𝑧2 − 𝑧)̅)).  
                          (8) 

The model parameters are fixed as follows: quality factor 𝑄 =
1240, thermal coefficient for linear stiffness 𝐶 = 2 × 10−2, 
cubic stiffness 𝛽 = 15.5, a fitting parameter 𝑝 = 2.4, static 
displacement per unit change in temperature 𝐷 =  2.84 × 10−3, 
thermal constants 𝐵 =  0.112 and 𝐻 =  6780, laser power 
𝑃𝑙𝑎𝑠𝑒𝑟  =  2 × 10−3, minimum laser absorption  𝛼 =  0.035, 
contrast in absorption 𝛾 =  0.011, equilibrium position of the 
oscillator with respect to the absorption curve  �̅� =  0.18. At zero 
coupling, 𝑉 = 0, and frequency detuning, 𝜅 = 0.14,  the system 
exhibits limit cycle oscillations with uncoupled limit cycle 
frequencies 𝑓1 = 1.173 and 𝑓2 = 0.532 with an approximate 
uncoupled frequency ratio of 2.2. At a coupling strength of 𝑉2 =
0.04, the oscillators lock at an integer ratio of 2: 1 with coupled 
frequencies, 𝑓1 = 1.136 and 𝑓2 = 0.569. The oscillation 
information associated with the 2: 1 lock is given in Fig. (6). The 
nature of oscillations in the MEMS system exhibiting 2: 1 
locking is distinguished from that of the Van der Pol system 
given in Fig. (2) as the MEMS system, even though strongly 
nonlinear, does not exhibit relaxation oscillations with two 
distinct timescales. Uniform phase evolution with integer 
locking is a useful property of the system if the coupled MEMS 
oscillators are employed as timekeeping devices. 

 
FIGURE 6: 2: 1 locking in a system of two electrostatically 

coupled thermo-optical MEMS oscillators given by Eq. (8). The time 
series shows that there are two peaks of the first oscillator for every peak 
of the second. The phase portrait has a closed loop which implies that 
the relative motion of the two oscillators is periodic. The frequencies of 
the oscillators corresponding to the peaks in the power spectrum and the 
slopes of the instantaneous phase evolution are in the ratio 2:1. The 
phase evolution is almost linear in time. 

 
2:1 locking exists in the system with strong cubic 

nonlinearities even when the coupling is made linear or if 𝐶 = 0. 
But when the cubic nonlinearity is suppressed, 2: 1 locking of 
the oscillators is not observed numerically. A parameter sweep 
was performed for 𝜅 = 0.24, 𝛽 = 0, 𝑉2 ∈ [0, 0.1] and the 
frequency ratios are plotted in Fig. (7a). In contrast to Fig. (3), 
there are no plateaus corresponding to 𝑚: 𝑛 locking. This 
suggests that the term that contributes most to the nonlinearity is 
the cubic stiffness term and it is essential for achieving 𝑚: 𝑛 lock 
in the thermo-optical MEMS system. When the calculations are 
performed with 𝜅 = 0.14, and non-zero cubic nonlinearities i.e. 
with 𝛽 = 15.5,  2: 1 and 1: 1 locking are observed as shown in 
Fig. (7b). 

 

 
                    (a)  
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(b) 

FIGURE 7: (a) 2: 1 locking is not observed in a system of two 
coupled thermo-optical MEMS oscillators with cubic nonlinearities 
suppressed (𝛽 = 0). (b) 2: 1 and 1: 1 locking is observed in a system of 
two coupled thermo-optical MEMS oscillators with cubic nonlinearities 
present (𝛽 = 15.5). The oscillator model is given by Eq. (8). There are 
no intermediate states of 𝑚: 𝑛 coupling between 2: 1 and the 1: 1 
coupling regimes. 

 
5. CONCLUSION 

Three coupled oscillator models were analyzed for the 
presence of higher order 𝑚: 𝑛 frequency self-synchronization: 
the Van der Pol system given by Eqs. (1) and (2), the simplified 
MEMS oscillator model given by Eqs. (3), (4) and (7), and the 
thermo-optical MEMS oscillator system given by Eq. (8). In the 
Van der Pol model, strong nonlinearities which result in 
relaxation oscillations promote locking in an 𝑚: 𝑛 ratio in the 
presence of linear coupling. Furthermore, higher order locking 
in the absence of strong nonlinearities is seen when the coupling 
is quadratic. In the simplified and thermo-optical MEMS 
models, strong cubic nonlinearities promote higher order locking 
in systems with weak linear coupling. The presence of multiple 
stable 𝑚: 𝑛 lock states for the same detuning levels but for 
different coupling strengths allows for the possibility of 
applications such as performing basic computations such as 
multiplication and division using MEMS oscillator arrays. 
Future directions of work would involve mapping the Arnold 
tongues corresponding to each of the 𝑚: 𝑛 locked states in the 
MEMS oscillator model and explaining the physical intuition 
behind 𝑚: 𝑛 locking in the case of undriven systems of coupled 
limit cycle oscillators. 
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