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Abstract

The operator product expansion (OPE) on the celestial sphere of conformal primary
gluons and gravitons is studied. Asymptotic symmetries imply recursion relations be-
tween products of operators whose conformal weights differ by half-integers. It is shown,
for tree-level Einstein-Yang-Mills theory, that these recursion relations are so constrain-
ing that they completely fix the leading celestial OPE coefficients in terms of the Euler
beta function. The poles in the beta functions are associated with conformally soft

currents.
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1 Introduction

The subleading soft graviton theorem implies that any quantum theory of gravity in an
asymptotically flat four-dimensional (4D) spacetime has an infinite-dimensional 2D confor-
mal symmetry [1,2]. This symmetry acts on the celestial sphere at null infinity, with Lorentz

transformations generating the global SL(2,C) subgroup [3]. 4D scattering amplitudes in



a conformal basis transform like a collection of correlators in a 2D ‘celestial conformal field
theory’. Properties of the so-defined celestial CFTs have been extensively studied and dif-
fer in ways which are not yet fully understood from those of conventional CFTs. Celestial

operator spectra were studied in [4-11] and celestial scattering amplitudes in [12-25].

In a general celestial CF'T, the operator spectrum is continuous, with one continuum
for every stable species of particles. Unstable particles decay before reaching infinity and

are not part of the data on the celestial sphere. For a stable particle of spin s, a complete

A+s A—s)

basis is given by celestial conformal primaries with conformal weights (h, h) = (252, 25

and Re(A) =1 [5].

In this paper we study the operator product expansion (OPE) of these celestial pri-
maries. Poles in the celestial OPE for massless particles turn out to be Mellin transforms of
collinear singularities in momentum space which can be computed with Feynman diagrams.
The OPEs follow from the three-point vertices coupling the stable particles. We derive a
simple and universal formula (12) relating the conformal weights in the operator product

expansion to the bulk scaling dimension of the three-point vertex.

Celestial CFTs are subject to multiple infinities of asymptotic symmetry constraints
beyond the familiar ones following from 2D conformal symmetry. These constraints have no
analogs in conventional CFTs. They follow from the leading and subsubleading soft graviton
theorems and, if there are gauge bosons, the subleading soft photon/gluon theorem. On the
face of it, it would seem impossible for a collection of celestial amplitudes to satisfy additional
infinities of constraints, but of course we know this seemingly overconstrained problem must
have a solution as many celestial amplitudes have been explicitly constructed. So far there

has been little study of the implications of these constraints.

In this paper we show that the additional symmetry constraints have remarkable impli-
cations for the operator product expansion. They imply recursion relations between prod-
ucts of celestial operators whose conformal weights differ by a half-integer. We analyze in
detail tree-level Einstein-Yang-Mills (EYM) theory and find that the recursion relations, to-
gether with some analyticity assumptions, are so powerful that they completely determine
(at least) all the conformal primary OPE coefficients of the leading poles in the operator
product expansion. They are given by Euler beta functions (ratios of Gamma functions)

with arguments given by the conformal weights. We check that the direct but lengthier



Feynman-diagrammatic computation yields the same beta functions.

Inclusion of quantum, stringy or other corrections would introduce higher dimension
terms into the effective action. These may alter both the three-point vertices and the
(sub)subleading soft theorems, and hence the subleading terms in the OPEs in accord with
the general formula (13) below. It will be interesting to study the symmetry constraints
on OPEs in this more general context, as well as to extend the analysis beyond the leading

poles.

In a conventional (unitary, discrete) CFT, the operator spectrum and the conformal
primary OPEs fully determine the theory. Should an analogous result hold in celestial
CFT, it would suggest that complete quantum theories of gravity are determined by these
symmetry-constrained OPE coefficients. These are far fewer in number than the number
of possible terms in the effective Lagrangian. This resonates with similar findings in the
amplitudes program [26-30]. It would be interesting to study further constraints among

these OPEs from crossing symmetry.

This paper is organized as follows. Section 2 contains conventions and useful formulae.
Section 3 begins with a general derivation of the relation between the bulk dimension of the
three-point couplings and the conformal weights of the OPE. Subsection 3.1 considers the
gluon OPE poles in tree-level Yang-Mills (YM) theory. The subleading soft gluon theorem is
shown to imply recursion relations among the OPE coefficients, with the overall normaliza-
tion fixed by the leading soft gluon theorem. For the collinear pole terms, these are uniquely
solved — subject to certain falloffs at large operator dimension — by Euler beta functions.
Subsection 3.2 derives similar results, invoking the subsubleading soft graviton theorem, for
the graviton OPEs in Einstein gravity, while 3.3 derives the EYM gluon-graviton OPEs.
In section 4, building on previous analyses of collinear limits of gravitons and gluons, we
directly compute the collinear singularities in momentum space and then the OPE poles
via a Mellin transformation. This direct analysis fully agrees with the symmetry-derived
results. We generalize our results for operators associated to incoming and outgoing parti-
cles in section 5. The EYM OPEs are all summarized in section 5.3. Appendix A details
the relation between the bulk scaling dimension of a three-point vertex and the conformal
weights entering the OPE. Appendix B presents the list of all OPE coefficients which can be
generated by higher-dimension operators. In appendices C and D we review the unbroken

global symmetries which are related to the subleading soft gluon theorem and subsubleading



soft graviton theorem and used to derive the recursion relations. In appendix E we solve the
recursion relations for the beta function and spell out the regularity conditions which make

the solution unique.

2 Preliminaries

In this section we give our conventions for celestial scattering amplitudes and collect some

useful formulae.

Celestial amplitudes A of massless particles are obtained from momentum-space ampli-
tudes A (including the momentum-conserving delta function) by performing Mellin trans-

formations with respect to the particle energies [5,12]

n 00
1 = = | | Ap—1 = =
Asl---sn(Alathla"' 7Anaznazn) = ( / dwk wkk ) Asl---sn(‘slwluzlvzlv"' 7€nwnaznuzn)7
k=10
(1)

where the helicity sy = 41 for gluons and s, = 42 for gravitons. In order to write

momentum-space amplitudes as functions of (exwg, 2k, Zx), we parametrize the Cartesian

coordinate massless 4-momenta components as
p’,j _ Sk
V2

with = 0,1,2,3, ¢, = £1 for outgoing and incoming momenta respectively and helicities

(1 + 22, 21 + 2, —1(2k — Z1), 1 — 21%k), (2)

are defined with respect to outgoing momenta. In the following two sections we compute
OPEs of outgoing states with ¢, = 1. We finally explain how to generalize the analysis to
mixed incoming and outgoing OPEs in section 5. Color indices and in/out labels on celestial
amplitudes are suppressed. We later use A to denote color-ordered partial amplitudes. We
note that

D1 D2 = —€1€2W1Wa212%12, (3)
where

219 = 21 — 22, Z12 =21 — Z2. (4)

