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A Literature Review of Physiological-Based
Mobile Educational Systems

Bryan Y. Hernandez-Cuevas

Abstract—This literature review explores prior research
involving physiological-based mobile educational systems.
Mobile computing is advancing, and implementations of
ubiquitous systems for educational purposes are increasing.
Another growing field is physiological computing, where the
user’s states are retrieved and applied as control inputs in
applications. The integration of physiological signals such as
electroencephalography (EEG), heart rate (ECG/EKG), and
eye-tracking (EOG) to mobile learning (m-learning)
applications can enhance the learning experiences to provide
content tailored to the student’s and educator’s preferences.
This article centers around a selection of core papers that
represent the most relevant contributions to the research that
falls at the intersection of m-learning and physiological
computing. Specifically, this article presents an analysis and
discussion of state-of-the-art mobile educational systems that
leverage physiological technology.

Index Terms—Affective computing, education, mobile learn-
ing, physiological sensing, ubiquitous computing.

I. INTRODUCTION

HE USE of mobile applications for learning has increased

in recent years. Modern technologies allow students to
leverage their mobile phones as a useful resource during their
studies. Many different definitions have been attributed to the
general term that describes the field: mobile learning (m-learn-
ing). Early work from O’Malley [1] defined the term as “Any
sort of learning that happens when the learner is not at a fixed,
predetermined location, or learning that happens when the
learner takes advantage of learning opportunities offered by
mobile technologies.” Moreover, there have been many differ-
ent interpretations of m-learning due to it being an immature
field. Researchers have defined it in many ways to fit their spe-
cific needs, therefore developing categories such as those
explored by Traxler [2], which to name a few include technol-
ogy-driven mobile learning, informal mobile learning, and
remote mobile learning. However, in this work, m-learning is
defined as “the acquisition of knowledge and understanding
through interactions with a mobile application” [3]. These
types of devices provide students with the ability to learn
topics anywhere and anytime. There is limited work
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surrounding the specified definition, and many of them use
techniques from areas such as user interface/experience (Ul/
UX) design, machine learning (ML), and human-computer
interaction (HCI) to improve the overall experience. More-
over, work is even more limited in m-learning applications
applying physiological signals, which is a potential field that
can improve educational experiences [4]. The field of physio-
logical computing leverages the human physiological data as
a control input, therefore making system interactions depen-
dant on the user’s state [5]. There are many different types of
physiological signals that can be used in physiological-based
applications, they include electroencephalography (EEG),
electrocardiogram (ECG/EKG, also known as heart rate), elec-
trooculography (EOG), and more. Thus, m-learning imple-
mentations involving physiological signals can provide access
to the user’s current state. Furthermore, the collected physio-
logical data can be used to interactively adapt the application
to enhance user experience. Recently, multiple studies featur-
ing the use of physiological data have explored educational
applications. The purpose of this literature review is to provide
insights on research at the intersection of mobile learning and
physiological computing. In particular, this review focuses on
previous work that involve the use of physiological sensors to
improve students’ educational experience. This article
presents a discussion of relevant papers, an analysis of their
contributions, learning contexts, trends, and challenges. This
review is based on four main research questions.

1) In which contexts are physiological m-learning being
applied (e.g., formal, informal, and nonformal learn-
ing)? This article aims to advance knowledge regarding
the settings in which physiological m-learning applica-
tions have been explored. Moreover, pedagogical
approaches need to be explored to understand the state-
of-the-art educational methodologies in the field.

What physiological m-learning applications exist and
what are their objectives and contributions? This
article aims to address this question through a criti-
cal discussion of the goals and contributions from
the literature.

What system design trends exist in physiological-based
mobile learning applications? The third question targets
specific system implementations and architectures used
in current applications. Information on existing designs
and architectures provide insights that can inform future
physiological-based mobile learning research.

What challenges exist for current physiological m-
learning applications and how are these systems

2)

3)

4)
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evaluated? The final question aims to shed light on the
current state of physiological-based mobile learning
applications. Furthermore, this article presents a dis-
cussion of common methods used to evaluate these
applications and the challenges involved during imple-
mentation. Information on the growth of this interdisci-
plinary research is also provided.

The following sections discuss the selection and analysis of
the relevant articles. In particular, previous contributions,
learning contexts, challenges, and future directions are pre-
sented. Section II describes relevant background work and
provides reflections on both m-learning and physiological sig-
nals. Afterward, Section III provides motivational scenarios to
assist readers with envisioning how physiological sensors may
be used in m-learning contexts. Section IV describes the meth-
odology used to select relevant papers. Section V presents a
statistical (publications) and thematic analysis of relevant
articles. Subsequently, a synthesis of highly relevant articles
and topics is provided in Section VI. This section also presents
system design suggestions and revisits this article’s research
questions. This work concludes by suggesting future direc-
tions for physiological-based mobile learning research.

II. BACKGROUND

A. Mobile Learning

1) Definition: Electronic learning (E-Learning) has
advanced to become a very important part of many educa-
tional systems. This type of learning is often augmented with
other factors such as mobile environments. The growing popu-
larity of ubiquitous learning has recently inspired the emer-
gence of the term mobile learning. In this field, research
focuses on the use of mobile devices for educational purposes,
taking advantage of their predominance and capabilities. This
environment could help advance learning methodologies
while being an accessible resource to students.

Many different definitions exist to reference the use of
mobile applications in a learning context. The following sec-
tions will refer to this specific use case as “mobile learning”
(m-learning for short), based on the definition by O’Malley
et al. [1]. Multiple novel features have been integrated into
mobile devices since this early definition. For example, hard-
ware in smartphones currently supports processing of inten-
sive tasks and include various sensors. Furthermore, internet
connectivity on mobile devices has also improved. Prior work
has also improved our understanding of ways to design and
implement effective mobile user interfaces. Mobile computing
has changed in multiple ways and it has the potential to
change aspects of everyday life (as it already has). Therefore,
a different definition is used in this review: “the acquisition of
knowledge and understanding through interactions with a
mobile application” [3].

2) Mobile Learning Systems: There are various existing
m-learning systems. However, most of them involve the use
of mobile devices to transmit information not necessary to
involve interactivity. An example of an m-learning system
developed before smartphones were created is [6], where they

refer to the application as mobile even though it was imple-
mented using a laptop. However, there are systems created in
the correct context such as in [7] where the authors present a
simulation-based application for students to learn about geo-
graphical locations. Moreover, in [8] the authors investigated
m-learning as an alternative to e-learning and concluded that
it should be a compliment instead of a replacement. The previ-
ous examples provide hints regarding how m-learning
research is evolving. In this review, we focus on exploring
work relevant to both m-learning and emerging physiological
sensing technologies.

B. Physiological Computing

1) Definition: Physiological computing makes use of
physiological information from humans to provide feedback
that enhances their ability to complete a specific task. The gen-
eral definition for physiological computing is any system that
uses real-time physiological data to control a system [5]. The
basis of physiological computing is to detect any type of signal
from the user’s central nervous system (CNS), somatic ner-
vous system (SNS), and autonomic nervous system (ANS).
These signals can be processed in many different ways,
depending on their nature and architecture design. The use of
these signals also varies by use case. In this work, there is no
restriction in terms of real-time or postprocessed data. Due to
the overall limitations and quantity of papers available, this
article focuses on systems that retrieve physiological informa-
tion to assist an application with its overall goal.

2) Types of Signals: As mentioned before, there are many
types of physiological signals. This section details examples
of the signals that are most common in previous m-learning
literature. These can be electrical signals from the brain: EEG.
This is a very popular type, due to its potential to capture
covert user states [9]. Another type of signal is the electrocar-
diogram (ECG/EKG), which refers to heart rate. This type of
signal is often leveraged in ubiquitous systems. Moreover,
electrooculography (EOG) is used as a measure to perform
eye-tracking. EOG allows for very specific details on the
user’s eye positions. Each signal needs a specific type of hard-
ware device to capture it and communicate desired informa-
tion about a user’s state. For example, EEG requires
electrodes placed on the human scalp to detect electrical brain
activity. EOG normally requires sensors placed near the user’s
eyes. With the numerous available physiological sensors,
numerous application concepts can have been developed. A
subset of these applications is explored in the following
subsection.

3) Physiological Systems: Multiple current systems take
advantage of physiological signals. Since the origin of this
area, there has been a focus on medical approaches. For exam-
ple, prosthetic devices [10], brain-controlled wheelchairs [11],
and medical education [12]. However, recent advances have
taken the field into exploring more nonmedical applications.
Examples of these include gaming with eye-tracking [13],
drowsiness detection through heart rate (ECG/EKG) [14],
workload estimation with EEG [15], and education with
EEG [16]. The field is beginning to rise in terms of mobility,
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with emerging consumer-grade hardware and compatibility
with more devices. Therefore, mobile computing leveraging
such physiological data becomes an important topic since it
can allow for user-centered experiences in many contexts,
including education as this review discusses.

