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Abstract: We find a zero in the positronium formation scattering amplitude and a deep minimum
in the logarithm of the corresponding differential cross section for positron—helium collisions for
an energy just above the positronium formation threshold. Corresponding to the zero, there is a
vortex in the extended velocity field that is associated with this amplitude when one treats both the
magnitude of the momentum of the incident positron and the angle of the scattered positronium
as independent variables. Using the complex Kohn variational method, we determine accurately
two-channel K-matrices for positron-helium collisions in the Ore gap. We fit these K-matrices using
both polynomials and the Watanabe and Greene’s multichannel effective range theory taking into
account explicitly the polarization potential in the Ps-He™ channel. Using the fitted K-matrices
we determine the extended velocity field and show that it rotates anticlockwise around the zero
in the positronium formation scattering amplitude. We find that there is a valley in the logarithm
of the positronium formation differential cross section that includes the deep minimum and also a
minimum in the forward direction.

Keywords: positron; positronium formation; charge exchange; rearrangement; vortices; velocity field

1. Introduction

Positronium (Ps) formation, a rearrangement process for positron collisions, is of
interest in both theoretical and experimental studies [1-6]. Recently, we obtained two
zeros in the Ps-formation scattering amplitude, fp;, for positron-hydrogen collisions in
the Ore gap [7]. We used the Kohn and inverse Kohn variational methods to compute the
two-channel K-matrices, and from these we computed fps, the Ps-formation differential
cross section (DCS) and the extended velocity field vey that is associated with fps. (The
extended velocity field is defined in reference [7].) Corresponding to the zeros in fpg, there
are deep minima in the logarithm of the Ps-formation DCS and vortices in vey that are
associated with fps [7].

Positron-helium collisions are more accessible experimentally than positron-hydrogen
collisions. The absolute near-forward direction Ps-formation DCS has recently been mea-
sured for positron collisions from helium for an incident positron energy E; of 24.7 eV
to 138 eV [4,6]. In this paper, we report a zero in fpg for positron-helium collisions just
above the Ps-formation threshold, a corresponding deep minimum in the logarithm of
the Ps-formation DCS, a vortex in veyt that is associated with fps, and also a minimum
in the forward direction Ps-formation DCS [8,9]. We use the complex Kohn variational
method to compute two-channel K-matrices for s-, p-, d- and f-wave positron-helium
collisions in the Ore gap for a fine grid in k, where k is the magnitude of the momentum of
the incoming positron k. We optimize the non-linear parameters in the short-range part
of the trial wave function in the vicinity of the zero in fps to obtain accurate K-matrices
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in this region. For positron-helium collisions the Ore gap is the energy range from the
onset of Ps(1s)-formation to the threshold for the excitation of He(2'S). This corresponds
to the energy range of the incoming positron of E; = 17.78 eV to 20.62 eV, or the k range of
1.143 a.u. to 1.231 a.u. [10-12]. It also corresponds to a x range of 0 a.u. to 0.65 a.u., where
« is the magnitude of the momentum of the outgoing Ps, . In our calculations, we neglect
positron annihilation [13,14].

We fit the complex Kohn K-matrices using polynomials and using the Watanabe
and Greene’s multichannel effective range theory (WG MERT) [15], explicitly taking into
account the polarization potential in the Ps-He™ channel [8,9]. The polarizability of Ps is
significant, 36 a.u., and its effective polarizability in the Ps-He™ channel is 72 a.u. [16]. The
WG MERT has previously been applied for positron collisions from hydrogen [16-18] and
from helium [16,18]. An advantage of fitting the K-matrices is that we can determine vext
that is associated with fps [7] without having to compute the complex Kohn K-matrices
over a fine grid in two components of the momentum of the outgoing Ps, .

For positron-helium collisions, we locate the position of a zero in fps and thus the
position of a deep minimum in the logarithm of the Ps-formation DCS. We determine the
Ps-formation DCS as a function of k and 8, where 8 is the angle of the outgoing Ps with
respect to the z-axis, which is taken to be parallel to the momentum of the incident positron
k. Due to the experimental interest of the near-forward direction Ps-formation DCS for
positron-helium collisions [4-6], we also compute this cross section using the complex
Kohn K-matrices and using different fits for the K-matrices. In the near-forward direction,
the Ps-formation DCS for positron collisions from Ne, Ar, Kr and Xe has recently been
measured and a dip at a low energy is present in this cross section for each of these target
atoms [5]. Fayer et al. [5] raised the question of whether the low-energy features that they
obtained for the Ps-formation DCS near 0° are related to quantum vortices. Interestingly,
we find that there is a valley in the logarithm of the Ps-formation DCS for positron-helium
collisions that contains a minimum in the forward direction and a deep minimum that is
connected to a vortex in veyx;. We note that a minimum is not seen in the measurements
by Shipman et al. of the near-forward direction Ps-formation DCS for positron-helium
collisions in the energy range of the experiment, which is above the Ore gap [4,6].

