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Agent-based models provide a flexible framework that is frequently used for
modelling many biological systems, including cell migration, molecular
dynamics, ecology and epidemiology. Analysis of the model dynamics can
be challenging due to their inherent stochasticity and heavy computational
requirements. Common approaches to the analysis of agent-based models
include extensive Monte Carlo simulation of the model or the derivation
of coarse-grained differential equation models to predict the expected or
averaged output from the agent-based model. Both of these approaches
have limitations, however, as extensive computation of complex agent-
based models may be infeasible, and coarse-grained differential equation
models can fail to accurately describe model dynamics in certain parameter
regimes. We propose that methods from the equation learning field provide
a promising, novel and unifying approach for agent-based model analysis.
Equation learning is a recent field of research from data science that aims
to infer differential equation models directly from data. We use this tutorial
to review how methods from equation learning can be used to learn
differential equation models from agent-based model simulations. We
demonstrate that this framework is easy to use, requires few model simu-
lations, and accurately predicts model dynamics in parameter regions
where coarse-grained differential equation models fail to do so. We highlight
these advantages through several case studies involving two agent-based
models that are broadly applicable to biological phenomena: a birth–
death–migration model commonly used to explore cell biology experiments
and a susceptible–infected–recovered model of infectious disease spread.
1. Introduction
Complex interactions between individuals are a crucial aspect of many biologi-
cal processes: honeybees dance to direct others to food sources [1], cells push
their neighbours to promote invasion during tumorigenesis [2] and animal
herds aggregate together to deter predation [3]. Agent-based models (ABMs)
are invaluable tools to simulate how such interactions between individuals
scale to population-wide phenomena [4]. In an ABM, the states and decisions
of individual agents are simulated using pre-defined rules to govern the
agents’ interactions and behaviour [5]. The ease of construction of ABMs by
domain experts and modellers allows for complex models that can capture
rich dynamical behaviour [5,6].

There are many approaches to predicting the emergent behaviour of sto-
chastic ABMs, each of which presents its own advantages and challenges.
The most straightforward and commonly used approach to interrogate ABMs
is extensive Monte Carlo simulation using well-established computational
algorithms [5] (Arrow 1 of figure 1). Average ABM behaviours at fixed par-
ameter values can be inferred from many simulations from the central limit
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Figure 1. An illustration of current (blue) and proposed (red) methods to predict emergent ABM behaviour. Extensive simulation (Arrow 1) is performed by running
many ABM simulations over a range of parameter values, and then using Monte Carlo techniques to average ABM output. While this approach will accurately predict
ABM dynamics, it can be computationally intensive to perform. DE models derived using model coarse graining approaches (Arrow 2) can be analysed (e.g. using
bifurcation analysis or perturbation methods). This technique is advantageous because such analytical methods do not require any computation. Unfortunately,
coarse-grained models will provide inaccurate predictions in many parameter regimes. We propose that DE models can be learned from ABM simulation data
using techniques from equation learning (Arrow 3). This method is advantageous because it may only require a small number of ABM simulations, will lead
to a DE model that can predict ABM dynamics accurately, and can be informed with analytical techniques.
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theorem [7], and the inverse problem of inferring model par-
ameter distributions can be done with Markov chain Monte
Carlo samplers [8]. Unfortunately, such extensive simulation
of many ABMs may not be feasible due to significant compu-
tational costs involved. An alternative method to predict the
emergent behaviour of an ABM consists of deriving differen-
tial equation (DE) models to approximate ABM output
(Arrow 2 of figure 1). Each ABM has a master equation that
can be derived directly from the model rules. There are
many approaches to simplify this master equation and
approximate its dynamics with more tractable DE models.
The most commonly used DE model approximations for
ABMs are mean-field models [9–12]. Alternative formulations
to mean-field models are also possible, see [13] for an exten-
sive tutorial. Mean-field models describe the evolution of
population density over time (and possibly space) and can
be derived by approximating agent–agent interactions with
locally averaged agent densities [12]. Mean-field DE models
are often simple to solve (either analytically or numerically),
so they provide an advantageous alternative to extensive
simulation of the ABM. Furthermore, such DE models are
amenable to analytical techniques (including bifurcation,
travelling wave, perturbation analysis), which can be used
to predict how ABM output will change in response to
variations in parameter values [14,15].

Previous ecological studies have demonstrated some of
the advantages of both extensive simulation and model
coarse graining for ABM analysis [16]. For example, Bernoff
et al. [17] model the foraging behaviour of the Australian
plaque locust with a discrete and stochastic ABM. In the
model, individual locusts forage and feed on a given resource
(representative of food) and, in turn, create a spatial gradient
of this resource. The model robustly shows that individual
locust behaviour drives the formation of this resource gradi-
ent and, in turn, determines how the averaged profile of
locust density migrates and forms over time. The authors
derive the mean-field partial differential equation (PDE)
model for this ABM and perform a travelling wave analysis
to quantify how the locust population’s invasion speed
depends on the total mass of locusts. The mean-field PDE
model is shown to match the ABM output well in biologically
consistent parameter regimes. In addition, non-mean-field
models have been considered to approximate other ABMs
of locust behaviour. For example, the ABMs in [18] describe
self-organizing locust behaviours through rules governing
locust attraction, repulsion, and alignment during foraging
and invasion. By simulating the ABM over many different
parameter values, Dkhili et al. [18] discovered three distinct
population patterns (spot, band and ribbon formations).
Topaz et al. [19] analysed a continuous partial integro-
differential equation as a representation of this locust flocking
behaviour and used a linear stability analysis to provide
analytical insights into which parameter values governing
agent interactions lead to the formation of such spatial pat-
terns. There are thus many scenarios in which DE models
supplement ABM simulations to aid in our understanding
of emergent behaviour.

Despite their wide use, coarse-grained models can pro-
vide misleading predictions of ABM dynamics in regions of
parameter space in which the assumptions made during the
coarse graining process do not hold [9,12,20]. Furthermore,
it can be challenging to determine informative DE models
for more complex ABMs. As one such example, Gallaher
et al. [21] constructed an ABM in which thousands of cells
with different phenotypes compete for space during
tumour growth. Each agent in the simulation is given an
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internal set of dynamic traits dictating how fast the agent
moves in space and how frequently it divides. The intricate
dynamics of this model allow for interesting findings of bio-
logical relevance, including how transmission of proliferation
rates from parent to daughter cells alters the final trait land-
scape of the population and, in turn, the eventual physical
clustering of the population. Formulating a DE model for
this process from ABM rules would be challenging, however,
due to the many different cell phenotypes and complicated
rules between such cells. Instead, methods to directly infer
DE models from a small number of ABM simulations may
provide a useful tool for modellers to determine the salient
features necessary for modelling complex ABM dynamics.
ABMs with evolving trait landscapes are becoming increas-
ingly common to study tumour dynamics, so such learned
DE models will be widely applicable to this growing field
of research [22].

Equation learning (EQL) is a recent field from data science
that aims to infer the dynamical systems model that best
describes a given dataset [23]. The learned models can, in
turn, be used to understand the system under study by pro-
viding a mechanistic description of observed dynamics or
predicting how dynamics will change in response to different
conditions. There has been much progress in this field over
the past 5 years largely thanks to increases in computational
power, and many EQL methods can accurately recover DE
models from artificially simulated noisy data from DE
models [24–27]. There have been some recent studies show-
ing that equations can be learned from noisy experimental
data [28], and the EQL field is now in a position where
EQL can, in principle, be used to aid in the development of
DE models to approximate the dynamics of complex ABMs
(Arrow 3 of figure 1). In this review article, we will detail
how a commonly used EQL methodology [23] can be used
to learn DE models that accurately describe ABM dynamics.
In doing so, we also explore how EQL provides insight into
ABM behaviours when traditional modelling approaches
(e.g. coarse-graining) fail to capture ABM complexity, as
well as EQL performance in practical situations, such as
those with sparse data samples.

Similar to coarse-grained DE models, learned DE models
can be analysed using both computational algorithms and
analytical techniques to infer the emergent behaviour that
results from a given set of ABM, or estimate mechanistic par-
ameters from data. Furthermore, such learned equations may
have fewer computational requirements than ABMs if they
can learn ABM dynamics from a small number of simu-
lations. As a result, EQL methods may be tractable for
learning DE models for a broad range of ABM simulations.
There are many ways in which learned DE models may be
useful for ABM analysis, including the discovery of novel
DE models, predicting unobserved dynamics from complex
ABMs and enabling accurate parameter estimation. Further-
more, as ABMs imitate many key features of biological
systems (including stochasticity and heterogeneity), inferring
DE models from ABM data is an intermediate step towards
developing algorithms to aid the discovery of models from
experimental data.

This article is intended to serve as a review and tutorial
on three separate but synergistic methods (extensive simu-
lation, coarse-grained model derivation, and EQL) to infer
the emergent behaviour of ABMs. The first two are frequently
used for ABM analysis, and we propose that analysis of a
learned DE model from ABM data provides increased under-
standing of the mechanisms driving observed behaviour. We
will showcase each of these methods and highlight the
advantages and limitations of each. In §2, we discuss ABM
set-up and implementation as well as how simple ABM
rules can be coarse grained directly into DE models. In §3,
we discuss how methods from EQL can be used to learn
DE models from ABM data directly. Our goal in §4 is to pre-
sent six questions (Q1–Q6) relating to how EQL can aid in the
analysis of ABM behaviour, and we address each question
with case study examples. We use two representative ABMs
throughout: a birth–death–migration (BDM) model of popu-
lation dynamics [9], and a susceptible–infected–recovered
(SIR) model of infectious disease dynamics. We note, how-
ever, that the approaches discussed within this tutorial are
broadly applicable to many social and biological phenomena
that have been modelled by ABMs previously [5,29–33]. We
make final conclusions, summarize the advantages and limit-
ations of each method, and suggest future avenues for research
in §5. Python code for all tutorials and case studies shown in
this study are publicly available at https://github.com/john-
nardini/Learning-DE-models-from-stochastic-ABMs.
2. Coarse graining agent-based models into
differential equation models

Coarse-grained DE models are now frequently used to inves-
tigate how rules governing individual behaviours translate to
emergent behaviour at the population level [9,12,34]. In this
section, we illustrate this approach by introducing two
simple ABMs and coarse graining them to give DE models.
We consider two ABMs: (i) a BDM process in §2.1, and (ii)
a SIR model in §2.2. While we focus on ordinary differential
equation (ODE) models throughout this article, the derivation
of PDE models in the presence of spatial heterogeneity can
also be performed using extensions of the methods presented
herein, as discussed in [12,35,36].

