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Programming living and soft complex matter via primary structure and self-organization represents the
key methodology employed to design functions in biological and synthetic nanoscience. Memory effects
have been used to create commercial technologies including liquid crystal displays and biomedical
applications based on shape memory polymers. Supramolecular orientational memory (SOM), induced
by an epitaxial nucleation mediated by the close contact spheres of cubic phases, emerged as a pathway
to engineer complex nanoscale soft matter of helical columnar hexagonal arrays. SOM preserves the
crystallographic directions of close contact supramolecular spheres from the 3D phase upon cooling
to the columnar hexagonal periodic array. Despite the diversity of 3D periodic and quasiperiodic
nanoarrays of supramolecular dendrimers, including Frank-Kasper and quasicrystal, all examples of
SOM to date were mediated by Im3m (body-centered cubic, BCC) and Pm3n (Frank-Kasper A15) cubic
phases. Expanding the scope of SOM to non-cubic arrays is expected to generate additional morphologies
that were not yet available by any other methods. Here we demonstrate the SOM of a dendronized
triphenylene that self-organizes into helical columnar hexagonal and tetragonal P4,/mnm (Frank-Kasper
o) phases. Structural analysis of oriented fibers by X-ray diffraction reveals that helical columnar
hexagonal domains self-organize an unusual rectangular bipyramidal morphology upon cooling from
the o phase. The discovery of SOM in a non-cubic Frank-Kasper phase indicates that this methodology
may be expanded to other periodic and quasiperiodic nanoarrays organized from self-assembling
dendrimers and, most probably, to other soft and living complex matter.
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Introduction
Complex nanoscale living and soft-matter relies on a broad
range of organic matter that is self-organized across multiple
length scales [1-12]. Programmed memory effects in complex soft
matter have provided a convenient route to access unprecedent
morphologies. Shape memory has been extensively explored for
biomedical applications [13,14] and molecular machines [15,16],
while orientational memory in liquid crystals is ubiquitous
in modern display devices [17]. Chiral memory effects have
been investigated in molecular and supramolecular systems [18-
21]. Epitaxially nucleated supramolecular orientational memory
(SOM) was recently discovered as a methodology to generate
otherwise inaccessible nanoscale architectures of columnar arrays
generated from self-assembling dendrons and dendrimers [22—
26]. SOM requires that self-organized soft matter undergoes
a reversible phase transition between a 2D or 3D columnar
hexagonal (&) phase (p6mm space group) and a 3D phase
self-organized from supramolecular spheres that may in fact be
supramolecular polygonal objects [4,5]. For simplicity, in this
manuscript as in the previous SOM publications [22-26] they
will be considered to be spheres. Upon cooling from a 3D phase
of spheres, the hexagonal domains of supramolecular columns
are oriented by an epitaxial nucleation induced by the closest
contact crystallographic directions in the preceding 3D phase,
thus “remembering” these directions in the &, array. Briefly,
the SOM epitaxy follows the close contact sphere directions
of the cubic phase. “Close contact” can be defined as the
spheres with the smallest inter-sphere distances in a lattice.
This distance is smaller than the diameter of the theoretical
spherical objects. A wide range of morphologies, including
orthogonal [22], tetrahedral [23,24], distorted dodecahedral [25],
and rhombitruncated cuboctahedral [26] arrangements of helical
columnar hexagonal arrays have been achieved by utilizing SOM
along the different close contact directions in Pm3n (A15 Frank-
Kasper) [27-42] and Im3m (BCC) [43,44] cubic phases [21-26].
The architectures realized via SOM have all been, so far,
generated from cubic phases of self-organizable dendrimers.
However, complex soft-matter organizes into a large diversity of
3D Frank-Kasper phases [45,46] generated from supramolecular
spheres, including tetragonal P4,/mnm (Frank-Kasper o), 12-
fold liquid quasicrystal (LQC), the Frank-Kasper Z phase, and
Laves phases. Though some of them (A1S5 [27-42], o [47],
LQC [48-50]) were first discovered in synthetic soft matter
for libraries [4-10,27-44,47-86] of self-assembling dendrons,
dendrimers and dendronized polymers, they have since been
simulated, explained computationally [87-89] and observed also
in block copolymers [90-96], surfactants [97-100], dendron-
like silsesquioxane-cage molecules [101-106], lipids [107-114],
nanoparticles [115,116], DNA-nanoparticle conjugates [117], and
sugar-polyolefin [118,119] block-copolymer-generated spherical
nanoparticles, and colloidal crystals [120-122]. Therefore, since
Frank-Kasper phases are broadly encountered not only in the

* Corresponding author.
E-mail address: percec@sas.upenn.edu (V. Percec).
Received 13 October 2021; Received in revised form 22 October 2021; Accepted 23
October 2021

field of supramolecular dendrimers but also of block copolymers,
surfactants, biological molecules and of other self-assembling
molecules their SOM represents a fundamental problem, that in
our opinion, must be elucidated. The prevalence of Frank-Kasper
phases in soft matter raises the fundamental question: can SOM be
mediated by non-cubic 3D phases generated from supramolecular
spheres? While a simple answer would be yes, a more complex
question is what is their resulting morphology?

