
Chapter 20
Dynamics of a System of Two Coupled
MEMS Oscillators

Richard H. Rand, Alan T. Zehnder, B. Shayak and Aditya Bhaskar

Abstract We investigate the dynamics of two limit cycle MEMS oscillators con-
nected via spring coupling. Each individual oscillator is based on a MEMS structure
which moves within a laser-driven interference pattern. As the structure vibrates, it
changes the interference gap, causing the quantity of absorbed light to change, pro-
ducing a feedback loop between the motion and the absorbed light and resulting in
a limit cycle oscillation. A simplified model of this MEMS oscillator, omitting para-
metric feedback and structural damping, has been previously presented (Rand et al in
Proceedings of 9th European Nonlinear Dynamics Conference (ENOC 2017), 2017,
[3]). For the coupled system, a perturbation method is used to obtain a slow flow
which is investigated using AUTO and numerical integration. Various bifurcations
which occur as a result of changing the coupling strength are identified.
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20.1 Introduction

Thiswork ismotivated by a type ofMEMSdevice inwhich a laser is used to determine
the motion of the device by interference. The MEMS device is typically a clamped-
clamped beam fabricated from a thin layer of Si and suspended above a Si substrate.
Laser light is focused onto the beam surface and is partially reflected, absorbed and
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transmitted. The transmitted portion is further reflected from the substrate and will
interfere with the reflected light to form a cavity interferometer. The net effect is that
both the reflected and absorbed light are periodic functions of the gap between the
beam and the substrate. Thus, vibration of the beam will modulate both the reflected
and absorbed light. The reflected light, directed to an AC coupled photo diode is used
to transduce the motion of the MEMS device.

The absorbed portion of the laser light causes heating of the MEMS device by the
laser beam, resulting in the deflection of the device, which then changes the amount
of heat absorbed, with the net effect of feedback between the motion and the thermal
heating, which can produce limit cycle (LC) oscillations.

We are interested in studying the dynamics of a system of such coupled LCoscilla-
tors. Each one consists of an elastic system,modeled as a second order ODE, coupled
to a first order ODE representing the heat transfer due to the laser heating effects.

A system of this kind was studied by Aubin et al. in [1], and may be written in
the following form:

z̈ + ż

Q
+ (1 + CT )z + βz3 = DT, (20.1)

Ṫ + BT = HP[a + γ sin2 2π(z − z0)] (20.2)

Here z is the displacement of a mechanical oscillator and T is its temperature due
to laser illumination. In the mechanical equation Q is the quality factor, C is the
stiffness change due to temperature, D is the displacement due to temperature and
β is the coefficient of the cubic nonlinearity. In the thermal equation the quantities
a and γ represent the average and contrast of the absorption of laser power, P is
the laser power, H and B represent the thermal mass and heat loss rate. The offset,
z0, models the equilibrium position of the oscillator with respect to the interference
field created by the oscillator/gap/substrate stack. This complicated model, which
includes effects of damping, stiffness change due to heating, periodic dependence of
light absorption on interferometric gap, and nonlinearity, was shown to support LC
oscillations.

In a recent paper, Zehnder et al. [2] considered a coupled system of two such LC
oscillators:

z̈1 + ż1
Q

+ (1 + CT1)z1 + βz31 + V 2(z1 − z2)

1 + |z1 − z2|p = DT1 , (20.3)

Ṫ1 + BT1 = HP[a + γ sin2(2π(z1 − z0))] , (20.4)

z̈2 + ż2
Q

+ κ(1 + CT2)z2 + βz32 + V 2(z2 − z1)

1 + |z2 − z1|p = DT2 , (20.5)

Ṫ2 + BT2 = HP[a + γ sin2(2π(z2 − z0))] . (20.6)

Here the V 2 terms represent electrostatic fringing field coupling, see Fig. 20.1.
Numerous interesting effects were observed in this numerical study of the gov-

erning differential equations, including regions of 1:1 locking, and more generally
of m:n locking. However, these differential equations are very complicated and it
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Fig. 20.1 A system of two coupled MEMS oscillators

is hard to tell which terms are responsible for the changes in qualitative dynamical
behavior. Thus, in order to better understand the dynamics, we posited a simpler
system which omitted effects such as damping, nonlinearity and stiffness changes
due to heating [3]:

z̈ + z = T and Ṫ + T = z2 − pz (20.7)

To produce the simplest possible model, all constants have been taken equal to unity.
The parameter z0 in Eqs. (20.3)–(20.6) is referred to as p and takes on a representative
value of 0.1. Numerical integration shows that this system supports a limit cycle [3].

In the present study, two oscillators of the form of Eq. (20.7) are considered,
connected via spring coupling. The equations of motion are:

z̈1 + z1 = T1 + α(z2 − z1) and Ṫ1 + T1 = z21 − pz1 (20.8)

z̈2 + z2 = T2 + α(z1 − z2) and Ṫ2 + T2 = z22 − pz2 (20.9)

where α is a positive parameter, the coupling strength. The spring coupling is anal-
ogous to the electrostatic fringing field of Eqs. (20.3), (20.5), see Fig. 20.1.