Previously, Van Reeth and Humberston [19] applied the Kohn, inverse Kohn and
complex Kohn variational methods for positron-helium collisions to compute accurate
K-matrices and cross sections below the He(2 1 S) excitation threshold. They showed the
Ps-formation angular distribution as a function of the angle of the outgoing Ps for three
different incident energies of Ps. The paper by Shipman et al. [4] shows experimental data
of the Ps-formation DCS for positron-helium collisions as a function of E; with results
from theoretical calculations for the forward direction, including those from using the
(inverse) Kohn variational method. The Ps-formation DCS for positron-helium collisions
in the Ore gap, computed using the (inverse) Kohn variational method, rises steeply from
the Ps-formation threshold [4]. Drachman et al. [20] mentioned that minima may be
present in the Ps-formation DCS for positron—helium collisions. Using the distorted wave
approximation, Mandal et al. [21] and later Sen and Mandal [22], obtained deep minima
in the Ps-formation DCS for energies above the Ore gap. A minimum has been obtained
theoretically in the elastic differential cross section for positron-hydrogen scattering, which
was attributed to destructive interference between partial waves [23].

A deep minimum in the experimental measurements of the triply differential cross
section for electron—helium ionization (plotted on a logarithmic scale) [24,25] has been
interpreted [26] in terms of a vortex in the velocity field associated with the ionization
amplitude. Studies of deep minima and vortices in electron-impact and positron-impact
ionization have been made [26-35].

The outline of the paper is as follows. We present the theory in Section 2. In Section 2.1,
we present the scattering theory for Ps-formation in positron-helium scattering in the Ore
gap. Specifically, we present equations for fps and the Ps-formation DCS, and discuss
the fits that we perform of the complex Kohn K-matrices. In Section 2.2, we provide an
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expression for the extended velocity field vey that is associated with fps. We present our
results in Section 3. We show in Section 3.1 the deep minimum in the logarithm of the
Ps-formation DCS and give the position of the zero in fps. In Section 3.2 we show the
minimum in the forward-direction Ps-formation DCS. In both Sections 3.1 and 3.2, we
discuss the convergence of results with respect to the maximum partial wave, ¢max, which
we use in the sum in the equation of fps. We show in Section 3.3 that the unit vector of
the extended velocity field Gext = Vext/|Vext| rotates around the zero in fps and we present
conclusions in Section 4. In Appendix A, we describe the complex Kohn /th partial-wave
trial functions that we use to compute the K-matrices. In Appendix B, we discuss some
numerical investigations that we performed and also the WG MERT and polynomial fits.

2. Theory
2.1. Scattering Theory for Ps-Formation in Positron—Helium Collisions

Using the complex Kohn variational method, we compute partial-wave two channel
K-matrices for positron-helium collisions in the Ore gap [1,13,19,36—40]. In Appendix A
we describe the complex Kohn trial wave function for the /th partial wave. From the partial-
wave K-matrices, K’, we determine the Ps-formation scattering amplitude fp, using

Mpsq K’
frolk,0) =/ 2 ;(2£+1) |, Peleost), (1)

where I is the 2 x 2 identity matrix, 0 is the angle of the outgoing Ps, and P, are Legendre
polynomials [41]. The Ps-formation scattering amplitude, fps, has azimuthal symmetry.
In Equation (1), the number 1 in the subscript refers to the initial channel i which is the
positron-helium scattering channel and the number 2 in the subscript refers to the final
channel, which is the Ps-He™ channel [1]. Thus, the subscript 12 in Equation (1) refers to
Ps formation so that fi, is fps. The magnitude of the momentum of the incident positron k
and of the outgoing Ps atom « are related through energy conservation, which is given by

2 2 )
E:Ei+EHe:?+EHe:m+EHe++EPS:Z_2‘25/ (2)
where E is the total energy of the positron-helium system, Eyj.+ = —2 is the energy of
the helium ion, Eps = —0.25 is the energy of the Ps atom, whose mass Mps is 2. We
take the ground-state energy of the helium atom to be the variational determined energy
Epe = —2.903701104390 that corresponds to the variational wave function ®pe(r2,73)
given in Refs. [19,36-38] (see Appendix A). For this value of Eyy,, the lowest limit of the

Ore gap is 17.79 eV.

In our calculations of fps(k,0), we sum to a finite ¢, which we call max. The highest
value of /i,y that we consider is three, but we vary {max from one to three to consider the
convergence of the position of the zero in fps and of the corresponding Ps-formation DCS
with respect to the number of partial waves included in Equation (1). We determine the
Ps-formation DCS using [41]:

d(TPS K

dQ - MPSk ’fPS(kIG)‘Z‘ (3)

We fit the complex Kohn K-matrices using polynomials and also the WG MERT [15] for
which we explicitly take into account the polarization potential in the Ps-He ™ channel [15-18].
Using both the complex Kohn K-matrices and the fitted K-matrices, we determine the
position of the zero in fps and thus in the corresponding Ps-formation DCS.