2.1. A birth, death and migration agent-based model
We consider the BDM process, a lattice-based ABM in which
agents are able to give birth, die, and move [9]. This ABM is
representative of many biological phenomena, for example
agents may represent cells during the wound healing process
[35] or the invasion of animals in ecology [16]. We begin by
introducing the ABM rules in §2.1.1 and then coarse grain
these rules into DE models and compare to ABM output
in §2.1.2.

2.1.1. Agent-based model rules
We use a two-dimensional square lattice with a lattice spa-
cing of Δ. We arbitrarily set Δ = 1 and assume the lattice has
X lattice sites in each spatial dimension. Each lattice site is
indexed by a ¼ (i, j) [ N2, i, j ¼ 1, . . . , X. For each interior
lattice site, α, we define its neighbouring sites, B(a), using
the Von Neumann neighbourhood B(a) ¼ {(i, jþ 1),
(i, j� 1), (iþ 1, j), (i� 1, j)} and adjust this definition at
boundary sites to enforce no-flux conditions. We designate
the occupancy of each lattice site α as μα(t) = 0 if α is unoccu-
pied at time t or by μα(t) =A if α is occupied by an agent at
time t. For simplicity, we will also use the notation 0α(t)
and Aα(t) when α is unoccupied and occupied, respectively.

https://github.com/johnnardini/Learning-DE-models-from-stochastic-ABMs
https://github.com/johnnardini/Learning-DE-models-from-stochastic-ABMs
https://github.com/johnnardini/Learning-DE-models-from-stochastic-ABMs
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Figure 2. ABM simulation snap shots for the BDM ABM. Blue pixels denote Aα(t) and white pixels denote 0α(t). Simulations were computed with agent migration
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To represent volume exclusion, or crowding, we assume that
each lattice site can be occupied by a maximum of one agent
at a time.

We next define how agents proliferate, migrate and die.
For proliferation events, we assume that agents proliferate
with rate Pp (formally, an agent will attempt to proliferate
over an infinitesimal timestep of duration dt with probability
Ppdt). If an agent chooses to proliferate, then it will attempt to
place its daughter cell into a neighbouring site b [ B(a) with
the choice of β made uniformly at random. If the chosen site
is occupied, the event is aborted. This process may be written
as a bimolecular reaction with rate Pp/4:

Aa þ 0b �!
Pp=4

Aa þ Ab, b [ B(a): (2:1)

The reaction rate here is divided by four because proliferating
agents randomly choose one of their four neighbouring sites
to place their daughter cell into. For death events, lattice sites
transition from occupied to unoccupied without any explicit
crowding effects. We assume agents die with rate Pd, and
write death events as a monomolecular reaction with rate Pd:

Aa �!Pd 0a: (2:2)

Agents attempt to move with rate Pm. During migration
events, agents randomly choose a neighbouring lattice site
b [ B(a) to attempt to move to. If the chosen site is already
occupied, then the migration event is aborted. This process
may be written as a bimolecular reaction with rate Pm/4:

Aa þ 0b �!Pm=4 0a þ Ab, b [ B(a): (2:3)

The reaction rate here is divided by four because migrating
agents randomly choose one of their four neighbouring
sites to place their daughter cell into. Following previous
ABM studies, we have chosen to include empty space as an
interacting agent in equations (2.1) and (2.2) to incorporate
the effects of volume exclusion. This choice converts migration
into a bimolecular reaction instead of a monomolecular
reaction [9,36–40].

The BDM model can be simulated using the Gillespie
algorithm [41], which is provided for the BDM process
in algorithm 1 in appendix C. Each ABM simulation is initi-
alized by placing agents uniformly at random throughout
the lattice so that 5% of lattice sites are occupied. Note
that each ABM simulation begins with a new initial con-
figuration of agent locations throughout the lattice.
Reflecting boundary conditions are used at the boundaries
of the lattice, which enforces a no-flux condition in the spatial
domain. We use the following notation to summarize
the output from an ABM simulation. To estimate the total
agent density from the nth of N identically prepared ABM
simulations we compute

C(n)
ABM(t) ¼ C(n)(t)

X2 , (2:4)

where C(n)(t) is the number of occupied sites at time t. To esti-
mate the averaged agent density over time from N identically
prepared ABM simulations, we compute

hCABM(t)i ¼ 1
N

XN
n¼1

C(n)
ABM(t): (2:5)

We depict snapshots of two simulations of the BDM process
in figure 2. The blue dots in the right-most column corre-
spond to C(1)

ABM(t) from these individual simulations.
2.1.2. Model coarse graining
ABMrules are often coarse grained into continuousDEmodels
to aid in their analysis. Many previous studies [9,12,42] have
demonstrated that the mean-field DE model for the BDM
process described in §2.1 is given by the logistic DE model

d
dt

C(t) ¼ PpC(t)(1� C(t))� PdC(t): (2:6)
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Thismodel is advantageous in that it can be solved analytically
to give

C(t) ¼ KC(0)ert

K þ C(0)(ert � 1)
, (2:7)

where r = Pp− Pd, K = (Pp− Pd)/Pp, and C(0) denotes the initial
condition. The full derivation of this model is provided
in appendix A. To arrive at equation (2.6), we use the
mean-field assumption that the occupancies of neighbouring
lattice sites are independent, i.e. for all sites α, P[Aa(t),
Ab(t)] ¼ P[Aa(t)]P[Ab(t)], b [ B(a), where P[Aa(t)] is
the probability that lattice site α is occupied at time t
and P[Aa(t), Ab(t)] is the joint occupancy probability of
neighbouring lattice sites α and β at time t.

Mean-field models are widely used to predict ABM
dynamics; however, they fail to accurately predict dyna-
mics in regions of parameter space in which the mean-field
assumption is violated [9,12,20,43–46]. We depict ABM
snapshots for two simulations of the BDM process in
figure 2. The mean-field assumption seems to be satisfied
during the simulation with (Pp, Pd) = (0.01, 0.0025): agents
appear uniformly distributed, which indicates that neigh-
bouring site occupancies are independent of each other.
As expected, we observe close agreement between C(t)
and 〈CABM(t)〉 for this parameter combination. For the simu-
lation with (Pp, Pd) = (1, 0.25), however, the ABM simulation
exhibits strong clustering. In this case, neighbouring site
occupancies will be dependent within and outside of cluster
regions, which violates the mean-field assumption. As a
result, we observe poor agreement between the mean-field
model and the ABM simulation output, 〈CABM(t)〉. Similar
results have been documented previously for this model
over a wide range of parameter values: the mean-field
model matches ABM output well for small values of Pp/Pm

and Pd/Pm (Pm is fixed at unity in all simulations in this
study), but this agreement worsens as either of these ratios
increase [9].
2.2. A susceptible–infected–recovered agent-based
model

Susceptible, infected and recovered (SIR) models are used in
epidemiology to model and predict the emergence of infec-
tious [47] and waterborne [48] diseases. In this section, we
detail how the previous modelling framework can be
extended to derive DE models for such ABMs of disease
spread. We introduce the model rules in §2.2.1 and then
derive the mean-field DE model and compare it to ABM
output in §2.2.2.
2.2.1. Agent-based model Rules
We use an equivalent lattice to that presented in §2.1. Each
lattice site, α, can now take one of four states over time:
0α(t), Sα(t), Iα(t) and Rα(t) denote that α is unoccupied, or
occupied by a susceptible, infected or recovered agent at time
t, respectively. We assume three rules governing how
agents move, infect, and recover in our SIR model. For
agent movement, we assume that each agent moves with
rate Pm. When an agent attempts to migrate, the agent
chooses a neighbouring lattice site b [ B(a) randomly to
move to. If the chosen site is already occupied, then the
migration event is aborted. We write this process as a
bimolecular reaction with rate Pm/4:

Ya þ 0b �!Pm=4 0a þ Yb, b [ B(a), (2:8)

for Y∈ {S, I, R}.
The second rule governs infection of agents, which occurs

with rate PI. During an infection event, an infected agent at
lattice site α will randomly infect an agent at a neighbouring
lattice site b [ B(a). If the chosen site β is occupied by a sus-
ceptible agent, then the susceptible agent becomes infected.
Otherwise, the infection does not alter the state of lattice
site β. We model this rule using a bimolecular reaction with
rate PI/4:

Ia þ Sb �!PI=4 Ia þ Ib, b [ B(a): (2:9)

The final rule concerns the recovery of infected agents:
infected agent recover with rate PR. We model this process
using a monomolecular reaction with rate PR:

Ia �!PR Ra: (2:10)

Simulation of the SIR ABM proceeds as follows. We begin
each simulation by randomly placing susceptible agents in
49% of the lattice sites, infected agents in 1% of the lattice
sites and leaving the remaining lattice sites unoccupied.
Note that each ABM simulation begins with a new initial con-
figuration of agent locations throughout the lattice. Because
there is no death or birth in the model, the proportion of
occupied lattice sites is fixed at M = 0.5 for all time. We use
reflecting boundary conditions, which model a no-flux con-
dition in the spatial domain. The Gillespie algorithm is
used to simulate the model [41]. From the nth of N identically
prepared simulations, we let S(n)ABM(t), I

(n)
ABM(t) and R(n)

ABM(t),
denote the fractions of susceptible, infected and recovered
agents in the model over time, respectively (e.g. S(n)ABM(t) is
equal to the number of susceptible agents at time t divided
by MX2). We then estimate the averaged ABM fraction for
each subpopulation by averaging over all N simulations

hSABM(t)i ¼ 1
N

XN
n¼1

S(n)ABM(t);

hIABM(t)i ¼ 1
N

XN
n¼1

I(n)ABM(t);

hRABM(t)i ¼ 1
N

XN
n¼1

R(n)
ABM(t):

(2:11)

We depict snapshots of two simulations of the SIR model in
figure 3. In both cases, we observe that the small initial pro-
portion of infected agents causes an outbreak of infection.
The majority of agents have become infected and then
recovered by the end of both simulations.
2.2.2. Model coarse graining
We show in appendix B that the mean-field model for the SIR
process is given by the frequently used system of equations:

dS
dt

¼ �MPISI;
dI
dt

¼ MPISI � PRI;
dR
dt

¼ PRI: (2:12)

In equation (2.12), the variables S(t), I(t), R(t) denote the frac-
tion of susceptible, infected and recovered agents at time t,
respectively. In figure 3, we depict snapshots from two simu-
lations of the SIR ABM together with evolution of the