In this report we demonstrate a SOM between a tetragonal
P4,/mnm (Frank-Kasper o) phase and helical columnar hexagonal
arrays self-organized from a triphenylene dendronized with first-
generation self-assembling dendrons, (3,4,5)12G1-Tp. As with
all previous examples of SOM, cooling from the 3D phase
generated from supramolecular spheres produces a nanoscale
architecture of columnar hexagonal domains. Structural analysis
of aligned fiber X-ray diffraction (XRD) reveals that the non-cubic
symmetry of the P4,/mnm phase mediated epitaxial alignment
along the close contact [002]¢, [410]tet, and equivalent [140]t
directions. Due to the complexity of the P4,/mnm unit cell, which
contains 30 supramolecular spheres, two alternative pathways
for the SOM effect along the [410] direction are discussed
and discriminated using XRD performed on oriented fiber
samples. The resulting nanoscale morphology exhibits an unusual
rectangular bipyramidal arrangement of columns that, to the
best of our knowledge, was not yet generated by any other
methodology.

Results and discussion

Principles of self-organization of self-assembling dendrons,
dendrimers, and dendronized polymers

The mechanisms of reversible transformation of supramolecular
columns and spheres are summarized in Fig. 1. During the
phase transition from supramolecular columns to supramolecular
spheres observed upon heating, the electron density of the aligned
columns is reorganized due to the intramolecular movement
of the self-assembling molecules, producing the orientationally
disordered supramolecular spheres (Fig. 1a). These supramolecular
spheres look-like giant atoms but they differ fundamentally
from atoms since they are highly dynamic structures with
their components interchanging between spheres, columns
and spheres and columns [35]. Recently, thermodynamically
stable columns self-organized from spheres, including chiral,
were discovered [57-59,66]. The rational of the stability of
supramolecular columns self-organized from sphere was not yet
elucidated. The spheres from Fig. 1 are in fact a simplified
representation of polyhedral structures that were discussed as a
function of molecular structure in a different publication [52].
For simplicity in this publication, they will be called spheres.
It is also important at this point to mention that the 3D
Frank-Kasper phases and the quasicrystals discussed here can
be considered as 3D crystals or quasicrystals if we refer to the
structure of the supramolecular spheres or liquid crystals if we
refer to the structure of the dendrons or dendrimers forming the
sphere. Regardless of their name these supramolecular spheres
are dynamic allowing motion and interchange-rearrangements of
their components. The process of this first order phase transition
is reversible.
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(a) A simplified scheme of the reversible transformation between supramolecular columns and spheres when fragments of columns move to create regions of high
and low electron density. The close contact directions of spheres in Im3m (BCC), Pm3n (A15 Frank-Kasper) phases that nucleate the long axis of the column are
shown. (b) A more detailed molecular description of panel (a). Supramolecular hexagonal columns generated from tapers, crowns, undulated columns, or spheres
transform into supramolecular columns. Columns generated from covalent crowns require the lowest number of steps and a concerted rather than stepwise process
to transform into spheres [25,26]. Depending on the strength of the interaction at the apex, supramolecular non-covalent crown-based columns can follow both
covalent crown-like or taper pathways. (c) Crystallographic directions in the columnar hexagonal, Im3m (BCC), Pm3n (A15 Frank-Kasper), P4,/mnm (o Frank-Kasper)
and liquid quasicrystal (LQC) periodic and quasiperiodic arrays. The close contact spheres in the BCC, A15 and ¢ are indicated with continuous colored lines.

Fig. 1b illustrates the hierarchical mechanisms of the
reversible transformation between columnar and spherical
phases, including BCC, AlS5, o, and LQC. Supramolecular
columnar hexagonal arrays self-assembled from tapered and
conical dendrons [4,5,53,54], covalent crowns [22,23,55,56],
non-covalent crowns [4,5,25,26], undulated columns [57,66],
and columns-from-spheres [58,59] are illustrated. Comparison of
the unit cells of the columnar and spherical phases is present in
Fig. 1c with close contact spheres labeled in the same colors.