For coordinates

o =u0,0:¢" (2, 2) + rq"(z, 2),

1
¢ (z,2) = 7 (14+2z,z+ 2, —i(z — 2),1 — 22),
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the flat metric is
ds* = datdz, = —2dudr + 2r*dzdz, (6)

the celestial sphere is conformally mapped to the celestial plane and z; is the spatial location
at which a particle of momentum p;, crosses Z7. A transforms as a correlator of n weight
(hg, hy) = (%, @) primaries under conformal transformations of the celestial plane.
In the next two sections we consider only OPEs between outgoing particles, and use Oa s
to denote a generic such primary, O for a primary gluon where s = +1 (with a an adjoint
group index) and G% for a primary graviton with s = +2. In section 5 we reintroduce the
additional label € to distinguish between incoming and outgoing operators Of .. (Whenever
the label is absent, the operator is taken to be outgoing.) Group structure constants fo,

obey the Jacobi identity
fabdfdce 4 fbcdfdae + fcadfdbe — O, (7)
and generators are normalized such that

Te(T°T") = gy p 0™, (8)

where 7' are in the fundamental representation. We work with the following polarization

vectors for massless spin-1 particles

1 1
o _ i - _ 1
€ b= azkpk, €k = —82kpk7 (9>
€Wk €Wk
and polarization tensors 5?‘“’ = 5?“52“’ for massless spin-2 particles. These obey
- _ + . —
D1 €y = QWiZ12, P1-Ey = €1W1Z12. (10)

Generically, the Mellin transform wy-integrals converge only for restricted values of Ay.
For example in gauge theory they converge on the unitary principle series with Re(A) = 1.
However we will be interested in the celestial amplitudes for other complex values of Ay,

where we define them by analytic continuation.

3 OPEs from asymptotic symmetries

In this section we study OPEs of conformal primary gluon and graviton operators on the

celestial plane labeled by (z,z). z and Z will be varied independently. (These variables are
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independent in (2,2) signature, for which the celestial plane becomes Lorentzian.) Moreover
we consider only the ‘holomorphic limit’ 215 — 0 with 2z, z; fixed. Symmetry implies similar
OPEs for z;5 — 0 with 21, 2o fixed. However, order-of-limits subtleties arise when both
z12 — 0 and Z;p3 — 0 [31-33]. These are likely important for the structure of celestial

amplitudes but are beyond the scope of this paper.

Singularities in the celestial OPEs are the Mellin transforms of collinear divergences in
the momentum-space scattering amplitudes. This allows us to deduce some simple properties
of the OPEs without any detailed computations. Collinear singularities arise when p||py for
massless particles which couple via a three-point vertex to form a nearly on-shell internal

particle. The resulting propagator is proportional to 1%172 which, according to (3), diverges

as i for z15 — 0. Hence two-operator OPE singularities are at most simple poles in

z13. Schematically the OPE of conformal primaries Oa , with conformal weights (h,h) =

(842, 2=2) takes the form

1
OA1,S1 (Zl, 21)0A2782(22, 22) X _Z OA3,53 (2’2, 22) + OI‘del‘(Z%). (11)
12

Contributions to the OPE (11) arise from the three-point interaction vertices in the
expansion of terms in the bulk effective Lagrangian around flat space. Since gravitons and
gluons have bulk scaling dimension one, these are characterized by bulk dimension dy =
3 4+ m, where m is the number of spacetime derivatives. For example the most relevant
gluon-gluon-graviton vertex hdAJA has dy = 5, while the gluon-gluon-gluon vertex A0AA
has dy = 4. The conformal weight A3 of the operator on the right hand side of (11) can be
inferred from dy,. Each derivative leads to one extra factor of w inside the Mellin transform
(1), and therefore shifts Az up by one. Accounting for all the factors of w (including two
in the internal propagator), one finds that the OPE of two operators of conformal weight
A7 and Ay which couple via a three-point vertex of bulk dimension dy can only produce an

operator with conformal weight
A=A+ Ay +dy — 5. (12)

Details are in appendix A. Further, insisting on conformal invariance, one finds that the



contribution to the OPE from a vertex of fixed dy must take the form?

OAl,Sl (Zla 21)0A2782(Z27 22)
dy—4 — (13)
. n—1-ay—4—m —
~ § CTL,dV (A17 817 A27 82)Z12 212 OAl—I—A2+dv—5,81+82+3+2’n—dv (227 ZQ)'
n=0
Although in the most general case (13) is an infinite series when summing over dy, many

terms are eliminated when the spins range over limited values. For example in a theory with
only s = +1 gluons the OTO™ OPE in (13) reduces to the two terms?

_ _ . d -3 _d — _
01 (21,2104 (22, 22) ~ i f, (Cd%—z,dvzlg/z e 2OIT+A2+dV—5(z2’ 2) (14)

dy /2—4 _dy /2—1 ~— _

+ CdTV_37dV’21¥ Ziy OA?+A2+dV—5(Z27 Z2)> .

In this paper we consider in detail only symmetry constraints on the leading (n = 0) pole
terms in EYM theory, for which there are only seven nonzero coefficients cg 4, with dy = 4, 5.
These are all completely fixed by asymptotic symmetries and summarized in section 5.3.

Equally powerful symmetry constraints apply to all terms in the expansion (13), but the

more intricate higher-order analysis is left to future investigation.

3.1 Gluons
In this section we consider pure renormalizable glue theory with dy = 4. In this case,?
i ab
OZ?(Zl, zl)OXZ(ZQ, 22) ~ — B CC(Al, A2)0Xf+A2—l(z2’ 22), (15)
12
+a = —b = z.fabc —c =
OA1(21,Z1)OA2(Z2,Z2) ~ = > D(A17A2)OA1+A2_1(Z2722>7 (16)
12

for some to-be-determined coefficients C'(Ay, Ay) = C(Ay, A1) and D(A1,Ay). OO0~ is

nonsingular in zj5. For gluons, the conformal primaries with Re(A) = 1 are a complete basis

1 Since there are no gauge and coordinate invariant dys < 4 relevant operators in a theory with only

gluons or gravitons (except of course the cosmological constant, which we assume vanishes!), there are no

— singularities.
Z12Z12

2Due to the lower limit in (13), the second term is absent for dy = 4.
3 Additional terms on the right hand side in the presence of gravitons are determined in subsection 3.3.

An F3 term with dy = 6 would lead to an O~ term on the right hand side of (15).



of square-integrable wave packets [5]. We see that in the renormalizable theory the OPEs

(15), (16) close on such operators.

The OPE coefficients are subject to a number of symmetry constraints. The simplest is
translations P towards the ‘north pole’ of the celestial sphere, which involves a factor of w in

momentum space. In a conformal basis, this symmetry shifts the operator dimension [7,19|:
6p0X"(2,2) = Oiil(z, zZ). (17)

Acting on both sides of (15) and (16) with dp gives the recursion relations
C(A1, Q) =C(A1 +1,A:) + C(A, Ay + 1), (18)

D(Al,Ag) :D(A1+1,A2>+D(A1,A2+1) (19)
Such relations were also found in [11].