T = 0.5

P
l =

 0
.0

5,
 P

R
 =

 0
.0

00
5

P
l =

 0
.2

, P
R
 =

 0
.0

2

T = 2.0 T = 4.0

T = 0.5 T = 2.0 T = 4.0

ABM output versus MF model

0

0 2 4

0 2 4
time (T)

0.5

S,
 I

, R

1.0

0

0.5

S,
 I

, R

1.0

Figure 3. Simulation snap shots for the SIR ABM. Blue pixels denote Sα(t), green pixels denote Iα(t), black pixels denote Rα(t) and white pixels denote 0α(t). In the
right-most column, we compare predictions of the mean-field SIR model (equation (2.12)) to the computed ratios of S, I and R from one ABM simulation. Solid lines
correspond to the mean-field (MF) model and dots correspond to ABM simulation output. Quantities are plotted against non-dimensionalized time T = PRt for ease
of interpretation. The ABM was computed on a square lattice of length X = 40.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200987

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 N

ov
em

be
r 

20
21

 

corresponding ABM densities. The ABM simulation with
(PI, PR) = (0.005, 0.0005) appears well-mixed for all agent-
types, which would satisfy the mean-field assumption. As a
result, simulations of the mean-field model predict the
ABM density well. If we increase the infection and recovery
rates to (PI, PR) = (0.2, 0.02), however, then the resulting
ABM simulation has separate patches comprised primarily
of infected agents or susceptible agents. These patches of
single agent types decrease the population-wide average
infection rate because infected agents in the middle of an
infected cluster are unable to infect any susceptibles. As a
result, the mean-field assumption is violated within these
patches, and the mean-field model cannot accurately predict
ABM dynamics.

For both of the BDM and SIR models, we have seen that
some parameter regimes lead to close agreement between the
ABM output and mean-field model predictions, whereas
other parameters lead to poor agreement between the two.
There is thus a need to develop methods that can determine
when mean-field modes will accurately predict ABM
dynamics and find novel DE models that accurately predict
ABM dynamics when the mean-field models fail to do so.
3. Equation learning
For many EQL studies, the goal is to infer a dynamical sys-
tems model, written as C(t), from a time-varying dataset,
Cd(t). This dynamical system can broadly be written as

dC(t)
dt

¼ F , (3:1)

where F describes the dynamics of C(t). When Cd(t) is a time-
varying scalar quantity (or a vector of scalar quantities), then
an ODE model is relevant, in which case F ¼ F (t, C). When
Cd(t) varies over time and a one-dimensional spatial dimen-
sion, x, then a PDE model may be more relevant, in which
case F ¼ F (t, x, C, Cx, Cxx, . . . ). In the following sections,
we exemplify how methods from EQL may be used to
learn a form of F from output ABM data.

3.1. Model learning example
In this section, we outline the steps one may take to learn a
DE model from ABM data for the BDM model (figure 4).
Code is provided for the results presented in this section in
the file EQL Tutorial.ipynb.

3.1.1. Equation learning pipeline
We illustrate how to use EQL methods using data from the
BDM process described in §2.1. In the first step, we simulate
the ABM 50 times with parameter values (Pp, Pm, Pd) = (0.01,
0.005, 1.0) and average the output to acquire Cd(t) = 〈CABM(t)〉.
The time vector, t, is sampled on an equispaced grid such that
ti = (i− 1)Δt, i = 1,…, 100 for some small Δt > 0.

In the second step of this process, we estimate the numeri-
cal derivative of Cd(t). Finite difference computations are a
simple method to approximate derivatives [49]. We use
centred differences at the internal time points and forward
and backward differences at the first and final time points,
respectively:

dCd(t1)
dt

¼ Cd(t2)� Cd(t1)
Dt

,

dCd(ti)
dt

¼ Cd(tiþ1)� Cd(ti�1)
2Dt

, i ¼ 2, . . . , n� 1,

dCd(tn)
dt

¼ Cd(tn)� Cd(tn�1)
Dt

:

9>>>>>>>=
>>>>>>>;

(3:2)

The resulting computation is plotted in Step 2 of the EQL
pipeline depicted in figure 4.

The third step of the EQL pipeline requires the construc-
tion of a library of potential terms for inclusion in the inferred
DE model. We saw that polynomials in C(t) can describe the
ABM output in §2.1.2, so we assume that the underlying



dC

C(t) dC/dt

time

1. ABM
output

2. derivative
estimation

3. library
construction

4. equation
learning

time

= Qx
dt

Q = (C, C2, C3, C4) 

x̂  = (1.0, –1.0, .4, –.2)T 

x̂  = (1.0, –1.0, 0, 0)T 

(a) regression

(b) sparse regression

Figure 4. EQL pipeline. Step 1: Generate averaged ABM output; Step 2: Estimate the temporal derivative of the ABM output; Step 3: Library construction; Step 4:
Equation inference. At Step 4, one can either perform (a) regression or (b) sparse linear regression to learn an equation for the ABM output. We will consider both
the Lasso and Greedy sparse regression algorithms to perform EQL.
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model here is a polynomial in C(t). Recall from the rules of
the BDM ABM that each agent interacts with its four neigh-
bouring sites, so we further assume that this polynomial is
up to fourth order. See reference [50] for scenarios where
fourth or higher-order polynomials are needed to match
ABM output for reactions involving two agents. As a non-
zero constant in F would represent a constant source or
sink of agents (which is not present in the ABM), we set
the constant in this polynomial to be zero. Altogether, we
propose the following possible model for the BDM process

dC
dt

¼
X4
i¼1

jiC
i, (3:3)

for unknowns ji [ R. Given data Cd(t), we substitute into
equation (3.3) to arrive at the following linear system of
equations satisfied by the unknowns ξ1,…, ξ4:

dCd(t1)
dt

dCd(t2)
dt
..
.

dCd(tn)
dt

2
6666666664

3
7777777775
¼

Cd(t1) C2
d(t1) C3

d(t1) C4
d(t1)

Cd(t2) C2
d(t2) C3

d(t2) C4
d(t2)

..

. ..
. ..

. ..
.

Cd(tn) C2
d(tn) C3

d(tn) C4
d(tn)

2
6664

3
7775

j1
j2
j3
j4

2
664

3
775: (3:4)

For convenience, we re-write equation (3.4) as

dCd

dt
¼ Qj, (3:5)

where the columns of the n × 4 matrix Θ contain the library
terms evaluated at the data points Cd(ti), i = 1,…, n.

The fourth step in the EQL pipeline is to infer the form of
the DE model that best approximates the dynamics of Cd(t).
We do so by finding the least-squares solution of equation
(3.5), given by

ĵ ¼ argmin
j[R4

1
n

dC(t)
dt

�Qj

����
����
2

2

( )
: (3:6)

We solve equation (3.6) using numpy’s lstsq command from
the linear algebra package and find ξ = [0.0048,− 0.0105,
0.0031,− 0.0030]T. This solution suggests that the following
model best describes the ABM dynamics:

dC(t)
dt

¼ 0:0048C� 0:0105C2 þ 0:0031C3 � 0:0030C4: (3:7)
We numerically simulate equation (3.7) with initial condition
C(0) =Cd(0) using a fourth-order Runge–Kutta method [49].
The resulting output, C(t), is depicted against Cd(t) in
figure 5 and we observe that this model accurately predicts
the ABM output.

By solving equation (3.5) directly, we are likely to find
forms of F with many terms because the system is overdeter-
mined when n, the number of data points, satisfies n≫ 4. We
may wonder if a simpler form of F can also accurately
describe the ABM dynamics. A logistic model such as that
presented in equation (2.6) has only two terms and may
describe the data accurately, for example. Instead of solving
equation (3.6), we can use sparse regression methods to
find a sparse vector, ξ, to solve equation (3.5). There are
many approaches to sparse regression, including the least
absolute shrinkage and selection operator (Lasso), ridge
regression, and the Greedy algorithm [25,51,52]. We use the
Lasso algorithm in this section, but will return later to a dis-
cussion of whether alternative methods should also be
considered. The Lasso method solves the regularized system

ĵ ¼ argmin
j[R4

1
n

dC(t)
dt

�Qj

����
����
2

2
þlkjk1

( )
, (3:8)

for some λ > 0, which is called a regularization parameter [51].
Regularization is used to avoid extreme values in ξ and to
prevent overfitting. There are many approaches to solve the
Lasso problem; here we use the Fast iterative Shrinking-
Thresholding Algorithm (FISTA) [53]. We provide the
pseudo-code for this algorithm in algorithm 2 of
appendix D. Using a regularization strength of λ = 0.0004
(see appendix E for a discussion of hyperparameter selection)
we find the resulting vector to be ĵ ¼ [0:0047, � 0:0095, 0, 0].
This estimate suggests that the model equation

dC
dt

¼ 0:0047C� 0:0095C2, (3:9)

should be a more parsimonious model for the BDM process
than equation (3.7). We depict the solution to equation (3.9)
(with initial condition C(0) =Cd(0)) against the ABM output
in figure 5 and observe that this DE model accurately
approximates Cd(t). Furthermore, we observe that the form
of equation (3.9) is similar to the logistic DE,

dC
dt

¼ PpC(1� C)� PdC ¼ (Pp � Pd)C� PpC2: (3:10)
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By comparing coefficients between equations (3.9) and (3.10)
we can estimate the mechanistic ABM parameters Pp and Pd

as P̂p ¼ 0:0095 and P̂d ¼ 0:0048. These estimates are very
close to the true underlying values of Pp ¼ 0:01 and
Pd ¼ 0:05. The proposed EQL methodology is thus able to
simultaneously infer a DE model that accurately predicts
ABM output and provides realistic parameter estimates
when combined with the mean-field model (we note that
more common forms of parameter estimation, such as maxi-
mum likelihood, may need to be used after the equation form
has been determined). We have thus shown that concepts
from EQL can be used to determine simple DE models that
accurately describe ABM dynamics.
3.1.2. Different forms of sparse regression
As mentioned previously, there are many approaches to find
sparse solutions to equation (3.5). The Greedy algorithm is
another popular algorithm for sparse regression and solves
a similar problem to the Lasso problem from equation (3.8).
In the Greedy algorithm, we solve