2.2. Extended Velocity Field Associated with the Ps-Formation Scattering Amplitude

Macek et al. related experimental measurements of a deep minimum in the triply
differential cross section of the electron-impact ionization of helium to a vortex in a velocity
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field associated with the ionization amplitude [26]. A deep minimum in a differential cross
section is a quantity that, in principle, is accessible to experimental measurements. While
the extended velocity field associated with the Ps-formation scattering amplitude is not
experimentally measurable, a zero in the Ps-formation differential cross section means that
there is a vortex in this field. A discussion of the standard velocity field that is associated
with the wave function in coordinate space is given in reference [42].

In our preceding paper [7] on the deep minima and vortices for Ps formation in
positron-hydrogen collisions, we gave an expression for the velocity field associated with
the Ps-formation scattering amplitude fps, namely,

o i (S8 xS~ (Vafi) frs
_MPSI VK[lanS]_ 2MPS< ‘fPs|2 )

We referred to the velocity field of Equation (4) as the extended velocity field vext, where
we treated k and 6, and thus x and 0, as independent variables [7]. Here, we determine the
extended velocity field vex that corresponds to fpg for positron-helium collisions.

In the vicinity of a first-order isolated zero in the complex function fp, this function
can be expressed in linear form

(4

)

frs(Kz,6x) = al(kz — Kz)) + b(kx — Kxy)], ()

where Im[b] # 0[7,26,27,43,44]. In Equation (5), x; and «y are the z- and x-components of
the momentum of the outgoing Ps in the z-x plane, where the z-axis is taken to be parallel
to the momentum of the incident positron k. The position of the zero in fp; is at x, = xz
and xy = x,9. We treat the two components «, and «, as independent variables, which
is consistent with treating k and 0 as independent variables. Using the linear form of
fps, which is a good approximation in the vicinity of the zero fps, one can determine the
dominant term of vey in this vicinity. Using this term, one can determine the circulation I’
as [7,27,42,44]:

271

MPs

for a closed contour c, of anticlockwise orientation, enclosing only the isolated first-order
zero in fps.

We determine fps, the Ps-formation DCS and vey using the s- and p-wave K-matrices
from the WG MERT and the d- and f-wave from the polynomial fits. We refer to this
specific set of K-matrices as the hybrid fit. In the vicinity of the zero of fps we fit fps, which
we obtain using the hybrid fit to the power expansion:

r— fvext-de — 4 ©)
C

Zmax

fPs(Kz/Kx) = 2 ai(Kz_Kzo)i+bi(Kx_Kxo)ir ()
i=1

where we take /max = 3. We substitute Equation (7) into Equation (4) to determine vext in
the vicinity of the zero in fps.

3. Results
3.1. Deep Minimum in the Logarithm of the Ps-Formation DCS and the Position of the Zero in
Ps-Formation Scattering Amplitude fpq

Figure 1 shows a density plot of the common logarithm of the Ps-formation DCS as a
function of k and 6, and also the nodal lines of Re|fps] = 0 and Im|fps] = 0. From near the
threshold, the nodal lines rise steeply with respect to 6, become closer together, and then
intersect at zero in fps. After this intersection point, the nodal line Im|fps] = 0 continues to
rise steeply. However, the nodal line Re[fps| = 0 rises less steeply, turns and then becomes
almost a constant with respect to 6 for increasing k. The figure shows that there is a region
surrounding the zero in fps where the Ps-formation DCS is very small.
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Figure 1. Density plot of the common logarithm of the Ps-formation differential cross section,
log,,[DCS], which we compute using the complex Kohn K-matrices as a function of the magnitude
of the momentum of the incident positron, k, and the angle of the outgoing Ps, 6, for positron-helium
collisions. The nodal lines of Re[fps] = 0 and Im[fps] = 0 are represented by the solid blue line and
the dashed black line, respectively.

The three-dimensional plots of the common logarithm of the Ps-formation DCS,
Figure 2a,b, show a deep minimum that corresponds to the zero in fps. The deep minimum
lies in a valley (Figure 2a). The valley extends to the forward direction so that there is a
minimum in the forward direction (Figure 2b), which we discuss in Section 3.2.

Table 1 presents the position of the zero in fps, (ko, 6) &(k20, kx0), which we determine
using the complex Kohn K-matrices. We show the variation of the position of the zero with
fmax, where £, is the maximum value of ¢ that we use in Equation (1). We obtain a zero
in fps with {max = 1; thus, only the first two partial waves, £ = 0 and 1, are needed to obtain
a zero. This is also the case for the first zero in fpg for positron-hydrogen collisions [7]. For
positron-helium collisions, we note that the 6, value of the position of the zero changes
significantly with the inclusion of the d-wave while the kg value changes only slightly.
However, the 6 value of the position of the zero changes only slightly by further adding
the f-wave. There is no change in the kg value up to the fourth decimal figure with the
inclusion of the f-wave. We can, thus, conclude that the value of the position of the zero
has essentially converged with respect to partial waves ¢ by ¢max = 3. This is reasonable
since the k value of the position of the zero is just slightly higher than the k value for the
Ps(1s)-formation threshold. Interestingly, for positron-helium collisions in the Ore gap, we
obtain a single zero in fps; whereas, for positron-hydrogen collisions in the Ore gap, we
obtained two zeros in fps [7].