To date, four distinct SOM effects have been observed. They
are summarized in Fig. 2 with the columnar hexagonal and cubic
lattices shown in the left columns, the resulting architectures
presented in the middle column and the chemical structures in the
right columns. Orthogonal architectures of hexagonal columns
have been obtained for a dendronized cyclotriveratrylene (Fig. 2a)
[22] and a dendronized cyclotetraveratrylene [25] by the epitaxial
nucleation of the columns along the close contact [200]a;s
direction of a Pm3n (Frank-Kasper A15) cubic phase (Fig. 2a) [22].
A tetrahedral architecture of hexagonal columns of a dendronized
perylene bisimide was subsequently discovered upon cooling a
body-centered cubic (BCC, Im3m) phase, where the epitaxial

nucleation occurred along the close contact [111]gcc direction
(Fig. 2b) [23,24]. Most recently, two alternative SOMs arising
from Pm3n cubic phase were reported, in which alignment by
epitaxial nucleation along the close contact [210],;5 direction
generated a distorted dodecahedral arrangement of hexagonal
columns of a second generation dendron with a carboxylic acid
at its apex (Fig. 2¢) [25], while alignment along the close contact
[421]a15 direction of an amphiphilic Janus dendrimer produced
rhombitruncated cuboctahedral helical columns (Fig. 2d) [26].
In all cases, the dendronized molecule exhibiting SOM could
adopt either a covalent [22,23,25] or a supramolecular crown-
like conformation that was recently proposed to be critical for
SOM due to its fewer number of concerted rather than a larger
number of stepwise steps in the process of self-organization
that is required by conical self-assembling dendrons [25,26]. The
results summarized in Fig. 2 indicate that covalent self-assembling
crowns prefer to self-organize by SOM tetrahedral and orthogonal
arrays that are generated by epitaxial nucleation via the close-
contact spheres of their cubic phase. Supramolecular crowns
may select alternative pathways during SOM. Currently the
rational for the decission for this selection is not yet elucidated.
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arrangement by following the close contact direction along [421]a15 — [001]hex in Pm3n (A15). Covalent crowns are forming columns and spheres in (a) and
(b) while a supramolecular H-bonding crown-assembled columns and spheres in (c) and (d).

However, more experiments are epected to provide a moleculkar
engineering approach of new morphjologies via SOM.

Synthesis of the dendronized triphenylene (3,4,5)12G1-Tp

After we searched for candidate molecules which showed a
phase transition from a hexagonal phase to a tetragonal
phase, the dendronized triphenylene (Tp) with six 3,4,5-
tris(dodecyloxy)benzyl ethers on its periphery, (3,4,5)12G1-
Tp (Figs. 3 and S1), was selected. Tp is a classical disk-like
molecule which can be synthesized via Scholl trimerization
[123] of wveratrole. Dendronized Tp was demonstrated to
form crown-like architectures which self-assembled into helical
columns and spheres. (3,4,5)12G1-Tp was synthesized again by
a procedure reported previously from our laboratory [55] and
purified until the melting transitions did not change and
remained constant. This very high level of purity is demanded
by the SOM process. A combination of techniques that
includes thin-layer chromatography (TLC), high-pressure liquid
chromatography (HPLC), 'H and !3C NMR, and matrix-assisted

laser desorption/ionization time-of-flight mass (MALDI-TOF)
spectrometry were employed to analyze the structures and to
assess the higher than 99% purity of the intermediary (Figs. S2—
S5) and final compounds (Figs. S6-589). Due to additional numbers
of column chromatography purifications and precipitations
compared to the previous publication [55], the target dendrimer
molecule showed higher phase transition temperatures including
higher melting point (from 100 °C to 108 °C), and sharper phase
transitions by DSC. They will to be discussed later.

Preparation of oriented fibers for XRD analysis

Aligned fibers were prepared according to a procedure elaborated
in our laboratory by using the extrusion device shown in Fig. S10
[60] in the Supplemental Information.