III. MOTIVATION

Physiological data are a potential way of enhancing user
experience during m-learning activities. Current research in
both realms answers questions in different directions, without
exploring the possibilities of a system involving their integra-
tion. In m-Learning, the trends are for applications with very
limited interactivity. This is an unexplored, yet potentially
beneficial component of m-learning applications due to the
nature of such systems. Students can become more engaged
through interactions with the interface instead of over-relying
on the presentation of information through static mediums.
Moreover, engagement can be measured and used through
physiological sensing methods by leveraging EEG, heart rate,
or eye gaze data. This technology can allow for customized
learning experiences, taking into account student reactions
and interactions with the interface to finally adapt to their
preferences.

The idea of physiological-based mobile educational systems
is interesting. However, many questions about this concept
remain. Why can these applications be useful? How can they
be used by students? What do these applications contribute?
Therefore, both main components (educational mobile apps
and physiological data) can be explored individually to gather
information about their possible integration which can provide
interesting results. First, mobile applications for learning are
created to assist students to either study or achieve specific
tasks assigned in class. An example is [17], where an m-learn-
ing application was developed to help students in their com-
puter architecture course. This one incorporates a set of
features such as flashcards, note-taking, and quizzes.
Moreover, the author [18] focus on the use of microlectures
and videos for the students to learn using their phone.

However, these are examples of how these systems could be
much improved through the design of better interfaces and
experiences. M-learning applications started evolving from
static text, imagery, and quizzing to interactive displays. One
example of this type of application is [19], where the objective
is to have an intelligent system to assist students with their
English pronunciation skills. Another example is [20], an appli-
cation that uses gaming and multimedia for the teaching of the
English language. Others used techniques such as user profiling
to understand the preferences for each student and use the data
for better user experiences [21]. This showcases how there is a
need to understand individual student experiences to provide
more effective activities suited to their preferences. Starting
with universal, static information and subsequently creating
adaptive models, there is potential for many methods to be
applied into the m-learning field. The use of physiological sens-
ing for this purpose has not been completely explored, and cur-
rent trends are showing its potential.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 14, NO. 3, JUNE 2021

Physiological computing has gone through many cycles
during its existence, since its beginnings with medical applica-
tions to today’s world of entertainment, education, and more.
Current research presents many devices and signals that can
be useful for the understanding of human feelings. EEG is
widely used for the classification of cognitive states (anger,
stress, engagement, etc.), and these are useful for a myriad of
applications. In [22], an evaluation is conducted to understand
if passive BClIs (using EEG) could be feasible to implement in
autonomous driving contexts. The authors in [23] study the
control of robots through adaptive interfaces by leveraging
EEG data. But, one of the most relevant studies for this
research field is [24], which implements adaptive agents using
the student’s EEG data to classify their attention levels and act
accordingly. This system implementation represents one of
the possibilities of m-learning applications, the capability of
leveraging student physiological information to adapt to their
needs leading to an improvement of their learning experiences
and outcomes. There is a trend toward the need for learning
personalization and interface adaptation using physiological
data as input, which is an unexplored approach. To acknowl-
edge how these applications can be used by students, and why
it might be useful, a set of scenarios will be presented. These
will be divided into two categories: Scenario 1 and Scenario
2. The first scenario will serve as a comparison point to why
the second scenario is an improvement. There will be two sets
of scenarios, each from a different perspective.

A. Learner Perspective Scenarios

1) Scenario 1: Ally downloaded the mobile application
assigned by the professor for the Biology I course. Ally studies
for the midterm exam, which covers the topics of DNA repli-
cation, translation, and transcription. The mobile application
contains a section to study for these topics, and it includes def-
initions, images, videos, and quizzes. Ally keeps reading and
watching the videos to answer the quizzes correctly, but she
cannot do it for long hours. There is too much to read and the
videos are not too entertaining. The quizzes include theoretical
questions about the material, with minimum variation and
interactivity. Ally is not too engaged in the study process, as
she prefers practice problems and other activities to grasp the
material. The time spent on the application is reduced and she
starts to create her routine for a better learning outcome.

2) Scenario 2: Ally downloaded the mobile application
assigned by the professor for the Biology I course. Ally also
gets her EEG-capturing headset to use during the study session.
She sits down to study for the midterm exam, which covers the
topics of DNA replication, translation, and transcription. The
mobile application contains a section to study for these topics,
and it includes definitions, images, videos, and quizzes. How-
ever, each of the presented media types adapts to Ally’s prefer-
ences. The application has a set of interface templates that
change the way each section is presented as the data are ana-
lyzed and classified with the physiological information. Ally
likes hands-on activities, therefore, based on her reactions to
other interfaces, the app more frequently presents a mini-game
where she can drag and drop nucleotides to their corresponding
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spots. Moreover, the application includes social features with
multiplayer activites and communication systems that allow
for student interactions. Ally is very engaged in the study pro-
cess, as she can visualize and manipulate the topic information
to her advantage. The time spent on the application is increased
and she considers it an effective learning experience.

Both scenarios show how Ally feels during her study ses-
sions using the corresponding m-learning application. The first
scenario showcases more traditional means to display the
information. Ally cannot feel engaged whenever having static
text and imagery, and the videos are not entertaining to watch.
She begins to create alternatives to the application, which is
an example of the need to improve the experience. That is
where the physiological-based m-learning application
becomes useful (Scenario 2), since it provides dynamic inter-
actions to teach the material. Nonetheless, the application also
considers the students’ preferences, which allows for an adap-
tation to other possible interfaces: static text for those who
prefer reading, manipulative objects for those who like inter-
activity, adaptive quizzes for those who are motivated by
rewarding systems, and more. These examples represent the
need for adaptive learning experiences in the mobile environ-
ment, and the potential for physiological sensing to be imple-
mented in these applications. Moreover, these are not the only
scenarios possible, since other individuals are involved in the
creation of physiological-based mobile educational systems:
researchers.

B. Researcher Perspective Scenarios

1) Scenario 1: Juan is a graduate researcher working with
m-learning applications and his advisor proposed the creation
of an application that somehow leveraged user data to adapt
the interface. Juan is reading about many different ways to
achieve this, and finds some possibilities. Some of his findings
include user profiling and physiological sensing. They are
both very different approaches but could be complimented.
Juan designs an application to teach the English language, but
he cannot seem to find many resources for the implementation
of physiological sensing into mobile environments. Similarly,
since the physiological data are streamed and need to be clas-
sified, there are not many libraries or frameworks to support
those activities in native mobile applications. After hard work
getting connectivity resolved, Juan needs to decide the best
techniques to build the application. What system design is
most effective and in what context? Which physiological devi-
ces and/or signals should be used? How is this data used dur-
ing an m-learning activity? How are these applications
evaluated? Juan cannot easily find this information since the
field is in its early stages.

2) Scenario 2: Juan is a graduate researcher working with
m-learning applications and his advisor proposed the creation
of an application that somehow leveraged user data to adapt
the interface. Juan is reading about many different ways to
achieve this, and finds some possibilities. Some of his findings
include user profiling and physiological sensing. They are
both very different approaches but could be complimented.
Juan designs an application to teach the English language, and

he finds libraries that allow him to continue his development.
Some of the contributions include interface templates, physio-
logical sensing libraries for the retrieval of data, and even
datasets for his user profiling tasks. Finally, Juan can easily
design his system based on research articles discussing the
most effective architectures. He can also easily find informa-
tion on m-learning activities using physiological signals and
how to leverage these not only for educational purposes but
also for system evaluations.

These scenarios represent the limited research in this
research area and the difficulty of replicating these applica-
tions without a foundation. In the first scenario, Juan looks to
get data streaming into mobile devices, which he thought
would be a simple step. Moreover, he cannot encounter
articles that have explored system designs, contexts, physio-
logical data usage, or even evaluation methods. Due to the
limited exploration of physiological-based mobile educational
systems, there are no readily available resources to achieve his
goal. However, in the second scenario, Juan can find some of
these resources and research results that are feasible. He finds
libraries to achieve the device connections and also encounters
interface templates. This area has many possible contributions
to the entire community, and the second scenario showcases
examples of how it can provide useful tools for the future.

C. Literature Review Contributions

This article builds on the aforementioned trends, where
there is a clear need for research in physiological-based
mobile educational systems. With limited work done in the
field, but literature supporting the potential of these types of
applications, this literature review looks to provide a baseline
for future work in the field. There are many areas in which
this topic can help advance the scientific community, and its
contributions to the field, along with those provided from this
literature review, can be seen in Fig. 1 as well as listed in
detail below.

1) The enhancement of learning experiences in the mobile

learning realm by leveraging physiological computing.

2) Understanding of user experience and interface adapta-

tion protocols using m-learning applications.

3) Architectural designs of physiological-based mobile

educational systems.

4) User Interface and Experience guidelines for effective

m-learning applications.

5) Reusable software for the development of physiologi-

cal-based applications in mobile environments.

6) Evaluation methods for physiological-based mobile

educational systems.

7) Libraries for machine learning, signal processing, and

interface building in mobile environments.