ĵ ¼ argmin
j[R4

1
n

dC(t)
dt

�Qj

����
����
2

2
þ lkjk0

( )
, (3:11)

for some regularization parameter λ > 0. Here, ||ξ||0

counts the number of non-zero terms in ξ. We use the for-
ward–backward approach to solve this system, which
converts the regularization parameter λ into a tolerance
hyperparameter. Pseudo-code for this algorithm is provided
in [52]. We use this algorithm on the ABM data with a
tolerance of 0.0001 and find the resulting vector to be
ĵ ¼ [0:0047,� 0:0095, 0:0001, 0], which suggests that the
model equation

dC
dt

¼ 0:0047C� 0:0095C2 þ 0:0001C3, (3:12)

is able to describe the ABM dynamics. We note that
this learned equation is similar in form to the learned
equation from Lasso (equation (3.9)), although there is an
extra cubic term with a small coefficient. We will consider
both the Lasso and Greedy algorithms for EQL in future
case studies.
4. Case studies for equation learning in
agent-based model analysis

We use this section to explore how methods from EQL can
aid modellers in performing ABM analysis with EQL
methods. We will do so through five case studies pertaining
to: how learned equations change with ABM parameters in
§4.1, how learned equations are affected by the number of
performed ABM simulations in §4.2, the performance of
learned equations in predicting unobserved ABM dynamics
in §4.3, the performance of EQL methods for DE model selec-
tion from ABM data in §4.4, and the performance of EQL
methods for learning systems of equations in §4.5. Through
these case studies, we introduce and address six questions
on the use and efficacy of EQL for ABM analysis.
4.1. Case study 1: comparing differential equation
models in describing agent-based model dynamics

Coarse-grained models are advantageous for ABM analysis
because they are easy to interpret, formulate and solve. Unfor-
tunately, coarse-grained DE models only provide accurate
ABM analysis in parameter regimes where ABM simulations
adhere to their underlying assumptions [12,46]. Previous
studies have defined criteria to aid modellers in determining
when to rely on mean-field models, but these approaches are
often only valid for simple ABMs and heuristic in nature for
more complex scenarios, such as bistable systems
[9,12,46,54,55]. The purpose of this case study is to determine
if EQL methods can be used as a simple test to determine
when mean-field models accurately predict ABM dynamics,
and to propose novel models for more accurate inference.
These goals are summarized in the following questions:

(Q1) Can EQL aid in determining when mean-field models
accurately approximate ABM dynamics?

(Q2) Can methods from EQL discover novel DE models for
accurate ABM analysis when the mean-field assump-
tion is invalid?

To address both Questions (Q1) and (Q2), we will test the
ability of the mean-field and learned DE models to predict
ABM dynamics for the BDM model over a range of
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Figure 6. Case study 1. Comparing mean-field and learned model predictions to ABM data from the BDM process. In each figure, we depict 〈CABM(t)〉 (blue dots
and line) against the corresponding mean-field model (solid black line) and learned equation (red dashed line). All simulations are depicted as a function of non-
dimensionalized time T = t(Pp− Pd). The insets in all frames depict the predicted percapita growth rates, G(C), from both models where dC=dt ¼ CG(C).

Table 1. Case study 1. Mean-field and learned DE models for the BDM process for various values of (Pp, Pd). MSE denotes the mean squared error between the
model solution and 〈CABM(t)〉.

Pp Pd mean-field model (MSE) learned model (MSE)

0.01 0.005 dC/dt = 0.005C− 0.01C2 (0.0011) dC/dt = 0.00468C− 0.0095C2− 0.0C3 (0.0001)

0.05 0.025 dC/dt = 0.025C− 0.05C2 (0.0026) dC/dt = 0.02134C− 0.04572C2 + 0.00343C3 (0.0002)

0.1 0.05 dC/dt = 0.05C− 0.1C2 (0.004) dC/dt = 0.03962C− 0.09057C2 + 0.01561C3 (0.0003)

0.5 0.25 dC/dt = 0.25C− 0.5C2 (0.01) dC/dt = 0.15671C− 0.49984C2 + 0.33125C3 (0.0005)
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mechanistic ABM parameter values. The SIR model is con-
sidered in a later case study.
4.1.1. Varying proliferation rates for the birth–death–migration
process

We now investigate the performance of the mean-field and
learned DE models in describing ABM output from the
BDM process over a range of proliferation rates. The prolifer-
ation rates are varied as Pp = 0.01, 0.05, 0.1, 0.5. For each value
of Pp, we set the death rate, Pd, to be half of Pp and fix the
migration rate at Pm = 1. The ABM output is comprised
Cd(t) = 〈CABM(t)〉, which is averaged over N = 50 ABM simu-
lations to ensure convergence to mean behaviour and
reduce the impact of noise. For model learning, we use the
library of right-hand-side terms Θ = [C, C2, C3, C4], and use
the Greedy algorithm [52] to sparsely solve the linear
system dCd/dt =Θξ. The code for this case study is provided
in the file Case study 1. Varying parameters for BDM.ipynb.

We compute predictions of the mean-field and learned
DE models with 〈CABM(t)〉 in figure 6 as well as the model
equations and their mean-squared error (MSE) in approxi-
mating 〈CABM(t)〉 in table 1. Both the mean-field model and
learned DE model provide accurate predictions of the ABM
output for Pp = 0.01, with a MSE between the simulated
model and 〈CABM(t)〉 of 0.0011 and 0.0001, respectively. As
Pp increases to 0.05, 0.1 and 0.5, the mean-field model does
an increasingly poor job in predicting the ABM data, overpre-
dicting agent density for all time. The MSE of the mean-field
DE model increases with Pp. The learned DE models, on the
other hand, accurately predict the ABM data and maintain
MSE values below 0.0005 for all values of Pp. The learned
DE model form is similar to the mean-field model for Pp =
0.01, but for Pp = 0.05, 0.1, 0.5 the learned model also recovers
cubic terms. When the learned model resembles the mean-
field model, then the mean-field model accurately predicts
〈CABM(t)〉. On the other hand, when the learned model devi-
ates from the mean-field model, the mean-field model poorly
predicts the ABM data.

We suggest that the mean-field model can make accurate
predictions of ABM behaviours when the learned equation
closely resembles the mean-field model (including both
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equation form and parameter estimates); otherwise, the
mean-field model can lead to inaccurate predictions of
ABM behaviours. Consider the per capita growth rate as one
illustrative example. For a DE model of the form
dC=dt ¼ F (C), the per capita growth rate is defined by
F (C) ¼ CG(C), and it quantifies the average contribution of
each individual to population growth over time. We plot
G(C) for the mean-field model and each learned model in
the insets of figure 6. The mean-field model predicts that
the per capita growth is a linear decreasing function connect-
ing (0,Pp− Pd) and (K,0), where K = (Pp − Pd)/Pp is the
carrying capacity predicted by the mean-field model.
The learned model predictions of G(C) closely resemble the
mean-field model predictions of G(C) for Pp = 0.01 and 0.05.
At the larger proliferation rates of Pp = 0.1 and 0.5, however,
the learned model per capita growth rates are much lower
than the mean-field model rates. Recall that higher rates of
proliferation lead to spatial clustering of agents in the ABM:
this clustering reduces the averaged per capita growth rate,
which the learned model can account for but the mean-field
model does not. The effective carrying capacity of the ABM
reduces as Pp increases (with Pd = Pp/2), which is again
likely due to increased spatial clustering. All learned
models accurately capture this reduction in the carrying
capacity, whereas the mean-field models do not.

The EQL pipeline results for these four simulated datasets
suggests that the mean-field model will accurately describe
ABM data when the learned equation form matches that of
the mean-field model. When the mean-field models are not
able to accurately predict ABM dynamics, learned models
of the form

dC
dt

¼ aCþ bC2 þ gC3, a, b, g [ R, (4:1)

can accurately predict ABM data instead. This form of learned
equation was able to provide more accurate ABM analysis
than the mean-field model over a range of parameter values.
4.2. Case study 2: altering the number of agent-based
model simulations

ABMsare inherently noisy due to the randomupdatingof agent
states that occurs during simulation.When using EQLmethods
to analyse suchABMs, one should take care to ensure they learn
the mean dynamics and do not overfit to small trends in the
data.WeaveragedABMdataovera largenumberofABMsimu-
lations in previous sections of this study to ensure the data had
converged to its mean value. Performing such extensive simu-
lations may not be feasible for computationally intensive
ABMs, however, so we now investigate how the learned DE
model changes with the number of ABM simulations. This
can be summarized with the following question:

(Q3) How can we determine when enough ABM simulations
have been performed for accurate DE model learning?

To investigate (Q3), we consider datasets from the BDM
ABM that have been averaged over different numbers of
ABM simulations. All data in this case study are simulated
using the parameter values Pp ¼ 0:01, Pd ¼ 0:005, and
Pm ¼ 1. ABM data are comprised 〈CABM(t)〉, which is com-
puted over N ¼ 1, 5, 10 or 25 simulations, and we used 10
separate datasets for each value of N to investigate how
stochastic fluctuations affect the final results. For DE learning,
we use the Greedy algorithm to solve dC/dt =Θξ for
Θ = [C, C2, C3, C4]. We denote ĵN as the estimate of ξ that
results for each value of N. The code for this case study is pro-
vided in the file Case study 2: varying number of ABM
Simulations.ipynb.

For each value of N considered, we learned ten separate
DE models from ten separate realizations of 〈CABM(t)〉 and
then computed the average learned DE model by averaging
the coefficients from each of the 10 learned equations.
Model predictions from the averaged learned DE model
and mean-field model are depicted against all ABM data in
figure 7. The solution profile for each average learned DE
model does not change too much as N increases, but the
ABM data fluctuations decrease with larger values of N. We
depict the distributions of each coefficient for each value of
N in fig. 11 in appendix F. As expected, the variance of
each distribution decreases with N, so we can be more certain
about learned DE models with more ABM simulations. We
present the averaged learned DE models for each value of
N in table 2 as well as the averaged mean-field and learned
model MSEs. The mean-field MSE maintains a nearly con-
stant value for all N, but the learned model MSE decreases
with N. The learned equation is cubic for all values of N,
and the cubic coefficient appears to approach zero as N
increases. The differences in MSE between successive aver-
aged ξN estimates (i.e. kĵ5 � ĵ1k2, etc.) is low for N > 10. The
insensitivity of the learned equation above N = 10 suggests
that N = 10 or 25 simulations are sufficient to accurately cap-
ture the mean BDM ABM dynamics for the parameter values
we used. As discussed in §3.1.1, we used finite differences for
numerical differentiation in these cases. Recent studies have
demonstrated how the use of polynomial spline interpolation
or artificial neural networks (ANNs) to improve EQL per-
formance in the presence of noise levels on the magnitude
of that observed in experimental data [24,25].