Thermal and structural characterization of dendronized
triphenylene (3,4,5)12G1-Tp by DSC and XRD

Dendronized triphenylenes self-assemble into supramolecular
helical columns and spheres via their crown conformation [55],
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Synthesis of dendronized triphenylene (3,4,5)12G1-Tp. Reagents and Conditions: (i) FeCls, H,SOa4(conc.), CH,Cly, 23 °C, 3 h; (ii) HBr (48% in H,0), AcOH, 130 °C, 12 h;

(iii) K2CO3, DMF-THF (2:1), 70 °C, 24 h.

which was suggested to be the secondary structure required for
SOM since it undergoes the reversible sphere-column transition
in a fewer number of concerted steps rather than a process
containing a larger number of stepwise events [22]. SOM also
demands a transition between a columnar hexagonal array (®p)
and a lattice generated from supramolecular spheres. (3,4,5)12G1-
Tp (Fig. 4a) is the simplest dendronized triphenylene that exhibits
such a phase transition, specifically between a helical columnar
hexagonal phase with intracolumnar order (,°) and a tetragonal
P4,/mnm periodic array (Fig. 4b) demonstrated previously by
powder XRD in 2009 [55]. The 2009 publication [55] was
published before the discovery of the first example of SOM by
fiber XRD in 2016 [22]. The structures of the ®;,'°, and tetragonal
P4,/mnm phases, denoted hereafter as Tet or Frank-Kasper o, will
be discussed later in more details. Thermal analysis of (3,4,5)12G1-
Tp by differential scanning calorimetry (DSC) indicates that
(3,4,5)12G1-Tp self-organizes into multiple lattices (Fig. 4c, Table
S1and S2). Upon heating at 10 °C/min, (3,4,5)12G1-Tp transitions
at 8 °C from a crystalline columnar hexagonal (&%) 3D array to
a 2D @, helical columnar hexagonal phase with intracolumnar
order. Helical ¢, transitions to the P4,/mnm (o) phase at 42 °C
upon heating and re-forms upon cooling from the P4,/mnm (o)

phase at 10 °C/min to below 26 °C. Heating the P4,/mnm (o)
phase above 96 °C generates a Pm3n cubic phase, known also as
the Frank-Kasper A1S5 phase. The Pm3n cubic phase melts to an
isotropic liquid at 108 °C. The structure of all phases was assigned
using XRD analysis (Table S2) [55].

Small-angle X-ray diffractograms of the aligned fiber of
(3,4,5)12G1-Tp are presented in Fig. 4d-g. Initial XRD structural
analysis was performed using Datasqueeze (version 3.0.5) [124].
XRD at 23 °C (Fig. 4d, h) is consistent with a helical &
array with column diameter, D, = a, of 35.4 A (Table S2). The
equatorial position of the (100)n.x reflection indicates that the
column axis of the ®p!° array, [001]phe, is aligned along the
fiber axis (Fig. 4d). The oriented fiber XRD patten of the ®y©
at 23 °C (Fig. 4d) with additional off-axis features is resembling
the pattern of the oriented fibers obtained from supramolecular
columns in a ¢, phase self-organized from spheres including
chiral spheres [58,59], and from undulated columns [57,66]. The
additional XRD feature of the columns from Fig. 4d is their helical
character that is most clearly observed in Fig. 4f. The helicity
of these columns was best observed by a combination of fiber
XRD and circular dichroism experiments after their complexation
with chiral electron acceptor compounds [55]. The wide-angle X-
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Structural analysis of supramolecular assemblies generated by SOM from (3,4,5)12G1-Tp. (a) Structure of (3,4,5)12G1-Tp. (b) Unit cell of P4,/mnm (o) lattice. Spheres
in close contact along the indicated directions are colored alike and are linked by blue, red and green lines. The yellow spheres follow the spheres of the red, green
and blue arrows by a mechanism not yet known. (c) DSC traces of first heating and cooling scans of (3,4,5)12G1-Tp at 10 °C/min. Phases indexed by XRD, transition
temperatures (in °C), and associated enthalpy changes (in parentheses in kcal/mol) are shown. (d-g) XRD of an aligned fiber obtained by extrusion at 23 °C of
(3,4,5)12G1-Tp during first heating and cooling. Temperature and lattice parameters are indicated. (h, i, k) XRD diffractogram with expansions in inset panels. (hk/)
indices are marked. (j) Azimuthal plot of (100)ex at 23 °C on cooling. (I-0) Schematic representation of the lattice transition between @, and P4,/mnm on first
heating and cooling. SOM induced by [002]iet and [410]te to [001]hex results in a rectangular bipyramidal arrangement of columnar hexagonal domains. As shown
in panel n and | the angle between [410] (red) and [140] (green) directions is ~56° (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.).