IV. METHODOLOGY

To answer the research questions, a literature review was
conducted. The approach was semisystematic, with publica-
tion statistical analysis and thematic content discussions. As
discussed in [25] and [26], the first step to the review is paper
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selection, which requires two substeps: a comprehensive
search and an inclusion/exclusion criteria. The second step is
to analyze all the selected papers providing a descriptive sec-
tion of custom topic clusters and a thorough segment of the
content discussion. The purpose of this review is to analyze all
the relevant work in mobile learning using physiological sig-
nals and deliver a knowledge base while retrieving possibili-
ties toward the future of this field.

First, a thorough search was conducted using a set of combi-
nations between different concepts related to the topic. The
overall process can be seen in Fig. 2 There were a total of five
databases included in the process: IEEE Xplore, ACM Digital
Library, Elsevier, Springer, and Taylor & Francis. The search
query was constructed using different combinations of con-
cepts, to find articles related to mobile computing, the follow-
ing keywords were included in the search query: “mobile” OR
“android” OR “i0S.” To find articles that involved education,

Potential outcomes from additional physiological-based mobile educational research.

the following were included: “education” OR “learning.”
Finally, additional terms were added to include physiological
computing in the results: “physiological” OR “sensors” OR
“EEG” OR “EKG/ECG” OR “EOG” OR “EMG” OR “eye-
tracking” OR “heart rate” OR “GSR” OR “skin conductance.”
Due to the many possibilities of physiological signals, this list
was used to get a better collection of articles. These terms
helped filter papers and journal articles for those that discuss
mobile learning with applied physiological techniques, con-
structing different search queries using the aforementioned
keywords (e.g., mobile learning or m-learning, mobile physio-
logical education, EEG m-learning, and more). In the case of
some databases, there were more specific search filters. Taylor
and Francis required using the Computer Science tag to nar-
row down the results. Elsevier required category selections
review articles and research articles along with the tags Com-
puters & Education, Procedia Computer Science, and Neuro-
computing. The search was made using exact matches for the
concatenation of main concepts and additional terms. More-
over, the date range for all of the articles was from 2014 to the
present (2019).

To better filter the research articles for the current topic,
paper selection criteria were designed. For the literature to be
relevant in this review, it must discuss both mobile computing
and education with physiological signals or one of the main
concepts along with physiological signals. Those that do not
conform to these measures can be considered for background
information during the review. Criteria examples can be seen
in Table I. The criteria are defined as follows.

1) Scope: The article must include all three main concepts:
mobile, education, and physiology. For example, an
article discussing mobile learning techniques using
heart rate sensors as input is considered in-scope and
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TABLE I TABLE II
INCLUSION/EXCLUSION CRITERIA EXAMPLES PUBLICATIONS OF SELECTED ARTICLES BY YEAR
Criteria Year ‘ Article(s) ‘ Count Percent
Inclusion Exclusion 2014 [271, [4], [28] 3 10.00%
The research provides relevant con- | The research involves physiologi- 2015 291, [30], [311, | 9 30.00%
tributions to the mobile learning | cal signals in a web-based environ- [32], [33], [34],
field. ment. [351, [36], [37]
The research involves physiologi- | The research provides contribu- 2016 [38], [39], [40], | 5 16.67%
cal signals in an m-learning envi- | tions in the mobile computing field. [41], [42]
ronment. 2017 [43], [44], [45], | 4 13.33%
The research shows thorough de- | The authors are not involved in [46]
:;Tua(;r:) ndzsnlﬁnr;lolrren.plementatlon, g;l;eeil v{]r(;—rlke’armng, physiological- 2018 (471, (48], [49]. | 7 2333%
, [501, [51], [52],
The authors for such research have | The research paper is a concept [53]
previous work in the field. or demo w1thout reproduc1ble~ or 2019 (541, [55] 2 667%
thorough details on system design.

The research is relevant due to its
sources.

The research is not well-received or
cited amongst similar work.

should be included in the review. However, a paper that
discusses EEG inputs applied to web technologies with
no relevance to education is not in scope.

2) Quality: The article shall provide a thorough under-
standing of the presented topic. For example, a concept
paper that proposes a mobile learning technique using
physiological devices but does not contain any insight
on design and implementation will not be considered in
the review.

3) Plausibility: The article must be from a trustworthy
source, meaning that its authors should be recognized
or should have previous work in the field and their work
is published in a suitable conference for the topic. For
example, an author with previous work in mobile com-
puting involving learning and physiological devices is
an indicator of a knowledgeable source in the field.
However, an author without experience in mobile learn-
ing should have their paper thoroughly analyzed before
any inclusion in the review.

During the selection process each title, abstract, and con-
clusion were read to ensure their compliance with the stand-
ards. All three should have enough information to decide
whether or not they belong in the review. After reading these
sections, the article is analyzed with all three criteria: scope,
quality, and plausibility. Whenever the article was fully com-
pliant with all the standards, it was automatically included in
the review. Nevertheless, those that do not were still consid-
ered for background information or analysis purposes.
Included papers were inserted in a table that kept track of
each title, keywords, author(s), publisher, venue type, venue
name, and year. This would be used later in the analysis sec-
tion for a thorough content examination. Furthermore, papers
with similar topics were also filtered through for better
results, in this case, those with more citations and overall rel-
evance were selected over their duplicate. After the first
search and filter, there was a paper count of fifty-four (54).
Finally, after applying the same procedure for a second time,
a total of thirty (30) relevant papers were selected as the base
for this review.

The following sections discuss the findings from the con-
ducted literature review for physiological-based mobile educa-
tional systems. There is an analysis of the general results from
the review, including details from paper publications over the
years, and the most prominent conferences and journals. There
is also an analysis of their contributions, along with details
from learning contexts, physiological computing, and chal-
lenges. Contributions involve five types defined in this article:
system implementation, architectural design, review, evalua-
tion, and concept. Learning contexts are split into three cate-
gories: formal, informal, and nonformal (all defined in the
previous section). Physiological signals were also found and
there are a total of five categories: EEG, eye-tracking (EOG),
photoplethysmogram (PPG), heart rate (ECG/EKG), and
mixed (multiple signals). Mixed signals involve any of the
other four categories used in the same context. The challenges
section will cover the limitations mentioned in each paper,
these are important since they provide a foundation for future
research to improve the lacking characteristics of current
work. There were two special cases: no challenges provided
and implicit challenges. As for the first one, papers that did
not include any explicit or implicit challenges were classified
separately. The latter required paraphrasing using future work
and results details to classify the challenges. Finally, a list of
such problems in each paper was created and abstracted to a
total of 22 categories, each with a count resembling the times
they were identified as a limitation. The section provides sta-
tistical data on papers and their contents allowing for better
visualizations of the current state of the field.

V. ANALYSIS
A. Publication Overview

The results of this review show that this research field is
currently undeveloped. There is enough work to understand
its significance and potential, however, there is room for
improvement and expansion. After the review, the final selec-
tion of papers was a total of thirty (30) relevant articles pub-
lished between 2014-2019. After analysis, there is a steady
publication increase. Refer to Table II to see an overview of
these results. From 2014 to 2015, there were three times as
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TABLE III
REVIEWED PAPERS PUBLISHED PER DATABASE
Database ‘ Article(s) ‘ Count Percent
ACM [29]. [38], [47], | 12 40.00%
[43], [30], [39],
[40], [31], [48],
[49], [32], [33]
IEEE [44], [45], [27], | 10 33.33%
[34], [46], [50],
[51], [52], [41],
[42]
Springer [4]1, [35], [36], | 5 16.67%
[53], [54]
Elsevier [551, [371, [28] 3 10.00%
Taylor & Francis | N/A 0 0.00%

many publications, thirty percent (30%) of papers reviewed
were published that year. Then, 2016 and 2017 showed a
slowdown, but it maintained the count from the first year
(three papers). During 2018, the count went up (seven; 23%)
and it seems to be consistent going into 2019 (two; 6%), tak-
ing into account that the year had not ended and the typical
conference/journal publication time cycles. The publication
numbers from the past five years show a clear increase in
research work in the area.

The papers were also analyzed in terms of their publishers,
publication venues, and publication types. The publishers refer
to the databases used in this review: ACM, IEEE Xplore,
Springer, Elsevier, and Taylor & Francis. Please see Table 111
for an overview of papers published in each database. Most of
the published work in this area can be found in the ACM DL
(twelve; 40%). IEEE Xplore had ten (33%) of the reviewed
articles. Furthermore, Springer and Elsevier contained multi-
ple articles between them (five and three, respectively)
whereas Taylor & Francis did not provide any papers compli-
ant with the selection criteria.