4.3. Case study 3: learning agent-based model
dynamics from sparse time samples

A current challenge for modellers is to develop EQL methods
that are able to learn DE models from real experimental or
clinical data. ABMs are a useful intermediate step to test the
predictions of mathematical methods because ABMs emulate
the stochastic and discrete nature of many biological processes
and allow researchers to alter aspects of the data. Biological
data present many practical challenges for modellers, includ-
ing only partial observations of the process under
consideration or sparse sampling of the data [56]. We will
use this case study to consider the performance of the EQL
methods in the face of both limited data sampling and partial
data observations. In turn, we address the following questions:

(Q4) How can we determine the resolution needed for accu-
rate DE model learning?

(Q5) Which time scales are informative for learning predic-
tive DE models for unobserved data?

4.3.1. Case study 3a: learning birth–death–migration dynamics
from sparsely sampled agent-based model data

We applied the EQL methodology to ABM data where
n ¼ 13, 25, 50 and 100 time samples were collected. For all
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Figure 7. Case study 2. Learning equations from varying numbers of ABM simulations. In each figure, we depict ten realizations of 〈CABM(t)〉 (blue dots and line)
against the corresponding mean-field model (solid black line) and averaged learned equation, (red dashed line), which depicts the final learned equation whose
coefficients were averaged over all the learned DE models for each realization of 〈CABM(t)〉. Each realization of 〈CABM(t)〉 was averaged over N = 1 (top left), N = 5
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at random throughout the lattice so that 5% of lattice sites were occupied. All simulations are depicted against non-dimensionalized time T = t(Pp− Pd). The ABM
parameters used in these simulations are Pp = 0.01, Pd = 0.005, Pm = 1.

Table 2. Case study 2. Learned DE models for the BDM process for various numbers of ABM simulations. We fixed Pp ¼ 0:01, Pd ¼ 0:005 and Pm ¼ 1 in
each scenario and averaged ABM output over the given value of N ABM simulations ten separate times to investigate the EQL method’s performance in the
presence of stochastic ABM fluctuations. The presented learned DE models depicts the final learned equation whose coefficients were averaged over all the
learned DE models for each realization of 〈CABM(t)〉. The right-most column corresponds to the MSE between successive ĵ estimates: e.g. for N = 5, we
compute kĵ5 � ĵ1k2:

N mean-field model (MSE) learned model (MSE) ĵ MSE

1 dC/dt = 0.005C− 0.01C2 (0.0037) dC/dt = 0.00568C− 0.01953C2 + 0.01624C3 (0.0025) —

5 dC/dt = 0.005C− 0.01C2 (0.0031) dC/dt = 0.00482C− 0.01299C2 + 0.00622C3 (0.0012) 0.012

10 dC/dt = 0.005C− 0.01C2 (0.0028) dC/dt = 0.00472C− 0.01193C2 + 0.00439C3 (0.0008) 0.002

25 dC/dt = 0.005C− 0.01C2 (0.0027) dC/dt = 0.00453C− 0.01054C2 + 0.00232C3 (0.0005) 0.003
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values of n, the data were collected at equispaced time inter-
vals between the same starting and ending time points. All
ABM simulations were computed with mechanistic par-
ameters Pp = 0.05, Pd = 0.0125, and Pm = 1. The ABM data,
〈CABM(t)〉, was averaged over N = 50 simulations. The code
for this case study is provided in the file Case study 3a.
Varying data resolution.ipynb.

We depict model predictions from the learned equation
against ABM data in figure 8. The learned DE models accu-
rately predict the ABM output for n ¼ 100, 50 and 25 time
samples. With n = 13 time samples, however, the learned
equation predicts the same carrying capacity as the data
but fails to accurately predict the ABM dynamics before pla-
teauing (excluding the initial time sample, which is used as
the initial condition). The learned model equations for
these different scenarios, and the MSE between the learned
model prediction and ABM data from each model, are sum-
marized in table 3. The MSE is less than or equal to 10−3 for
n ≥ 13 but rises to 0.0154 for n = 0.13. From this case study,
we suggest that n = 25 time samples provides sufficient
time resolution to accurately infer the underlying dynamics
for parameter values Pp = 0.05, Pd = 0.0125, and Pm = 1. If
we analysed experimental data we had reason to believe
resulted from similar underlying parameter values, we
would trust our analysis of the experimental data if we
had 25 or more equispaced time points over this same time
interval. We note alternative methods of numerical differen-
tiation can be used to improve EQL results with limited time
samples here. As an example, we have recently introduced
an ANN approach that has proven successful in learning
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Figure 8. Case study 3a. Learning equations with varying time resolution. We applied the EQL methodology for ABM data with n = 13, 25, 50 or 100 time samples
and depict the learned model (red dashed line) against the ABM data (blue solid line and dots). All simulations are depicted against non-dimensionalized time
T = t(Pp− Pd). We fixed Pp = 0.05, Pd ¼ 0:0125, and Pm ¼ 1.

Table 3. Case study 3a. Learned model equations for case study 3a with
varying numbers of time samples, n, from the data. MSE denotes the
mean squared error between the learned model prediction and 〈CABM(t)〉.

% of data learned model (MSE)

100 dC/dt = 0.03374C− 0.04522C2 (0.0002)

50 dC/dt = 0.03379C− 0.04531C2− 0.0C3 (0.0002)

25 dC/dt = 0.03372C− 0.0452C2 (0.0004)

13 dC/dt = 0.02073C− 0.03733C3 (0.0154)
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equations from sparse PDE data [56]. This method
would likely outperform the finite difference scheme
used for differentiation throughout this study. We point
the interested reader to [24,56] for more information on
this ANN approach.
4.3.2. Case study 3b: predicting unobserved birth–death–
migration dynamics

Weapplied the EQLmethodology toABMdatawhere only the
first 10%, 20%, 25% or 50% of the ABM data are used for train-
ing and the remainingdata are held out for testing howwell the
learned DE model predicts unobserved dynamics. ABM data
are computed with Pp ¼ 0:01, Pd ¼ 0:005 and Pm ¼ 1 and
〈CABM(t)〉 is averaged over 50 ABM simulations with n = 100
data points until t = 15(Pp− Pd). The code for this case study
is provided in the file Case study 3b: predicting unobserved
dynamics.ipynb.

We depict model predictions against the testing and train-
ing data in figure 9. When trained on 10% of data, the
inferred model grows without bound for all simulated time
and does not accurately describe the testing data. When
trained on 20% of data, the learned model plateaus above
the carrying capacity of the data, approximately C = 0.75.
For training data comprised 25% and 50% of the available
data, the learned models closely predict the test data. We
suggest that, for this case study, data should be sampled
beyond the inflection point in order to accurately predict
the unobserved dynamics and carrying capacity. One poss-
ible explanation for this observation is that all data before
the inflection point is concave up and all data after the inflec-
tion point is concave down. Including data past the inflection
point appears necessary to capture how CABM(t) becomes
concave down before reaching the carrying capacity. Further
investigation into informative datasets for EQL training have
been explored elsewhere [56].

The learned DE model for these different data percen-
tages and their MSEs on the test data set are summarized
in table 4. As expected, the testing data MSE decreases as
more of the data are used to learn the DE model.

4.4. Case study 4: using equation learning methods for
model selection

Our first case study used EQL methods to demonstrate that
the mean-field model may not be valid for predicting the
dynamics of the BDM ABM when Pp > 0.1 (with other par-
ameters fixed at Pm ¼ 1 and Pd ¼ Pp=2). If one wants to use
a DE model to analyse such ABM simulations, then an
alternative model may be required. In appendix A, we
show the DE model given by

dC
dt

¼ PpC(1� FC)� PdC, (4:2)
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Figure 9. Case study 3b. Predicting BDM dynamics from partial ABM data. We applied the EQL methodology on the first 10% (top left), 20% (top right), 25%
(bottom left) and 50% (bottom right) of 〈CABM(t)〉 to investigate the learned equations performance in predicting unobserved ABM dynamics. The blue dots
correspond to ABM output that was used to infer the learned model, the green stars denote ABM output that was used for model testing, and the red
dashed line denotes the solution of the learned model. All simulations are depicted against non-dimensionalized time T = t(Pp− Pd). We fixed Pp = 0.01,
Pd = 0.005 and Pm = 1 in each scenario and averaged ABM output over N = 50 simulations.

Table 4. Case study 3b. Summary of models learned with the first 10%,
20%, 25% and 50% of 〈CABM(t)〉. MSE on the remaining data is given in
parentheses. Data were simulated with the BDM model using Pp = 0.01,
Pd ¼ 0:005 and Pm ¼ 1, averaged over N = 50 ABM simulations. Note
that our implementation of the learned DE model trained on 10% of the
data fails to converge because this model grows faster than exponential
growth, which is not realistic of the ABM data. We depict the MSE of this
learned equation against 〈CABM(t)〉 as nan (not a number) due to this
numerical instability.

% learned model (testing MSE)

10 dC/dt = 0.00802C− 0.02098C2 + 0.03837C3 (nan)

20 dC/dt = 0.00745C− 0.01154C2 + 0.00305C3 (0.0071)

25 dC/dt = 0.00737C− 0.01081C2 + 0.00159C3 (0.0021)

50 dC/dt = 0.00721C− 0.00975C2 + 0.00016C3 (0.0002)
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can be used to model output from the BDM ABM.
In equation (4.2), F is the occupancy correlation between
neighbouring lattice sites [9]. For the lattice-based BDM
model, this value is defined between two neighbouring
lattice sites α, β as

F(t) ¼ P[Aa(t), Ab(t)]
P[Aa(t)]P[Ab(t)]

: (4:3)

Note that if the occupancy probabilities of these sites are
independent, then F(t)≡ 1, and equation (4.2) simplifies to
the mean-field DE model.
Model selection studies [57] are suited to determine
which model most parsimoniously describes a given dataset
from several plausible models. We may now be interested in
determining which of our two models, the mean-field model
in equation (2.6), or the DE model in equation (4.2), best
describes ABM output for the BDM process. A typical
model selection study for these two models may be proble-
matic, however, as deriving and computing the DE model
for F in equation (4.2) is complicated even for a scenario as
simple as the BDM model, yielding an additional set of
auxiliary DEs needed to describe F [9]. Since the derivation
of such auxiliary equations is effectively intractable
for more complex ABM models, we will investigate the
following question:

(Q6) Can methods from EQL be used for DE model selection
for ABM analysis?