We also give in Table 1 the position of the zero in fps with ¢max = 3, which we obtain
using the hybrid, WG MERT and polynomial fits. The result using the WG MERT fits is
in better agreement with the complex Kohn result than the result using the polynomial
fits. Thus, it is important to explicitly take into account the polarization potential in the
Ps-He™ channel in the fitting of the K-matrices [16,18]. This is reasonable since the effective
polarizability of Ps in the Ps-He™ channel is significant [16].
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Figure 2. The common logarithm of the Ps-formation differential cross section, log;,[DCS], for
positron—helium collisions as a function of k and 6. (a) Shows the k range of most of the Ore gap and
for the 6 range from close to zero to 100°. (b) Shows a different rotation for the same k range and for
the 6 range from the 0° to 100°.

Table 1. Position of the zero in fps, (ko, 60) & (kz0, kx0), which we compute using the complex Kohn
K-matrices. The table shows the convergence of the position of the zero with respect to the maximum
partial wave {max. It also gives the position of the zero in fps, which we compute using various fits,
and taking max = 3.

K-Matrix Linax ko 0o (deg.) K20 Kx0
Complex Kohn 1 1.1483 7.9 0.1487 0.0205
2 1.1487 35.5 0.1265 0.0903
3 1.1487 35.9 0.1261 0.0912
Hybrid 3 1.1486 36.9 0.1234 0.0926
WG MERT 3 1.1486 35.6 0.1251 0.0894
Polynomial 3 1.1466 35.3 0.0991 0.0701

In Figure 3a, we show the logarithm of the Ps-formation DCS as a function of the angle
0 at kg = 1.1487, the k value of the zero in fps with /max = 3. In Figure 3b, we show the
logarithm of the Ps-formation DCS as a function of k at 6y = 35.9°, the 6 value of the zero in
fps with £max = 3. We use the complex Kohn K-matrices to compute the Ps-formation DCS,
and we compare the Ps-formation DCS for different values of {ax. The minimum in the
logarithm of the Ps-formation DCS for /i, = 1 in these figures is not deep since the zero
in fpg for fmax = 1is at a noticeably different position than for {max = 3 (see Table 1). For
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the kinematics of the figures, we find that the Ps-formation DCS for {max = 2 and fmax = 3
are almost identical. Thus, for these figures, we conclude that the Ps-formation DCS has
converged sufficiently with respect to partial waves by ¢ = 3. We discuss in Appendix B
other numerical investigations that we perform.

-2
=3
5 =
QD _4F @
W B
5 S
" -5 . -
ol g gl &
_8 5 6 o)
o°
> -7 o
S e}
- 8 |
-9t . . . k|

115 1.16 117 1.18 1.19 1.20 1.21 1.22

0 50 100 150
6 (deg.) k (a.u.)
(a) (b)

Figure 3. The common logarithm of Ps-formation DCS, log;,[DCS], which we compute using the
complex Kohn K-matrices. The figures show the deep minimum in the logarithm of the cross section
and the convergence of the cross section with respect to £max, the maximum value of ¢, which we use
in Equation (1). (a) The logarithm of the Ps-formation DCS for k = kg = 1.1487 as a function of 6.
(b) The logarithm of the Ps-formation DCS for § = 6y = 35.9° as a function of k.

3.2. Minimum in the Ps-Formation DCS in the Forward Direction

We show in Figure 4 the logarithm of Ps-formation DCS in the forward direction as a
function of the energy of the incident positron E;. There is a minimum in the Ps-formation
DCS (8 = 0°), whose position for the calculation, where we use the complex Kohn K-
matrices and take fax = 3,is at E; = 17.9 eV (k = 1.1472). The minimum is, therefore, at an
energy lower than the lowest energy of 24.7 eV considered in the experimental measure-
ments of the near-forward direction Ps-formation DCS for positron—helium collisions [4,6].
At the k position of the minimum in the Ps-formation DCS (8 = 0°) fps is not zero as
Re[fps] # 0 and Im|[fps] # 0. However, the Ps-formation DCS is small since the k value at
the minimum is between the k value, where Re[fps] = 0 (k = 1.1467) and where Im[fps] = 0
(k = 1.1481).

