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Abstract

Biologically-informed neural networks (BINNs), an extension of physics-informed neural net-
works [1], are introduced and used to discover the underlying dynamics of biological sys-
tems from sparse experimental data. In the present work, BINNs are trained in a supervised
learning framework to approximate in vitro cell biology assay experiments while respecting
a generalized form of the governing reaction-diffusion partial differential equation (PDE). By
allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear
forms of these terms can be learned while simultaneously converging to the solution of the
governing PDE. Further, the trained MLPs are used to guide the selection of biologically
interpretable mechanistic forms of the PDE terms which provides new insights into the bio-
logical and physical mechanisms that govern the dynamics of the observed system. The
method is evaluated on sparse real-world data from wound healing assays with varying ini-
tial cell densities [2].

Author summary

In this work we extend equation learning methods to be feasible for biological applications
with nonlinear dynamics and where data are often sparse and noisy. Physics-informed
neural networks have recently been shown to approximate solutions of PDEs from simu-
lated noisy data while simultaneously optimizing the PDE parameters. However, the suc-
cess of this method requires the correct specification of the governing PDE, which may
not be known in practice. Here, we present an extension of the algorithm that allows neu-
ral networks to learn the nonlinear terms of the governing system without the need to
specify the mechanistic form of the PDE. Our method is demonstrated on real-world bio-
logical data from scratch assay experiments and used to discover a previously unconsid-
ered biological mechanism that describes delayed population response to the scratch.
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Introduction

Collective migration refers to the coordinated migration of a group of individuals [3, 4]. This
process arises in a variety of biological and social contexts, including pedestrian dynamics [5],
tumor progression [6], and animal development [7]. In the presence of many individuals, dif-
ferential equation models provide a flexible framework to investigate collective behavior as a
continuum [8-12]. A challenge for mathematicians and scientists is to use mathematical mod-
els together with spatiotemporal data of collective migration to validate assumptions about the
underlying physical and biological laws that govern the observed dynamics. Several factors
contribute to the difficulty of this task, even for simple systems/data, some of which include
biological forms and levels of noise in the observation process, poor understanding of the
underlying dynamics, a large number of candidate mathematical models, implementation of
computationally expensive numerical solvers, etc. This work provides a data-driven tool which
can alleviate many of these problems by enabling the rapid development and validation of
mathematical models from sparse noisy data. The methodology is demonstrated using a case
study of scratch assay experiments.

Scratch assays are a widely adopted experiment in cellular biology used to study collective
cell migration in vitro as cell populations re-colonize empty spatial regions. These experiments
have been used previously to observe population-wide behavior in many different contexts,
including wound healing [13-16] and cancer progression [17]. Mathematical modeling of
scratch assays plays an important role in the quantification and analysis of population dynam-
ics. This is because (i) the equations and parameters comprising mathematical models are
interpretable, providing information about the underlying physical and biological mechanics
that drive the observed system, and (ii) when properly calibrated, they are generalizable,
affording the ability to make accurate predictions beyond the data set used for calibration.

Reaction-diffusion partial differential equations (PDEs) are frequently used to model
scratch assay experiments [2, 8, 11, 18, 19]. The general one-dimensional reaction-diffusion
equation that describes the rate of change of a quantity of interest u(x, f) (e.g. cell density) is

u, = (Du,), +Gu, x€ [xovxf]a t €t th (1)

in which the rate of change of u (i.e. u,) is a function of diffusion, modeled by the function D,
and reaction or growth, modeled by the function G. Note that D and G depend on the applica-
tion, and choosing the correct/optimal mechanistic models for these terms is the focus of
many current research efforts and remains an open question. The classical Fisher-Kolmogo-
rov-Petrovsky-Piskunov (FKPP) equation is a reaction-diffusion equation that has been used
to model a wide spectrum of growth and transport of biological processes. In particular, the
FKPP model assumes a scalar diffusivity function D = D and logistic growth function G =
r(1 — u/K) with intrinsic growth rate r and carrying capacity K [19, 20]. Variants of the
reaction-diffusion equation have also been used to account for different types of cell interac-
tions during scratch assay experiments. For example, the nonlinear diffusivity function
D=1-a'/,+3a(u/K -2/ ,)” with cell-to-cell adhesion coefficient & was used to model
dynamics in which neighboring cells prevent other cells from migrating [21]. Alternatively, a
diffusivity function of the form D = D(1 + a(u/K)?) can be used to model dynamics in which
cells promote the migration of others [11]. Additional variants of reaction-diffusion equation
models have captured cell migration in the presence of growth factors [22], during melanoma
progression [17], and in response to different drug treatments [18].

A recent study quantitatively investigated the role of initial cell density by conducting a
suite of scratch assay experiments on PC-3 prostate cancer cells with systematically varying ini-
tial cell densities [2]. The experimental data was used to calibrate the FKPP equation as well as
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a variant model known as the Generalized Porous-FKPP equation, which assumes that diffu-
sivity increases with cell density u by using a diffusivity function D = D(u/K)" with diffusion
coefficient D, carrying capacity K, and exponent m. Like the FKPP equation, the growth term
is also described by the logistic growth function G = r(1 — u/K). While the calibrated models
approximated the experimental data well in many cases in [2], the presence of systematic
biases between the model solutions and experimental data indicate the existence of additional
governing mechanisms that may not be accounted for in these mathematical models. How-
ever, the existence of a large number of possible biophysical mechanisms that could play a role
in scratch assay dynamics makes the testing of mathematical models against these experimen-
tal data computationally challenging. Thereby, this scenario motivates the use of equation
learning methods to discover the diffusion and reaction terms directly from the experimental
data.

Enabled by advances in computing power, algorithms, and the amount of available data,
the field of equation learning has recently emerged as a powerful tool for the automated identi-
fication of underlying physical laws governing a set of observation data. The basic assumption
in this field is that measured data arise from some unknown n-dimensional dynamical system
of the form

u,=F(x,t,u,u,u,,...;0), x€ [x(,,xf], t € [t tf], (2)

with quantity of interest u = u(x, t), parameter vector 6 € R*, and appropriate initial and
boundary conditions. An example quantity of interest for modeling cell migration dynamics is

the cell density (“*/_ ) atlocation x and time t. The measured data {u”}fjj for a set of spa-

tial points x;, i = 1, .. ., M, and set of time points ¢, j= 1, ..., N, are assumed to be corrupted
by some form of observation error that may be known or unknown in practice. The goal of
equation learning methods is to identify the closed form of F in Eq (2) directly from the noisy
measurements u; ;. Note that, in order to simulate the learned equation, either the noisy or a
denoised version of the initial condition can be used along with an assumed boundary condi-
tion (e.g. no-flux) that describes the biological process generating the data.

Two primary sets of methodology have been used in field of equation learning to date:
sparse regression [23, 24] and theory-informed neural networks [1, 25]. In the sparse regres-
sion framework, numerical methods (e.g. finite differences or polynomial splines) are used
to denoise u and approximate the partial derivatives u;, u,, u,,, etc. from a set of data. The
approximations are then used to construct a library of nonlinear candidate terms (e.g. 1, u, u?,

2 , etc.) thought to comprise the governing system of ordinary differential equations
(ODEs) or PDEs. The data relating u, to all possible model terms inside the library are formu-
lated as a linear regression problem in which sparsity promoting techniques are used to select
a small subset of library terms that produce the most parsimonious model. While the sparse
regression framework has been successfully demonstrated to circumvent searching through a
combinatorially large space of possible candidate models, it can require large amounts of train-
ing data and the numerical methods used for denoising and differentiation are not robust to
biologically realistic forms and levels of noise, leading to inaccuracies in both the constructed
library and learned equations [26]. Further, the method assumes the unknown function F in
Eq (2) can be written as a linear combination of nonlinear candidate terms, which may not be
true in practice.

An alternative approach uses function-approximating deep neural networks, i.e., multilayer
perceptrons (MLPs), as surrogate models uyy p(x, t) for the solution of the governing dynam-
ical system [27-29]. In particular, physics-informed neural networks (PINNs) [1, 25] assume
the mechanistic form of F in Eq (2) is pre-specified and then used as a form of regularization

2
Uy oo o YU
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in the neural network objective function. The parameters of F are allowed to be “learnable,”
meaning that the parameters of the governing PDE are calibrated while the neural network is
trained to minimize the error between uyy p(x;, £j) and the data u; ;. This methodology ensures
that the neural network solution satisfies the physical laws described by F while simulta-
neously fitting the spatiotemporal data. Theory-informed neural networks have been demon-
strated with smaller amounts of data in the presence of noise, however, they have so far only
been applied to problems where the governing mechanistic PDE is known a priori [30-32].

Hybrid approaches that combine neural networks and sparse regression have also been
suggested to address some of the issues surrounding the above methods [26, 33]. In these
approaches, neural networks are used as surrogate models for u(x, f) and then used to con-
struct the library of candidate terms for sparse regression using automatic differentiation.
These methods have been shown to accurately learn the governing system of equations for a
variety of reaction-diffusion models from spatiotemporal data with biologically realistic levels
of noise [26].

