
A �alitative Study of Cleaning in Jupyter Notebooks

Helen Dong
Carnegie Mellon University

USA

ABSTRACT

Data scientists commonly use computational notebooks because

they provide a good environment for testing multiple models. How-

ever, once the scientist finds the ideal model, he or she will have to

dedicate time to clean the code in order for others to understand

it. In this paper, we perform a qualitative study on how scientists

clean their code. Our end goal is to provide additional aid to data

scientists, who can then focus more on their actual work rather

than the routine and tedious cleaning duties.

CCS CONCEPTS

• Software and its engineering → Software post-development is-

sues.

KEYWORDS

Empirical Study, Mining Repositories, Software Engineering for AI

ACM Reference Format:

Helen Dong. 2021. A Qualitative Study of Cleaning in Jupyter Notebooks. In

Proceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3468264.3473490

1 INTRODUCTION

Data scientists often use computational notebooks, such as Jupyter

or R notebooks, to conduct the exploratory programming aspect

in a project [6]. From previous research [3], it was discovered that

data scientists who use notebooks tend to incrementally add new

cells of code to explore alternative methods. If the overall end goal

is to share their model with other collaborators, these scientists

must perform cleaning steps in order to make it easier for others

to understand their code. Although a seemingly simple task, this

cleaning step can be tedious and laborious. Additionally, current

notebook environments provide little explicit support for cleaning,

and the few academic projects in this area focus on specific tasks,

such as slicing the code used to reproduce a specific figure or result

[1]. More generally, we do not have a solid understanding of the

different types of cleaning steps that data scientists commonly

engage in, without which we cannot effectively design a more

tailored tool.

This issue leads us to ask the following research question: what

types of cleaning activities are the most common in computational

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3473490

notebooks? To answer this question, we perform a qualitative anal-

ysis of public notebooks, their version history, and related source

code files to identify which cleaning activities data scientists engage

in to help us understand what type of tools could support typical

cleaning tasks. Our long-term vision is for tool builders to address

possible gaps and provide additional aid to data scientists, who

then can focus more on their actual work rather than the routine

cleaning work. Having clean code is important because it not only

saves time for the reader, but also for the writer, since the writer

ideally will not have to take the time to explain the code to the

reader.

2 RESEARCH APPROACH

Given that we have little initial knowledge about different forms

of cleaning, we adopt a mostly qualitative research strategy in

which we carefully analyze the public history of a sample of Jupyter

notebooks. For each notebook, we noted all the changes made

between two artifacts (i.e the notebook before and after a specific

commit), and used inductive coding to identify common groups

and come up with a coding frame. Then we use our coding frame

to sample notebooks and identify trends.

To come up with the coding frame, we fetched 2600 Jupyter

notebooks on GitHub and randomly selected about 25 of them to

analyze their commit history. We identified cleaning activities by

manually analyzing changes between commits using reviewNB

[4]. While looking for patterns in cleaning activities, we found

that notebooks are used for different purposes, and the cleaning

activities vary correspondingly. Using literature [1] from previous

studies and observing characteristics of the 25 notebooks, we were

able to distinguish 3 main groups that most notebooks on GitHub

fall under. Due to this separation of groups, we determined that a

uniformly random sample was not suitable for our purposes. Thus,

we decided to stratify our sample in order to cover a larger range

of different notebooks.

3 CORPUS SELECTION & SAMPLING

We describe the three different types of notebooks and how we

sample each of them below.

Sharing Notebooks are notebooks that are created with an

intended purpose to be shared with others. Such notebooks are

characterized by extensive README files that communicate the

purpose of the project to an audience. These notebooks tend to have

less inline code comments and more markdown (titles in Jupyter

Notebooks) describing the notebook on a high level.

Production notebooks are those that are used to prepare mod-

els that are intended to be integrated in some software system to be

used as a library by other developers or as product by end users. For

these notebooks, there exists some sort of production code, and in

our case, we looked for python files (which were originally .ipynb

files converted to .py files). These notebooks also tend to have an





A �alitative Study of Cleaning in Jupyter Notebooks ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES

[1] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[2] Yue Jia, David Binkley, Mark Harman, Jens Krinke, and Makoto Matsushita. 2008.
KClone: A Proposed Approach to Fast Precise Code Clone Detection. In Proceedings
of the 16th IEEE International Conference on Program Com- prehension, ICPC 2008.
172–181.

[3] Liu, Jiali, Nadia Boukhelifa, and James R. Eagan. 2019. Understanding the role of
alternatives in data analysis practices.. In IEEE Transactions on Visualization and
Computer Graphics.

[4] Amit Rathi. 2018. ReviewNB Tool. https://www.reviewnb.com/.
[5] C.K. Roy and J.R. Cordy. 2008. NICAD: Accurate Detection of Near-Miss Intentional

Clones Using Flexible Pretty- Printing and Code Normalization. In Proceedings
of the 16th IEEE International Conference on Program Com- prehension, ICPC 2008.
172–181.

[6] Beau Sheil. 1983. Variolite: Supporting Exploratory Programming by Data Scien-
tists. In Environments for exploratory programming. Datamation 29, 7. 131–144.