In doing so, we propose an alternative strategy for model
selection, i.e. for selecting additional time-dependent vari-
ables, such as the occupation correlation, F(t), to increase
DE model accuracy with concepts from EQL.
4.4.1. Model selection with equation learning for the
birth–death–migration process

We use this section to demonstrate how EQL methods can be
used for model selection between the logistic equation given
by equation (2.6) and the modified logistic equation given by
equation (4.2). The code for this case study is provided in the
file Case study 4: model selection with EQL.ipynb. The rate
of proliferation, Pp, varies over the values Pp = 0.005, 0.01,



Table 5. Case study 4. Model selection with EQL. We present the average
selected model equations for 〈CABM(t)〉 over various values of Pp. For each
value of Pp, we set Pd = Pp/2 and Pm = 1. ABM output is averaged over
N = 50 ABM simulations of the BDM model to ensure convergence to
mean behaviour. The right-most column lists how many votes the selected
equation received out of 100 total.

Pp Pd selected model
votes (out
of 100)

0.005 0.0025 dC/dt =−0.00245C +
0.00485C(1− C )

57

0.01 0.005 dC/dt =−0.00483C +
0.00952C(1− C )

77

0.05 0.025 dC/dt =−0.02482C +
0.04936C(1− FC)

93

0.1 0.05 dC/dt =−0.04966C +
0.09874C(1− FC)

100

0.5 0.25 dC/dt =−0.25248C +
0.50271C(1− FC)

100
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0.05, 0.1, 0.5. For each value of Pp, we set Pd = Pp/2 and
fix Pm = 1. The occupancy correlation value from equation
(4.3) is estimated from the nth of N ABM simulations
by computing

F(n)(t) ¼ C(n,2)
ABM(t)X4

x2(C(n)
ABM(t))

2 , (4:4)

where C(n,2)
ABM(t) is the number of jointly occupied neighbour-

ing pairs of lattice sites over time, X is the length of the
lattice and χ2 is the total number of adjacent lattice-site
pairs [12]. The average occupancy correlation values is
then averaged over all N = 50 simulations:

hF(t)i ¼ 1
N

XN
k¼1

F(n)(1, t): (4:5)

The model selection methodology using EQL concepts
proceeds as follows. From each ABM dataset, we compute
both Cd = 〈CABM(t)〉 and Fd = 〈F(t)〉 and substitute these
values into two separate n × 2 matrices of right-hand-side
terms given by

Q1 ¼ [Cd(1� Cd), Cd] and Q2 ¼ [Cd(1� FCd), Cd],

where any multiplication is performed element-wise. Note
that Θ1 corresponds to the library of terms for equation
(2.6) while Θ2 corresponds to the library of terms for equation
(4.2). We uniformly at random place half of the elements com-
prising dCd(t)/dt and the corresponding rows from Θ1, Θ2

into training sets given by the vector dCtrain
d (t)=dt and the

n/2 × 2 matrices Qtrain
1 , Qtrain

2 . The remaining elements of dCd-

(t)/dt and rows of Θ1, Θ2 are placed into testing sets given by
dCtest

d (t)=dt and matrices Qtest
1 , Qtest

2 . The training set is used
to estimate ĵ1 from Qtrain

1 and ĵ2 from Qtrain
2 by solving the

two linear regression problems

dCtrain
d

dt
¼ Qtrain

i ji, i ¼ 1, 2: (4:6)

Note that the vector ĵ1 parametrizes equation (2.6), and ĵ2
parametrizes equation (4.2). We then use the testing set to
select the best model for each dataset by

ĵi ¼ argmin
i

dCtest
d

dt
�Qtest

i ĵi

����
����
2
: (4:7)

We use 100 randomly sampled training and validation sets
and select whichever of the two models minimizes equation
(4.7) more often in these 100 testing-validation realizations.

In table 5, we present the final selected models for various
values of Pp. The mean-field model is selected for
Pp ¼ 0:005 and 0:01 with 57 and 77 of the 100 total votes,
respectively. Equation (4.2) is selected for all larger prolifer-
ation values with at least 93 of the 100 total votes. These
results are in agreement with Case study 1, where the
mean-field model predicted ABM output well at Pp = 0.01,
but was unable to predict these data for larger values of Pp

(see, e.g. figure 6). In addition to more accurately matching
the ABM output than the mean-field model, equation (4.2)
also provides accurate parameter estimates for Pp and Pd.
By matching the forms of the modified logistic equation to
the learned equation (i.e. we can estimate Pp using the coeffi-
cient in front of C(1− FC) and Pd using the negative of the
coefficient in front of C), we observe that these estimates
appear very close to their true underlying values.
4.5. Case study 5: varying infection probability rates for
the susceptible–infected–recovered model

The EQL methods considered in this work are applicable to
many ABMs, including the SIR model introduced in §2.2.
We will now learn models for this ABM over several par-
ameter regimes and test the performance of the mean-field
and learned models in predicting ABM output [47,58,59].

We let the agent infection rate take the values PI = 0.005,
0.01, 0.05, 0.1, set the agent recovery rate, PR, to be one-tenth
of the infection rate for each value of PI, and fix Pm = 1 for
all scenarios. The ABM output comprises Sd = 〈SABM(t)〉,
Id = 〈IABM(t)〉 and Rd = 〈RABM(t)〉, all of which are averaged
over N = 25 ABM simulations from a square lattice with
length X = 40. Because these three quantities will always
sum to unity in the model, we focus on learning equations
for S(t) and I(t) and note that R(t) = 1− S(t)− I(t). For
model learning, we use the matrix of potential right-hand-
side terms given by Θ = [S, S2, I, I2, SI]. The Lasso algorithm
is used here to solve for the unknown vectors ξ1 and ξ2 from
the linear systems dS/dt =Θξ1 and dI/dt =Θξ2. Note that
even for a two-dimensional system with five library terms,
the total number of possible models for the S and I variables
is
P5

i¼0
5
i

� � ¼ 32 each, resulting in a total combination of 322 =
1024 possible DE models, which highlights the difficulty in
finding a predictive model from this large suite of possibili-
ties. The code for this case study is provided in the file
Case study 5. SIR Varying params.ipynb.

We depict the predictions of the mean-field and learned
DE models over time against ABM output in figure 10. The
mean-field and learned DE model equations with corre-
sponding MSEs are presented in table 6. For PI = 0.005 the
mean-field model predicts the ABM output well, but as PI

increases the mean-field model predictions worsen, as evi-
denced by increases in the MSE. The mean-field model
underpredicts the susceptible agent density at all times and
overpredicts the infected agent density at early times. The
learned model, on the other hand, is able to predict ABM
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Figure 10. Case study 5. Comparing mean-field and learned model predictions to ABM data from the SIR model. In each figure, we depict the predictions of the
mean-field model (solid blue curve for S(t) and solid green curve for I(t)), against the predictions of the learned DE models (blue dashed curve for S(t) and dashed
green line for I(t)), as well as 〈SABM(t)〉 (blue dots) and 〈IABM(T )〉 (green dots). All simulations are depicted against non-dimensionalized time T = tPR. We fixed
Pm = 1 for each simulation. All ABM simulations were computed on a square lattice of length X = 40.

Table 6. Case study 5: mean-field and learned DE models for the SIR ABM for various values of (PI, PR), along with the computed MSE values between model
and ABM output, and model R0 calculations. We fix Pm = 1 in each scenario.

PI PR mean-field model (MSE) R0 learned model (MSE) R0

0.005 0.0005 dS/dt =−0.0025IS (0.0027) 5.0 dS/dt =−0.00229IS (0.0012) 4.68

dI/dt = 0.0025IS− 0.0005I (0.002) dI/dt =−0.00049I + 0.00225IS (0.0009)

0.01 0.001 dS/dt =−0.005IS (0.0044) 5.0 dS/dt =−0.00447IS (0.0006) 4.52

dI/dt = 0.005IS− 0.001I (0.0029) dI/dt =−0.00098I + 0.00443IS (0.0005)

0.05 0.005 dS/dt =−0.025IS (0.0107) 5.0 dS/dt =−0.01881IS (0.003) 3.72

dI/dt = 0.025IS− 0.005I (0.0066) dI/dt =−0.00472I + 0.01833IS (0.0021)

0.1 0.01 dS/dt =−0.05IS (0.0164) 5.0 dS/dt = 0.01569S− 0.01608S2− 0.00545I− 0.0459IS (0.0055) 3.41

dI/dt = 0.05IS− 0.01I (0.0097) dI/dt =−0.00906I + 0.03101IS (0.0033)
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output accurately for all values considered and achieves
low MSE values (with the lowest value at PI = 0.01). The
learned equation forms are similar to the mean-field model
for PI = 0.005, 0.01 and 0.05. For PI = 0.1, the learned
equations have additional S, S2 and I terms in the model
equations for dS/dt. These terms may be used to capture
effects that are not described by the mean-field model.

The basic reproductive number, or R0, is defined as the
expected number of secondary infections that result from a
single infection in a population comprised solely of suscep-
tible agents [47,58,59]. A disease may spread rapidly when
R0 > 1, and will die out when R0 < 1. R0 is now a commonly
used criterion to determine when a disease will continue to
spread through a population and possibly cause an outbreak.
More details of how to computer R0 are provided in [47], but
we note here that R0 can be found for the mean-field SIR
model by determining critical parameter values where
dI(t = 0)/dt will exceed zero at the initial condition. From
equation (2.12), the mean-field model shows that dI/dt > 0
when MPIS > PR. Recalling that S(t)≈ 1 at the start of the dis-
ease spread, this implies that dI/dt >0 when MPI/PR > 1, i.e.
R0 =MPI/PR for the mean-field model. The values of R0 can
be computed using similar methods for the learned equations
detailed in table 6. Here we observe that the mean-field
model predicts that R0 = 5.0 for all considered scenarios
(recall, M = 0.5 in all simulations), yet as PI increases from
0.005 to 0.01, 0.1, 0.25 (with PI/PR = 10.0), the learned
equations predict R0 = 4.68, 4.52, 3.72, 3.41, respectively.