Next, the leading conformally soft theorem is [20-22]
if",

Ahl{ll OX! (21, 21) O30 (22, 22) ~ —m(?ii(% Z). (20)
This implies poles in C' and D with residues
A1—1 A1—1

Further, less familiar, constraints come from the subleading soft symmetry parametrized

by (Y** Y*%). Under these symmetries, the gauge field on Z* shifts by [34]
Sy A? = ud?Y*, Sy AL = udiy*. (22)

If the right hand side is nonzero, the symmetry is spontaneously broken. The unbroken

symmetries are the most useful for present purposes. These correspond to Y?** = ze* €*

and Y?* = Ze® € for constant €*. As shown in appendix C (see also [34]), for the global

symmetry Y?*® = ze® conformal primary gluons transform as

50X (2,2) = —(A — 1 £ 1+ 20.)if% 0% (2, 2). (23)
Similarly for Y** = Ze® we have

505 (2,2) = —(A — 1 F 1+ 20:)if% 0% (2, 2). (24)
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Since they are unbroken, the Ward identities for these symmetries involve no soft insertions

n n

> {0160y 0,) =0, > {0180+ 0,) = 0. (25)

k=1 k=1

We now extract the consequences of this global symmetry for the OPE (15). This is
complicated by the appearance of derivatives in the transformation laws (23) and (24) which
mix up primaries and descendants, and therefore do not map the leading OPE relations (15)
and (16) to themselves. These bothersome terms can be eliminated in § by considering the
special case z; = Z = 0, where (15) still holds. (The z-analog of this trick cannot be used
to analyze the implications of § symmetry because (15) blows up for z; = z; = 0.) Acting
with &4 on both sides of (15) we get

(A1 = 2)if% 0% _1(21,0)0£ (22,0) + (Ag — 2)OL% (21, 0)i f*,OXE_1 (22,0)
AL+ 2Ny —3 (26)
~ T RO(AL Do) f L OK A, (22, 0).

212

Using the OPE again on the left hand side we obtain the consistency condition

(A1 =2)C(A1 — 1, A0) f% P+ (A = 2)C(A, Ay — 1) f°,

(27)
= (A1 + Ay = 3)C(Ar, Do) f 15

Applying the Jacobi identity (7) this implies
(Al - Q)C(Al - 1, AQ) - (Al + AQ - B)C(Al, Ag) (28)

Under suitable assumptions spelled out in appendix E about boundedness and analyticity
in Ay, Ay (basically that there are no poles other than those implied by the soft theorems),

(28) together with the normalization condition (21) have the unique solution?
C(A1,Az) = B(A1 — 1, A5 — 1), (29)

where B is the Euler beta function

L(2)C(y)

Fx+y) (30)

B(x,y) =

4 Symmetry of C(A1,Az) under A; <+ Ay together with the subleading soft symmetry constraint (28)

in fact imply the translation invariance relation (18), which therefore does not further constrain C.



Acting with &, on both sides of (16) gives a slightly different result because of the 4 in (24).

Instead of (28) we find two different recursion relations

(A1 —2)D(A) — 1, A9) = (A1 + Ay — 1)D(Ay, Ay),

(31)
AoD(A1, Ay — 1) = (A1 4+ Ay — 1)D(Aq, Ay).
Again, (31) together with the normalization condition (21), have the unique solution
D(Al,Ag) :B(Al —1,A2+1) (32)

(29) and (32) agree with the expressions previously obtained in [20] by direct Mellin transform
of the collinear singularities in momentum space. Here we see the OPE is entirely fixed by

symmetries.

In fact there are further consistency conditions, which we did not need to use to fix C'
and D, but it can be checked that they are satisfied. One of these is that the OPEs have
properly normalized poles at A; — 0 corresponding to the subleading soft theorem. This is
indeed manifest in (29) and (32). We have used here only a few global symmetries. There are
infinitely many more constraints from the infinity of soft symmetries. However these may all
be obtained by commuting the global symmetries with the local conformal symmetry, which

is manifestly built in to our construction and so their satisfaction is guaranteed.

3.2 Gravitons

For gravitons in Einstein gravity the three-point vertex has dy = 5. According to (13) this
leads to an OPE of the form?®

3
GA,(21,21)Gx5, (22, 22) ~ Z—mEﬂ:(AhAﬂGZMQ(@@)a (33)
12

for some to-be-determined coefficients E, (A1, As) = E (A9, Ay) and E_(Aq,Ay), while
G~ G~ is nonsingular in the z;5 — 0 limit. As for the case of gluons, translation invariance

implies the recursion relation

Ey(Ar, Ag) = Ex (A1 +1,89) + EL (A1, Az + 1), (34)

=5
5A contribution of the form %E;(Ah A2)G A 4,44 to the GLGL OPE might for example be gener-

ated by an R? correction to the Einstein-Hilbert action.
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The residue of a pole at A; — 1 is fixed by the the leading soft graviton theorem?® [24]

. K —

Alirill Ei(Al, AQ) ~ —m, R = 327TG (35)

The subleading soft symmetry corresponds to 2D conformal transformations, which are
generated by the shadow of G [7,10,35,36]. However, by working in a conformal basis, we
have already ensured that the OPE is conformally invariant, and no further constraints on

E. are obtained from the subleading soft symmetry.

The role of the subleading soft gluon theorem in constraining gauge theory OPEs is here
played by the subsubleading soft graviton theorem, which implies further global symmetries.
We show in appendix D that the relevant gravitational analog of the gauge theory relation
(24) is

6GA(2,2) = —7 [(AF DA F2- 1) +4(A F2)20; + 3202 GX,(2,2). (36)

However, to study the consequences of this symmetry on the OPE, we cannot directly set
Z1 = Zy = 0 in (33) because that will set the right hand side to zero and no useful relation
would be obtained. To avoid this we first differentiate with respect to z;, and then set

Zy = Zo = 0. The positive helicity graviton OPE in (33) is then

0z, GX (21,0)G}, (22,0) ~ %GLJ&Q(@, 0). (37)

Equation (36) becomes
3G (2,0) = —Z(A —2)(A = 3)G%_(2,0), (38)

and in addition implies
30.G%(2,0) = —Z(A —2)(A + 1)0:G%_,(2,0). (39)

Invariance of the OPE (33) then holds if and only if

(A1 +1)(A1 =2)EL (A1 — 1, A0) + (A F2 - 1)(A F 2)EL (A, A — 1)

(40)
= (Al -+ AQ + 2)(A1 —+ Ag + 2 — 1)E:|:(A1, Ag)

6Supertranslations are generated by the current P, = —% lima 1 (A — 1)85(?2
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The two recursion relations (34) and (40), together with the normalization condition (35)

are again solved by Euler beta functions
Ei(Ar, Ay) = —gB(A1 —1L,AF241). (41)

In section 4.1 (see equations (57), (58)) we directly compute the Mellin transform of the

near-collinear graviton amplitudes and find complete agreement with (41).

Additionally, the OPE coefficients £+ must have properly normalized poles at A; — 0
and A; — —1 associated to the subleading and subsubleading soft graviton symmetries,
respectively. As in the gauge theory case, we did not impose such conditions in our derivation,

but find that our results are consistent with these conditions.