20.2 Perturbations

In order to prepare Eqs. (20.8), (20.9) for treatment by perturbations, a parameter ε

is introduced as follows:

z̈1 + z1 = εT1 + ε2α(z2 − z1) and Ṫ1 + T1 = z21 − εpz1 (20.10)

z̈2 + z2 = εT2 + ε2α(z1 − z2) and Ṫ2 + T2 = z22 − εpz2 (20.11)
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We use a three variable perturbation method (also known as multiple scales) [4],
which involves replacing the independent variable t with three new variables, ξ = t ,
η = εt (slow time) and ζ = ε2t (very slow time). The chain rule gives:

dz

dt
= ∂z

∂ξ

dξ

dt
+ ∂z

∂η

dη

dt
+ ∂z

∂ζ

dζ

dt
= ∂z

∂ξ
+ ε

∂z

∂η
+ ε2

∂z

∂ζ
(20.12)

d2z

dt2
= ∂2z

∂ξ 2
+ +2ε

∂2z

∂η∂ξ
+ ε2

(
∂2z

∂ζ∂ξ
+ ∂2z

∂η2

)
(20.13)

Next all 4 variables z1, T1, z2, T2 are expanded in power series in ε and are substituted
into Eqs. (20.10), (20.11). After collecting like powers of ε, we obtain:

z1 = A(ζ ) cos ξ + B(ζ ) sin ξ + O(ε) and z2 = C(ζ ) cos ξ + D(ζ ) sin ξ + O(ε)

(20.14)

where the slowly varying parameters A, B,C, D are determined by the following
slow flow, which is obtained by eliminating secular terms from the O(ε2) equations:

d A

d ζ
= −

60 α D + 31 B3 + 27 A B2 +
(
31 A2 − 30 p − 60 α

)
B + 27 A3 − 30 p A

120
(20.15)

d B

d ζ
=

60 α C − 27 B3 + 31 A B2 +
(
30 p − 27 A2

)
B + 31 A3 + (−30 p − 60 α) A

120
(20.16)

d C

d ζ
= −

31 D3 + 27C D2 +
(
31C2 − 30 p − 60 α

)
D + 27C3 − 30 p C + 60 α B

120
(20.17)

d D

d ζ
= −

27 D3 − 31C D2 +
(
27C2 − 30 p

)
D − 31C3 + (30 p + 60 α) C − 60 α A

120
(20.18)

These equations can be simplified by transforming to polar coordinates:

A = r1 cos θ1, B = r1 sin θ1, C = r2 cos θ2, D = r2 sin θ2, (20.19)

with the following result, where ϕ = θ2 − θ1:

dr1
dζ

= pr1
4

− 9r31
40

− α

2
r2 sin ϕ (20.20)

dr2
dζ

= pr2
4

− 9r32
40

+ α

2
r1 sin ϕ (20.21)

dϕ

dζ
= 31

120

(
r22 − r21

) + α

2
cosϕ

(
r1
r2

− r2
r1

)
(20.22)

The rest of this paper is based on an analysis of these last three equations.
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20.3 Bifurcations

The first thing to notice about Eqs. (20.20)–(20.22) is that they exhibit a symmetry:
they are invariant under the transformation

r1 −→ r2, r2 −→ r1, ϕ −→ −ϕ (20.23)

As we will see, this symmetry will have a profound effect on the bifurcations asso-
ciated with Eqs. (20.20)–(20.22).

Let us begin by looking for equilibria in the slow flow (20.20)–(20.22). These
turn out to satisfy

r1 = r2 =
√
10p

3
and sin ϕ = 0 =⇒ ϕ = 0 or π (20.24)

Here ϕ = 0 corresponds to the in phase (IP) mode and ϕ = π corresponds to the out
of phase (OP) mode.

As a first step in understanding the bifurcations occurring in Eqs. (20.20)–(20.22),
we use the bifurcation software AUTO [5]. See Fig. 20.2 where equilibrium points
in the slow flow are displayed using the convention that a solid (dashed) line repre-
sents a stable (unstable) equilibrium. Limit cycles in the slow flow (born in a Hopf
bifurcation) are not shown. The OP mode at ϕ = π is not shown, and is stable.

Note that for α > 0.0574 AUTO predicts that both the IP and OP modes are sta-
ble. These slow flow equilibria are separated by an unstable slow flow limit cycle
which we shall refer to as a separatrix. Moving from the 3 dimensional slow flow
space to the 6 dimensional space of Eqs. (20.8), (20.9), the separatrix appears as
a quasiperiodic motion. Although it is unstable we may nevertheless see what the
separatrix looks like by numerically integrating Eqs. (20.8), (20.9) for initial condi-
tions of the form (z1(0), ż1(0), T1(0), z2(0), ż2(0), T2(0)) = (0.1, 0, 0, μ, 0, 0), and
iteratively varyingμ so that the large time behavior (approximately) lies on the basin
boundary between the two equilibria. See Fig. 20.3 where we find that μ ≈ 0.0021
for α = 0.07.