In addition, another important detail to explore is the con-
ferences and journals in which the papers were published.
This allows for easy detection of a community for the topic. In
Table IV, an overview of results for conference publications
can be seen. There is a tendency toward publication in ACM
conferences based on human-computer interaction (HCI) such
as the International Conference on Human-Computer Interac-
tions with Mobile Devices and Services (MobileHCI), the
International Conference on Multimodal Interaction (ICMI),
and the Conference on Human Factors in Computing Systems
(CHI). The most prominent of these is ICMI with five papers
(16%) and the second with most publications is MobileHCI
with four (13%). The rest of the venues include at most two
publications, and the most prominent of them is IEEE. Most
of these conferences discuss HCI work, as well as ubiquitous
computing and educational systems. There is also a set of
articles published in journals, a total of five (16% of the total
count) in three venues. Refer to Table V for details on the
papers and the venues. The venue with the most journal publi-
cations in this area is Elsevier in Computers & Education with
three papers. The other two were IEEE and Springer with one
article each.
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B. Learning Contexts

This section discusses the trends and findings of physiologi-
cal m-learning applications learning contexts. Formal learn-
ing contexts are defined as systems that allow students to
make use of the technology inside the classroom in a strict
environment [56]. An example of this is [41], where the exer-
games application is created to be used during class. Informal
learning is defined as nonstructured learning not provided by
an educational or training institution, taking place spontane-
ously, and without a mediator [56]. An example of this learn-
ing context is [33]. This system does not need students to be
inside a classroom, nor is it for a specific class either, therefore
the users can utilize the application anytime and anywhere.
Finally, nonformal learning occurs in a planned but highly
adaptable manner in institutions, organizations, and situations
outside of classrooms [56]. This type of learning can be seen
in papers dealing with MOOCs, [30], [39], [43]. These are
applications that can be created for specific classes but are not
mediated as strictly as formal learning applications.

1) Formal, Informal, and Nonformal Contexts: A detailed
view of all results can be seen in Table VI and the publication
trends can be visualized in Fig. 3. Papers that presented infor-
mal learning are the most dominant, with well over a third of
the total reviewed items (twelve; 40%). Abdelrahman et al.
[29] presents a concept for a mobile learning application that
uses EEG data to improve educational experiences in muse-
ums and Chen et al. [52] shows a similar system to enhance
learning and engagement of museum visitors using eye-track-
ing. Other general examples include Shimoda et al. [49],
Schiavo et al. [33], and the architectural implementation from
Apostolidis and Stylianidis [27]. Finally, some analysis and
evaluations were focused on informal activities, such as the
EEG-based measurement for learner’s interests by Moldo-
van [46] and the study on student response to neurofeedback
using resting stage EEG by Eroglu ef al. [S0]. There seem to
be spikes of informal learning research between the years
2015 and 2018. There were no informal learning contributions
in 2016 and only one in 2017, but 2018 had a total of 6 papers
out of 12 total (50%). Though it is not steady, taking into
account the publishing timelines and pauses, there is a clear
trend of informal learning in the field.

Nonformal learning environments were the second most
prominent (11; 36%). A set of papers comprises the majority
in this learning context due to its focus: Massive Open Online
Courses (MOOCs). These are classified as nonformal since
they do not require a physical presence, an institution, or strict
guidelines. Still, they are structured and the student’s motiva-
tion is completely intrinsic. Out of the total 11 papers that fall
into the nonformal category, eight of them are related to
MOOCs (73%) [39], [40], [43]. These papers include [31],
[40], and [43] . However, other papers also discuss this type of
setting, for example an application for learning physics while
using eye gaze data presented by Chanijani et al. [38]. Also,
systems that explore serious games using eye-tracking tech-
nology [36]. There are publications for this context from 2015
to 2018, with two straight years of constant contributions
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TABLE IV
REVIEWED ARTICLES PUBLISHED IN CONFERENCES
Venue Conference Name ‘ Article(s) Count
ACM International Conference on Multimodal Interaction (ICMI) [301, [39], [40], [31], [48] 5
ACM International Conference on Human-Computer Interactions with Mobile Devices and Ser- | [29], [38], [47], [32] 4
vices (MobileHCI)
IEEE International Conference on Interactive Mobile Communication Technologies and Learning | [27], [34] 2
(IMCL)
ACM Conference on Human Factors in Computing Systems (CHI) [43] 1
ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp) [49] 1
ACM International Conference on Mobile and Ubiquitous Multimedia (MUM) [33] 1
IEEE International Symposium on Computer-Based Medical Systems (CBMS) [44] 1
IEEE Conference on e-Learning, e-Management and e-Services (IC3e) [45] 1
IEEE International Conference on Advanced Learning Technologies (ICALT) [46] 1
IEEE Medical Technologies National Congress (TIPTEKNO) [50] 1
IEEE Signal Processing and Communications Applications Conference (SIU) [51] 1
IEEE International Conference on Multimedia & Expo Workshops (ICMEW) [52] 1
IEEE International Conference on Cognitive InfoCommunications (CoglnfoCom) [42] 1
Springer | International Conference on Artificial Intelligence in Education (AIED) [35] 1
Springer | International Conference on Mobile and Contextual Learning (mLearn) [36] 1
Springer | International Conference on Intelligent Tutoring Systems (ITS) [53] 1
Springer | European Conference on Computer Vision (ECCV) [54] 1
TABLE V Non-formal
REVIEWED ARTICLES PUBLISHED IN JOURNALS B Informal
8 B Formal
Venue Journal Name Article(s) | Count H Al
Elsevier | Computers & Education [55], 3
6
(371,
(28]
1IEEE Transactions on Learning Tech- | [41] 1
nologies (TLT)
Springer | Universities and Knowledge Soci- | [4] 1
ety Journal (RUSC)

TABLE VI
LEARNING CONTEXTS USED IN EACH SYSTEM CONTRIBUTING ARTICLE

Learning Contexts per Article

Context Article(s)

Informal [29]1, [47], [49], [32], [33], [27],

[34], [46], [50], [51], [52], [54]

Non-Formal [38], [43], [30], [39], [40], [31],

[48], [42], [35], [36], [53]

Formal [44], [45], [41], [37], [28]

All Contexts [4], [55]

(2015 and 2016). These two years seem to be where nonformal
approaches became apparent as an option for physiological m-
learning. The publications started slowing down after 2016,
with only one in 2017 and two in 2018, however, in general
there is a trend for consistent contributions in the nonformal
learning context.

Formal learning was found in almost a fifth of the reviewed
literature (five papers; 16%). This learning context is explored
on a smaller number of papers, a possibility for this is the
medium in which the systems are being developed: mobile.

2014 2015 2016 2017 2018 2019

Fig. 3. Learning contexts publications throughout the years.

Due to the nature of such ubiquitous experiences, the surest
thing is that students would like to access information any-
where and anytime. However, this does not mean that formal
learning happens strictly in physical classrooms, but the struc-
ture and academic influences require more specific interac-
tions from the user. Siouli er al. [44] present the evaluation of
an application for an elementary school class and Lindberg
et al. [41] also explore a mobile board game to enhance physi-
cal education exergames. The formal learning context is also
present consistently throughout the years, but with fewer
amounts of publications having contributions from 2014 to
2019, excluding 2018. This shows how much work is being
put into the context, but also demonstrating how hard it
becomes to research such systems due to the need for strict
classroom environments. This can slow down the process, and
the amounts of articles dealing with formal contexts make it
apparent since the only year with more than one contribution
is 2017 (with two). Nonetheless, this is still an important area
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TABLE VII
PEDAGOGICAL APPROACHES IN EACH OF THE CONTRIBUTING ARTICLES

Pedagogical Approaches per Article

Article(s) Count

[43], [30], [39], [40], | 9
[31], [48], [49], [35],
[53]

[45], [27], [34], [46], | 7
[41], [36], [54]

[391, [40], [31], [48], | 5

Approach

Video Lectures

Game-based learning

Adaptive/Intervening Ex-

perience [35]

Real World Interactive | [29], [32], [52], [41] 4
Experiences

Traditional (Reading, Ex- [57], [44] 2
ams, etc.)

Traditional Problem- | [38] 1
Solving

Interactive App [51] 1

of the field, and research could improve the current limitations
involved.

Finally, two reviews discuss all three contexts due to their
extensive studies exploring various implementations. First, a
systematic literature review [55], and second a review for
mobile learning applications and their future [4] (two papers;
7%). This review contains many systems, therefore, it repre-
sents the possibility of applications that target a combination
of all learning contexts in the future. This category only has a
total of two articles in 2014 and 2019.

2) Pedagogical Approaches: The results (Table VII)
showed many different approaches to the learning activities.
In this literature review, pedagogy refers to the teaching
techniques applied to enable the acquisition of knowledge,
skills, attitudes, and more [58]. Moreover, the types of
approaches we present are referring to the methods in which
information is transmitted to the learner, and the goal is to
understand the many techniques applied in the studies. The
most prominent approach is video lectures (nine; 30%),
which correlates with the amount of articles that focus on
MOOCs. The second most applied pedagogical strategy is
game-based learning (seven; 23%), which is very popular in
the educational field in general. These include gamified sys-
tems as well as interactive games. In education, a popular
pedagogical technique is cooperative learning, and in this
literature review there was one article that explicitly states
the integration of both game-based and cooperative learn-
ing [41]. The other popular approaches are adaptive/inter-
vening experiences (five; 17%) and real-world interactive
experiences (four; 13%). The first involves adaptive user
interfaces and interventions during the learning experience.
For example, the authors in [40] detect disengagement and
presents an intervening message. The real-world interactive
experiences involve real objects mixed with the digital
activities. Some examples include [29] and [52]. Finally,
there are traditional skills (two; 7%) which involve reading
and other examination techniques, traditional problem-solv-
ing (one; 3%), and interactive apps (one; 3%).