All three approaches (i.e. sparse regression, theory-informed neural networks, and hybrids)
however, suffer from the model specification problem, in which the governing ODE/PDE
model must be specified a priori either explicitly or as a library of candidate terms. Thus, (i) if
the true dynamical system contains terms that are not included in the regularization term for
theory-informed neural networks, or (ii) if the true terms cannot be represented as a linear
combination of nonlinear candidate terms for sparse regression, then these methods will ulti-
mately fail to recover the true system. Further, detecting this issue when determining what
the “true” system is in real-use cases is an open question. Where systems with scalar or linear
dynamics may be suitable for these approaches, biological systems pose a particular challenge
in this respect, since many of the underlying mechanics driving these systems are nonlinear.
For example, the Generalized Porous-FKPP model contains a nonlinear diffusivity function
D = D(u/K)" with unknown exponent m. These issues help explain why, to the best of our
knowledge, equation learning methods have not yet been successfully applied to real-world
biological population-level data.

In this work, biologically-informed neural networks (BINNs), an extension of physics-
informed neural networks (PINNs) [1], are presented as a solution to the library specification
problem for systems with biological/physical constraints. In this framework, the right-hand-
side function F of the PDE in Eq (2) is assumed to be a combination of biologically relevant
terms. For example, the general form of reaction-diffusion models can be described by the two
right-hand-side terms in Eq (1) meaning that the equation learning problem is transformed
from learning F to learning the diffusivity and growth functions D and G. Rather than assign-
ing mechanistic forms to each function as in previous equation learning studies, each function
is replaced with a separate neural network. This approach leverages the ability of deep neural
networks to approximate continuous functions arbitrarily well [34]. Importantly, the form of
each learned neural network function can be visualized, thereby enabling a data-driven tool
for user-guided conjecture of new mathematical equations that describe each separate term in
F. Moreover, formulating the equation learning task within the BINNs framework enables the
modeler to use domain expertise to include qualitative constraints on the parameter networks
(e.g. specifying nonlinear functions that are non-negative, monotone increasing/decreasing,
etc.) by selecting appropriate activation functions and loss terms for the optimization.

While BINNSs can be used to discover a wide range of governing equations across the bio-
logical and physical sciences, including systems of ODEs and PDEs, in this work they are
demonstrated using reaction-diffusion PDEs. The BINNs methodology is first tested using
synthetic data and then demonstrated on experimental data from scratch assay experiments
with variable initial cell densities [2]. Notably, each data set is noisy and sparse, containing
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only five time measurements across 38 spatial locations. BINNs are used to discover the non-
linear forms of the diffusivity function and growth term of the governing reaction-diffusion
equation. Persistent model discrepancy is used to motivate the incorporation of a novel delay
term which may have important implications for the reproducibility and modeling of scratch
assays. The learned nonlinear forms of the diffusion, growth, and delay terms are used to
guide the selection of a mechanistic model with biologically interpretable parameters that
remove virtually all of the model discrepancy.

Scratch assay data

Biologically-informed neural networks (BINNs) are evaluated on experimental scratch assay
data from [2]. A typical scratch assay involves (i) growing a cell monolayer up to some desired
initial cell density, (ii) creating a “scratch” in the interior of the monolayer to produce an
empty region, and (iii) recording longitudinal measurements of the cell density during re-colo-
nization of the area. See Fig 1 for a visualization of the experiment.

12,000 16,000 20,000
d Single well C o

t =24h t = 24h

A

9000pm

b Field of view

Fig 1. Scratch assay experiment. (a) An illustration of an experiment with the IncuCyte ZOOM system (Essen BioScience, MI USA). Full details of the experiment
and image processing can be found in [2]. Cells are seeded uniformly within each well in a 96-well plate at a pre-specified density of between 10,000 and 20,000 cells
per well. A WoundMaker (Essen BioScience) is used to create a uniform vertical scratch along the middle of the well. (b) Microscopy images are collected from a
rectangular region of the well. (c) Example images corresponding to experiments initiated with 12,000, 16,000, or 20,000 cells per well. A PC-3 prostate cancer cell line
was used. The image recording time is indicated on each subfigure and the scale bar corresponds to 300 ym. The green dashed lines in the images in the top row show
the approximate location of the leading edge created by the scratch. Each image is divided into equally-spaced vertical columns, and the number of cells in each
column divided by the column area is calculated to yield an estimate of the 1-D cell density.

https://doi.org/10.1371/journal.pcbi.1008462.9g001
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Fig 2. Experimental scratch assay data. Pre-processed cell density profiles from scratch assay experiments with varying initial cell densities [2]. Each subplot
corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). The cell densities are reported at

37 equally-spaced positions and five equally-spa

ced time points.

https://doi.org/10.1371/journal.pcbi.1008462.9002

One-dimensional cell density profiles are obtained by manually counting the cells within
vertical columns of the two-dimensional image data. For these data, the cell density profiles
were reported for six varying initial cell density levels (i.e. 10,000, 12,000, 14,000, 16,000,
18,000, and 20,000 cells per well). To make the cell density profiles compatible with neural net-
work training, the data are pre-processed by rescaling the x and ¢ variables to the scales of mil-
limeters (mm) and days, respectively (see Methods Section for more details). Further, the cell
density profile at the left boundary is removed from the data because it was identified as an
outlier across each of the six data sets. The resulting pre-processed cell densities at 37 spatial
points and five time points are shown in Fig 2.

Biologically-informed neural networks

BINNS are centered around a function-approximating deep neural network, or MLP,
denoted by upp(x, £) which acts as a surrogate model that approximates the solution to

the governing equation described by Eq (2) (Fig 3A). In this work, the governing PDE is
assumed to contain two terms, D and G, that describe the general reaction-diffusion model
in Eq (1). Since the true forms of the diffusivity and growth functions are unknown, they are
approximated by neural networks D = D,,;,(#) and G = G, (u) (Fig 3B). Both Dy p and
Gmp are continuously differentiable functions that input the predicted cell density uy p(x,
t) and output the corresponding diffusivity or growth value. The advantage of using MLPs
for the terms of the governing PDE is that the nonlinear forms of these terms can be learned
without specifying them explicitly (or as a library of candidate terms), thus circumventing
the model specification problem. Automatic differentiation (Fig 3C) is used to numerically
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\
X
WA

SRR

Fig 3. Biologically-informed neural networks for reaction-diffusion models. (A) BINNs are deep neural networks that approximate the solution of a governing
dynamical system. (B) By allowing the terms of the dynamical system (e.g. diffusivity function D and growth function G) to be function-approximating deep neural
networks, the nonlinear forms of these terms can be learned without the need to specify a mechanistic model or library of candidate terms. (C) Automatic
differentiation is used on compositions of the different neural network models (e.g. u, D, and G) to construct the PDE that describes the governing dynamical system.
(D) The governing system is used in the neural network objective function to jointly learn and satisfy the governing PDE while minimizing the error between the
network outputs and noisy observations.

https://doi.org/10.1371/journal.pcbi.1008462.9003

differentiate compositions of uy p, Dyipp, and Gy p in order to construct the general reac-
tion-diffusion model in Eq (1). The resulting PDE (Fig 3D) is used to regularize uy;p during
training so that uy p not only fits the data u;; but also satisfies the governing reaction-diffu-
sion system.

To ensure that the fit to the data and the fidelity to the governing PDE are simultaneously
optimized, BINNs are trained with gradient-based methods using the following multi-part
objective function:

‘CTotal = ’CGLS + EPDE + £Constr' (3)

The first term L s concerns the generalized least squares (GLS) distance between uyyp(x;, 7)
and the corresponding observed data u; ;. The observation process is assumed to be described
by a statistical error model of the form
u,; = u(x, ) +w,;Og;, (4)

in which the measured data u; ; are a combination of the underlying dynamical system u(x; ;)
and some random variable w;; © €;; where © represents element-wise multiplication [35]. In
general, the independent and identically distributed (i.i.d.) random variable &;; is modeled by
an n-dimensional normal distribution with mean zero and variance one that is weighted by

w, = [0 (x, 1) .. ou(x )] (5)
fory>0and w,,...,®, € R where n is the dimensionality of the system. Note that (i) noise-
less data are modeled by letting w,, . . ., w,, = 0, (ii) constant-variance error used in ordinary
least squares is modeled by letting y = 0, wy, . . ., w, = 1, and (iii) non-constant-variance error
(e.g. proportional error) used in generalized least squares is modeled by letting ¥ > 0, wy, . . .,
w,, # 0. Therefore, to account for the statistical error model in Eq (4), the GLS objective func-
tion

2
Loo= o 3 [Hurbioh) ~ b, ©
@ MN i=1j=1 VN tj>|y ’
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is used with proportionality constant y = 0.2. Note that y was tuned numerically following the
methodology suggested in [26] (see Methods Section for more details).
The next term £, ensures uyy p satisfies the solution of the governing PDE. For ease of

notation, let i1, ; = uy;,(x;, t;), Dij = Dyyp (e (%5 1)), and GiJ = Gyyp(Upp(%;, ) Then for

the reaction-diffusion equation, the error term takes the following form:

1 YN 104, o (. Ou, . ’
Lopg = MN Z |: .- <8_x <D;Ja—;> + G@j”i,j) ] ) (7)

= ot
i=1,j=1 ~—~
LHS RHS

where LHS and RHS denote the left-hand- and right-hand-sides of the governing PDE, respec-
tively. Thus, by driving £,;. to zero, the RHS is trained to match the LHS. Through this pro-
cess, the nonlinear forms of Dy p and Gy p are learned despite not being directly observed.
See the Methods Section for additional implementation details, including a random sampling
procedure that enforces this PDE constraint everywhere in the input domain during training.