ray scattering (WAXS) data in the ®,° phase (Fig. S11) showed
clear features from the intermolecular distance (4.4 A) along
the fiber axis. It also supports that the supramolecular helical
columns are aligned along the fiber axis direction. Upon heating
to 60 °C, the ®,© 2D lattice is transformed into the P4,/mnm (o)
phase (Fig. 4e, i). Indexing of the XRD data recorded at 60 °C
is consistent with the P4,/mnm (o) phase (Fig. 4e), with lattice
parameters (@ = b = 126.0 A, ¢ = 67.2 A) in good agreement
with those reported previously with a different X-ray machine
(a=b=124.0 A, c = 64.8 A) [55]. The equatorial position of
peaks is consistent with (hkO). reflections, and the meridional
position of (002)¢t, shows that the c-axis of the P4,/mnm (o) unit
cell is aligned with the fiber axis. Weak meridional (410) features

along with off-axis (002); features (Fig. 4e) suggest that, upon
heating, some P4,/mnm (o) domains form such that [410]¢e is
aligned along [001]h.x. However, the weak intensity of off-axis
(002)et features indicate that the vast majority of P4,/mnm (o)
domains are arranged with [002] aligned along the preceding
[001]pex direction (Fig. 4e). Therefore, heating from @, to
P4,/mnm (o) does not erase the orientation of the sample (Fig. 3d)
upon heating. The supramolecular sphere in P4,/mnm (o) phase
(Dspn = 2(abc/407)'3 = 40.8 A) [53,55,62,71,72] was estimated to
have a diameter close to that of the diameter of the supramolecular
columns, D, that is 35.4 A (Table S2). We employed this method
for the calculation of the diameter of the supramolecular sphere in
P4,/mnm (o) lattice to be consistent with data reported previously
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[53,55,62,71,72]. Cooling the aligned P4,/mnm (o) phase from
60 °C to 23 °C, the ®° phase re-forms (Fig. 4f). However, four
additional sharp (100) features appear in the X-ray diffractogram
of the ®,° phase obtained upon cooling from P4,/mnm (o)
(Fig. 4f) compared to the XRD recorded for ®,° upon first heating
(Fig. 4d). These features are consistent with directions of the
(100)pex reflection that result from @, phase where the column
axes [001]nex are no longer aligned with the fiber axis [22-26].
An azimuthal plot of (100)n.x shows that the additional four
features that appear upon cooling occur 56° either side of the
original (100)ex features (Fig. 4j). As will be shown more detail
later, this azimuthal distribution is consistent with a ®,° array
with its column axis, [001]yey, aligned along the [410]i¢ and the
equivalent [140] directions of the preceding P4,/mnm (o) phase
(Fig. 4e). Further cooling the sample to —15 °C to the crystalline
dpk phase, the similar off-axis (100)pex features were maintained
(Fig. 4g, and k) as observed in the @, phase at 23 °C upon cooling
(Fig. 4f and j). Therefore, the XRD data in Figs. 4d and e provide
evidence for SOM occurring in assemblies of (3,4,5)12G1-Tp, as
summarized in Fig. 41 to o. The initial &' array is aligned such
that the supramolecular column axis, [001]pex, is aligned along the
macroscopic fiber axis. Upon heating from ®y° to P4,/mnm (o),
the [001]yex directs the orientation of [002]t; so that the c-axis of
the P4,/mnm (o) lattice is aligned along the fiber axis. On cooling,
domains of helical columns are formed not only along their
original direction ([002]¢t — [001]nhex), but also along two new
directions: [410]er and [140]¢et. As in previous SOM systems [22—
26], we propose that the columns are packed into ®,° domains,
where [001]n.x Within each domain is induced by an epitaxial
nucleation by a crystallographic direction from the preceding
3D phase generated from spheres. For (3,4,5)12G1-Tp, columnar
domains are epitaxially nucleated along the [002]c, [410]tet, and
[140]¢et directions of the preceding P4,/mnm (o) phase, resulting
in a rectangular bipyramidal arrangement of helical columns
(Fig. 40) that was observed for the first time in this study. When
the second heating-cooling cycle was performed (Fig. 5), the
azimuthal distribution in ®y!° phase (Fig. 5f) generated by SOM
was maintained but became slightly diffuse. This indicated that
the SOM reported here is reversible after this number of heating
and cooling cycles. However, additional research is required to
estimate stability after a larger number of heating-cooling cycles.
Furthermore, the transition from Pm3n cubic (A15) to P4,/mnm
tetragonal (o) phase and then to @, phase by aligned fiber of
(3,4,5)12G1-Tp which generates another more complicated SOM
will be reported in a different publication.

Analysis of the phase transitions of dendronized triphenylene
(3,4,5)12G1-Tp by solid-state 'H NMR

To understand the phase transitions of the extruded aligned
fiber of the dendronized triphenylene (3,4,5)12G1-Tp, solid state
NMR was utilized as a complementary method to DSC and XRD
[42,55] on the same aligned fibers as the one employed for X-
ray experiments. In the cubic phase at 100 °C, 'H magic angle
spinning (MAS) NMR spectra recorded on aligned fiber showed
well resolved peaks like in the isotropic melt (Fig. 6) and in
solution (Fig. S6).