0
—_ —_ -1 [
n 2
% W 2
o o Complex Kohn
S G -4 S G- — — Hybrid
o i =3 A V7 A WG MERT
()] -6F -4F
o 6 8’ " Polynomial
| — H
8 -
™ 180 18.5 19.0 19.5 20.0 18.0 18.5 19.0 19.5 20.0
Ei(eV) Ei(ev)
(a) (b)

Figure 4. The common logarithm of the forward direction Ps-formation DCS, log;,[DCS], as a
function of the energy E; of the incident positron. (a) Comparing the logarithm of the Ps-formation
DCS computed with the complex Kohn K-matrices for different values of {max. (b) Comparing the
logarithm of the Ps-formation DCS computed with the complex Kohn K-matrices and with the hybrid,

WG MERT and polynomial fits.

Figure 4a shows the convergence with respect to /max of the logarithm of the Ps-
formation DCS in the forward direction, which we compute using the complex Kohn K-
matrices. One can see that the cross sections for fmax =2 and £max = 3 are similar, especially
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in the region of the minimum. The minimum in the logarithm of the Ps-formation DCS
is deepest for {max = 1, which is not surprising since the ¢ value for the zero in fps is
significantly closer to the forward direction for ¢max = 1 than for the other two values of
Uinax (see Table 1).

Figure 4b compares the Ps-formation DCS (plotted using a logarithmic scale) in
the forward direction, which we compute using the complex Kohn K-matrices with the
cross sections that we compute using the WG MERT, hybrid and polynomial fits. The
cross sections, which we compute with the WG MERT and hybrid fits, are in excellent
agreement with the cross section that we compute directly with the complex Kohn K-
matrices. However, the position of the minimum in the Ps-formation DCS (§ = 0°), which
we compute with the polynomial fits, is noticeably different to the position that we compute
using the complex Kohn K-matrices or the other fits. These results show that, for energies in
the vicinity of the minimum in the Ps-formation DCS (6 = 0°), it is important in the fittings
of the K-matrices to explicitly include the polarization potential in the Ps-He™ channel.

3.3. Extended Velocity Field Associated with the Ps-Formation Scattering Amplitude

We consider fps to depend on two independent variables, k and 6, or alternatively
x; and xy. We refer to the velocity field Equation (4), associated with this fps, as the
extended velocity field vex; [7]. Using the hybrid fit of the complex Kohn K-matrices, we
compute fps, the Ps-formation DCS, vext and Dext = Vext/ |Vext| for a (kz, k) grid. Figure 5a
shows a density plot of the common logarithm of the Ps-formation DCS, the nodal lines
of Re[fps] = 0 and Im[fps] = 0, and Dex. For a small (k, k) grid that is in the vicinity of
the zero in fps, we fit fps, which we determine from the hybrid fit of the complex Kohn
K-matrices, to Equation (7). We use this fitted fps to determine the Ps-formation DCS,
Vext and Dext. Figure 5b shows the logarithm of the Ps-formation DCS, the nodal lines of
Re[fps] = 0 and Im[fps] = 0, and dext that we obtain using the fitted fps.

9.

s

0.00400/ /
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Pii
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0.0935
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0.09307 | | |
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0.0925
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-35 0.0920;
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pom: VA A

-04 0.2 0.0 02 0.4 0471 0422 0123 0424 04Z5 04Z6
K- K.
(@) (b)
Figure 5. The density plot of log,,[DCS] for Ps-formation in positron-helium collisions. The nodal

lines of Re[fps] = 0 and Im[fps] = 0 are denoted by the solid blue line and the dashed black line,
respectively, while Jey; is represented by the arrows. (a) We use the hybrid fit to compute fps, the

Ps-formation DCS and dext. (b) A small (x, xx) grid that is in the vicinity of the zero in fps. We use
Equation (7) to fit fps that we compute using the hybrid fit, and we use the fitted fps to compute the
Ps-formation DCS and deyt.

The rotation of dext is anticlockwise around the zero in fps, which is the same direction
of rotation of eyt for the first zero in fps for positron-hydrogen collisions in the Ore gap [7].
For Ps-formation in positron-hydrogen collisions, we previously found two zeros in fpg
in the Ore gap [7]. While the direction of rotation of vext around the first zero in fps
is anticlockwise, the direction of rotation of veyt is clockwise around the second zero [7].
Recently, for the electron-impact ionization of helium and for a number of different incident
energies, it was found that the velocity field associated with the transition matrix element
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rotates anticlockwise around a zero in the transition matrix element [30]. In contrast, for
the positron-impact ionization of helium, it was found that the direction of rotation of
the velocity field is clockwise and, thus, in the opposite direction of rotation for electron-
impact ionization of the same target [30]. However, one cannot assume that the direction of
rotation of the velocity field is projectile dependent for the ionization of a given target, since
it was found that, for both electron- and positron-impact ionization of atomic hydrogen,
the velocity field associated with the transition matrix element rotates in the same direction
(anticlockwise) around a zero [31].

For Ps-formation in positron-helium collisions, we use Equation (6) together with
Equations (4) and (7) to compute the circulation I', and we obtain the value of 27t/ Mpg to
four significant figures.