Table 7. Highlighting the strengths (✓) and limitations (✗) of the three approaches in this article for understanding the resulting behaviour from ABMs.

extensive
simulation

DE model
derivation

equation
learning

amenable for ABMs of varying complexity ✓ ✗ ✓

computationally efficient ✗ ✓ ✓

amenable to analytical forms of exploration ✗ ✓ ✓

provides accurate estimates of emergent ABM behaviour throughout

parameter space

✓ ✗ ✓

extrapolates to unobserved parameter values and data ✓ ✓ ✗

interpretable ✗ ✓ ✓
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Thus, while the mean-field model suggests that a single
infected individual will cause five secondary infections (in a
population full of susceptible agents) at each of these infec-
tion rates, the learned models suggest that as PI increases
(with the ratios PI/PR and PI/Pm fixed), the number of sec-
ondary infections will decrease in this scenario. Recall from
figure 3 that infected agents tend to cluster with large
values of PI (while Pm and PI/PR are fixed). The mean-field
model does not consider how such spatial clustering may
affect the number of secondary infections that result from a
single infection in a population comprised solely of suscep-
tible agent. The learned DE models, on the other hand,
implicitly account for this information when finding a predic-
tive DE model from the ABM data.

5. Conclusion and discussion
In this work, we have considered three different, yet synergis-
tic, approaches to study the emergent behaviour of ABMs.
These approaches include extensive simulation, DE model
derivation using coarse graining approaches and EQL. We
demonstrated some of the strengths and weaknesses of
each approach through their applications to two ABMs: a
BDM model and an SIR model. We summarize some of
these strengths and weaknesses in table 7.

Extensive simulation is the most commonly used and
straightforward approach in understanding the behaviour
of ABMs. Extensive simulation is advantageous because, in
theory, it can be used to analyse any ABM: it only requires
simulating the ABM on a computer. This approach quickly
becomes practically challenging, however, because it can
become difficult to simulate sufficiently complex ABMs
with basic computing hardware. The BDM process used in
this work is simple enough to be simulated on a personal
laptop (2.5 GHz Intel Core i7 processor, 16 GB RAM) for all
datasets generated for this study. The SIR model is more
involved, however, and was run on a computer cluster to
ease implementation. Computation of a single SIR simulation
with PI = 0.005, PR = 0.0005, PM = 1.0 took about 48min to
compute. Two further drawbacks of performing extensive
simulation are that this technique is not compatible with
analytical methods, and that its output may not be interpret-
able, i.e. we observe that the system behaviour changes as
parameters are varied, but we may not understand why this
happens, nor can we necessarily predict this behaviour
a priori.
There is a wide literature demonstrating that coarse grain-
ing approaches can be used to derive DE models that
approximate ABM dynamics [3,9,12,17,35,60,61]. Such DE
models are advantageous because they are usually simple
to solve (either analytically or numerically), interpretable,
and provide insight into how changing ABM parameters
can lead to emergent behaviours. Analytical techniques
allow us to infer how the system will behave over many
different parameter values without simulating the ABM.
For example, the per capita growth rate for the BDM model
predicts the population growth rate as a function of density,
and the R0 calculation for the SIR model predicts if a disease
will outbreak or die out. However, we saw throughout the
presented case studies that these analyses fail to accurately
predict ABM behaviour for parameter regimes where the
mean-field assumption is violated. Another limitation of
this approach is that the derivation of DE models requires
user-made assumptions, such as the mean-field assumption,
which are often violated by many ABM simulations. As
there is no universal methodology to convert ABM rules
into predictive DE models for all input parameter values,
EQL provides a powerful framework to learn informa-
tive DE models for ABMs and, in turn, determine when
simplifying assumptions (e.g. the mean-field assumption)
are reasonable.

EQL is a recent field of research that seeks to infer DE
models directly from observed data. EQL combines many
benefits of the two previously mentioned methodologies to
analyse the emergent behaviour of ABMs. We highlighted
many of the advantages of these approaches, and addressed
several ways in which EQL can aid modellers in ABM analy-
sis, through our investigation of Questions (Q1)–(Q6). While
the mean-field model does not accurately predict ABM
output for many parameter combinations, our exploration
of (Q1) demonstrated that EQL provides a simple way to
determine when the mean-field model can or cannot be
trusted for such predictions. If the learned equation form
matches the mean-field model, then the mean-field model
should provide accurate insight; when it does not, then
alternative models may be needed, as we discussed in (Q2).
We also demonstrated that EQL methods can be used to
infer novel DE models for ABMs. We observed that the
mean-field model cannot predict output of the BDM process
for large rates of agent proliferation and death relative to
motility. Instead, equation (4.1) can be used to accurately pre-
dict ABM dynamics. Further investigation needs to be carried
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out in order to understand how equation (4.1) may result
from ABM rules.

A significant challenge of using ABMs in practice is their
intensive computational nature. Through (Q3), we explored
how many ABM simulations are necessary to reliably predict
ABM output. We showed that the learned equation may devi-
ate from the average ABM behaviour when only a small
number of ABM simulations are used. With a sufficiently
large number of ABM simulations, however, the learned
equation can accurately predict ABM dynamics. For the
BDM process, we found that N = 10 ABM simulations was
sufficient. In practice, we can determine when enough simu-
lations have been performed to capture mean ABM dynamics
by considering how much the learned vector, ξ, changes with
additional ABM simulations. When this vector becomes suf-
ficiently insensitive to increases in N, then sufficient ABM
dynamics have been performed.

In (Q4), we investigated the sampling resolution needed in
time to reliably predict ABM dynamics. In this case study, we
determined a magnitude between uniformly sampled time
samples above which the EQL pipeline could not learn a DE
model that accurately predicted ABM behaviour. We used
Question (Q5) to determine when EQL methods can be used
to predict unobserved ABM dynamics. In the presented case
study,we used the BDMmodel to demonstrate that the learned
equations can accurately predict unobserved ABM dynamics
when the observed data exceeds half of the population’s carry-
ing capacity. These two investigations, Q4 and Q5, suggest
important future work must be performed to determine stra-
tegic (and not necessarily uniform) samples of the ABM that
are informative and capture all dynamic regimes of the data).
Some preliminary work towards these questions for PDE
models has been investigated in [56]. A limitation of EQL
methods, as opposed to ABM simulation and mean-field
models, is that it may not be able to accurately extrapolate to
unobserved data and parameters, as we observed in Case
study 3b. This is possible with ABM simulation, where the
ABM can be run for longer time or at different parameter
values. Similarly, the mean-field model can extrapolate its pre-
dictions by solving the model over a longer time period or
simulating it at different parameter values.

Finally, we considered Question (Q6) to determine if
EQL methods can be used to aid in model selection for
ABMs. This is advantageous because DE models that are
more complex than mean-field models can also be derived
for ABMs. Although potentially more accurate, these models
are difficult to interpret and simulate than mean-field
models. Equation (4.2), as one example, can be challenging to
implement numerically because the dynamical system for the
occupancy correlation function, F(t), requires solving a high-
dimensional system of equations using user-defined closure
approximations [9]. Instead, we can measure F over each
ABM simulation and use these observations of F in a hybrid
approach to selectwhether including F leads to amore accurate
DEmodel. Applying such a hybrid approach to the simulation
of DE models has been recently proposed to aid in reducing
identifiability-related issues [62,63].

EQLmethods are quickly growing inpopularityas ameans
to infer DEmodels from noisy data [24,25,56]. We have shown
in this study that such methods provide a reliable and promis-
ing tool to aid modellers in interpreting and analysing ABMs.
Learning DE models from data do not require user-made
assumptions on whether or not the ABM simulation satisfies
certain properties, as is needed for the derivation of mean-
field models. We have also demonstrated in this work how
EQLmethods can be used to predict ABMdynamics from lim-
ited ABM simulations, learn DE models from only a subset of
data, andaccuratelypredict dynamics overawide range ofpar-
ameter values. Such learned equations from ABM data also
make ABM analysis more interpretable, as analysis of the
learned equation provides insight into the underlying biologi-
cal mechanisms (e.g. per capita growth rates, R0, bifurcation
analysis, etc.). The order of a learned equation may provide
insight into how many neighbouring lattice site occupancies
impact individual agent behaviour [50].

There are many areas for exciting future work in ABM
analysis using EQL methods. For example, global sensitivity
analysis techniques [64] could be used to determine ABM
parameter thresholds where the learned equation forms
change, and what insights these threshold values may pro-
vide into the ABM dynamics. We anticipate that, through
this tutorial, EQL will increasingly be used to interpret com-
plex ABM simulations. Future work should aim to address
challenges that prevent the learning of DE models from real
experimental data. While we focused on learning determinis-
tic DE models from stochastic ABM simulations in this work,
more recent studies have explored learning stochastic DE
model forms (including both drift and diffusion estimates)
from data [65]. Another recent study has shown that the
dynamics from a stochastic non-Markovian model can be
learned using a simpler time-inhomogeneous Markovian
model framework with the aid of ANNs [66]. We also
focused on simple ABMs in this study (including the BDM
process and the SIR model), but future work should examine
model learning for more complex ABM dynamics, such as
bistable [60] and periodic behaviour [67].
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Appendix A. Coarse graining birth–death–
migration rules into a differential equation
model
In this section, wewill derive coarse-grained DEmodels of the
BDMprocess.Webegin bydefiningP[0a(t)] andP[Aa(t)] as the
probabilities that the individual lattice site α is either vacant or
occupied, respectively, at time t. We simplify notation by writ-
ing: P[Aa(t)] ¼ Ca(t) and P[0a(t)] ¼ 1� Ca(t).