Biological information and domain expertise are incorporated into the BINNs framework
by adding penalties in the loss term L, . For the reaction-diffusion equation, the diffusivity
and growth rates are assumed to be within biologically feasible ranges [ D yin, Dimax] and [Gumin,
Gmmaxl> respectively. Further, diffusion is also assumed to be non-decreasing and growth to be
non-increasing with respect to cell density. The latter constraints were chosen based on the
collective behavior of the unconstrained parameter dynamics (e.g. the unconstrained diffusion
terms were generally increasing, but exhibited unrealistic dynamics, including vertical asymp-
totes, at low cell densities) while the maximum and minimum diffusivity and growth rates con-
sidered in [2] were used to ensure Dy p and Gy p stay within biologically realistic ranges. See
the Methods Section for more details. The corresponding constraints take the form:

N 2
1 M,N L, M,N aDi‘j
EConstr = MN |: Z (Dlj) + Z aa
i=1j=1 i=1j=1 b
D <D,, D)o < 0

xxxxx

i=1j=1 i=1,j=
G <G,y G /di >0

‘max

The constraints on Dy p and Gy p shown in Eq (8) were used for all computational results in
this work. See the Methods Section for numerical implementation details of these constraints.

BINNS are distinct from previous equation learning approaches in the following ways.
First, unlike the neural network / sparse regression hybrid in [26], which first trains uy p to fit
a set of noisy data and then constructs a library of candidate terms as a separate step for the
PDE-FIND algorithm [24], BINNs include the governing PDE in the objective function of
upmrp itself, meaning that uyrp is trained to fit the noisy data while also approximately satisfy-
ing the learned PDE. Second, unlike PINNs [1], BINNs begin from a basic conservation law
(e.g. conservation of mass) and use MLPs to determine suitable forms for the terms compris-
ing these laws instead of specifying fixed mechanistic terms that may or may not capture the
full system dynamics. Therefore, by replacing the terms of the PDE (e.g. diffusion and growth)
with MLPs, BINNs extend PINNSs to the class of equation learning methods, since the mecha-
nistic PDE terms do not need to be specified a priori.
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Evaluation procedure

Because the model prediction uy;p(x, t) is only a surrogate model for the dynamical system
u(x, t), it is possible that this approximation may contain errors, particularly in areas where
the PDE constraint given by Eq (7) is not satisfied. To ensure that the inferred diffusion and
growth terms lead to biologically realistic dynamics, the reaction-diffusion equation given by
Eq (1) is solved numerically with a method-of-lines approach using D = D,;;, and G = Gyyp.
Note that this model is well-defined because Dy p and Gy p are continuously differentiable
functions of the cell density, u. Further, BINNSs are retrained multiple times for each data set in
which the forward simulation using the learned PDE terms that yields the smallest GLS error
(Eq (6)) is saved. All fits to the data shown in the Results Section are numerical solutions to the
PDE in Eq (1) using the learned diffusivity and growth functions. See the Methods Section for
numerical implementation details of the PDE forward solver.

Results

Simulation case study

Since the diffusivity and growth terms are inferred by BINNs through learning Dy p and
Gmwp, respectively, the ability of BINNS to learn biologically accurate representations of these
terms must first be tested. To investigate this, data were simulated using the classical FKPP
and Generalized Porous-FKPP equations with parameter values from [2] for the scratch

assay data with initial cell density 20,000 cells per well. Additionally, the simulated data were
obscured with artificial observation error using the statistical model in Eq (4) with y = 0.2.
Each simulation used the initial condition from the scratch assay data with initial cell density
20,000 cells per well. Using the same level of sparsity (i.e. 37 spatial points and five time
points), the BINNs framework was shown to (i) approximate the dynamical system accurately
and (ii) approximate the general forms of the diffusivity and growth terms. See S1 and S2 Figs
for the model and parameter fits, respectively. This case study demonstrates that BINNs are
able to learn accurate representations of the diffusivity and growth functions from biologically
realistic noisy sparse data, however, further analysis, like model selection and comparison, is
omitted here and instead explored using experimental data.

Reaction-diffusion BINN s for experimental data

As described in the previous sections, the diffusivity and growth functions are approximated
by deep neural networks, D = D, ,(#) and G = G,;,(u), resulting in a governing PDE of the
form

u, = (Dyup(w)u,), + Gyyp()u, )

where Dy p and Gy p are functions of the cell density 1. A BINN was trained for each data set
with varying initial cell density. The resulting numerical PDE solutions using the trained Dy p
and Gy p are shown in S3 Fig for each data set. While the model fits are excellent for lower ini-
tial cell densities, there still remains a significant amount of model discrepancy at higher initial
cell densities. GLS residual errors were computed to provide an additional way of visualizing
the model discrepancy (see S4 Fig) in which non-i.i.d. residuals are clearly present at higher
initial cell densities. To investigate the specific form of the model discrepancy, Fig 4 shows the
learned diffusivity and growth functions with the corresponding model fit for the data set with
an initial cell density of 20,000 cells per well.

Fig 4 reveals clear model discrepancy in two main areas: (i) at high cell densities (i.e. x € [0,
0.25] mm and x € [1.75, 2.0] mm for ¢ € [0, 1] days) where diffusion is negligible and the
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Fig 4. Reaction-diffusion BINN terms and discrepancy. Left: learned diffusivity and growth functions, Dy p and Gy p, evaluated over cell density, u. Right:
Predicted cell density profiles using BINNs with the governing reaction-diffusion PDE in Eq (9) for data with initial cell density 20,000 cells per well. Solid lines
represent the numerical solution to Eq (9) using Dy p and Gy p. The markers represent the experimental scratch assay data.

https://doi.org/10.1371/journal.pcbi.1008462.9004

dynamics are governed primarily by growth; and (ii) at low cell densities (i.e. x € [0.5, 1.5] mm
for t € [0, 1] days) where growth is negligible and the dynamics are primarily governed by dif-
fusion. In particular, the discrepancy is largest for early time points where the diffusion and
growth dynamics appear too rapid. The solutions of Dy p and Gy p are also qualitatively simi-
lar to the classical FKPP equation in which the learned diffusivity function is relatively con-
stant while the learned growth function is approximately linearly decreasing with cell density,
u. However, despite Dy p and Gy p learning biologically realistic functions for the diffusivity
and growth, the persistent model discrepancy observed across multiple data sets with high ini-
tial cell densities (see S3 Fig) suggests that the reaction-diffusion equation described in Eq (9)
may be insufficient to fully capture the underlying dynamics of cell migration for these data.
From a mathematical modeling perspective, the model discrepancy at early time points sug-
gests the existence of a time delay that scales the magnitude of the density-dependent diffusion
and growth rates. Biological reasons behind this phenomenon may include cell damage from
the scratch assay protocol or changes in cell functions where more cells become immobile/
non-proliferative as the cell density approaches carrying capacity [36-38]. See the Discussion
Section for more details.

Delay-reaction-diffusion BINNs for experimental data

Motivated by the model discrepancy for data sets with high initial cell density, the reaction-dif-
fusion equation in Eq (9) was modified by including a time delay described by an additional
neural network function T p(#). The new term Ty p(?) is a continuously differentiable func-
tion of time that is constrained to be non-decreasing and output values between 0 and 1. In
this way Typ can scale the strength of the density-dependent diffusivity and growth terms in
time. Letting the diffusivity, D, and growth, G, terms of the governing PDE be functions of u
and ¢, they are replaced with D = Ty, (t)Dyyp(#) and G = Ty (t) Gyppp(14). This results in a
governing PDE of the form

U, = (Typ(£) Dypip (4)1a,), + Topep(£) Gy (1)t
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which simplifies to
u, = TMLP(t) ((DMLP(u)ux)x + GMLP(”)”)v (10)

where Dy p and Gy p are functions of the cell density u and Ty p is a function of time ¢.
Note that Tzp was chosen to be separable from Dy p and Gy p since the density-dependent
dynamics of diffusion and growth are assumed to be consistent throughout time. Further, it
was assumed that both Dy p and Gy p are scaled by the same time delay; see the Discussion
Section for more details. BINNs governed by the PDE in Eq (10) were trained for each data set
with varying initial cell density. The resulting forward simulations using the trained Ty p,
Dyp, and Gy p networks are shown in S5 Fig. The model fits demonstrate that virtually all of
the model discrepancy across each initial cell density was removed by including a time delay.
This is confirmed visually using GLS residual errors (see S6 Fig) where the residuals are
approximately i.i.d. even at higher initial cell densities. In addition to visual inspection between
S3 and S5 Figs and residual errors in S4 and S6 Figs, this phenomenon is also reflected in the
mean GLS errors between the numerical simulations and scratch assay data over the spatial
dimension for each time point (see S7 Fig). In particular, including the novel time delay term
results in a significant error reduction, particularly for early time points (i.e. t=0.5and t = 1.0
days). Similar to the reaction-diffusion case, Fig 5 shows the learned diffusivity, growth, and
delay functions with the corresponding model fit for the data set with initial cell density of
20,000 cells per well.