4. Conclusions

Using complex Kohn K-matrices, we have computed the Ps-formation scattering
amplitude, fps, and the corresponding DCS for positron-helium collisions in the energy
range of the Ore gap. We found a deep minimum in the logarithm of the Ps-formation DCS
that corresponds to a zero in fps [8,9]. Corresponding to the zero in fp, there is a vortex
in the extended velocity field veyt that is associated with fps. We showed that deyt rotates
anticlockwise around the zero in fps [8,9], which is the same direction of rotation of dext
around the first zero in fps for positron-hydrogen collisions in the Ore gap [7].

We saw that, to obtain a position of the zero in fpg that compares well with the
complex Kohn result, it is important to explicitly include the polarization potential in the
Ps+He™ channel in the fits of the K-matrices. For the minimum in the forward direction
Ps-formation DCS, it is important to explicitly include the polarization potential in the
fittings of the K-matrices for the s- and p-waves. These findings are consistent with earlier
findings that the WG MERT describes well the behaviour of the Ps-formation partial-wave
cross sections near the Ps-formation threshold for positron collisions from hydrogen [16-18]
and from helium [16,18].

The Ps-formation DCS near the forward direction has been recently measured for
positron collisions for a number of targets including helium [4-6]. While a dip was found
in the measured near-forward direction Ps-formation DCS for positron collisions from Ne,
Ar, Kr and Xe [5], it was not observed in the cross section for positron-helium collisions for
the energy range of the experiment [4,6]. However, we theoretically obtained a minimum
in the Ps-formation DCS (6 = 0°) for positron-helium collisions at 17.9 eV, which is at a
lower energy than the energies considered in the experiment for helium [4,6]. Interestingly,
both the deep minimum and the minimum in the forward direction lie in a valley in the
logarithm of the Ps-formation DCS, which is a function of k and 6.

We can conclude that, for the particular process of Ps formation in positron—helium
collisions in the Ore gap, there is a deep minimum in the logarithm of the Ps-formation
DCS, which is connected via the valley to the minimum in the logarithm of the Ps-formation
DCS in the forward direction, and that there corresponds to the zero in fps a vortex in vext
that is associated with fp.
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Abbreviations

The following abbreviations are used in this manuscript:

DCS Differential Cross Section
WG MERT  Watanabe and Greene’s Multichannel Effective Range Theory

Appendix A. Complex Kohn ¢th Partial Wave Trial Functions

We use the complex Kohn variational method to compute K-matrices for positron—
helium collisions in the Ore gap. We describe briefly here the complex Kohn trial wave
function for the /th partial wave. The application of the Kohn-type variational method to
positron-helium collisions may be found in Refs. [1,13,19,36—40].

In the Ore gap, if one ignores positron annihilation, the only two open channels
are elastic scattering and Ps(1s) formation. The total wave function ¥ (ry, rp, r3) has two
components, ¥1 and ¥,, where ¥; represents elastic positron-helium scattering and Ps(1s)
formation, whilst ¥, represents elastic Ps-He™ scattering and helium formation [1]. In
Figure A1, we show the position vectors for the positron-helium system. In this figure,
N denotes the nucleus of the helium atom, He2", which we take to be infinitely massive.
The complex Kohn asymptotic form of the two components, ¥1 and ¥, for the /th partial
wave may be written in the form [13,19,47,48]

1Irf,asym = g% + Sflé{ + Sgl Cg
1IIg,asym = 55 + S{ZCf + 552651 (Al)
where

S = iYy(61)Prre(ra, 73) VAR (kry) (A2)
~ A1+ P
§y = l[\@B]Yz,o(9p2)q’He+ (73)®Ps(r12)\/27<h22) (xp2) (A3)
¢ = iYe,0(91)q>He(72,V3)\/I;hgl)(kﬁ) (A4)
y A1+ P
¢ = iBEPEly (0 @ (1) Opar1a) VIR (xp2), (A5)

V2

and where ®y+ and Pp; are the ground-state wave functions of the helium ion and of the
Ps atom, respectively. We take for the ground-state wave function of helium, @y, (72, 73), the
variational wave function given in Refs. [19,37]. This wave function is of Hylleraas form and
is symmetric with respect to the two electrons in the helium atom. In Equations (A2)—(A5),

Yy ¢ is the spherical harmonic function, hél) and héz) are the two spherical Hankel functions
that are related to the spherical Bessel function j, and the spherical Neumann function n,
according to hél) = jy +iny and héZ) = jy — iny, respectively [49-51]. The operator Pp3 is
the space exchange operator for the two electrons. The Sfj in Equation (A1) are the partial

wave S-matrix elements, where the S-matrix S’ is related to the K-matrix K’ by [19,41]

I— /
K =/L=5) (A6)
(I+S¢)
In constructing the ¢th partial-wave trial function ¥ to use for all distances, we
multiply the spherical Neumann functions in the asymptotic form of the two components

(¥{ asym and ¥} asym) Dy shielding functions that remove the singularities at the origin and

which asymptotically tends to unity. We refer to these two resulting components, (¥

i,long
y4
and Tz,l ong

the s-wave, we add to the two long-range components highly correlated Hylleraas-type
short-range terms of the form [13,19]