3.3 Gravitons and Gluons

In this section we consider OPEs involving both gravitons and gluons. The Einstein-Yang-

Mills interaction (schematically hF?) has dy = 5. The relevant term in (13) is

z
GX (21, 21) 0% (29, Z2) ~ Z—”Fi(Al, D)X, A, (22, 22). (42)
12

Translation invariance again implies the recursion relation (18) for Fy. A second set of
relations is determined from the global symmetry associated to subsubleading soft graviton

theorem, whose action on gluons is shown in appendix D to be

K

605 (2,2) = 1 [(AF1-1)(AF1)+4(AF1)20; + 32°92] OX*(2, 2). (43)
Consistency of the OPE with this symmetry requires

(A1 +1)(A1 = 2)FL (A1 = 1, A) + (A F1 = D)(As F ) Fe (A1, Ay — 1)

(44)
= (A1 + D F1-1)(A1 + Ay F1)FL(A1, Ay),

where these relations are derived by studying the OPE of 8z, G} (z1,0)03%(22,0) as in the

previous section. Fixing the normalization with the leading soft graviton theorem one finds

Fe(Ar, Ag) = —%B(Al — 1, Ay F1+1). (45)

12



In the presence of gravitons, the right hand side of the gluon OPE (16) can also receive
a correction of the form

O%%(21,21)0) (22, 22)

i ab B - z B -
f CB(Al — 1, AQ + ]‘)OAT+A2—1(Z2’ 22) + 5abz—12H(A1, A2)GA1+A2(Z2’ 2’2),
12 12

corresponding to the fact that two gluons can make a graviton. This new term might seem

(46)

~ —

to violate the subleading soft gluon theorem. Indeed, we will find shortly that symmetry
constrains H to have a pole associated with the subleading soft gluon symmetry at A; = 0.
However, as shown in [37,38|, this theorem is corrected at tree-level in Einstein-Yang-Mills
theory by the hF? coupling! The known form of the correction in fact can be used to fix the

constant normalization of H.

Translation invariance implies H obeys a recursion relation of the form (18), while the
subsubleading soft graviton theorem implies H obeys the recursion relation
(A1 +2)(A1 —1)H (A1 — 1, 00) + Ag(Ag + 1) H(Ay, Ay — 1) (47)
= (A1 + A2+ 2)(A1 + A + 1)H(A, Ay).

The properly normalized solution is
H(AL,Ay) = gB(Al,A2 +2). (48)

The symmetry-derived results (45) and (48) agree with the Mellin transforms of direct Feyn-

man diagram computations found in the next section.

The appearance of a graviton in the OPE of two gluons is presumably the boundary
manifestation of the still-enigmatic double-copy relation [39-41|, in which gravity is the
square of gauge theory. A remarkable discovery due to Stieberger and Taylor [32,42] is that
a pair of collinear gluons in a scattering amplitude can be replaced by a single graviton. If
we take A; = Ay = 0 in (46), the right hand side contains G|; which is the shadow of the
boundary stress tensor. This is a Sugawara-like construction of the stress tensor from a pair

of subleading soft currents. We leave these fascinating connections to future exploration.

4 OPEs from collinear singularities

In this section we directly compute the celestial OPEs among gravitons and gluons in EYM

by Mellin transforms of Feynman diagrams. We begin by reviewing the collinear limits of

13



gauge and gravity amplitudes. The various OPEs are derived by Mellin transforming the
corresponding amplitudes in the collinear limit and found in all cases to agree with the
symmetry-inferred results summarized later in section 5.3. The OPEs among gluons were
already derived in this manner in [20]. Their computation confirms (29) and (32) and will

not be repeated here.

4.1 Gravitons

The collinear limits of gravity amplitudes were first derived in [43] and further developments
are in [44,45]. The leading divergence is generically protected against loop corrections [43].

Here we specialize to a holomorphic collinear limit.

Consider a tree-level n-graviton scattering amplitude. In the limit when z; — 0 for

fixed Zz;, z;, the amplitude contains a universal piece which factorizes as

lim Aslmsn(pla U >pn) — Z Spllt;sJ (piapj)Asl---s---sn(pla U >P> e apn)> (49)

Zij—>0 —12
where in the collinear limit”
Pl =pl +pf, wp=uw;+w. (50)

The collinear factor Split; , (p:, p;) then takes the form [43]®

_ 2 — 3
R Z;; W K Z;; W

Splits, (pi, p;) = — =2 =2 Splity 2, (pi,pi) = —= 2~ (51)
22( ‘ J> 2Zij wiwj 2 2( ’ j) QZZ'j wiw%

with all other combinations of helicities vanishing. In the collinear limit, the celestial gravity

amplitude A becomes

Jz(sl---sn (Ala 21, Z17 Ty Ana Zn;s Zn) ﬂ)
n_ poo - ' (52)
H/ dwk kak ! Z Sphtzigj (piapj)Asl---s---sn(pla o >P> e >pn) +oeee
k=170 s=42

TAt subleading order in z;;, (50) receives corrections, but these do not affect the leading singularities

considered here. For a discussion of subleading terms see [32].
8We work with the Einstein-Hilbert action normalized as S = % f d*x\/—gR, Juv = Nuv + Khy,. This
(pr-e*)?

yields the following leading soft factor S’(jg) =53 T

14



To simplify, we make the following change of variables,
w; = twp, w; = (1 —t)wp, (53)

so that for example

00 (e} = 1 00
) - . R Z3j _ L ; —
/ dwiwfl_l/ dijjAJ 1Sp11t§2(pi,pj) - ———j/ dt t2 72 (1)~ 2/ dwp wﬁﬁAJ "
0 0 =ij Jo 0
(54)
The t integral is immediately recognizable as the integral representation of the Euler beta

function,
1
Bla,y) = / dt 11 (1 — £, (55)
0

whose origin is hence a splitting factor for the conformal weight between the two collinear
external particles. Since the only ¢ dependence on the right hand side of (52) comes from

Splitzisj (pi, pj), one finds

lim Avsl---2---2---(A17 21, 217 T 7Ai7 Ziy Zi7 T 7Aj7 Zj, Zjv o ) —
e (56)
- giﬂB(Al - 1, Aj - 1)./2(31...2...(A1, 21, 21, tee ,Ai + Aj, Zj, Ej, c ) + order(z?j).
ij

Since this holds in any celestial amplitude, it implies the leading OPE between two positive

helicity gravitons is

KZ
GE, (21, 21)GA, (22, 22) ~ —§£B(A1 — 1,05 — 1)GE 4 a, (22, %), (57)

212

in agreement with (41). By similar arguments, one also finds the following leading OPE

between opposite helicity gravitons

KZ
G}, (21,21)Ga, (22, %) ~ —§£B(A1 — 1,85 +3)Gx, 4 a, (22, %), (58)

212

again in agreement with (41).

4.2 Gravitons and gluons

In order to derive graviton-gluon OPEs from collinear limits of EYM amplitudes, we here

derive the collinear limits of conventional momentum-space amplitudes.
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We start with the general Stieberger-Taylor formula which relates a momentum-space
amplitude of n gluons and one graviton to a sum over color-ordered partial amplitudes of
n + 1 gluons [46]°

n—1
K
Asl---sn;:l:2(p17 e 7pn7p> = _5 Z(gi(p) : XZ)Asl---sZ +1 sz+1---sn(p17 Do Py P, 7pn)7
=1
(59)
where p;, ¢+ = 1,...,n are the momenta of the gluons, p is the momentum of the graviton,

(p) is the polarization of a gluon of momentum p and

14

Xe =YDk (60)

k=1
This formula allows us to determine collinear graviton-gluon limits from collinear gluon
limits. The known leading collinear behavior of gluon amplitudes arises from adjacent gluons

in color-ordered partial amplitudes [47]

lim Asl---Sn(pla P Py >pn) — Z Spht;s] (piapj)Asl---s---sn(pla e >P> o >pn)>

z,-j—>0 11
(61)
where P was defined in (50) and the non-vanishing Split; , (p;, p;) for collinear gluons are
given by
1 wp 1 w;
S ltl i i) — — S l't_l i i) — — J .
plity, (pi, ;) v w05’ plit,— (pi, p;) o oor (62)