Fig 5 shows that the model discrepancy in areas with high and low cell densities at early
time points has been practically eliminated. This is most clearly seen in the delay-reaction-dif-
fusion model solution at the second time point (i.e. t = 0.5 days), which matches the data more
accurately than the reaction-diffusion model in Eq (9) at the same time point (see Fig 4).
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Fig 5. Delay-reaction-diffusion BINN terms and discrepancy. Left: learned diffusivity and growth functions, Dy p and Gyypp, evaluated over cell density, u, and
delay function, Tyip, evaluated over time, ¢. Right: Predicted cell density profiles using BINNs with the governing delay-reaction-diffusion PDE in Eq (10) for data
with initial cell density 20,000 cells per well. Solid lines represent the numerical solution to Eq (10) using Dy p, Gumrp, and Tyypp. The markers represent the
experimental scratch assay data.

https://doi.org/10.1371/journal.pcbi.1008462.9005
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Moreover, Dy p and Gy p for the delay-reaction-diffusion BINN learned similar forms of the
diffusivity and growth compared to the reaction-diffusion case. However, the delay term Ty p
reveals that the diffusion and growth dynamics described by Dy1p and Gy p are scaled down
for early time points (i.e. t < 1) before Ty p converges to 1, allowing Dy p and Gy p to come
into full effect. This observation is of particular importance since the majority of scratch assay
data are reported within this time delay region (i.e. 4, 6, 12, or 24 hrs) [8, 13, 15, 39]. Impor-
tantly, not accounting for a time delay within this region may potentially explain why scratch
assay experiments are notoriously difficult to reproduce [2].

Guided mechanistic model selection

The diffusion, growth, and delay networks Dyrp, Gyrp, and Tyrp were used to guide the selec-
tion of biologically realistic mechanistic models for downstream use in a traditional mathemat-
ical modeling framework. Each network solution corresponding to the six scratch assay data
sets is shown in Fig 6.

From Fig 6, the learned diffusivities for each experiment with different initial cell density
are non-zero when u = 0, suggesting the existence of some constant baseline diffusivity, and
appear increasing and concave up as a function of the cell density, u, for 4 > 0. On the other
hand, the learned growth terms are approximately linear, which is consistent with logistic
models, and the learned delay terms all exhibit sigmoidal dynamics. Note that the outlying
Gurp solution for the scratch assay data set with 10,000 initial cells per well is likely an artifact
of the observed cell densities in that experiment not approaching the carrying capacity, and
therefore leading to unrealistic learned dynamics. Based on qualitative analysis of these plots,
the following mechanistic delay-reaction-diffusion equation is proposed to satisfy each scratch
assay data set:

u, = T(0)((D(w)u,), + Gupu), (11)
with diffusivity, growth, and delay functions
u
D=D,+ D(—|m, (12a)
K
u
g:ru(l—E>, (12b)
Dumip Gup
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Fig 6. Delay-reaction-diffusion BINN terms. The learned diffusivity, Dy p, growth, Gy p, and delay, Ty p, functions extracted from the corresponding
BINNSs with governing delay-reaction-diffusion PDE in Eq (10). Each line corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000,
14,000, 16,000, 18,000, and 20,000 cells per well). Note that Dy p and Gy p have different lengths since they are evaluated between the minimum and
maximum observed cell densities corresponding to each data set.

https://doi.org/10.1371/journal.pcbi.1008462.9006

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008462 December 1, 2020 12/29


https://doi.org/10.1371/journal.pcbi.1008462.g006
https://doi.org/10.1371/journal.pcbi.1008462

PLOS COMPUTATIONAL BIOLOGY Neural networks guide mechanistic modeling from sparse experimental data

1

T 1t e Girrho)’ (12¢)

respectively. The diffusivity network (Dyyp) solutions show significant variability across the
scratch assay data sets, so the posited mechanistic term is chosen to respect the observed vari-
ability while also being as simple as possible. Therefore, the diffusivity function D in Eq (12a)
is a combination of (i) the classical FKPP and (ii) the Generalized Porous-FKPP diffusivity
functions, with baseline cell diffusivity Dy, diffusion coefficient D, and exponent m. This way
(i) and (ii) can be seen as nested models of the posited diffusivity function by setting either

D =0or D, =0, respectively. Yet the posited diffusivity is still simple, as it only increases the
number of parameters with respect to (ii) by one. Since the growth network (Gyp) solutions
are approximately linear and decreasing, the growth function G in Eq (12b) is chosen to be the
logistic growth function with intrinsic growth rate r and carrying capacity K. Finally, the delay
network (Typ) solutions exhibit sigmoidal dynamics, so the delay function 7 in Eq (12¢) is
represented by the logistic regression function with parameters f, and ;. One advantage of
using a mathematical model with specified functional forms and parameters described by Eqs
(12a)-(12c¢) is that standard parameter estimation techniques can now be used. This enables a
comparison of the BINN-guided model in Eq (11) to other mechanistic models, namely, the
classical FKPP and Generalized Porous-FKPP equations.

Model comparison

The BINN-guided delay-reaction-diffusion model in Eq (11) was compared to the classical
FKPP equation

u, = (Dux)x—l—ru(l —%) (13)

with diffusion coefficient D, intrinsic growth rate r, and carrying capacity K and Generalized

Porous-FKPP equation
u\"™ u
w= () w),+re(1-%) (14)

with additional exponent m. These models were used as a baseline for comparison since they
have been identified as the current state-of-the-art in modeling these data [2, 40]. The parame-
ters of each model were optimized numerically using the generalized least squares error func-
tion in Eq (6) with the adjusted statistical error model in Eq (4) with y = 0.2. Note that the
carrying capacity was fixed at K= 1.7 x 10° ™/ ., and not optimized because it was empiri-
cally validated in [2]. The resulting model fits and parameter values for the classical FKPP and
Generalized Porous-FKPP models are shown in S8 and S9 Figs and S1 and S2 Tables. The solu-
tions of the BINN-guided delay-reaction-diffusion model in Eq (11) to each data set are shown
in Fig 7.

The predicted cell density profiles in Fig 7 closely matched the scratch assay data which
suggests that the proposed model in Eq (11) with Eqs (12a)-(12c) successfully captured the
learned dynamics from T p, Dyrp, and Gypp. The optimized parameter values across each
data set are shown in Table 1. Note that the parameters were rescaled to ym and hours (hr) for
comparison with [2] and [40].

Table 1 reveals that many of the parameters relating to density-dependent diffusion and
growth show trends (e.g. Dy and r increasing) with initial cell density similar to [2]. The impli-
cations of this observation are considered in the Discussion Section. To compare the three
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Table 1. BINN-guided delay-reaction-diffusion model parameters.

models quantitatively, the generalized least squares (GLS) errors were computed for each
model and data set and reported in Table 2.
The results in Table 2 showed that Eq (11) with Eqs (12a)-(12c) fit each data set more accu-
rately than the classical FKPP or Generalized Porous-FKPP models. This behavior is not sur-
prising given that the BINN-guided model is more complex. Therefore, model selection

methods, which balance model accuracy with model complexity, were also used to compare

the quality of each model relative to the others. In particular, the modified Akaike Information
Criterion (AIC) from [41] was used to account for the statistical error model in Eq (4). See
Table 3 for the AIC scores across each model and data set.

Initial cell density

Parameter 10,000 12,000 14,000 16,000 18,000 20,000
Dy (/) 95.7 353.3 482.1 604.3 804.0 675.8

D (™’ /hr) 3987.1 3166.4 3775.0 3773.8 2201.8 1954.9

m (unitless) 1.5976 3.4708 1.9060 3.5173 3.2204 0.9876
r (/o) 0.0525 0.0714 0.0742 0.0798 0.0772 0.0951
Bo (unitless) -1.0292 -3.3013 -3.1953 -2.9660 -1.2695 -4.0651
B (/) 0.2110 0.2293 0.2761 0.2180 0.1509 0.4166

Table of model parameters for Eq (11) calibrated for each scratch assay data set. Each column corresponds to an experiment with different initial cell density (i.e. 10,000,
12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

https://doi.org/10.1371/journal.pchi.1008462.t001
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Table 2. Generalized least squares (GLS) errors.

Initial cell density
Model 10,000 12,000 14,000 16,000 18,000 20,000
classical FKPP 786.80 557.28 616.76 619.12 685.17 964.19
Porous-FKPP 681.18 540.29 418.57 566.89 744.44 928.38
BINN-guided model 557.01 317.18 410.79 393.15 307.74 386.52

Table of GLS errors between the model solutions and scratch assay data. Each column corresponds to an experiment with different initial cell density (i.e. 10,000, 12,000,
14,000, 16,000, 18,000, and 20,000 cells per well). Bold numbers represent the minimum GLS error across the three models.

https://doi.org/10.1371/journal.pchi.1008462.t002

Table 3. Akaike Information Criterion (AIC) scores.