), as the long-range components of the (th partial-wave trial functions. For
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N N
P = [1+ Pa3] Z cipj = [1 + Do) ("‘”*ﬁrﬁﬁm)rk rhi r;’;rglrfér%, (A7)
i=1 i=1

which include all six interparticle distances (see Figure Al). In Equation (A7), « and 8 are
non-linear parameters, the c;s are linear parameters, k;, I;, m;, n;, p; and g; are non-negative
integer powers and g; is restricted to even powers only. The sum of these non-linear
parameters, k; + [; + m; + n; 4+ p; + gq;, is less than or equal to w, where w is a non-negative
integer [13,19,38]. To avoid the same Hylleraas-type short-range terms being repeated with
the Py3 operation we require that [; > n;, but if [; = n; then m; > p; [13,19,36,38]. The
number of terms N in the sum in Equation (A7) for w =4, 5, 6, 7 and 8 is 84, 172, 330, 588
and 1001, respectively.

Figure A1. The positron-helium coordinate system.

For the higher partial waves, we add to the two long-range components two sets of
Hylleraas-type short-range terms of different symmetries,

N

@ = [1+ Pu]Yeo(01)ri ) cigy (A8)
i=1
Ny

D) = [1+ Pn]Yio(02)r5 Y digyi, (A9)

i=1

where the angular momentum is either on the positron (Equation (A8)) or on one of
the electrons (Equation (A9)). In Equations (A8) and (A9), the linear parameters are
ci(i=1— Np)and d; (i =1 — N), respectively, and Nj (N,) is the number of terms for
the first (second) symmetry. We take N; = N, = N for all partial waves ({ = 0 — 3) and w
values except the f-wave and w = 4, where we take Ny = N = 84 but N, = 36 to avoid
linear dependence. For the s-, p-, d- and f-waves, the highest value of w we use is w = 8§, 6,
5 and 4, respectively.

There are ¢ + 1 rotational harmonics [13,52] terms to consider that include the angular
momentum on the incoming positron, angular momentum on one of the electrons and also
mixed symmetry terms where the angular momentum is shared. However, following Van
Reeth and Humberston [19], we do not explicitly include the mixed symmetry terms. The
neglect of the mixed symmetry terms has been discussed in Refs. [19,39,48,53,54].
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Following Van Reeth and Humberston [19], as well as adding the Hylleraas-type
short-range terms to the two resulting components of the trial wave function, we add for
the s-, p- and d-waves polarized-orbital terms of the form [19]

0,
Pror = [1+ st]Yf,o(sz)m;%) 2r12 + %V%ﬂge(@z)fz (p2)®ps(r12) Pret (r3)  (A10)

to each component, where 0, is the angle between the vectors p, and 1, (see Figure Al).
For the s-wave we consider four polarized-orbital terms, (g,(xp2) = js(xp2) and ny(xp2),
n = 2 and 3), whereas for the p- and d-waves we only consider two polarized-orbital
terms, (g¢(xp2) = ji(xp2) and ny(xpz), n = 2). The shielding function f;(p,) removes the
singularity at the origin arising from g,(xp>)/pj. The polarized-orbital terms represent the
configuration of the Ps atom distorted by the He™ ion in the intermediate region. Adding
these terms to the trial wave functions significantly improved the convergence of the K,
matrix elements [19].

Appendix B. Numerical Investigations

We examine the convergence of the complex Kohn K-matrix elements at the k position
of the zero in fpg (ko = 1.1487) by computing the ratio:
| Kij(w) = Kij(w —1)
0.5((Kjj(w) + Kij(w — 1))

Rjj(w) x 100%, (A11)
where K;j(w) is a K-matrix element for a particular partial wave ¢ that we evaluate at a
certain value of w. The largest value of w that we consider for the s-, p-, d- and f-wave
is 8, 6, 5 and 4, respectively. We find that for the s-wave R11(8) < 0.3%, R12(8) < 0.9%,
R71(8) < 0.9% and Ry(8) < 4%. For the p-wave, R;;(6) < 6% for all K-matrix elements
and for the d-wave, R;;(5) < 4%. For the f-wave, the ratio R;;(4) is larger than the above
percentages for Kj1 and is significantly larger for Ky,. However, as one can see from Table 1,
the f-wave has only a small effect on the position of the zero in fps.

In Table A1, we show the convergence in the position of the zero in fps with respect to
w for the s-wave only. We fix w for the p-, d-, and f-wave at 6, 5 and 4, respectively. Both
the k and 6 values of the position of the zero, ko and 6y, in fps increase with increasing w
for the s-wave. The zero in fpy is at a k value just above the Ps-formation threshold. We
found that the position of the zero fps, especially the angle 6y, is extremely sensitive to the
s-wave w value. Thus, it is important to determine the s-wave K-matrix accurately at the k
value of the zero in fps.