Consider the collinear limit between a positive helicity gluon of momentum p; and a positive
helicity graviton. In the collinear limit, the leading order contributions from the right hand
side of (59) are just the two terms where the gluon of momentum p which replaces the

graviton is adjacent to the i*" gluon:

lim OAsl---l---sn;2(p17 oy DPiy 7pn7p)

Zi—2—r
— - E [(E+(p) ' Xi—l) AS1~~'82‘71 1 Si'"Sn(pb oy PDi—1, D Piy 0 apn)

2
+ (€+(p) . XZ) A81“'8i 1 sit1-8n (p1> 5 Dis Py Dik 1yttt apn)}

K 1 wp
— - §€+(p) - (Xi — Xi-1) o Z@Asl---si,l 1 si+1---sn(p17 o Piet, PoDigas o Dn)-
(63)

9Note that e*(p) - xn, = —e*(p) - p = 0 by momentum conservation, hence the sum in (59) can be taken

from 1 to n.
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We use (60) to further simplify
Xi — Xi—-1 = Pi (64)
and using (10),
et (p) (—Xi-1 +xi) =" (p) i = wi(Z — 7). (65)

Putting it all together, we obtain the following collinear limit for a positive helicity

gluon and graviton

lim Ayt (D1, S Dis Py D) —
zi—z—0
K Z; — ZWwp (66)

22—z w

Asl---si,l 1 sj41:5n (p1> ©Pi-1, P> Pit1 - >pn)

By similar arguments, keeping only singular terms in z; — 2, we obtain the following

collinear graviton-gluon limit for the mixed helicity case

lim Asl---—l---sn;2(p17 Y Z PR ,pn7p)
zi—z—0
) (67)

KZi—Z W
Asl---si,1 -1 8i+1"'5n(p17 ©Pi-1, P> Pit1 - apn)

22z — zwwp

Taking Mellin transforms, we find the leading OPEs

K 212

Gil(zl, 51)013(22752) ~ _5_212B(A1 -1, A2)OZ?+A2(Z2722)7 68)
s 68
e KZ Y ~
GZ1(21,Z1)0A2(Z2722> ~/ —EZ—EB(AI - 17A2+2>OA1+A2(Z27Z2)7

which agree with equation (45).

Now we compute the graviton contribution to the mixed helicity gluon OPE. Since we

are interested in the contribution from G~ to the OtO~ OPE, consider the on-shell vertex

V(p1, p2,ps) = —ird™ [(ef - e5)(ed - p1)(ex - p2) — (e -p2)(eq -p1)(ey -e5)] . (69)

Here €1, e5 are the polarizations of the positive and negative helicity gluons of momenta p;,
p2 and colors ay, ay respectively. 5§W = 5@55 is the graviton polarization. Evaluating in

our parametrization (2) and (9), the on-shell vertex becomes

V(p1,p2,p3) = —ik6™ 2wiwaZis. (70)
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In (2,2) signature, the result is non-vanishing and upon taking z; = 2z, = 23, momentum

conservation reduces to

W1+WQ+W3:O,

(71)
W1Z1 + WoZo + w323 = 0.
Solving for z3, we find
- wir w2 - Wy
Za — Z —'— Z = VA = Z219- 72
3 W1 + Wo ! w1 + wo 2 13 w1 + wo 12 ( )

Then, accounting for the graviton propagator, we find that the collinear singularity for
opposite helicity gluons due to the EYM vertex (69) is
KR 212 W%

Split;?, (p1, p2) = (73)

— -
2212&]13

Taking a Mellin transform, we deduce that the Of%(21)O3’(22) OPE contains a term of the
form

KZ
6ab§£B(A1, Ay +2)G, in, (22, 22), (74)

212

in agreement with the symmetry-derived result (48).

5 Celestial incoming and outgoing OPEs

In this section we generalize our results to account for the presence of both incoming and

outgoing particles. We introduce celestial operators

O?Akk,sk (Zka zk) = / dwk ka’“_lOsk (ekwk, 2k Ek) (75)
0

carrying an additional label ¢, = 41 which distinguishes between outgoing and incoming
states respectively. O, (€xwy, 2k, Z) are operators associated to the standard ‘out’ and ‘in’
momentum eigenstates through the parametrization (2). Since the action of the translation
operator on ‘in’ and ‘out’ momentum eigenstates differs by a sign, the action of P on the

celestial operators generalizes to

57302,3(27 2) = EOeA—l—l,s(za 2) (76)
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Note, since the ‘in” and ‘out’ labels of asymptotic states are directly related to charges of
the corresponding operators under a global symmetry of the celestial CFT, these labels are

naturally a part of the celestial CFT data.

Likewise, since the inverse of P appears in the relevant subleading gluon and subsub-
leading graviton symmetry actions (see appendices C and D), the actions of these symmetries

(125) and (133) generalize to

IN € = = ap— K a K a € =
6“(’)&7%(2;@, Zk) = [—Ek (Ak — Sk — 1+ zkﬁgk) Tk Pk - §Zk‘/—'.]j + §Zkglj ] OAkk,sk (Zk, Zk),
< /MME = R = = € =
50&17%(2]6, Zk) = _Zek [(Ak - Sk)(Ak — Sk — 1) + 4(Ak - Sk)zkazk + 32%0%] Oﬁkk—l,sk (Zk’ Zk)’

(77)
where F and G are defined in appendix C.

5.1 Gluon OPEs from asymptotic symmetries

We now determine the OPE coefficients among outgoing and incoming gluons from (77).
The case when both operators are incoming is mostly identical to the previously studied
case with both operators outgoing since the symmetry constraints remain unchanged. That
is, up to normalization, these OPE coefficients are solved by the Euler beta functions (29)
and (32) for gluons of identical and opposite helicity respectively. We therefore consider the
OPEs of outgoing and incoming gluons where as we will see, the constraints from symmetry
differ.

Generalizing (15) and (16), we begin with the ansatz

z.fabc c,€ —
21 [C/(Ala A2>OX1+A2_1(Z27 22) (78)

HC"(Ar, Do) ORI A, 1 (22, 5)]

OX?’E(Zl, 21)0227_6(22, Zg) ~ —€

- rab
a,e - —b,—¢ = (T / —c,¢ _
OZl’ (Zl, Zl)OAI;’ (22, 2’2) ~ —E—f [D (Al, A2)0A14A2_1(22, 2’2)
212 (79)

—|—D”(A1, Ag)Oz:&_l(zQ, 22):| .
Using the generalized action of the translation operator (76), we find the OPE coefficients

must obey
C'(A1 +1,05) — C'"(A1, Ay + 1) = C'(Ay, Ay),

(80)
C"(A +1,A0) — C"(Ay, Ay + 1) = —C"(A, Ay),
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and

D/(Al + 1, Ag) - D/(Al, AQ + 1) - D/(Al, Ag),

(81)
D”(Al -+ 1, AQ) - D”(Al, AQ —+ 1) == —D”(Al, Ag)

As before, these recursion relations do not fully constrain the answer, so we turn to the
subleading soft gluon symmetry. Constraining (78) with the symmetry in (77) and following

the logic in section 3.1, we obtain the following relations

(A1 =2)C" (A1 = 1, 09) f4 fP = (A = 2)C" (A1, Ay — 1) f2, 4,
= (A1 + Ay = 3)C" (A1, ) f e

(82)
(Al - 2)0//(A1 - 17 A2) adchbe - (A2 - 2>C”(A17 AQ - 1) bdcface
= —(A1+ A5 = 3)C" (AL, Do) f, e,
which using the Jacobi identity reduce to
(A —2)C"(A; — 1,03) = (A1 + Ay — 3)C' (A1, Ay), (83)
—(Ay —2)C"(A, Ay — 1) = (A1 + Ay — 3)C' (A1, Ay),
and
(A] —2)C"(A; —1,A5) = —(A; + Ay — 3)C" (A, Ay), (84)

(Ay —2)C" (A1, Ay — 1) = (A + Ay — 3)C" (A1, Ay).