Initial cell density
Model 10,000 12,000 14,000 16,000 18,000 20,000
classical FKPP 1239.6 1175.8 1194.5 1195.2 1214.0 1277.2
Porous-FKPP 1214.9 1172.0 1124.8 1180.9 1231.3 1272.2
BINN-guided model 1183.7 1079.5 1127.3 1119.2 1073.9 1116.1

Table of AIC scores for each model and scratch assay data set. Each column corresponds to an experiment with different initial cell density (i.e. 10,000, 12,000, 14,000,
16,000, 18,000, and 20,000 cells per well). Bold numbers represent the minimum AIC score across the three models.

https://doi.org/10.1371/journal.pchi.1008462.t003

The results in Table 3 showed that the BINN-guided delay-reaction-diffusion model out-
performs the classical FKPP and Generalized Porous-FKPP models across all data sets except
with initial cell density 14,000 cells per well. This discrepancy follows from Eq (6) where the
additional parameters in Eq (11) only slightly decreased the GLS error for the data set with ini-
tial density of 14,000. Finally, to quantify the “value” of adding the novel delay term in Eq
(12c¢) the differences between AIC scores for each model and the minimum AIC score,
denoted by AAIC, are shown in Table 4.

Table 4 suggests that the delay term is most impactful for data sets with large initial density
(i.e. 18,000 and 20,000 cells per well) since the AAIC scores are significantly larger for these
data sets. Biological analysis and explanations for these results are considered in the following
Discussion Section.

Discussion

In this work, biologically-informed neural networks (BINNs) were introduced as a flexible and
robust equation learning method for real-world biological applications. The BINNs framework

Table 4. Difference Akaike Information Criterion (AAIC) scores.

Initial cell density
Model 10,000 12,000 14,000 16,000 18,000 20,000
classical FKPP 55.90 96.26 69.71 76.01 140.08 161.11
Porous-FKPP 31.23 92.54 0.00 61.70 157.42 156.11
BINN-guided model 0.00 0.00 2.53 0.00 0.00 0.00

Table of AIC differences (AAIC) between each model and scratch assay data set. Each column corresponds to an experiment with different initial cell density (i.e. 10,000,
12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). Each AAIC score represents the difference between a model’s AIC score and the minimum recorded AIC score
for that data set.

https://doi.org/10.1371/journal.pchi.1008462.t004
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was demonstrated using experimental biological data from scratch assays [2] and used to dis-
cover a delay term that had not yet been considered in the modeling of these data. The trained
diftusivity, growth, and delay networks were used to guide the selection of the mechanistic
model in Eq (11) with Eqs (12a)-(12c), which was shown to model the data more accurately
than the current state-of-the-art models (i.e. classical FKPP and Generalized Porous-FKPP
equations). The results shown in this work suggest that the BINNs framework can be success-
fully applied to a wide range of biological and physical problems where the data are sparse and
the governing dynamics are unknown. The biological motivations for various aspects of the
BINNs framework and significance of the results are discussed in the following paragraphs.

The model solutions in S3 Fig and Fig 4 indicated that using only density-dependent diffu-
sivity and growth functions D(u) and G(u) was not sufficient to fully capture the scratch assay
dynamics. Fig 4 highlighted this discrepancy at the second time measurement (t = 0.5 days) in
which the model failed to capture the areas of both high and low cell density, despite letting D
and G be universal function-approximating neural networks. In particular, the model solutions
in the areas of high cell density (i.e. x € [0.0, 0.5] and x € [1.5, 2.0]) showed exponential con-
vergence to the carrying capacity, which successfully captured the data for later time points
(t > 1 days) but over-predicted for early time points (¢t < 1 days). Similarly, diffusion in areas
of low cell density (i.e. x € [0.5, 1.5]) over-predicted the cell density profile for early time
points but then matched the data accurately for later time points. From a mathematical per-
spective, this motivates the existence of a time delay that scales the density-dependent dynam-
ics to be reduced for early time points and larger for later time points. There are also several
biological motivations for considering a time delay. For example, [36] showed how cells are
damaged at the borders of the scratch as a result of the experimental scratch assay protocol.
Cell damage can potentially inhibit the communication between cells and physically block
healthy cells from diffusing into uncolonized spatial regions. Another source of delay may
stem from changes in density-dependent cell functions (e.g. differentiation, division, and
senescence). Studies have shown that cells are more likely to terminally differentiate when cell
populations approach carrying capacity [37, 38]. Therefore, scratch assay experiments that are
performed for high density populations may contain fewer mobile/proliferative cells at the
borders of the scratch, thus causing a time delay in the cell migration dynamics.

A general framework for incorporating the delay term may be to consider diffusivity and
growth functions D = Dy, (u,t) and G = G,;;,(u, t), respectively. However, since the dynam-
ics of diffusion and growth are assumed to be consistent throughout time, the diffusion and
growth terms were chosen to be separable functions composed of diffusivity D(u), growth
G(u), and delay 7 (¢). Additionally, it was assumed that both diffusion and growth were scaled
by the same time delay 7 (t) as opposed to a diffusion delay 7 ,(t) and growth delay 7 . (¢).
This assumption may not be accurate if the time delay is a result of density-dependent changes
in cell function where cells become mobile and proliferative at different rates. In particular,
since migration and proliferation have very different timescales, it might be natural to expect
that the delays would also have different timescales. However, since the numerical solutions
using 7 () matched the data sufficiently accurately, this question is left for future work.
Finally, 7 (t) was constrained to output values between 0 and 1 and forced to be increasing
with time. These constraints were chosen to ensure that the delay term modeled the time-
dependent changes in cell dynamics for early time points but converged to unity by later time
points.

In this work, BINNs revealed that the reaction-diffusion system in Eq (1) with cell density-
dependent diffusivity and growth functions was insufficient to capture the data dynamics.
However, the model discrepancy for data sets with large initial cell density motivated the devel-
opment of a time delay which significantly improved the model accuracy and resolved the
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observed discrepancy. The diffusivity, growth, and delay networks were used to posit a mecha-
nistic model (i.e. Eq (11) with Eqs (12a)-(12c)). Using the logistic growth model (Eq (12b)) for
the growth function and logistic regression (Eq (12¢)) for the delay function followed straight-
forwardly from the parameter network solutions in Fig 6, however, the diffusivity function in
Eq (12a) warrants further discussion.

Opinions vary between the biological validity of (i) the classical FKPP and (ii) the General-
ized Porous-FKPP diffusivity functions. For example, one study compared (i) and (ii) using
experimental wound size data and found that (ii) with m = 4 provided the best fit to the data
[42]. Another study fit (i) and (ii) to experimental cell migration data with different cell popu-
lations and found that one population was best described by constant diffusivity in (i) and
the other by nonlinear diffusivity with m = 1 in (ii) [43]. These studies do not reveal which
approach is best, but they demonstrate that care is warranted. Thus, the posited diffusivity
function in Eq (12a) was chosen to respect the observed variability of the diffusivity network
(Dyprp) solutions (Fig 6) while being as simple as possible (i.e. a combination of the classical
FKPP and Generalized Porous-FKPP diffusivity functions). It may be the case that the true dif-
fusivity function is even more complex, such as a linear combination of powers:

u\m™ u\ m
D=D,+D(5) +Du(g) "

with baseline diffusivity Dy, diffusion rates D, and D,, carrying capacity K, and exponents 1,
and m,. However, these considerations are beyond the scope of the present work and left for
future work.

The parameters of (i) the classical FKPP in Eq (13), (ii) the Generalized Porous-FKPP in Eq
(14), and (iii) the BINN-guided model in Eq (11) with Eqs (12a)-(12c) were optimized numer-
ically for each scratch assay data set. The optimized parameters for (i) in S1 Table all fall within
the ranges reported in [2]. However, this is not the case for any set of parameter values for (ii)
as shown in S2 Table. This is likely due to the parameter optimization being conducted using
the adjusted statistical error model in Eq (4) with = 0.2 and since the exponent m in the
Porous-FKPP diffusivity function was not fixed at m = 1 as in [2]. However, in both (i) and
(ii), the diffusion coefficient, D, and intrinsic growth rate, r, showed variability with initial cell
density, similar to the conclusions drawn in [2]. Therefore, in theory, if the delay term in Eq
(12c¢) accounts for the time it takes for density-dependent growth and diffusion to become
active in the system, which may be a function of initial cell density, then the variability among
diffusion coefficients and intrinsic growth rates for the BINN-guided delay-reaction-diffusion
model should be reduced across the scratch assay experiments. However, from the optimized
parameter values in Table 1, the baseline diffusion rate Dy and intrinsic growth rate r generally
increase with initial cell density and the diffusion coefficient D generally decreases with initial
cell density. This observation may indicate (i) practical identifiability issues between the
diffusion, growth, and delay terms or (ii) the existence additional mechanisms that are not
accounted for in the model. To confirm this, a Bayesian parameter estimation framework can
be used to examine practical identifiability of parameters [44, 45]. Then, a possible strategy to
mitigate this issue would be to optimize the parameters of Eq (11) with Eqs (12a) and (12b)
jointly across each scratch assay data set while allowing the delay parameters in Eq (12¢) to be
tuned separately for each set. This exploration is left for future work.