This demonstrates high mobility for the dendronized Tp in
self-organized state. In P4,/mnm (o) phase in the rage from 80 to
50 °C, the signals from the aromatic protons a and b merged into a
broad peak (Fig. 6, red circle), and the signal of the benzyl proton
¢ almost disappeared. The splitting of the signals in the isotropic
phase and cubic phase between d and d’ or e and e’ result from
local differences of the dodecyloxy side chains attached in meta or
para position to the outer phenyl rings. In contrast, the splitting
of the methyl signal o, 0’ observed exclusively in the P4,/mnm (o)
phase (Fig. 6, green circle) originates from local packing density
differences of the methyl groups and vanishes upon going to more
symmetric lattices in Pm3n cubic (A15) high temperature phase,
and in the lower temperature ®,° phase. The solid-state NMR
obtained here with extruded oriented fiber sample showed higher
resolution compared with our previous publication [55] used to
confirm the phase transitions of (3,4,5)12G1-Tp.

Supramolecular spheres in the P4,/mnm (Frank-Kasper o)
tetragonal phase

To understand the mechanism by which SOM occurs between
P4,/mnm (o) and ¢, phases, it is necessary to briefly discuss
the supramolecular spheres that generate the unit cell of the
P4,/mnm (o) tetragonal phase (Fig. 4b) [28]. The P4,/mnm
(o) unit cell contains 30 spheres. The average number of
molecules per supramolecular sphere was determined to be 4.9
(n = (abcpNy)/ (MW x 30)). This number was calculated with
the lattice parameter (a, b, ¢), the molecular weight of the
dendron (MW), the experimental density (p = 0.951 g/cm?), and
Avogadro’s number (N,) (Table S2). Therefore, each sphere of the
P4,/mnm (o) tetragonal lattice consists of five covalent crown-like
molecules. As is typical for Frank-Kasper phases [61], the P4,/mnm
(o) unit cell contains alternating planes of densely- and sparsely
packed spheres (Figs. 4b and 7). Planes at z = 0 and Y% feature
11 spheres each, depicted in yellow, red, and green in Figs. 4b,
7b, and 7d. Spheres colored in red and green are separated by

_ V2 _ A (T .
0.259a = e 32.6 A (Fig. S12). These distances suggest that

the spheres, which have a diameter of 40.8 A (Table S2), are in
close contact, along the equivalent [410]¢ and [140];.; directions,
respectively. It should be noted that calculation of the diameter
of the supramolecular sphere (Dspn = 2(abc/407)1® = 40.8 A)
[53,55,62,71,72] assumes that the entire volume of the unit cell
is divided between 30 ideal spheres of identical volume, without
considering the polygonal shape of objects in the lattice [47] and
any available void space, while the close contact distances (32.6 A)
(Fig. S12) should not surprise that is as expected smaller than
to the diameter of supramolecular spheres (40.8 A). In fact the
smaller value of the distance between the centers of spheres than
that of the sphere diameter provides a very strong support for the
polygonal shape of “spheres.” However, the sphere is a simplified
model of polyhedral objects [47,52,53,55,62,71,72], and therefore,
the calculated diameter (40.8 A) should be slightly larger than the
close contact distance between then polygonal “spheres” (32.6 A).
These close contacts are not continuous between unit cells (Fig. 7b,
¢). In contrast, planes at z = % and % are sparsely populated
by only 4 spheres (depicted in blue in Fig. 7a and d), separated
in the [002] direction by 0.5 ¢ (= 33.6 A). These blue spheres
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Experimental SAXS patterns of the @' and P4,/mnm (o) phases collected from an aligned fiber upon (a, b) first heating, (c) first cooling, (d, e) second heating, and
(f) second cooling. Temperature, fiber axes, phases, heating and cooling cycles and unit cell parameters are indicated.

are therefore, in close contact continuously along [002]i: across
multiple unit cells (Fig. 7a).

Epitaxial nucleation transforming supramolecular spheres along
[002]¢¢ into helical columns along [001 Jex

The relative intensities of the (100)yex features in the fiber XRD of
dy, after cooling from the P4,/mnm (o) phase (Fig. 4e, i) suggest
that the majority of columns recover their alignment along the
macroscopic fiber axis. This implies that the majority of unit cells
in the P4,/mnm (o) phase generate helical columnar hexagonal
domains where the emergent [001]yx is aligned along the [002]et
direction.