By shifting the arguments and taking a linear combination of the two constraints for each
OPE coefficient, one can verify that these new recursion relations imply the modified recur-

sion relation (80) from translation symmetry. (83) and (84) are solved by

C/(Al,A2> — _B(AQ - 1,3 - Al - Ag),

(85)
C"(A1,A) = B(A; — 1,3 A = Ay),

where we have used the celestial soft gluon theorem, generalized for incoming and outgoing

operators,

. +a,e = +b,—€ -\ z.fabc 1
lim Ox"(21,21)0, (22, 22) = —¢

te€(y 3 86
A1—1 2192 Al — ].()Az (227 22) ( )

to fix the normalization. Note that both €’ and C” are fixed by (86) due to the symmetry
of (78) under exchange of labels which implies that they have soft poles at Ay, A; = 1

20



respectively, as seen explicitly in (85). As we will see now, this will not usually be the case

and a more general argument will be needed.

For opposite helicity gluons, the soft gluon symmetry constraints on (79) reduce to

(A1 —2)D'(A; —1,A:) = (A1 + Ay — 1)D'(Ay, Ay),

(87)
—Ao D' (A1, Ay — 1) = (AL + Ay — 1)D'(Ay, Ay),
(Al - 2)D//(A1 - 1, Ag) - —(Al + AQ - 1)D//(A1, Ag), (88)
AQD//(Al, AQ - 1) == (Al + AQ - 1)D//(A1, Ag)
The leading soft gluon theorem implies
. +a,e — —b,—e¢ - 7;.fabc 1 —c,—€ —
Al?ill OAl (Zh ’ZI)OA2 (227 Z2) = —¢€ 219 Al _ 1OA2 (227 Z2)7 (89)
which together with the recursion relation (88) uniquely fixes
D"(A1,Ay) = B(A; — 1,1 — A — Ay). (90)
On the other hand, (87) is solved by
D/(Al, Ag) = CEB(AQ + 1, 1-— Al - Ag) (91)

for some yet-to-be determined constant . To fix «, consider the mixed-helicity gluon OPE,
evaluated at A; = Ay = A

OX"(21,21)0x" (20, 2)

_z'fabc
~Y

212

e [aB(A+1,1—2A)O,8¢ (22, 22) + B(A — 1,1 — 2A) O,8 7 (22, 22)] -
(92)

Taking A — 1, which corresponds to a double soft limit of a scattering amplitude, we obtain

an OPE among celestially soft operators
lim (A — 1)20Xa76(21, 21)O£b7_6(22, 22)

A—1
—if®, 1 e _ —e—e( =
~ 1o 65 il{ﬂ)l [OZ(A — 1)O2A—1(Z27 2’2) + (A — 1)O2A_1(2’2, 22)] .

(93)

The above OPE is related to another OPE for celestially soft operators

. a,e —_ —b,e _ - ra € . —c,€ _
lim (A — 1)2OX ’ (zl,zl)OAb’ (22,29) ~ —if b — lim (A —1)O57 (22, 22) (94)

A—1 210 A—1

21



by the crossing relation for soft modes [31], which on the celestial sphere takes the form

lim (A — 1)0x(2,2) = — lim (A — 1)0X* (2, 2). (95)

A—1 A—1

Comparing the two, we find
a=-—1. (96)

5.2 Gluon OPEs from collinear singularities

We now confirm the symmetry-derived results from a momentum-space amplitude calcula-
tion. As before, the OPE coefficients can be derived by Mellin transforming the collinear

splitting functions. For incoming and outgoing gluons these take the general form

LS 1 (e}
Splity%, (p1,p2) = Z—(elwl) (€2w2)P (€101 + €305)". (97)
12
To evaluate . -
/ dwl/ dew, culAl_1cu2A2_1Splitﬁ2 (P15 12), (98)
0 0

it is convenient to make the following change of variables
w1 = (1 — e eat)wp, we = twp, (99)

where

W1 + €16aWo = Wp. (100)

For €165 = —1, (98) splits into two integrals such that the celestial OPE takes the form
OX" (21, 21) 050 (22, 22)

—q ab 0 o0 —
~ 2{2 et te] [/ dwp/ dt (14 t)Simireghe Qi detetF=Lo%e (¢ wp, 2, 7))
0 0

0 —1
_/ dwp/ dt (1 +t)Al—1+atA2—1+Bwﬁ1+A2+a+ﬁ+’y—10j:c(€1wp’Z2722)}
. _i.fabc aty B > A1 —1+a3As—1+8 Ec,er I~
= ——"€e"e, dt (1+1) t @) (29, Z2)
0

219 Ar+Az+a+p+y

He1 [T 008 ()

(101)
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where to obtain the second line, we performed the change of variables wp — —wp and

t — —(1+t) on the second term. Upon making a further change of variables ¢ = , We

—u
find the remaining ¢-integrals once again take the form (55) so that the OPE coefficients are

given by Euler beta functions
0L (21, 21) 0% 2 (22, 22)
~ %:bce‘fﬂeg [B(As+ B,1— Ay — Ay —a— 6)Oif’fr22+a+ﬁ+,y(22, Z) (102)
H(=1)B(AL + o, 1= Ay = Ay — o = BYOXTTA haipen (22 22)] -
For equal helicity gluons o = f = —y = —1 and so the in/out OPE is

a,€e — —e — . pab € c,€e —
Ozl’ (21, Zl)OZl; (ZQ, 22) ~ ’Lf bc— [B(B — Al — AQ, AQ — 1)0217—1—A2—1(z27 ZQ)
212 (103)
—B(Al — 1, 3 — Al — AQ)OX?_,:&Q_I(ZQ, 22)] .

For opposite helicity gluons « = —5 =~y = —1 and we find

a,e = —0,—€ = - LQ € —C,€ —
OZ17 (Zl, Zl)OAl; (22, 2’2) ~ Zf bc— [B(—Al — AQ +1, AQ + 1)0A17+A2—1(22’ 22)
212 (104)
—B(A; — 1,1 = Ay = A)ORT7A, 1 (22, 22)]

which agree with the symmetry-derived OPEs. Analogous computations yield the graviton

and gluon-graviton in/out OPEs. We summarize the results in the following section.