The BINN-guided delay-reaction-diffusion model was compared to the baseline classical
FKPP and Generalized Porous-FKPP models using both GLS errors and modified AIC scores.
The GLS errors in Table 2 showed that the BINN-guided model fits the data more accurately
than the baseline models across each scratch assay data set. However, this improvement in
accuracy is due to the increased model complexity (i.e. number of parameters and PDE terms)
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in the BINN-guided model. Therefore, to rank the quality of each model, AIC scores were also
computed since they balance model accuracy with model complexity. The AIC scores reported
in Table 3 indicate that the BINN-guided model also exceeds the baseline models in terms of
relative quality across each scratch assay data set except with initial cell density 14,000 cells per
well, in which the Generalized Porous-FKPP model has a slightly smaller AIC score. In other
words, Tables 2 and 3 indicate that the BINN-guided model performs as well or better than the
state-of-the-art in modeling the suite of scratch assay experiments from [2]. In particular, this
advantage is afforded by including the delay term in Eq (12¢). To quantify the relative value

of adding the delay term, the AIC scores from Table 3 are used to compute difference AIC
(AAIC) scores in Table 4 in which the AAIC score for a fixed model and data set is given by the
difference between the corresponding AIC score and the minimum AIC score across all mod-
els for the given data set. The AAIC scores in Table 4 indicate that the relative value of the
delay term is largest for data sets with initial cell density 18,000 and 20,000 cells per well. This
observation is supported by the relevant biology discussed at the beginning of this section, in
which large initial cell densities either (i) result in more damaged cells near the borders of the
scratch, (ii) cause more cells in the population to have terminally differentiated away from
mobile/proliferative cell functions, or (iii) some combination of (i) and (ii) and other poten-
tially unconsidered biological sources, all of which increase the potential time delay before the
density-dependent diffusion and growth dynamics become the primary drivers of the temporal
evolution of the system.

Conclusions and future work

BINNS, a robust and flexible framework for equation learning with sparse and noisy data, was
demonstrated and used to posit a mechanistic equation that outperforms the state-of-the-art
in modeling experimental scratch assay data. The development, training, and evaluation of
BINNSs and the resulting model selection and analysis were reported to justify these claims.
The discovered time delay term may have important implications for the reproducibility and
modeling of scratch assays, since the majority of the reported data fall within the time delay
region. Some of the drawbacks of the BINNs method and opportunities for future work and
development are discussed below.

Since BINNSs rely on multilayer perceptrons (MLPs), the learned dynamics may not gener-
alize well outside the training domain. For example, in the present work, if the observed cell
densities for a particular experiment do not approach the carrying capacity (e.g. the scratch
assay data set with 10,000 initial cells per well) then the learned dynamics given by Dy p and
Gyp may lead to biologically unrealistic behavior (see Gy p solutions in Fig 6). Further, since
none of the scratch assay data reported values that significantly exceeded the empirically set
carrying capacity, Gy p would likely not generalize well to a scenario with exceedingly large
observed cell densities. Options for mitigating this issue include (i) replacing unrealistic MLP
terms with mechanistic models (e.g. logistic growth instead of Gy p) if the particular dynamics
are known a priori, or (ii) adding additional constraints which force the MLP terms to satisfy
specific values (e.g. Gmrp(u = K) = 0). Additional testing of out-of-sample generalizability may
involve applying the BINNs methodology to spatiotemporal data with more time measure-
ments. In this setting, a subset of time points are held out from the training procedure and
generalizability is tested by comparing the forward solution of the learned PDE against the
holdout set.

An opportunity for future development is quantifying the uncertainty of both the approxi-
mate solution uyg p and the parameter networks Dy p, Gyrp, and Ty p. From the frequentist
perspective, so called “subagging” (i.e. subsample aggregating) can be used to build posterior
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distributions of the model solutions and parameter networks [46]. In this framework, one sim-
ply samples N training/validation splits and trains a BINN for each split. Then kernel density
estimation or some other equivalent methodology can be used to build distributions from the
N number of trained BINNs. Alternatively, from the Bayesian perspective, physics-informed
neural networks were recently extended to Bayesian physics-informed neural networks
(B-PINNS) [25]. In this framework, Bayesian neural networks are substituted for uy p and reg-
ularized using a pre-specified governing PDE. In the BINNs framework, Bayesian neural net-
works could also be substituted for Dy p, Gyrp, and Ty p to quantify the uncertainty of the
PDE terms in addition to the model solution.

While BINNs were demonstrated using one-dimensional reaction-diffusion PDEs for
scratch assay data in this work, they can be applied on a wide spectrum of physical and biologi-
cal problems (for both ODE and PDE systems) in which the governing dynamics are unknown
and highly nonlinear. A straightforward next step for this work would be to evaluate BINNs
on the two-dimensional scratch assay image data that were used to construct the one-dimen-
sional cell density profiles in [2]. Further, more complicated cell dynamics could be incorpo-
rated into the governing system in the present work by including PDE terms that describe cell
population heterogeneity or additional biological mechanisms for damaged (but not dead)
cells at the borders of the scratch.

BINNSs were used to address a canonical problem in the field of collective cell migration by
analyzing how the combination of density-dependent cell motility and proliferation drive the
temporal dynamics of cell invasion during an experimental scratch assay. This novel frame-
work revealed new mechanistic and biological insights into this process by guiding the deriva-
tion of a mathematical model that has not been considered previously using traditional
mathematical modeling approaches. The classical FKPP and Generalized Porous-FKPP mod-
els are ubiquitous in modeling cell migration and proliferation, yet the BINNs methodology
presented here revealed that these models may fail to incorporate all of the relevant mecha-
nisms underlying this process. These results suggest that new models incorporating a time
delay may be necessary to accurately capture the dynamics within the first day of a scratch
assay, i.e., just after the scratch is introduced. Based on the success of this work, BINNs estab-
lish a new paradigm for data-driven equation learning from sparse and noisy data that could
enable the rapid development and validation of mathematical models for a broad range of
real-world applications throughout biology including ecology, epidemiology, and cell biology.

Methods

All methods herein were implemented in Python 3.6.8 using the PyTorch 1.2.0 deep learning
library. All data and code are made publicly available at https://github.com/jlager/BINNs. The
following section is intended to make BINNS feasible for a wide range of biological applica-
tions. In particular, this section covers (i) the importance of data pre-processing, (ii) strategies
for using real-world knowledge to design effective neural network models, (iii) the complete
training protocol ranging from selecting appropriate statistical error models and hyperpara-
meters to balancing the multi-objective error function, and (iv) numerical implementation
details for forward solving BINN-guided PDEs.

Data pre-processing

Input and output standardization are common practice to stabilize neural network train-
ing [47]. Since the scratch assay data in [2] reported cell densities on the order of

u= 010 )/ ,m2 at spatial locations on the order of x = O(10?) ym for time points on the
order of t = O(10) hours, these variables needed to be standardized. Without standardization,
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the neural network models failed to converge for these data because (i) the network inputs (x
and ¢) differed by several orders of magnitude from each other and (ii) the network inputs (x
and f) and outputs (u) also differed by several orders of magnitude. By rescaling x and ¢ to mil-
limeters (mm) and days, respectively, the adjusted variables ranged from x = O(1) mm, t =
O(1) days, and cell density u = O(10%)<"/_,. Standardizing x and t addressed (i) while (ii)
is addressed by using scaling factors discussed in the following section. The cell density profile
at the left boundary was removed since it was consistently larger than the remaining cell densi-
ties across all six data sets.

Network design

BINNSs are centered around uyp p, a function-approximating multilayer perceptron (MLP)
(also known as an artificial neural network). MLPs, like polynomials [48], are in the class

of universal function approximators, meaning that they can approximate any continuous
bounded functions on a closed interval arbitrarily well under some reasonable assumptions
[34]. However, there are several reasons for choosing MLPs over polynomials for equation
learning. For example, a recent study found that MLPs were superior to both local and global
polynomial spline regression for data smoothing and numerical differentiation in the presence
of biologically realistic noise [26]. Further, due to gradient-based optimization, MLPs can
seamlessly incorporate complex multi-objective loss functions (e.g. Eq (3)) and are generally
more stable to train since they do not involve taking large powers of their inputs. For the
scratch assay data in the present work, uy p inputs spatiotemporal vectors x = [x, t] and out-
puts the corresponding approximations to the cell density u. To give uy p sufficient capacity
to approximate the solution to the governing PDE, the network is chosen to have three hidden
layers with 128 neurons in each layer, resulting in a model with approximately 30,000 total
parameters. Note that, unlike in traditional mathematical modeling approaches, in practice
neural networks are typically chosen to be larger than necessary to fit the data in a given appli-
cation. However, regularization and optimization techniques are then used to monitor and
prevent the networks from overfitting. These techniques are discussed in more detail in the fol-
lowing subsection. Concretely, uy p takes the form

uMLP(x) = oc~¢(a(a(o—(xW1 +b1)W2 +b2)W3 +b3) W4+b4)7 (15)

where the trainable parameters W; and b; denote weight matrices and bias vectors for the ith
layer, o(-) and ¢(-) denote nonlinear activation functions, and « denotes a scaling factor. Each
hidden layer uses a “sigmoid” activation function (i.e. o(x) = 1/(1 + ™)) while the output layer
uses a “softplus” activation function (i.e. ¢(x) = In(1 + €*)). The softplus activation function is a
particular design choice since it is a continuously differentiable function that forces the pre-
dicted cell densities to be non-negative, and has been previously shown to be well-suited for
biological transport models [26]. Finally, to account for the difference in scale between the
inputs (x,t = O(1)) and outputs (u = O(10%)), the MLP outputs are post-multiplied by the
experimentally validated carrying capacity (i.e. & = 1.7 x 10°) from [2]. Note that in practice, if
values like this are unknown, one can simply let & be the maximum observed cell density or
some other similar quantity. The key here is to ensure the orders of magnitude between the
network inputs and outputs are similar so that the parameters of the MLP do not have to
account for the change of scale [47].