Similarly, let P[Aa(t), Ab(t)] denotes the probability that
both neighbouring sites α and β are occupied at time t; we
refer to this value as the neighbouring lattice site occupancy
probability. Along these lines, P[0a(t), Ab(t)] is the probability
that α is vacant and β is occupied at time t, etc. These joint

https://github.com/johnnardini/Learning-DE-models-fromstochastic-ABMs
https://github.com/johnnardini/Learning-DE-models-fromstochastic-ABMs
https://github.com/johnnardini/Learning-DE-models-fromstochastic-ABMs
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probabilities are related to the individual occupancy prob-
abilities through their marginal probabilities:

Ca(t) ¼ P[Aa(t), Ab(t)]þ P[Aa(t), 0b(t)];
1� Ca(t) ¼ P[0a(t), Ab(t)]þ P[0a(t), 0b(t)];
Cb(t) ¼ P[Aa(t), Ab(t)]þ P[0a(t), Ab(t)];
1� Cb(t) ¼ P[Aa(t), 0b(t)]þ P[0a(t), 0b(t)]

9>>>=
>>>;

(A 1)

neighbouring occupancy probabilities are also related to the
individual occupancy probabilities using the joint occupancy
correlation function [9]:

F(t; a, b) ¼ P[Aa(t), Ab(t)]
Ca(t)Cb(t)

: (A 2)

Note that if F(t; α, β) = 1, then P[Aa(t), Ab(t)] ¼ Ca(t)Cb(t),
indicating that the occupancy of the neighbouring sites α
and β are independent. We can combine equations (A 1)
and (A 2) to write each neighbouring occupancy probability
in terms of the individual occupancy probabilities and the
occupancy correlation function

P[Aa(t), Ab(t)] ¼ Ca(t)Cb(t)F(t; a, b);

P[Aa(t), 0b(t)] ¼ Ca(t)
�
1� Cb(t)F(t; a, b)

�
;

P[0a(t), Ab(t)] ¼ Cb(t)
�
1� Ca(t)F(t; a, b)

�
;

P[0a(t), 0b(t)] ¼ 1� Ca(t)� Cb(t)þ Ca(t)Cb(t)F(t; a, b):

9>>>>>>>=
>>>>>>>;
(A 3)

We are now ready to convert the rules of the BDM process
into a coarse-grained DE model. We begin by writing a
master equation for how Cα(t) will change due to the effects
of agent birth, death and migration:

dCa(t)
dt

¼ Kbirth þ Kdeath þ Kmigration: (A 4)

We now aim to derive expressions for Kbirth, Kdeath

and Kmigration. The birth reaction from equation (2.1) specifies
that the density at lattice site α may increase when α is unoc-
cupied and b [ B(a) is occupied because the agent at β
may give birth and place its daughter agent in α. We can
then write

Kbirth ¼ Pp

4

X
b[B(a)

P[0a(t), Ab(t)], (A 5)

because any of the neighbouring lattice sites may undergo
birth events. Similarly, we can convert equation (2.2) as

Kdeath ¼ �PdCa(t), (A 6)

for agent death and convert equation (2.3) as

Kmigration ¼ Pm

4

X
b[B(a)

(P[0a(t), Ab(t)]� P[Aa(t), 0b(t)]), (A 7)

for agent migration. Substitution of these terms into equation
(A 4) provides the master equation for the BDM process

dCa(t)
dt

¼Pp

4

X
b[B(a)

P[0a(t), Ab(t)]
� �� PdCa(t)

þ Pm

4

X
b[B(a)

P[0a(t), Ab(t)]� P[Aa(t), 0b(t)]
� �

:

(A 8)

Equation (A 8) provides a DE model to describe the
dynamics of Cα(t), however, this equation is not closed
because we need to know P[Aa(t), Ab(t)] in order to evaluate
the right-hand side. We can use the marginal identities from
equations (A 1) and (A 3) to simplify the terms in equation
(A 8) and write

dCa(t)
dt

¼ Pm

4

X
b[B(a)

(Cb(t)� Ca(t))þ
Pp

4

X
b[B(a)

Cb(t)(1

� Ca(t)F(t; a, b))� PdCa(t): (A 9)

We proceed by making a simplification in order to close
this system. Since we initiate all simulations with agents
distributed uniformly at random, we assume that all individ-
ual occupancy probabilities are equally distributed1 on
average so that Ca(t) ¼ Cg(t) ¼ C(t) for any two lattice sites
α and γ. From this assumption, we have that F(t; α, β) =
F(t; |α− β|), i.e. F(t; α, β) = F(t; 1) for b [ B(a). From
equation (A 2), we next write P[Aa(t), Ab(t)] ¼ C2(t)F(t; 1)
for b [ B(a). These observations lead to the following DE
model from equation (A 9):

d
dt

C(t) ¼ PpC(t)(1� C(t)F(t; 1))� PdC(t): (A 10)

Equation (A10) is not yet closed because we still do not know
F(t; 1). Our second simplification is the mean-field assumption,
in that the occupancy probabilities of neighbouring lattice
sites are independent so that F(t; 1)≡ 1. This assumption
leads to the mean-field model for the ABM:

d
dt

C(t) ¼ PpC(t)(1� C(t))� PdC(t): (A 11)

Note that equation (A 12) can be re-formulated as the stan-
dard logistic DE model given by

d
dt

C(t) ¼ rC(t) 1� C(t)
K

� �
, (A 12)

where r = Pp− Pd, K = (Pp− Pd)/Pp. This model is advan-
tageous in that it is closed and can be solved analytically:

C(t) ¼ KC(0)ert

K þ C(0)(ert � 1)
, (A 13)

where C(0) denotes the initial condition.
Appendix B. Coarse graining susceptible–
infected–recovered rules into a differential
equation model
We now derive DE models governing the dynamics for
P[Sa(t)], P[Ia(t)] and P[Ra(t)]. As for the BDM model,
because the initial agent configurations are uniformly distrib-
uted in space, we assume the probability of any type of agent
occupancy (S, I or R) is independent of the lattice site and
define S(t) ¼ P[Sa(t)], I(t) ¼ P[Ia(t)], R(t) ¼ P[Ra(t)]: By con-
verting the bimolecular reactions in equations (2.8) and (2.9)
into the corresponding occupancy probability configurations
that will lead to changes in S, I or R, and converting the
monomolecular reaction in equation (2.10) into the individual
occupancy probabilities that will lead to changes in S, I or R,
we derive the master system of equations for S(t), I(t) and R(t)
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to be:

d
dt

S(t) ¼
X

b[B(a)

Pm

4
P[0a(t), Sb(t)]� Pm

4
P[Sa(t), 0b(t)]� PI

4
P[Sa(t), Ib(t)]

	 

;

d
dt

I(t) ¼
X

b[B(a)

Pm

4
P[0a(t), Ib(t)]� Pm

4
P[Ia(t), 0b(t)]þ PI

4
P[Ia(t), Sb(t)]

	 


� RCI(t);

d
dt

R(t) ¼
X

b[B(a)

Pm

4
P[0a(t), Ib(t)]� Pm

4
P[Ia(t), 0b(t)]

	 

þ PRI(t):

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(B 1)

We then use the mean-field assumption to write
P[Ya(t), Zb(t)] ¼ Y(t)Z(t), where Y, Z∈ {S, I, R, 0}. This
assumption reduces equation (B 1) to the commonly used
SIR model given by:

dS
dt

¼ �PISI;
dI
dt

¼ PISI � PRI;
dR
dt

¼ PRI: (B 2)
Algorithm 1: Gillespie algorithm for the BDM process (modified from [12]).
In equation (B 2), the variables S, I and R denote the density of
susceptible, infected and recovered agents over time, respect-
ively, which cannot exceed 0.5 if only half of the simulation
domain is occupied by agents. We can convert these variables
to the fraction of susceptible, infected and recovered agents by
computing the dimensionless variables S*(t) = S(t)/M,
I�(t) ¼ I(t)=M and R�(t) ¼ R(t)=M, where M is the proportion
of occupied lattice sites in the simulation domain. The
system of equations for these variables are given by

dS�

dt
¼ �MPIS�I�,

dI�

dt
¼ MPIS�I� � PRI�,

dR�

dt
¼ PRI�:

(B 3)
te
Appendix C. Gillespie algorithm
rface
18:20200987
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Appendix D. Lasso algorithm using FISTA
Algorithm 2: Lasso implementation using FISTA from [53].

alsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200987
Appendix E. Hyperparameter selection for Lasso
This section provides brief notes about the practical
selection of hyperparameters for the Lasso method.
We used regularization parameter λ = 0.0004 for the Lasso
algorithm to learn an equation for 〈CABM(t)〉 in the tutorial
in §3.1.1. The optimal value of this hyperparameter is
typically not known a priori. There are several ways to
select such a hyperparameter, including a grid search [24],
cross validation [69] or Bayesian optimization [70].
We discuss the grid search option here due to its
simplicity. In a grid search to determine an appropriate
value for λ, we specify several plausible options, given by
{λ1, λ2,…, λn} and split the data into training (dCtrain

d (t)=dt
and Θtrain) and testing (dCtest

d (t)=dt and Θtest) sets. The train-
ing and testing portions of Θ will contain all columns of Θ
but only a subset of the rows. For a possible hyperpara-
meter value, λi, we solve the Lasso problem from equation
(3.8) using the training data and λ = λi to determine the
resulting ξ estimates, ĵi. The optimal value of λ is then
chosen as:

l̂ ¼ argmin
li

dCtest
d (t)
dt

�Qtestji

����
����
2
: (E 1)

The optimal value l̂ results in the estimate ĵ that best gen-
eralizes to the testing data. Recent work has shown that for
Lasso, ĵ tends to incorporate small additional terms in the
final learned equation [24]. To select the regularization par-
ameter, λ, for the Lasso algorithm, we randomly split half of
〈CABM(t)〉 into a training set and the remaining into a testing
set. We considered 100 values of λ between 10−5 and 10−3 as
well as λ = 0 and solved equation (3.8) using the training set
for all 101 potential values of λ. We can perform this operation
several times (changing the training and testing set each time)
and notice that sometimes the chosen hyperparameter is zero
and sometimes it is non-zero. When the chosen hyperpara-
meter is zero, then the EQL pipeline learns an equation of
the form

dC
dt

¼ 0:00488C� 0:01187C2 þ 0:00806C3

� 0:00831C4, (E 2)

whereas when the chosen hyperparameter is non-zero, then
the EQL pipeline learns an equation of the form

dC
dt

¼ 0:00468C� 0:00951C2: (E 3)

To ensure the final learned equation is sensitive to
changes in each non-zero library coefficient, we perform a
round of pruning after learning which proceeds as follows.
The jth non-zero term of ĵ is included in the final inferred
equation if kdCtest

d (t)=dt�Qtestĵjk22 increases by a given
pruning percentage, where here ĵj is the estimated par-
ameter vector with the jth term manually set to zero.
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Figure 11. Summaries of the distributions of model parameters for the learned DE models from Case study 2 over various values of N. Each box and whisker plot
summarizes the distribution of coefficient estimates from ten realizations of 〈CABM(t)〉 for various values of N. In each box and whisker plot, the lower line of the box
portion provides the 25% quartile of the data and the upper line denotes the 75% quartile. The orange line on each box plot denotes the median coefficient value.
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To ensure that the final learned equation is not an artefact of
the training and testing split, we perform this entire process
for 10 randomized training and testing splits of the data and
select the equation form arises most frequently. We set the
parameters for each coefficient to be the mean of each coef-
ficient for each time the final equation form was learned. If
we set our pruning percentage to be 5%, then the majority
of learned equations will be of the form

dC
dt

¼ 0:00468C� 0:00951C2: (E 4)
Appendix F. Case study 2: parameter
distributions
See figure 11.
Endnote
1This assumption is not applicable when the initial configuration is
spatially heterogeneous. See [36,68] for the derivation of PDE
models in this scenario.
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