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 14, NO. 3, JUNE 2021

8
6
4
2
0 EOG

ECG/EKG or PPG EEG
Fig. 4. Visual representation of physiological signal types used in the
reviewed research.

Multiple

C. Physiological Computing

This section analyzes all the physiological signal types and
statistically represent their publication trends (see Fig. 4). The
most dominant physiological signals used in mobile environ-
ments are EEG and eye-tracking (six and nine papers; 20%
and 30%, respectively). First, papers that involve the use of
EEG are Abdelrahman ef al. [29] where the signals are used to
detect engagement on museum learning activities, Shimoda
et al. [49] where the user’s state is detected to dynamically
change the learning path and Eroglu et al. [51] where the data
are used to improve the cognitive functions of dyslexic chil-
dren. Most of these are mobile-based in concept, however,
they are missing completely ubiquitous implementations and
they mostly mention it as future work. Second, papers that
involve the use of eye-tracking (also known as EOG) are Cha-
nijani et al. [38] where the signals are used in a physics learn-
ing application to analyze the user’s preferences, Schiavo and
Mana [33] use eye-tracking along with speech synthesis to
adapt to the reader’s pace and Juin et al. [45] provide suitable
parameters for measuring learnability in mobile-game-based
learning activities.

Heart rate signals are the third most used in the set of papers
(nine; 30%). Pham and Wang [35] uses heart rate signals on
unmodified smartphones to predict mind wandering events
during MOOC sessions and follow-up quizzes, Lindberg et al.

[41] use the signals to detect user activity during a mobile
board game in a physical education setting and Xiao et al.
[31] implement the signals to monitor user state during mobile
MOOCs. Moreover, PPGs are also used as a method to capture
heart rate physiological signals, the type was included in the
count for heart rate (nine; 30%). Xiao et al. [43] use these sig-
nals to capture user disengagement in a mobile MOOC sys-
tem, and Pham and Wang [59] combine the PPG signals with
clickstreams and facial expressions to personalize reviews on
mobile MOOC:s. Finally, the rest of the papers involve multi-
ple signals such as EEG, EOG, ECG/EKG, and PPGs in a sin-
gle application (six; 20%).

1) Physiological Devices: A key part of these systems is
the physiological sensor, the hardware that captures the
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TABLE VIII
PHYSIOLOGICAL DEVICES USED IN EACH SYSTEM CONTRIBUTING ARTICLE

Physiological Devices per Article

Device Name Article(s) Device / Sensor Cost | Accuracy Software Portability
Mobile Device [43], [30], [39], | No extra cost Accurate using | Custom Integration Portable (Unmodified
[40], [35], [53], LivePulse algorithm Mobile Device)
[54] with  3.9%  mean
rate error estimating
heart rate in resting
conditions [60].
Emotiv [29], [46], [51] $849.00 128-256 Hz / Dry and | Available Proprietary | Portable (WiFi and
Wet Electrodes avail- | Software Blutetooth)
able [61]
iView X REDn [38] Price must be re- | 60 Hz / 0.4°0ffset Custom  Integration | Hybrid Portability
quested with Python /
Available Proprietary
Software
Tobii X60 [49] $29,000.00 60 Hz / 0.5°0offset Available Proprietary | Hybrid Portability
Software
g.Nautilus [49] $24,000.00 250-500 Hz / Dry and Wet Elec- | Not Portable
trodes
EyeTribe [33] Regular: $99.00 / Pro: | 60 Hz / 0.5°offset Open API and SDKs | Hybrid Portability
$199.00 (C++, C#, and Java)
ChipSip  SIME ~ Smart | [52] $550.00 Sampling rate not | Custom Integration Portable
Glasses found / < 3.2°0ffset
PPG Sensor [52] Standard Pricing: ap- | Attention Estimations: | Custom Integration Portable
prox. $20.00 82.2%
Microsoft Band (Wearable | [41] $200.00 Data Not Available Custom Integration Portable
Watch)
Custom Device [34] Low-cost custom | 10 Hz Custom  Integration | Portable
materials (e.g. (Java)
ARDUINO)

necessary signals to analyze. Multiple systems in the field use
different types of devices for different types of signals. More-
over, many signals can also share numerous types of sensors.
To understand the state-of-the-art devices and trends for these
in the field, the review explored the sensors used in each of
the system contributing articles (see Table VIII). There are
many factors to consider when selecting a sensor for mobile
learning applications, therefore our analysis explored device
costs, accuracy, software availability, and portability. Sensor
costs for each device were compiled, for some the price was
not publicly available, others did not require additional pur-
chases (e.g., unmodified mobile devices). The accuracy col-
umn provides standard hardware specifications that determine
how accurately the signals can be captured. EEG device accu-
racy can be established based on the sampling rate, electrode
count/placement, and electrode types (wet or dry, both can be
accurate with recent advances but wet usually provide more
reliable data [62]). In this review, we decided to use sampling
rate and electrode types, since electrode count or placement
can vary based on the study and desired classifications. How-
ever, for some of the devices (e.g., mobile devices and custom
hardware) the specifications had to be presented in terms of
the reported results. Software availability is a necessary guide
to understand if each device has supported APIs or SDKs.
Finally, portability allows an understanding of how a device
can be utilized in a ubiquitous environment, when it is classi-
fied as Portable, the device can be used comfortably

anywhere, a Hybrid Portability means that the device could be
integrated in a portable manner (e.g., an eye tracking camera
attached to a custom tablet device), and a Not Portable classi-
fication would deem the device as difficult to carry and use
anywhere.

A notable trend is the use of mobile devices as the primary
physiological devices, with seven out of the sixteen system
contributing articles (44%) employing this technique. This
seems counter-intuitive since the understanding of physiologi-
cal computing is that there is a need for a sensor to capture
such signals. However, it does not only align with the needs of
novel techniques for signal capturing, but it does specifically
fit into mobile environments. Having ubiquitous applications,
users must consider the use of third-party hardware. That is
not only tedious for the user but also expensive. Therefore, the
trend of novel approaches to capture physiological signals
through the mobile device itself is not surprising but rather
expected and important for the future of the field.

Some of the articles that experiment with this type of signal
capturing include work from Pham, Wang, and Xiao in their
MOOC applications using heart rate data (PPG) [35], [39],
[40], [53]. The authors present systems that leverage the
smartphone camera to capture images from the user’s finger
and use blood flow changes through the skin to calculate heart
rate. The technique is based on their LivePulse algorithm [60],
which minimizes noise by skipping the first and last thirty
(30) seconds of captured data. This way the authors can
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extract many dimensions from the features, including average
heart rate, temporal standard deviations of heartbeats, root
mean squares of successive differences, and more [60]. This is
not the only attempt to using mobile device sensors as physio-
logical input methods since articles like [54] have presented
the use of the smartphone front camera to record and recog-
nize eye gaze and face data. This can replace expensive and
inaccessible equipment that is normally required for eye-
tracking technology, such as those used in [49] and [52]. The
rest of the articles explore using different devices for their
respective signals, the Emotiv headset being the second most
prominent behind mobile devices (three papers; 19%), and the
remaining eight devices tied with one article each (6%,
respectively).

2) Physiological Signals: The signals are another impor-
tant part of the process. They are used to analyze the user’s
physiological information, and they must be manipulated in
the correct way to achieve the final goal. Some signals by
themselves might provide more information than others,
whereas in other cases there is a need for multiple data sour-
ces. As seen in Fig. 4 and discussed in the introduction to this
section, the most prominent signals in the field are EOG (eye-
tracking) and ECG/EKG/PPG (heart rate) with nine papers
(30%) each. To understand this trend, this section will explore
multiple articles and their purposes. Articles that implement
eye-tracking technology include [32], [33], [36], [38], [45],
[47], [49], [52], [54]. In [54], the system has the purpose of
detecting and classifying the user’s knowledgeability while
using an m-learning application. The attempt to do so involves
recording eye gaze and facial expressions, therefore using
eye-tracking technology but without third-party hardware.
The authors in [47] present a system that uses eye gaze data to
understand the competence of the user in the current topic.
This is a very similar concept from the previous paper, how-
ever, the authors use additional hardware to achieve their goal
along with a tablet. The rest of the articles have very similar
structures, all leveraging eye gaze data for the understanding
of a user’s interests and eventually their comprehension of
presented topics. The main takeaway from this type of imple-
mentation is that eye gaze data are one of the easiest types of
physiological information to capture without third-party hard-
ware in mobile environments. Through the use of smartphone
cameras, these signals can be acquired seamlessly. Moreover,
the second most prominent, heart rate signals can be obtained
through novel techniques presented by some articles [35],
[39], [40], and [53], using the smartphone camera to analyze
PPG data. The trend is clear to favor those signals easiest to
capture without the need for additional hardware. Not only
that, but they make for a better overall experience.