The diftusivity, growth, and delay functions of the governing PDEs are modeled with neural
networks Dy p(tpp) and Gyrp(prp)s and Ty p(£). All three MLPs share the same number
of layers as upp but use 32 neurons per layer. These networks are chosen to be smaller for
both computational efficiency and because the parameter dynamics are assumed to be simpler
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than the cell density dynamics u. The hidden layers use sigmoid activation functions. The out-
put layer for Dy p uses a softplus activation because diffusion is assumed to be non-negative
for all cell densities. Since the growth term can be negative (e.g. logistic growth when the cell
density exceeds the carrying capacity), a linear output (i.e. no activation function) is used in
the final layer for Gy p. The output layer for Ty p uses the sigmoid function to constrain the
outputs to (0, 1). Finally, as with uy p, the inputs and outputs of Dy p and Gy p are also stan-
dardized. In particular, the inputs of both networks (i.e. uy p) are divided by the carrying

capacity K = 1.7 x 10° while the outputs of Dy p are multiplied by 0.096 ™ / day and the
outputs of Gyp are multiplied by 2.4'/,, . These values were the maximum diffusion and
growth values considered in [2]. Similar to uyrp, the input and output scaling factors ensure
the MLP parameters do not have to account for changes in scale. No standardization was used
for Ty p since its inputs and outputs are of the same order (i.e. O(1)).

Training procedure

The BINN parameters (i.e. weights and biases of ung1 p, Dypp, Gurp, and Ty p) are optimized
using the first-order gradient-based Adam optimizer [49] with default hyper-parameters and
minibatch-optimization. To prevent over-fitting, the scratch assay data were randomly parti-
tioned into 80%/20% training and validation sets. The network parameters were updated itera-
tively to minimize £, in Eq (3) on the training set and saved on relative improvement in
validation error. In other words, the model parameters were saved if the relative difference
between (i) the validation error in the current iteration and (ii) the smallest recorded valida-
tion error exceeded 5%. Finally, since the parameters of each BINN are randomly initialized
and applied to different data sets, early stopping of 5,000 (i.e. training was stopped if the rela-
tive validation error did improve for 5,000 consecutive epochs) was used to guarantee the con-
vergence of each BINN independently. The implementation details of each term in £, (i.e.
Lo Loppsand L, ) are discussed in more detail below.

The first term L, in Eq (6) corresponds to the generalized least squares (GLS) distance
between uy p and the observation data u;;. Since the error process is assumed to be i.i.d., the
parameters of the statistical model in Eq (4) (i.e. ¥) must first be calibrated. Following [26],

Constr

upp is trained using L, ¢ as an objective function for y = 0.0, 0.2, 0.4, 0.6 (recall that y = 0.0
represents the ordinary least squares case) for each data set. After qualitative assessment of the
modified residual errors (see S11 Fig), y = 0.2 was identified as the value that produced the
most ii.d. residuals across each of the six data sets. Using the calibrated statistical error model,
L is evaluated at each training iteration using mini-batches (i.e. randomly selected subsets)
of input/output data. In general, using a small batch size acts as an additional form of regulari-
zation that helps neural networks escape local minima during training and allows for better
generalization [50]. However, this significantly increases the computational cost of training
due to the increased number of training iterations needed to converge. Therefore, BINNs were
trained using mini-batches of size 37 (i.e. 1/4 the number of points in the training set) which
was found to balance the accuracy and computational cost.

To ensure uy; p satisfies the solution of the governing PDE, the terms £, in Eq (7) and
Leonsr i Eq (8) are included in £, as a form of regularization. However, since the scratch
assay data are sparse, simply training uy p using L, at the observed data locations can result
in unrealistic dynamics in between data points. Therefore, to ensure uyp satisfies the solution
of a governing PDE everywhere in the input domain, £, and L, . are evaluated at 10,000
uniformly randomly sampled points X; € [Xmin> Xmax] a0d £} € [£min, tmax] at each training itera-
tion. Without the random sampling procedure, uyy p can severely overfit to the data. To illus-
trate the importance of the random sampling procedure, the model fits, GLS errors, and PDE
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errors are shown in S12 Fig for three cases in which (i) no PDE regularization is used, (ii) PDE
regularization is used at the data locations, and (iii) PDE regularization is used at 10,000 ran-
domly sampled points. In particular, S12 Fig shows that in option (i) up p overfits the data
practically everywhere in the input domain, (ii) uyp overfits everywhere except at the data
locations (see vertical lines in third subplot of row b), and (iii) the random sampling procedure
results in the smallest amount of PDE error and the largest amount of GLS error. The desired
behavior is shown in option (iii) since uy p fits the data as accurately as allowed by the govern-
ing PDE.

The third error term L . constrains Dy p, Gyrp, and Ty p to exhibit biologically realistic
values and dynamics. Choosing appropriate constraints can be ambiguous when the relevant
literature gives conflicting suggestions. For example, when designing a derivative constraint
for the diffusivity network Dy p, [21] suggest that diffusion should decrease with cell density
due to cell-to-cell adhesion whereas [11] suggest the opposite in which cells promote the
migration of others. To mitigate this, BINNs were trained without any constraints on Dy p
and Gy p in order to visualize the collective behavior of the parameter networks (see S10 Fig).
Note that Ty p was still forced to be non-decreasing. The network evaluations in S10 Fig
showed unrealistic parameter dynamics for some data sets, but their collective behavior was
used to design derivative constraints that forced Dy p to increase as a function of cell density
and Gy p to decrease with cell density for the set of scratch assay data considered in this work.
Concretely, the diffusion term Dy p was constrained to values between 0.0 and 0.096 mm® / day
and the growth term Gy p to values between —0.48 and 2.4'/ 4ay- The maximum and minimum

diffusion values and maximum growth value were chosen based on values used in [2]. The
minimum growth value was chosen to be negative 20% of the maximum growth value to
allow Gyypp to output negative values for cell densities near the carrying capacity if needed.
The sigmoid output activation function for the delay term Ty p constrained its outputs to
between 0 and 1. Derivative terms were used in £ to constrain Dy p and Ty p to be
non-decreasing and Gyp to be non-increasing. For ease of notation, let &1, ; = u,(x;, t;),

Di_j = Dyp (e (%5 1)) (A;,.J. = Gypp(Uyp(x;, 1)), and T,.J. = Tyup(t), then the constraint term
can be written concretely as

~ 2
1 S A L MN (0D,
EConstr = m OC] Z (Dzj)z + aZ Z an

i=1j=1 i=1j=1

Constr

D <00 9D/di < 0
D > 0.096
M,N MN BG 2 MN 3T 2
N2 ij ij
+ oy Z (G) + oy Z (aA ) + o Z <6A ) ] (16)
i=1j=1 i=1lj=1 Uij i=1j=1 Uij
G < —0.48 3G /di < 0 T/t <0
G>24

Since the parameter networks and their derivatives occur at different scales with respect to
each other and with respect to the error terms L and £, each term of Eq (16) is weighted
by a factor @;. In particular, each constraint is weighted based on the input/output scaling fac-
tors of the corresponding neural network (see Network Design subsection). Concretely, the
terms in Eq (16) are weighted by o, =/, g6 X 10" 0, =K /| 10 x 10" oy =1/, , x 10"

o, =%/,, x 10", and a5 = 10'°. Note that the weight factors for the derivative constraints on
Dyirp and Gy p (ie. a; and ay) include the carrying capacity K = 1.7 x 10> since K was used as
an input scaling factor for these networks. The factor 10'° was chosen large enough to guaran-
tee that Dyyrp, Gmrp, and Ty p exhibited the desired behavior. Boundary conditions can also
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be included in the £, term, however, since they were unknown for the scratch assay data
considered in this work, no boundary conditions were used to train uyp.

Finally, the GLS errors at the initial condition (i.e. data locations where ¢ = 0) were weighted
by a factor of 10 during training. This was found to improve the generalization accuracy of
Dyrp, Gurp, and Ty p when evaluated using a numerical PDE solver. The reason for this is
because the cell density at t = 0 may not satisfy a governing dynamical system since the mea-
surement is taken directly after the scratch assay protocol is performed [2]. However, the initial
condition “sets the stage” for the governing dynamics to drive the temporal evolution of the
system. Therefore, by weighting the initial condition more heavily in £, the PDE error term
L, must conform uyp to satisfy the governing system for ¢t > 0 as dictated by upp at t = 0.
This step forced Dysrp, Garp> and Ty p to learn more generalizable representations of the dif-
fusivity, growth, and delay functions, respectively. The weighting factor was numerically vali-
dated using the mean GLS error across each scratch assay experiment for weighting factors 1,
10, and 10%. Note that this weighting factor makes BINNs sensitive to the random choice of
training/validation split, since some data points in the initial condition may be more informa-
tive than others for equation learning and ultimate model generalizability. This observation
was also noted in a recent equation learning study in which the random split of training and
validation sets was found to influence the structure of the learned equation [26]. Adopting a
strategy similar to this previous study, BINNs were trained 20 times for each data set (using
different random training/validation splits). The BINN for which the numerical simulations
resulted in the smallest GLS error was saved as the best model.