5.3 Summary of OPE coefficients

In summary, all the nonzero leading 215 poles for all possible configurations of incoming
and outgoing gluon and graviton OPEs are determined by the asymptotic symmetries in
tree-level EYM. The equal helicity gluon OPEs are

_i.fabc

OZ?’E(Zl, 21>OX2’6(22, Zg) ~ EB(Al — 1, AQ — 1)OZT’—T—A2—1(’Z27 22),
_ifabc

212

OX?’E(Zl, 21)0227_6(22, Zg) ~ € [_B(AQ - 1, 3 - Al - AQ)OZfiAQ_l(ZQ, 22) <1O5)

+B(A1 — 1,3 = A1 — A)OxO A, 1 (22, 22)] -
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The mixed helicity gluon OPEs are

ab
a,e _ —b,e _ —1 _
Ozl’ (Zl, 21>OAZ’ (ZQ, Z2) Zf (Al - 1 AQ + 1)0A1+A (ZQ, 22)
12
/{212(5abB(A1, Az + 2)GA A, (22,22)
2 212
- rab
a,e _ —b,—e¢ — —1 c
O+ (Zl, ZI)OAZ (227 ZQ) ~ f € [_B(AQ —+ 1, 1-— Al A2)OA1+A2 1(22, 22) (106)
212
—|—B(A1 — 1, 1-— Al — AQ)O;?_:AQ 1(22, 22)}
’;?2 5 [B(Ag +2,—1 — Ay — A)GRS, a, (2, %)
12
—|—B(A1, -1 - Al — A2)G£’1_+EA2 (ZQ, 22)] .
The graviton OPEs are
¢ KZ _
GZ; (Zl, Zl)Gi (2’2, 22) ~ —§Z—HB(A1 -1 Ag + 1 + Q)GA +A, (22, 2’2),
12
€ = —e = KZ =
GX; (Zl, Zl)GX; (2’2, 22) ~ 52—12 [B(Ag +1 F 2, 1+2— Al AQ)GA +A, (22, 22) (107)
12
B(Al —-1,1£2— Al — A2)GX71_+€A2(Z27 22):| .
The gluon-graviton OPEs are
€ — a KZ a,e —
Gz; (Zl, ZI)OX; (22, ZQ) ~ _iz_mB(Al —1 Ag +1 F 1)OX11',-A2(Z27 ZQ),
12
a,—e - KZ a,e -
GA; (Zla Zl)OXZ7 (227 Z2) ~ _iz—z [B(Ag +1 F ]_, 11— Al - A2)OX17+A2 (2’2, 22) (108)

—B(A1 —1,1£1 Ay — A)0X" A, (2, %)] -

From (8), we recall a factor of gy, is absorbed in f“bc. The Z;5 — 0 celestial OPEs are

obtained in a similar way by imposing the d symmetry instead.

The presence of higher-dimension operators due to quantum, stringy or other corrections
is expected to augment this list with the finite number of additions allowed by the general
formula (13). A list of all possible corrections in theories with only gluons and gravitons is

given in appendix B.
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A Celestial OPEs from bulk three-point vertices

In this appendix we relate the conformal weights of the operators which are allowed to appear
in the OPE of two conformal primaries to the bulk dimensions of the corresponding three-
point vertices. We consider a bulk three-point vertex among gluons and gravitons which

schematically takes the form

where @, ®9, 5 € {A,, hy}, and we omitted Lorentz indices which should be contracted
accordingly. m is the total number of derivatives in the interaction, which are appropriately
distributed among ®;, ®,, P3. Since both gluons and gravitons have dimension 1, the net

dimension of the vertex is
dy = 3+ m. (110)

Suppose ®q, P, are taken to be outgoing external legs (on-shell states). In momentum
space, each derivative is associated with a factor of momentum. Upon parametrizing mo-
menta as in (2), Mellin transforming with respect to w; and wy and taking the collinear limit

212 — 0, the celestial amplitude takes the general form

m+ta, B 1

A1 A 1Wp W - -
Z/ dwl/ dws wi'™ 2T fﬁm—wFa,ﬁ(zl,ZbZz,%w“% (111)

where we used momentum conservation and accounted for the &3 propagator. Since we're
working in a collinear expansion, F, g depends only on wp, but not w; or wy independently.
In general, the amplitude involves a sum over terms with different «, 5. The details depend
on the precise form of the interaction but turn out to be irrelevant in determining the scaling

dimension of the allowed operators. Setting
W1 :(.Upt, Wo :wP(l —t), (112)
the celestial amplitude becomes

AV:ZB(Al‘I’m“‘OZ—l,AQ‘I—B—].)/ dWPWI%1+A2_3+mFa7B(Zl,21,2:2,ZQ;CUP,'"). (113)
a,f 0
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This allows one to read off the scaling dimension of the associated operator in the OPE

expansion

A3—1:A1+A2—3+m:>A3:A1+A2+dv—5, (114)

where in the last equation we used (110). We therefore conclude that the primaries in the
®,, ®, OPE can be classified according to the dimension of the possible corresponding bulk

three-point vertices as in (13).

B Higher order OPEs

There is a finite number of primaries which contribute to the OPE (13) to any finite order in
the 215 expansion. To get a flavor of this, in this appendix we collect all possible single-pole

or finite terms. For the gluon-gluon OPEs these are
1 Z2

O%%(21,21)0%0 (22, 2) Z—HOZT+A2_1(Z2>52)> Z—;OZT+A2+1(Z2>52)>

212OZT+A2+1(Z2> Z), 2§2O£f+A2+3(z2> Z),
_3
_ z _ _ _ _ _
GL+A2(Z2>Z2)> z_EGA1+A2+2(Z2aZ2)a %1 AtAgralZ2, 22), (115)
1

Ox%(z1,21) 00 (22, 22) - Z—HOZT+A2—1(Z2>52)> 212047 nye1(22, 22),

212 _ o _
Z_HGAH-AQ(Z?’ Z), Z%zGA1+A2+2(Z27 Zy).

Operators on the right hand side of dimension A;+ Ay —1 arise from the pure YM three-point
vertices while those of dimension A; + A, from three-point vertices in EYM (excluding the
three-gluon vertex). All other operators of dimensions Ay + Ay +n, n = 1,...,4 correspond
to the following higher derivative vertices in order: F®, RF?, 0*F3, 0 RF?.

Similarily, the finite or single pole terms in the graviton-graviton OPE are

_ _ 212 _ _ _
G, (21, 21)GE, (22, 22) : —=GX 1 n,(22,72), Z5Gh, n,40(22, 22),

212
2 o ). 3G~ 5 116
2_12 A1+A2+4(Z2’ 22)’ 212 A1+A2+6(z27 22)7 ( )
NS N A2 e _ o _
GA,(21,21)G 3, (22, 22) - Z—HGA1+A2 (22, %), 212G, 1 ag42(22, 22).
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Operators of dimensions Ay + Ay +n, n = 2,4, 6 arise from the following higher derivative
vertices in order: R2, R®, 0?R3. The coefficient of the R? term can be eliminated by field
redefinition [48].

The finite or single pole terms in the gluon-graviton OPEs are

=3
- _ 212 z
GA, (21, 21)0x5 (22, Z) OA1+A2 (22, 22), Zz Oxl 4 agt2(22, 22),

ZI2OA1+A2+2(Z27 22)7 Zf201?+A2+4(z27 22)7 (117)

_ _ _ Z12 _ _ _ _
Gzl(zlvzl)OAZ(Z%Z?):2120A1+A2(Z27Z2) OX%ia, (22, 22), Z1aORY, a,42(22, 22).