Table A1. Convergence of the position (kg, 6y) of the zero in fps with respect to variations in w for
the s-wave only. For the p-, d- and f-wave, w is 6, 5 and 4, respectively.

w ko 0o (deg.)
8 1.1487 35.9
7 1.1485 34.6
6 1.1482 31.7
5 1.1477 21.8

In Table A2 we show the convergence in the position of the zero in fps with respect
to the p-wave w value in which we fix the w values for the other partial waves (w = 8 for
the s-wave, w = 5 for the d-wave and w = 4 for the f-wave). Similar to the s-wave case,
the angle 6 increases with increasing w for the p-wave. However, in contrast, the k value
decreases with increasing w for the p-wave. The position of the zero is less sensitive to
increasing w for the p-wave than the s-wave. For the d-wave, we find that increasing w
from three to five does not change, to five significant figures, the k value of the position
of the zero in fps, but it does change 6 by less than 0.7°. Furthermore, for the f-wave,
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increasing w from zero to four does not change the k value to at least five significant figures,
although 0 changes by less than 0.1°.

Table A2. Convergence of the position (kg, 6y) of the zero in fps with respect to variations in w for
the p-wave only. For the s-, d- and f-wave, the w value is 8, 5 and 4, respectively.

w ko 0o (deg.)
6 1.1487 359
5 1.1489 34.8
4 1.1491 33.7

In Table A3, we show the variation in the position of the zero (ko,6y) in fps with
respect to the w' set, where w' =w —iand i = 0 to 3. The w set is the set that we use for
our most elaborate calculations in which w = 8, 6, 5 and 4 for the s-, p-, d- and f-wave,
respectively. The w — i set, for i = 1 to 3, is where the w value for each partial wave is
decreased by i. We find that, while there is no change in the kg value to five significant
figures when going from the w set to the w — 1 set, the 6y value changes in the second
significant figure.

Table A3. Convergence of the position (kg, 6g) of the zero in fps with respect to the set w’ = w — i,
where i = 0 to 3, and where for the w set w = 8, 6, 5, 4 for the s-, p-, d- and f-wave, respectively.

w’ ko 0o (deg.)

w 1.1487 359
w—1 1.1487 33.6
w—2 1.1486 30.2
w—3 1.1481 27.3

We compare in Figure A2 the logarithm of the Ps-formation DCS in the forward
direction, which we compute with different w’ = w — i sets of complex Kohn K-matrices,
where i = 0 to 3. One can see in the main figure of Figure A2 that the Ps-formation DCS
(6 = 0°) is very stable with respect to w’ over most of the energy range that we show. For a
fine energy mesh in the vicinity of the minimum in the logarithm of the Ps-formation DCS
(6 = 0°), one can clearly see a variation in the cross section for the different w’ sets (see
inset of Figure A2).

W === w-1
o k=== @W-2 seeeeeee
L
NO
©
~ -2
(]
o C -2.5F
_8 o -3 _gg: ]
= -4.0¢
o -4 -45; ]
(e} -5.0¢ ]
- -5.5 ‘ ‘ ‘ ]
=51 ¥ 17.80 17.85 17.90 17.95 -

18.0 18.5 19.0 19.5 20.0
E;(eV)

Figure A2. The common logarithm of the forward direction Ps-formation DCS, log;,[DCS], as a
function of the energy E; of the incident positron. Comparing the logarithm of cross section for
different w’ = w — i sets, where i = 0, 1, 2 and 3, and where for the w set w = 8, 6, 5, 4 for the s-, p-,
d- and f-wave, respectively. The inset shows log;,[DCS] for a fine energy mesh in the vicinity of
the minimum.
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We apply the WG MERT [15] in which the polarization potential is explicitly included
in the Ps+He™ channel [15-18] to fit the complex Kohn K-matrices. The WG MERT expan-
sion of a K-matrix is expressed in terms of the quantum defect parameters that vary rapidly
with energy and depend on the polarizability of Ps, and on the K matrix elements that, in
general, vary slowly with the energy and are related to short-range interactions [16]. Using
the s-, p-, d- and f-wave complex Kohn variational K-matrices and the polarizability of
positronium, we extract the KP0 matrix elements [15-18] at different k values. We fit these
elements to polynomials of powers of 2, which enables us to determine K-matrices at any
value of k. For the K}?(¢ = 0), K} (¢ = 2) and K}? (¢ = 3) matrix elements we chose cubic
polynomials, whereas for the KIS (¢ = 3) and K19 (¢ = 3) matrix elements we chose quintic
polynomials. We use quartic polynomials for the other KZI-;O matrix elements for the various
partial waves. (For the p-wave we just use five values of k [1.16, 1.18, 1.20, 1.22 and 1.24] in
obtaining fits for the KZO matrix elements.) For the polynomial fits of the complex Kohn
matrix elements Kj;, we use for each partial wave the same order of polynomials as we use
in the corresponding KZI;O matrix elements.
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