While the generalizability of each BINN is tested using a numerical solution to the learned
PDE, it is unclear whether Dy p, Gyp, and Typp can learn generalizable dynamics while over-
fitting to the training set. Thus, for completeness, see S13 Fig for an example convergence plot
of the delay-reaction-diffusion BINN trained on the scratch assay data with 20,000 initial cells
per well which confirms that the BINN does not overfit to the training data. Note that the vali-
dation error is smaller than the training error because of the weighting factor applied to the
initial condition, i.e., the training set contains more weighted points than the validation set.

PDE Forward Solver

The numerical implementation details are provided for systems describing quantity of interest
u(x, t) that are governed by the following equation:

u, = (Q(”v U, t))x + F(”)a
u(x7 to) = (;5()6), (17)
u(x,t) = u,(x,1) =0,

for x € [xo0, X/, and t € [to, t]. Note that the reaction-diffusion model in Eq (1) is an example of
Eq (17) where Q(u, u,, t) = D(u, t)u, and F(u) = G(u, t)u. In Eq (17), the initial condition is
denoted by ¢(x) and the boundary conditions are assumed to be no-flux boundary conditions.
Note that the no-flux condition represents a zero net flux boundary condition which does not
preclude cells moving across the boundary, but instead reflects the situation in which the flux
in the positive and negative x-directions are equal, giving rise to zero total flux. The spatial and

temporal domains are discretized into equispaced grids as:

x, = iAx, t = jAt, (18)

fori=0,...,200andj=0,..., 1, 000. For notational convenience, let u;(t) = u(x;, t). Then, the
method-of-lines approach is used to solve Eq (17) with the numerical discretization from [51]
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that is given by

(Q(u’ um t))x ~ Pi+1/2(t)A—xPi71/2(t) 7 (19)

where P;,1,,(t) is an estimate for the rightwards diffusive flux at location x; that is given by
1 u; (t) B ”i(t) U, (t) - ui(t)
R L e )RR RO e | AR

The no-flux boundary conditions at x, and X, are implemented by incorporating the ghost
points x_; and x,; satisfying u_;(f) = u; () and w0, (t) = u;199(t). The Scipy integration sub-
package (version 1.4.1) is used to integrate Eq (17) over time using an explicit fourth order
Runge-Kutta Method.

Parameter estimation

The parameters of each mechanistic model were optimized using the Limited-memory BFGS
algorithm with bound constraints (L-BFGS-B) in Python’s Scipy package with default toler-
ance values to minimize the generalized least squares error function in Eq (6) with the adjusted
statistical error model in Eq (4) with ¥ = 0.2. The parameters for Eqs (13) and (14) were initial-
ized using the values from [2]. The parameters for Eq (11) were initialized by fitting each PDE
term in Eqs (12a)-(12c) to the corresponding parameter network solutions in Fig 6 using ordi-
nary least squares. Finally, the diffusivity and growth function parameters were bounded using

Dy = 07 /Dy = 0.096™ /i = 0, My = 4,7, = 0 / wpand r,, = 2.4° /

day
(all of which come from [2]), while the delay function parameters f, and §; were bounded by
[-10, 10].

Supporting information

S1 Fig. Simulation model fits. Predicted cell density profiles using BINNs with the governing
reaction-diffusion PDE in Eq (9). The left subplot corresponds to the set of simulated data
using the classical FKPP equation and the right subplot corresponds to the Generalized
Porous-FKPP equation. Solid lines represent the numerical solution to Eq (9) using Dy p, and
Gurp- Dashed lines represent the noiseless numerical simulations of the classical FKPP and
Generalized Porous-FKPP equations. The markers represent the numerical simulations of the
classical FKPP and Generalized Porous-FKPP equations with artificial noise generated by the
statistical error model in Eq (4).

(TIF)

S2 Fig. Simulation parameter fits. The learned diffusivity and growth functions Dy p and
Gurp evaluated over cell density u. Starting from the left, the first two subplots correspond to
the learned diffusivity and growth functions from simulated data using the classical FKPP
equation. The last two subplots correspond to the learned diffusivity and growth functions
from simulated data using the Generalized Porous-FKPP equation. Solid lines represent the
parameter networks Dy p and Gy p and dashed lines represent the true diffusivity and growth
functions used to simulate the data.

(TIF)

S3 Fig. Reaction-diffusion BINN solutions. Predicted cell density profiles using BINNs with
the governing reaction-diffusion PDE in Eq (9). Each subplot corresponds to an experiment
with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells
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per well). Solid lines represent the numerical solution to Eq (9) using Dy p and Gy p. The
markers represent the experimental scratch assay data.
(TIF)

S$4 Fig. Reaction-diffusion BINN residuals. Modified residuals using BINNs with the govern-
ing reaction-diffusion PDE in Eq (9). Each subplot corresponds to an experiment with a differ-
ent initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).
(TIF)

S5 Fig. Delay-reaction-diffusion BINN solutions. Predicted cell density profiles using BINNs
with the governing delay-reaction-diffusion PDE in Eq (10). Each subplot corresponds to an
experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and
20,000 cells per well). Solid lines represent the numerical solution to Eq (10) using Tyrp,
Dyp, and Gy p. The markers represent the experimental scratch assay data.

(TIF)

S6 Fig. Delay-reaction-diffusion BINN residuals. Modified residuals using BINNs with the
governing delay-reaction-diffusion PDE in Eq (10). Each subplot corresponds to an experi-
ment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000
cells per well).

(TIF)

S7 Fig. Spatial errors between BINN solutions. Mean GLS errors between the reaction-
diffusion and delay-reaction-diffusion BINNs over the spatial dimension for each time point
beyond the initial condition. The initial condition is excluded since the PDE solutions are
simulated using the initial condition of the data, meaning that the error at f = 0 is zero. Each
subplot corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000,
14,000, 16,000, 18,000, and 20,000 cells per well).

(TIF)

S8 Fig. Classical FKPP model solutions. Predicted cell density profiles using the classical
FKPP model in Eq (13). Each subplot corresponds to an experiment with a different initial cell
density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). Solid lines repre-
sent the numerical solution to Eq (13) using the parameters that minimize £ 5 in Eq (6). The
markers represent the experimental scratch assay data.

(TIF)

S9 Fig. Generalized Porous-FKPP model solutions. Predicted cell density profiles using the
Generalized Porous-FKPP model in Eq (14). Each subplot corresponds to an experiment with
a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per
well). Solid lines represent the numerical solution to Eq (14) using the parameters that mini-
mize L, in Eq (6). The markers represent the experimental scratch assay data.

(TIF)

$10 Fig. Unconstrained BINN terms. The learned diffusivity Dy p, growth Gy p, and delay
Tyrp functions extracted from the corresponding BINNs with governing reaction-diffusion
PDE in Eq (9) (first row) and delay-reaction-diffusion PDE in Eq (10) (second row). Each line
corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000,
16,000, 18,000, and 20,000 cells per well). Note that Dy p and Gy p have different lengths
since they are evaluated between the minimum and maximum observed cell densities corre-
sponding to each data set.

(TIF)
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S11 Fig. Statistical error model selection. The function-approximating deep neural network
upmrp is trained using L, ; for different values of y across each data set. Each subplot shows the
modified residuals (see Eq (6)) as a function of the predicted cell density u. The columns corre-
spond to different levels of proportionality (i.e. y = 0.0, 0.2, 0.4, 0.6) where y = 0.0 represents
the constant variance (ordinary least squares) case. Each row (a-f) corresponds to an experi-
ment with different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000
cells per well). The proportionality constant that results in the most i.i.d. residuals across each
data set was chosen to calibrate the statistical error model in Eq (4).

(TTF)

$12 Fig. PDE random sampling validation. The BINNs framework is trained using £,
with three ways of including the PDE error term L, ,: (a) no PDE regularization, (b) PDE
regularization at the data locations, and (c) PDE regularization at 10,000 randomly sampled
points at each training iteration. The first column shows the scratch assay data with initial cell
density 20,000 cells per well (black dots) with the corresponding BINNs approximation to the
governing PDE uy1 p (surface plot). The second column shows heatmaps of the modified
residual errors (see Eq (6)) at each data point. The third column shows heatmaps of the PDE
errors (see Eq (7)) evaluated on a 100 x 100 meshgrid over the input domain.

(TIF)

$13 Fig. BINNs Convergence. Example convergence and improvement plots from training a
delay-reaction-diffusion BINN to the scratch assay data with 20,000 initial cells per well. The
left subplot shows the training and validation errors (see Eq (3)) in red and blue, respectively,
and the black dot shows where the model achieved the best validation error. Similarly, the
right subplot shows the training and validation error but only when the error improved.
(TIF)

S1 Table. Classical FKPP parameter values. Each column corresponds to an experiment with
different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).
(PDF)

S2 Table. Generalized Porous-FKPP parameter values. Each column corresponds to an
experiment with different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and
20,000 cells per well).

(PDF)
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