The close contact between the blue spheres along the [002]et
direction is not disrupted during the transition from P4,/mnm (o)
to ®yi° (Fig. 8a). This provides a low barrier to the conversion
of discrete spheres into continuous supramolecular columns and
therefore, this direction is responsible for the epitaxial nucleation.
This process favors the translation of other spheres within the
P4,/mnm (o) unit cell to form a hexagonal array of [002].¢-aligned
columns by epitaxial nucleation and growth.

Epitaxial nucleation transforming supramolecular spheres along
[410]¢ to helical columns along [001 ]pex

The four distinctive off-equator peaks of the (100)nex features in
the fiber XRD of &, after cooling from the P4,/mnm (o) phase
(Fig. 4e, i) suggest that a fraction of helical columns nucleate their
alignment along the [410] and the equivalent [140] directions.
The close contacts between the red spheres along the [410]t

direction and the green spheres along the [140]: directions
are not continuous throughout a domain of unit cells during
the transition from P4,/mnm (o) to ®p° (Fig. 8b, c). Therefore,
rearrangements dictated by the column formation along the
[410]ter and [140]¢et directions are necessary, leading to a higher
barrier to the conversion of discrete spheres into columns when
compared with the [002] direction. The resulting column axes
induced by [410]et and [140]¢ upon cooling are perpendicular to
the axis of the aligned fiber, generating a rectangular bipyramidal
arrangement of columnar hexagonal domains.

Structural and retrostructural analysis of xrd experiments
performed on oriented fibers indicate self-organization of
rectangular bipyramidal arrangements of helical columnar
hexagonal domains

The theoretical XRD pattern of the rectangular bipyramidal
arrangement of columnar hexagonal domains (Fig. 9a) includes
diffraction features arising from the [002]-aligned columns
(Fig. 9b) and those arising from the [410]-aligned columns
(Fig. 9c). The XRD pattern of the [002]i-aligned columns
corresponds to the strong (100)nex peaks on the equator, that
are perpendicular to the fiber axis. XRD pattern of the [410]e-
aligned columns correspond to six distinctive off-equator (100)pex
peaks, resulted from the hexagonal pattern of the columns. The
superposition of these features produces a theoretical XRD pattern
that is consistent with the experimental XRD of (3,4,5)12G1-Tp in
the @, phase (Fig. 9d).
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Variable temperature 'H MAS NMR spectra of (3,4,5)12G1-Tp recorded on heating of an annealed oriented fiber sample prepared by extrusion at 25 kHz MAS
spinning frequency and 700 MHz 'H Larmor frequency. The splitting of the signals in the isotropic phase at 110 °C between d and d’ or e and ¢’ result from
local differences of the OC;;H3s5 side chains attached in meta or para position to the outer phenyl rings. In contrast, the splitting of the methyl signal o, o’ in
the P4,/mnm (o) phase originates from local packing differences of the methyl groups and vanishes upon going to higher temperature and more symmetric lattice
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

While the rectangular bipyramidal arrangement of helical
columnar hexagonal domains illustrated in Fig. 9 represents a new
supramolecular arrangement of helical columns, this architectural
motif raises more new fundamental questions that must be
elucidated than the single question answered. Some of these
questions are determined by the ratio between the rates of
epitaxial nucleation versus helical columnar hexagonal growth. If

nucleation is rare or slow and growth relatively fast, the columnar
new phase nucleated epitaxially dominates the entire volume.
Conversely, if nucleation is easy or fast and frequent in the bulk
of the sample, the resulting columns would be oriented randomly.
The results from Fig. 5 may indicate a relatively slow nucleation
and a fast growth. However, a large diversity of experiments is
required to confirm this hypothesis. If nucleation is slow and
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Arrangement of supramolecular spheres in P4,/mnm (o) phase. (a) Blue spheres exhibit close contact along the [002]¢e; direction at a distance of 0.5 ¢ (= 33.6 A).
(b) Red and green spheres exhibit close contact along the equivalent [410]ier and [140]¢e; directions at a distance of 0.259 a (= 32.6 A). (c) Close contact directions
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%, and 1. (e) Unit cell of P4;/mnm (o) with spheres colored. Diameter of a supramolecular sphere is approximately 40.8 A (Dsph = 2(abc/40m)3 [53,55,62,71,72].
During the epitaxial nucleation process the yellow spheres that are as closed to each other as the red or green spheres will follow the direction of the blue, red and
green arrows that indicate the largest number of close contact spheres on one arrow (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.).