Other articles explore the use of other signals such as EEG.
In the case of EEG, all of the systems rely on the use of exter-
nal hardware to achieve their goals. Articles that implement
these devices in their research include [28], [29], [44], [46],
[50], [51], with a total of six papers (20%). In [29], the system
presented uses an Emotiv headset to capture EEG signals. The
Emotiv is a popular choice for applications involving this type
of physiological data, because of its reliability and software
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support. In the same vein, [46], [S1] present systems that use
the same headset for EEG data processing and even classifica-
tion. These signals provide the ability to detect engagement,
boredom, interest, anxiety, and more. These articles all have a
common problem that is natural to EEG signals in general:
noise. Electrical signals from the brain depend on the user’s
entire body activity, and in ubiquitous environments, these
can become noisy. This happens since these signals capture
everything, and if the researcher is interested in engagement
alone it becomes difficult to filter mostly whenever physical
actions are present. This is not a problem with eye-tracking
and PPG through smartphone sensors, even though those have
their downsides: signal quality. Finally, articles also explore
the use of multiple sensors at once, with six papers (20%)
doing so in the literature. This can help increase efficiency
and possibly fix some of the limitations introduced by single
signals. Most of the research involving multiple signals are
reviews, such as [4], [37], [55]. However, others introduce
systems that explore the use of multiple signals [27], [34].
These introduce the use of galvanic skin response (GSR), HR,
and temperature (TEMP) all in one to analyze the user’s state.
In [27], the system wants to try and regulate anxiety levels
during the activities and this can be achieved if the user is
closely monitored. That goal is achieved through the multiple
signals, where all three provide insightful information about
the desired feeling: anxiety. This is a small research area in
the field, with only six papers (three being reviews) that
explore the use of multiple signals.

3) Classification: This section will discuss the different
classifications used in the system contributing articles. This is
due to the nature of these papers, which is that they have
employed the classifications whereas others evaluated or
reviewed them. There are many different types of classifica-
tions based on the physiological signals used. A set of catego-
ries for classifications was compiled from the literature:
affective states, eye gaze data, attention levels, exercise effi-
ciency, and wellness of the brain. Each of these contains many
subcategories that represent specific information from the
user. An example of affective states is boredom, whenever a
user feels bored the physiological data can provide the infor-
mation on that state. These will be detailed along with their
corresponding article(s) as follows.

1) Affective States: A set of possible emotions that the user

could present during the activity.

a) Engagement and disengagement: It is normally
classified using EEG data and a widely known for-
mula presented by [29]. This type of classification
can help detect attention levels. Articles applying
engagement metrics include [29] with no accuracy
results, [52] with detection accuracy of 82.2%,
and [40] with a best engagement predictive accu-
racy of 76.85% using PPG signals outperforming
their EEG-based method.

Confusion: This affective state is also classified
through multiple types of signals, in the literature
normally through PPG and EEG. Articles applying
confusion metrics include [30] with confusion

b)
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predictive accuracy of 81.96% and [53] with predic-
tive accuracy of 74.4% overall (78.2% with PPG,
88.5% with FEA, and 84.6% with feature fusion).

¢) Boredom: The boredom affective state can be
detected with multiple types of signals, in this liter-
ature review it is apparent that most implementa-
tions use PPG. Articles applying boredom
classification include [30] with the highest predic-
tive accuracy of 78.56%, [40] with a best dis-
engagement/boredom  predictive accuracy of
68.33%, and [53] with an overall predictive accu-
racy of 70.5% (78.2% using PPG, 84.6% using
FEA, and 83.3% using feature fusion).

d) Frustration: The frustration affective state would be
detected using PPG in most of the literature. An
article that classifies frustration data is [53] with an
overall predictive accuracy of 78.2% (80.8% using
PPG, 91.0% using FEA, and 91.0% using feature
fusion).

e) Concentration: This affective state can be detected
using EEG, per the literature in this review. Articles
classifying this state include [49] which does not
report accuracy data.

f) Anxiety: The affective state of anxiety can be
detected using a variety of signals such as GSR,
HR, and TEMP; per the literature in this review.
Articles classifying this type of affective state
include [34] with no reported accuracy results.

2) Eye Gaze Data: This represents the use of eye-tracking
technology to detect the user’s eye gaze on the system.
It uses EOG or other details from the eye coordinates to
achieve the data estimation. Articles including this type
of classification include [38] compared novices to
experts during a learning activity and used eye gaze
data to analyze the participant competence while solv-
ing each problem, [49] used the participant looking
away as the state of distracted which became input for
the EEG classifier, [33] utilized eye gaze data as coordi-
nates for the group of words that the TTS would read,
and [52] implements eye data as part of the system to
achieve visual focus point estimations with a view angle
deviation of less than 3.2° and point-of-interest detec-
tion of up to 87.3%.

3) Attention Levels: This classification represents the
user’s level of attention to a specific activity. Nor-
mally detected using PPG, EOG, or EEG. Articles
classifying attention levels include [43] which
detected divided attention using PPG signals and
achieved accuracies ranging from 50% (four differ-
ent categories) to 83.3% (two mixed categories, e.g.,
full attention and external divided attention vs. low
internal and high internal divided attention), [35]
detected mind wandering events with a highest accu-
racy of 71.22% using PPG signals and a KNN classi-
fier, and [54] used eye gaze data to predict
knowledgeability and possible correct answers from
a user with a 59.1% accuracy using SVM.
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Fig. 5. Contributions types from the relevant papers in the field.

4) Exercise Efficiency: This is not a common type of clas-
sification in the physiological computing field. How-
ever, in the literature, a specific implementation [41]
uses the data to detect student exercise efficiency during
the learning activity in a PE class. This is done through
heart rate sensing and no accuracy results were
reported. The article considered previous studies to use
heart rate as input for exercise efficiency calculations
but they were not able to apply them due to many limi-
tations (student ages, physical activity, etc.).

5) Wellness of the Brain: This is also a rare classification
in the physiological computing field. In the litera-
ture, [51] leverages complexity/entropy, coherence, and
relative Alpha bands from EEG data for the classifica-
tion of wellness of the brain. However, no predictive
accuracy results were reported.

There is a focus on the classification of affective states. The
trend is clear in articles using different signals to perform clas-
sification, some using PPG, others EEG, and a few implement
multiple signals (GSR, HR, TEMP). For articles using affec-
tive states in their applications, out of the 16 system contribut-
ing papers, they are the most prominent (nine; 56%). The
second most common implementation is the eye gaze data
classification (four; 25%). A close third is the classification of
attention levels (three; 19%), fourth is a tie between exercise
efficiency and the wellness of the brain (one each; 6%).

D. Contributions

A visual representation of paper contributions can be seen
in Fig. 5. System implementation refers to those papers that
created an original application as a solution to their stated
problem. Architectural designs are papers that do not neces-
sarily implement a system, but they provide a reproducible
design for the application. A review includes all papers that
gather knowledge from existing publications to discuss and
synthesize the information. Evaluations are papers that focus
on the assessment of systems and designs, they provide
insights on the process from the setup to the results and their
analysis. Finally, concepts are papers that do not provide
insight on implementation or design, their focus is to propose
an idea to tackle a presented problem.
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TABLE IX
ARCHITECTURE COMPONENTS INCLUDED AND EXCLUDED FROM EACH SYSTEM CONTRIBUTING ARTICLE

Architecture Components per Article

Article(s) Device Signals Intermediary SP Mobile SP Classification Feedback Analysis
[29] v v v X v v X

[39], [40], [33], | vV v X v v v X

[51]

[34] v v v v v v X

[46] v v v X v X v

[38], [43], [30], | v v X v v X v

[52], [35], [36],

[53]

[41] v v v v v X v

First of all, articles that present architectural designs (one
paper; 3%). Apostolidis [27] proposed an architecture for the
implementation of biofeedback devices and mobile phones in
learning activities for stress tracking. Second, system imple-
mentations were presented by the majority of the reviewed
papers (sixteen; 53%). Schiavo and Mana [33] present an
application using speech synthesis and eye-tracking to match
the synthesized voice to a user’s reading pace, Eroglu et al.
[51] proposed a system aimed at improving cognitive func-
tions of dyslexic children, moreover, Pham and Wang [53],
[59], and Xiao et al. [31] present many systems using different
physiological signals [photoplethysmogram (PPG), heart rate]
to implement better experiences in MOOCs by predicting
learning outcomes. Third, a group of review papers was found
(five papers; 16%). Blignaut [36] presents a systematic litera-
ture review on the use of eye-tracking when evaluating serious
games for user learning experiences and Khamis [47]
reviewed eye-tracking feasibility in handheld mobile devices.
Fourth and finally, evaluations and analysis were found to be
the second most dominant set of papers (seven; 23%). In this
case, Siouli et al. [44] evaluate AffectureApp to find whether
or not emotions and academic performances are related and
Moldovan et al. [46] show an analysis on measurements of
EEG devices, learner’s interests, and (QoE) on mobile learn-
ing environments.