Operators of dimensions A; + Ay +n, n = 2,4 correspond to the higher derivative vertices
RF? and 0> RF? respectively.

C Subleading soft gluon symmetry

Tree-level gauge theory amplitudes obey the soft relation (see [34] and references therein)

A?H-l(pla -+ Pns q) = (Jg)) + ng)) An(pla >pn) + O((]), (118)

where J(%), J(“l) are the leading and subleading gluon soft factors and we suppressed all color
indices except for a, the one associated with the soft gluon. In this section we derive the
action of the subleading soft gluon symmetry on outgoing gluons in a conformal basis. The
subleading soft gluon operators are

N/
JE =Y iy (119)
(1) . ko

— 4 Pk

where T} are the generators of the non-abelian gauge group in representation k. In the
parametrization (2) and (9), (119) takes the form

—a 1 — Zk a
J(l)_ZE_Zk <_w_k+8wk+ ak)Tk7

_ Wk
o . (120)
Sk Z — Zk
Jiy = — + 0y, + ——05, | T}
W ;Z_Zk (Wk+ ot W k) g
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Upon performing a Mellin transform we find

I | o
Ja) :Z (—2hi + 14 (2 — 2)0.,) TE Py

Z—Zk

(121)
+a 1 A > = ap—1
T => — (—2hy + 1+ (2 — 2)05,) TEPL
k=1
where . .
hk = §(Ak + Sk), Bk = §(Ak — Sk), (122)

and P, ! implements the inverse shift on the k™ operator to the one defined in (17). Treating

z, z as independent complex variables, we can define the operators

. dz

1 (123)
Sa “+a — " Nta
6_%%H(MD1mAf20 (2,0),
which have the following action on gluons
+b N
500Ak (Zk, Zk) = f (2hk — 1+ zkﬁz )OAk 1(Zk, Zk) (124)

SGOXZ (Zk, Ek) = —’Lf ac (2hk —1 —+ Zkagk) OAk_l(Zk, Zk).

Equations (124) define a global symmetry associated with the subleading soft gluon theorem

and constrain the gluon OPE coefficients as in (27).

J(1y receives corrections in the presence of gravitons. These can be deduced from the

vertex (69) in which case (120) becomes

—a 1 — 2 KZ— 2 KZ =z
J(l):Zf > <__+awk+ o —0. )Tk 27}—1@ g. "

—Z— 2z W zZ—Z 2z—zk
o . (125)
Jg;:;z_zk <wk +8wk+ o = kp, )Tk +§Z_Zk}“+‘”—§z_zkg
where
Filps sk = F1, ax) = 6“*|pe, sp = F2), Filpw, sk = £1,a) = 0, (126)
G |pws sk = £2) = 6“* |pr, s = 1, ax), G|k, sk = F2) = 0.

This implies that (46) obeys
li —b ~\ Zifabc K Z12 ab ~— _
1m A O (Zl, 21)0A2(22> 2’2) = A2OA2 1(2’2, 2’2) + 5—5 GAz (2’2, 22), (127)

A1—0 212 212

which fixes the normalization of the graviton OPE coefficient.
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D Subsubleading soft graviton symmetry

In this section we derive the symmetry actions (36) and (43) (for outgoing particles) from

the subsubleading soft graviton theorem.

Tree-level gravity amplitudes were shown in [1] to obey the following soft relation

Ani1(p1, D3 0) = (Sio) + Sy + S2)) An(p1, - ) + O(¢%), (128)

where S(g), S(1) and Sy are the leading, subleading and subsubleading soft factors respec-

tively. In this appendix we focus on the subsubleading soft factor,

n PH ov

K € -

S = __Z AN )’ (129)
4 e~ q- Pk

where €, and ¢ are the polarization and momentum of the soft graviton and J;, p; are the

total angular momenta and momenta of the hard particles. Using the parametrizations (2)

of momenta and the angular momentum operators in [35], (129) can be shown to reduce

to [25,49]

K e W 1 2
Sy S e - - -

4 = K ( kl)( k) (130)
S = _g wik (2 —2) (2 — Z) (2= 2 (=5 — widl,) — (2 — 5)%05.]”

for negative and positive helicity soft gravitons respectively. In a conformal basis, (130)

become
~_ K - Z — Zk 242 _1
Sy =7 > E— 2Rk 2y — 1) — 2(2 — 2)2h40s, + (2 — 2)?02 | P,
P (131)
St = SN ET R R (2R — 1) — 2(2 — 5)2M0s, + (5 — 2)%02 ] Py
2) 4k12_2k k k k kUZ k ZL k>

with hy, hy and P~! defined in appendix C. Treating z, Z as independent complex variables,

we define the soft operators

dz  ~_ B ) dz _ _
0= ]{ om0 (0:2) = fim (A + 1) 7{ i 0202 (132)
- [dz =, L dz "
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which act on celestial operators as follows

K
5(’)Ak,sk(zk, Ek) = _Z [Qhk(2hk - 1) -+ Shkzkazk + 3z,§8§k] OAk—l,sk(Zka Ek),

133)
B} P ) (
5(’)Ak,sk(zk, Ek) = _Z [Qhk(2hk — 1) + Shkgkagk -+ 32,38% OAk—l,sk(Zka Ek).

Equations (133) define the action of the global symmetries associated with the subsubleading
soft graviton theorem (36) and (43). They constrain the form of the graviton and graviton-
gluon OPEs (33) and (42) as discussed in sections 3.2 and 3.3.

E Solving the recursion relations

Consider a symmetric function of complex variables C(Ay, Ag) = C(Ay, A1) which obeys

the recursion relation
AlC(Al, AQ) == (Al + AQ)C(Al + 1, Ag) (134)

Provided C'(Ay, Ag)I'(A; + Ay) is holomorphic for Re(A;) > 0 and bounded for Re(A;) €
[1,2), (134) has the unique solution

C(Al,AQ) — C(l,l)B(AhAg) (135)

This can be proven in the following way. Define a function f(z) = C(x,yo)I'(z + o). Then
(134) becomes

zf(x) = f(zx+1). (136)
By Wieland’s theorem [50], (136) has the unique solution
f(z) = f()I(z). (137)

Eliminating f(z), f(1) in terms of C(z,yo), C(1,yo) we find

C(1,y0)I'(1 + yo)r(fb’).

Ol w) = (2 + yo)

(138)

For yo = 1, (138) implies
Cle, )I'(1+2z) ='(2)C(1,1). (139)
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Now replacing x with yy and using symmetry in the arguments of C(z,y) we deduce that

[(yo)I'(x)

C(x7y0> = 0(17 1) F(SL’ + yO)

— C(1,1)B(z, o). (140)

For the purposes of determining the OPE coefficients, C'(1, 1) is often fixed by the leading soft
theorems. The holomorphicity condition is obeyed by celestial amplitudes whose momentum
space behavior is known from soft theorems to be no more singular than a simple pole in
frequency. Boundedness in the strip is expected to be inherited from momentum-space
amplitudes with sufficiently good UV behavior. Related properties were pointed out in

[25]. The argument can be easily generalized to functions which are not symmetric under
Al g AQ.
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