columnar growth is fast the first question to ask is how do the
rectangular bipyramidal arrangements of helical columns pack
together? Fig. 9 illustrates only one such architectural motif, but
it does not indicate how a large density of this architectural motif
will self-organize or disorganize the original periodic arrays. The
extensive experience in our laboratory with the design of self-
assembling crown-like dendrons and dendrimers indicates that
we will be able to design SOM effects at the transition between
any sphere forming periodic or quasiperiodic arrays containing
close contact spheres and columnar hexagonal or even other
columnar lattices. We may ultimately be able to even engineer
the resulting architectural motif by being able to predict the
direction of the epitaxial nucleation mediated by the largest
number of close contact spheres on one director. However, the
largest challenge remains that of the detailed structural analysis
of the resulting self-organization. So far this was performed only
for the orthogonal arrangement of columns, to a certain extent,
by determining the detailed structure of the oriented domains by
polarized birefringence microscopy combined with oriented fiber
XRD experiments [22].

Conclusions
A new SOM has been demonstrated for the nanoscale periodic
arrays of (3,4,5)12G1-Tp. Supramolecular helical columns with

preferential alignment within a @}, ° array generate, upon heating,
a P4,/mnm (o) tetragonal phase with preferred alignment. Upon
cooling, the crystallographic directions of P4,/mnm (o) lattice
generate a complex rectangular bipyramidal arrangement of
columnar hexagonal domains, oriented by an epitaxial nucleation
along the [002]et and [410]¢t directions. Structural analysis using
oriented fiber XRD experiments confirms this transformation
along the [002]¢ and the [410] directions, which involves the
transition of supramolecular spheres into helical columns while
preserving their close contact directions that are determined by
the largest number of close contact spheres on one direction.
The resulting rectangular bipyramidal architecture of helical
columns arranged in a hexagonal array was not yet generated
by any other methodology and represents the first example
of SOM effect mediated by a non-cubic phase. By analogy
with generational libraries of self-assembling dendrons [4,5,53],
a collection of SOM libraries is emerging (Fig. 10). Together
with SOMs reported previously (Figs. 2 and 10), the results
presented here support the proposal that SOM is epitaxially
nucleated by spheres formed from crown-like conformers, rather
than spheres assembled from conical molecules (Fig. 1b) [25].
These findings raise many questions: can SOM be generalized
from all Frank-Kasper and related phases such as LQC generated
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Summary of the five columnar hexagonal nanoscale arrangements mediated by SOM. Previous SOMs have generated (a) an orthogonal arrangement of hexagonal
columns from covalent crown-assembled spheres along [200]a15 — [001]hex. (b) Tetrahedral arrangement of hexagonal columns from covalent crown-assembled
spheres along [111]gcc = [001]hex. (c) Distorted dodecahedral arrangement of hexagonal columnar from supramolecular H-bonding crown-assembled spheres
along [210]a15 — [001]hex- (d) Rhombitruncated cuboctahedral arrangement of hexagonal columnar from supramolecular H-bonding crown-assembled spheres
along [421]a15 — [001]hex- In this report, (e) the new rectangular bipyramidal arrangement of helical columnar hexagonal domains is generated by cooling a

P4,/mnm (o) phase to a columnar hexagonal phase.

from spheres, assembled not only from crown-like molecules
but also from conical molecules forming micellar spheres? Can
this SOM process be also applied to other helical columnar
hexagonal architectures such as cogwheel [79-81] and hat-
shaped [82] derived supramolecular polymers, and even from
self-organizable dendronized covalent polymers that exhibit
crown conformations [29,30,72,83,84]? Are the close contact
interactions between spheres within periodic arrays of other
forms of soft matter such as block copolymers, giant molecules,
and surfactant able to exhibit SOM? How can the interplay
between the translation of supramolecular objects and the close
contact spheres or continuous columnar character be designed to
favor one SOM effect over another? Answering these questions
will continue to develop SOM as a general methodology to
discover, design and predict nanoscale morphologies within
the field of complex soft matter that cannot be generated
yet by other technology. We would like to mention that the
arrangements of helical columns obtained by SOM are more
complex than the bundles of helical proteins widely available in
biology and known as coiled-coil proteins [7,8,125-127] or those

obtained synthetically by more complex synthetic methodologies
[128-133]. SOM provides a potential new entry to complex
dynamic functional systems and materials [134-136]. Finally, the
first application of SOM [137] provides the only methodology
available today that can discriminate between the conical and
crown conformers of self-assembling dendrimers during the self-
organization of their spherical assemblies in a cubic lattice.
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