1) System Architecture Designs: After a thorough analysis
of each system contribution, many similar core components
were identified. These represent the state-of-the-art for a phys-
iological-based mobile educational system, including variants
of the same architecture depending on the use and compatibil-
ity issues, and we recommend following the core design of
these applications. The main components are physiological
sensor, physiological data, signal processor (mobile or inter-
mediary), classification, and either feedback or analysis. There
are two components that can vary: signal processor (SP) and
the analysis or feedback. The first refers to the device that
receives and manages the raw physiological signals, process-
ing these for later classification. The latter is the final step in
the architecture, where the classification information is either
used in real-time to adapt the experience (feedback) or it is
stored and analyzed for use in future sessions (analysis). See
Table IX for details on each paper with their system’s

components. Only one article, [49] did not provide details for
their intermediary SP or mobile SP and was not included in
the table.

In the reviewed literature, a total of two articles out of the
sixteen system contributing papers (13%) exclusively used
intermediary signal processors. In contrast, there were 11 out
of the 16 (69%) that exclusively implemented mobile signal
processors. Only two applied a hybrid system with both
mobile and intermediary SPs (13%) and one did not provide
details on their signal processor. Out of the 16 system contrib-
uting articles, a total of 10 (56%) applied the analysis compo-
nent, including [49] that was excluded from the table due to
its lack of information on signal processors. Finally, a total of
six papers (38%) implemented the feedback component.

2) Evaluation and Analysis Methods: Another finding in
the literature is the evaluation and analysis methods used in
previous studies. This compliments system designs because
feedback and analysis result in the fundamental understanding
of individual components. Those results allow researchers to
effectively and efficiently measure the performance from their
system and how users respond to their experience. The litera-
ture shows that many studies focus on different methods,
some applying classic techniques and others leveraging the
physiological information to extract useful features. Table X
presents the articles using each of the categorized methodolo-
gies. The identified categories will be listed and defined as
follows.

1) Subjective Feedback: This category refers to the use of
surveys, quizzes, or other classic methods of acquiring
information directly from the user about their experi-
ence and/or knowledge gains.

PPG Data, EEG Data, Eye-Tracking Data, Heart Rate
Data, Face Expression Analysis Data: This category
refers to the use of any of the physiological signals
(EEG, PPG, ECG/EKG, EOQG, etc.,) to classify and ana-
lyze the user’s experience and/or knowledge gains dur-
ing the learning activity.

Subjective Feedback and Physiological Data: The cate-
gory aims at those articles that utilize both classic tech-
niques and the acquired physiological data to
compliment each other and conclude on the user’s expe-
rience and/or knowledge gains.

2)

3)
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TABLE X
EVALUATION AND ANALYSIS METHODS USED IN EACH REVIEWED ARTICLE

Evaluation and Analysis Methods per Article

Method(s) Article(s) Count
Subjective Feedback [29], [43], [30], | 12
[39]. [40], [31],
[48], [44], [27],
[46], [41], [53]
Subjective Feedback + Physi- | [29], [43], [30], | 10
ological Data [39], [40], [31],
[48], [46], [41],
[53]
No Evaluation [47], [32], [33], | 10
[34], [42], [4],
[36], [551, [371,
[28]
PPG Data [43], [30], [39], | 7
[31], [48], [35],
[53]
EEG Data [29], [40], [49], | 6
[46], [50], [51]
Eye-Tracking Data [38], [52], [54] 3
Eye-Tracking Parameters [45] 1
Heart Rate Data [41] 1
Face Expression Analysis Data | [53] 1

4) Eye-tracking Parameters: The category was created
specifically for one article that, instead of evaluating a
system, contributed a set of parameters proven useful
for eye-tracking analysis [45].

5) No Evaluation: The category serves as a way to identify
articles that did not contribute any details or did not
conduct studies directly evaluating a system.

There are trends in the literature showing the usefulness of
subjective feedback by itself. A total of 12 papers (40%)
used the technique during their studies. These papers explore
the user’s perception of the overall experience while also
analyzing the learning gains through every individual’s
responses. Other articles tend to leverage the physiological
information to detect and classify specific features to indicate
user experience during each learning activity. These also
explore the classification of either learning gains or compe-
tence for topics. The articles falling under these categories
(PPG, EEG, eye-tracking, heart rate, and FEA data) represent
a total of 18 papers (60%), with the most prominent data
type being PPG (seven papers out of eighteen; 39%). None-
theless, most of these articles employed both subjective feed-
back and physiological data in their studies, as a mixture of
techniques that seems to be very effective for analysis pur-
poses. Therefore, another category was created to cover these
papers, and there are ten (33%) that leverage both subjective
feedback with different types of physiological information to
evaluate their systems. One article was specifically contribut-
ing parameters that were proven effective for evaluation of
systems using eye-tracking technology, and it is listed under
its own category eye-tracking parameters [45]. There are
multiple data types to detect and classify to understand what
the user is experiencing during these activities, and those
were explored in Section V-C.

E. Challenges

This section will discuss the challenges mentioned in each
paper, these are important since they provide insights for
future physiological-based m-learning research. Challenges
were identified thoroughly, each publication was read and
every mentioned drawback was included. There were two spe-
cial cases: no challenges provided and implicit challenges. As
for the first one, papers that did not include any explicit or
implicit challenges were classified separately. The latter
required paraphrasing using future work and results from the
articles to classify the challenges. Finally, a list of such prob-
lems in each paper was created and abstracted to a total of 22
categories, each with a count resembling the times they were
identified as a limitation.

To discuss the retrieved list of challenges, the top ten
were: no issues specified (eleven), environment (six), per-
sonal and aggregated learning events (four), physiological
data management and visualizations (four), equipment
(four), nonreal-time feedback (three), security/privacy
(three), varying engagement (two), mobile implementation
(two) and lack of adaptiveness (two). For an overview of
such results, please refer to Table XI. As seen in the list, 11
papers (34%) did not explicitly or implicitly provide chal-
lenges to their research work. However, six papers (19%)
mentioned the environment as their main issue. This is due
to the nature of such implementations, where ubiquitous
devices allow users to use the applications anytime and any-
where. It is also difficult to simulate environments for studies
since there are many different possibilities for students to use
the apps. Moreover, the set of challenges including personal
and aggregated learning events, physiological data manage-
ment and visualizations, and equipment were all mentioned
in four papers (13%). Personal learning events can provide
better learning outcomes since students are heavily influ-
enced by their experiences, this data can be difficult to cap-
ture but would prove more than helpful in studies like these.
Also, physiological data are invisible to the user and this
could cause confusion during the use of an application. The
management and visualization of such data provide impor-
tant feedback that users can use to perform accordingly dur-
ing the learning experience. Equipment is a big concern in
the mobile setting since wearable devices are expensive,
could be uncomfortable if not carefully considered and it
brings possible technical faults to the process.

Also, nonreal-time feedback and security/privacy were
mentioned in three papers (9%). Most applications in this liter-
ature review had an issue with real-time feedback. This is
expected due to the processing time and nature of some physi-
ological signals (e.g., EEG) that require an amount of time to
provide clear patterns. Other systems encountered users that
were particular about their privacy and security. This was a
problem mostly with eye-tracking applications, that would
need to use the camera to see a person’s face and classify dif-
ferent states. Finally, the top ten concludes with varying
engagement, mobile implementation, and lack of adap-
tiveness; all mentioned in two papers (6%). The problem with
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TABLE XI
CHALLENGES PRESENTED BY THE AUTHORS IN THE REVIEWED PAPERS

Category Count Article(s) Description

No issues specified 11 [311, [32], [33], [45], [50], | N/A
[511, [42], [4], [35], [36],
[53]

Environment 6 [29], [30], [48], [28], [55], | Students use the m-learning application with EEG de-
[44] vices in public spaces, increasing noise and, therefore,

inaccuracy.

Personal and Aggregated Events 4 [30], [44], [41], [43] Applications use the physiological information without
leveraging personal and contextual information from the
user to improve accuracy.

Physiological Data Management and | 4 [30], [48], [34], [41] Applications do not provide users with useful visualiza-

Visualizations tions of their physiological data and do not use the data
to its full potential (e.g. adaptiveness).

Equipment 4 [27], [41], [55], [28] Applications require third-party hardware (physiological
devices, computers) to function, increasing the cost,
discomfort, and inconvenience of the system.

Non-Real-Time Feedback 3 [29], [39], [40] Applications gather and analyze physiological informa-
tion but do not have the capacity to use it in real-time
for the enhancement of the learning experience.

Security/Privacy 3 [55], [30], [41] Some applications might employ the capturing of finger
and eye data (such as [30], [39], [54]) can worry users
about their privacy and security.

Varying Engagement 2 [29], [55] Applications using EEG data are subject to the nature
of humans varying in their engagement from day to day,
sometimes multiple times per day.

Mobile Implementation 2 [29], [27] Some applications heavily depend on the use of addi-
tional computers or, as defined in this review, intermedi-
ary signal processors. Most of these are due to difficulties
with compatibility and limited software availability.