Fig. 20.2 AUTO bifurcation
diagram for
Eqs. (20.20)–(20.22). A solid
(dashed) line represents a
stable (unstable) equilibrium
point in the slow flow. Limit
cycles in the slow flow born
in the Hopf bifurcations are
not shown. The OP mode at
ϕ = π is not shown, and is
stable
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Fig. 20.3 LEFT: Separatrixmotion, unstable, separates stable IP andOPmodes.RIGHT:Schematic
view showing IP, OP and separatrix. Stable motions are boxed in Red

Fig. 20.4 LEFT: Two new slow flow equilibria are born in a pitchfork, denoted by IP1 and IP2. In
the 6 dimensional space these are seen to be periodic motions, symmetrically located about the IP
mode. RIGHT: Schematic view showing IP1, IP2, IP, OP and separatrix. Stable motions are boxed
in Red

From Fig. 20.2 we see that when α is decreased through 0.0574, the IP mode
loses stability in a pitchfork bifurcation. Two new slow flow equilibria are born in
this pitchfork, denoted by IP1 and IP2. In the 6 dimensional space these are seen to
be periodic motions, see Fig. 20.4.

From Fig. 20.2 we see that when α is further decreased through 0.0468, the slow
flow equilibria IP1 and IP2 lose stability in Hopf bifurcations, resulting in stable
slow flow limit cycles LC1 and LC2. In the 6 dimensional space these are seen to be
quasiperiodic motions, see Fig. 20.5.
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Fig. 20.5 LEFT: Two new slow flow limit cycles are born in Hopf bifurcations, denoted by LC1 and
LC2. In the 6 dimensional space these are seen to be quasiperiodic motions, symmetrically located
about the IP mode, cf. Fig. 20.4. Note: For clarity of presentation, LC1 is not shown. RIGHT:
Schematic view showing LC1, LC2, IP1, IP2, IP, OP and separatrix. Stable motions are boxed in
Red

Fig. 20.6 Aschematic representation of the double homoclinic bifurcation inwhich the asymmetric
slow flow limit cycles LC1 and LC2 join to become a single slow flow limit cycle LC which exhibits
the symmetry of Eq. (20.23). Stable motions are boxed in Red

A further bifurcation occurs when α decreases through approximately 0.0436,
though this is not shown in Fig. 20.2. In this case there is a homoclinic bifurcation in
which the asymmetric slow flow limit cycles LC1 and LC2 join to become a single
slow flow limit cycle LC which exhibits the symmetry of Eq. (20.23). See Fig. 20.6.

Another bifurcation occurs when α decreases through approximately 0.0415, in
which two slow flow limit cycles merge together in a limit cycle fold and disappear.
Specifically, the unstable separatrix limit cycle “sep” merges simultaneously and
symmetrically with the symmetric slow flow stable limit cycle “LC”. See Fig. 20.7.
For values ofα less than approximately 0.0415, theOPmode is the only stablemotion.

The last two bifurcations (shown in Figs. 20.5 and 20.6) involve the merging of
two limit cycles into a single limit cycle (a double homoclinic bifurcation), which
is then followed by a limit cycle fold in which a stable and an unstable limit cycle
come together and disappear. This sequence of bifurcations has been seen in other,
unrelated dynamical systems. See [6] p. 376, Fig. 7.3.9, and [7] p. 69, Fig. 7.
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Fig. 20.7 A schematic
representation of the limit
cycle fold in which two slow
flow limit cycles merge
together and disappear,
leaving the OP mode as the
only stable motion. Stable
motions are boxed in Red

20.4 Conclusions

In this work we have investigated the dynamics of a system inspired by a pair of
coupled identical MEMS oscillators, Eqs. (20.8), (20.9). Our method involved intro-
ducing a small parameter εwhich permitted us to use a perturbationmethod, resulting
in a slow flow, Eqs. (20.20)–(20.22). We then used AUTO and numerical integration
to determine the various bifurcations which occurred when the coupling constant α
was varied (for fixed parameter p = 0.1). Since the perturbationmethod is by its very
nature approximate, we should not be surprised to find that the derived results are in
some cases incorrect. In particular analysis of the slow flow predicts that both the IP
and OP modes are stable for α sufficiently large. While this is true of the IP mode,
linear stability analysis of the OPmode shows that it becomes unstable for α > 0.82.
Proof of this statement will be the subject of another paper by the same authors.

We noted that the derived slow flow (20.20)–(20.22) possessed a symmetry which
led to nongeneric bifurcations such as a pitchfork and a homoclinic bifurcation
with symmetry. A useful extension of this work will involve a comparable study
of the dynamics of a pair of coupled nonidentical third order oscillators, which is not
expected to display these kinds of nongeneric bifurcations.

Perhaps the most important lesson learned from this study is that the IP mode
can be made stable by increasing the coupling between the oscillators. This result is
reminiscent of a comparable property of similarly coupled van der Pol oscillators [4].

Acknowledgements The authors wish to thank Professor J. Guckenheimer for advising them on
the bifurcations involved in this paper. This material is based upon work supported by the National
Science Foundation under grant number CMMI-1634664.
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