Lack of Adaptiveness 2 [38], [40] Applications that do not use the physiological data to
adapt the applications for better learning experiences.

varying engagement measures is being replicated in the
mobile learning setting. Moreover, another issue is the imple-
mentation process on mobile devices using such physiological
devices. This implies new hardware and possible compatibil-
ity issues between devices that could become a major limita-
tion in most designs. Last, the lack of adaptiveness is a
drawback for some papers. A possible relation with the real-
time feedback limitation, adaptiveness is important since users
expect instant replies from the system to improve as they go
instead of waiting until they are finished to get an assessment
on their performance.

Finally, the remaining 12 challenges are as follows: state
classification (2), user-independent classification (2), Ul/Sys-
tem functionality (2), lack of interactivity (1), fatigue (1),
competitiveness versus cooperativeness (1), long-term versus
short-term evaluations (1), small population (1), multiple
inputs for effectiveness improvements (1), pre and postdata
comparisons (1), engagement self-reporting (1), and data anal-
ysis for student anxiety (1). Most of these target the topic of
finding more data and better managing it to perform better at
specific implementations. Others focus on the evaluations for
these systems, such as long-term versus short-term and pre
and postdata comparisons. However, challenges such as user-
independent classification, lack of interactivity, and state clas-
sification provide interesting takes on possible future work in
the mobile learning realm that can drastically change current
designs.

VI. DISCUSSION

This literature review presents a total of 30 papers that
discuss the topic of physiological-based mobile educational
systems. This section will explore the information provided
by the reviewed articles, answering the proposed research
questions (RQs) through the synthesis of all the papers.
Most of the reviewed system designs use smartphones as
their main device [30], [41], [43], [46], [59], but there are
cases where the researchers also include a tablet to evaluate
the difference between both mobile environments [46]. The
interfaces created for most applications are simple, there is
mostly static content (text, images, and videos) and
straightforward interactivity. For example, in [30], [43],
and [59], the type of interactivity involves users going
through lectures and possibly answering short quizzes. Nev-
ertheless, in [41], a mobile game incorporates students
playing the game both on their phones and in-person.
Therefore, interactivity is much higher compared to the
other applications which only require linear actions. As
defined earlier in this review, the goal of m-learning is to
enhance learning through interactions with mobile applica-
tions [3], and after this analysis, it is clear that more
dynamic environments improve the value of such systems.
This analysis provides an understanding of the types of sys-
tems and their contributions to the field, answering RQ2
and RQ3.
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A. M-Learning Systems

The most dominant type of physiological-based m-learning
applications is MOOC:s. Dr. Jingtao Wang leads a laboratory
on mobile educational systems, with extensive work on
MOOCs, which represent 8 (27%) out of the 30 articles in this
review. Existing literature shows mostly positive reactions to
the usability of these applications [30]. The interaction is
straightforward, the content is adequately shown, and users
showed learning improvements [30], [43], [59]. Still, these
implementations exhibit the same problem mentioned earlier:
lack of interactivity. MOOCs are effective and useful in most
cases, but they could integrate dynamic activities to enhance
student learning experiences. This analysis allows for an
understanding of the current state-of-the-art systems, contrib-
uting to the overall answer to RQ2 and RQ3.

In the current literature, there is minimal discussion on ped-
agogical approaches. Some articles implicitly employ specific
techniques such as [41] with collaboration and [27] with
game-based learning. However, the lack of discussion of peda-
gogical approaches is a current limitation in the field. There-
fore, this review focused on the learning contexts of each
article, which, due to the abundance of MOQOC:sS, lean toward
nonformal environments. There are few formal learning con-
texts, with informal and nonformal showing dominance
throughout the years. This helps answer RQI, providing an
understanding of the current learning context trends. The anal-
ysis presents the abundant use of subjective feedback as an
evaluation method, but many papers implement physiological
data into their results to either strictly determine the student’s
performance or to contrast with the provided feedback. There
are different approaches to evaluate these systems, current
research leans toward the use of both surveys (for subjective
information) and the captured physiological data to understand
the learning experience from the user. This information con-
tributes to the answer of RQ4, identifying the trends of current
evaluation techniques in the research area. Furthermore, these
applications introduce an important component: physiological
computing.

B. Physiological Computing in M-Learning Systems

There are various types of physiological signals and many
ways to collect the data. In a ubiquitous setting, many chal-
lenges could arise while integrating these features. First of all,
the most common signal used was heart rate [30], [41], [43],
[59]. Tied with eye-tracking, which was also used in most of
the reviewed articles [33], [38], [45], [54]. They are both
widely used in mobile because of the many ways to capture
the signals. Nowadays smartphones, and wearables (smart-
watches) include sensors that detect heart rate; therefore it is
not necessary to add any external devices. These signals are
captured through PPG, which is not as effective as ECG/EKG
but it is still very useful. Moreover, if the smartphone does not
have such sensors and there are no wearable available, the
research presents methodologies using the camera to retrieve
the heart rate signals [30], [43], [59]. Similarly, the eye-track-
ing glasses are some of the most comfortable hardware to
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Fig. 6. Generic architecture design for physiological-based mobile educa-
tional systems.

interact in a ubiquitous environment. In general, it is very con-
venient to detect those signals in a mobile environment, and
methods are being developed for easier, nonintrusive ways of
doing so in the future.

There is also the use of EEG signals [46], and the trend is to
analyze the data after the learning activities. However, this
data could contribute more if it was utilized during the activi-
ties (real-time). An example would be to have adaptive user
interfaces [35] or interventions [40], but the current literature
explores these approaches in a limited manner. Most studies
are exploring early technology, therefore their goal is to col-
lect high quality data and perform predictive classifications
with high accuracy. However, others explore the use of inter-
ventions during the educational experience [40], detecting
user disengagement and presenting a feed-forward reminder
catching the learner’s attention. Another example is [59]
where the application intervenes to present a topic review
based on the user data during the video lectures. Moreover,
there is a need for external devices to retrieve the EEG signals
and most can be portable and accurate [46], but expensive. As
consumer-grade EEG devices become more accurate (e.g.,
Muse headset), these implementations will become feasible.
Using physiological signals also requires monitoring possible
data perishability due to external factors such as caffeine
intake and stress. During this review, only one article consid-
ered this as a variable during their study [42]. More studies
need to include these stimulants to understand their effects
during the learning experience since most students are in
uncontrollable environments. This analysis helps answer RQ2
and RQ3 due to contributions made in terms of physiological
computing and system architectures, which need to take into
account the signals as an input to the application.

C. System Design Recommendations

This generic architecture serves as a guide to create systems
adapting to specific needs and compatibility. Fig. 6 illustrates
a design diagram including all of the components and their
variations. However, they all have the same underlying com-
ponents and purpose. Some systems might want to use devices
that can require changes in their overall structure due to the
lack of compatibility between the hardware and mobile
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devices. Therefore, such implementations would want to use
an intermediary signal processor, either a computer or cloud
service, to connect with the mobile device. In the case of [33],
the system uses a tablet with a custom-mounted eye-tracking
device called EyeTribe." This device can directly transmit the
necessary information to the device, it sends x and y coordi-
nates of the user’s eyesight on the screen. Since the applica-
tion only needs that data to synthesize speech during reading
activities, the architecture works well without an intermediary
signal processor. However, other applications like [46] have
presented the need for an external device as their signal pro-
cessor. Here, the authors use a laptop to receive and analyze
the data from the user instead of feeding it directly to the
smartphone. They present the use of an Emotiv SDK? to pro-
cess and classify affective states through their proprietary
algorithms. This situation occurs in a few of the reviewed sys-
tems (five; 17%), but it can still become a concern with spe-
cific hardware.

The other variable component in the generic architecture is
the analysis or feedback process. The application will continue
to process its signals and classify the desired features, but the
final step needs to determine what to do with the acquired
information. The purpose of such applications is to improve
the user experience during learning, and the reviewed litera-
ture shows two possibilities: analysis with future enhance-
ments or feedback with real-time adaptiveness. The first refers
to capturing the results and analyzing the data to improve the
system and help the learners with their experience in future
activities. The second is the real-time use of information to
adapt the application while the user is learning. In [54], the
application captures face and eye data to classify the user’s
reactions to the information and later classifying their knowl-
edgeability. This information can be used to better adapt
future implementations of the application depending on their
physiological data. Therefore, this represents an architecture
with the final step being an analysis. On the other hand, the
authors in [39] contribute a system that detects, analyzes, and
classifies the PPG signals of users learning in mobile MOOC
courses to automatically provide them with reviews of the
most difficult topic. This leverages the physiological data to
instantly give users a better experience during their learning
activity. This is an example of the architecture with a final
step of feedback.

The final component in a physiological-based mobile learn-
ing application is the educational activity. The literature
showed a myriad of pedagogical approaches. Research shows
that video lectures are an effective, and easy to implement
technique for mobile environments. However, the ubiquitous
nature of these applications allows for opportunities to
increase interactivity. For example, game-based learning is a
big area in the field and some studies explored the use of real-
world objects to increase the students’ interests. Moreover,
they can include other learners and integrate cooperation or
competitiveness. Nonetheless, this generic system design
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allows for the exploration of more educational activities since
there are no physical limitations. The addition of physiological
data is useful to adapt or suggest content. Additionally, more
intervention techniques can be explored to help students either
maintain or increase their attention levels. Therefore, the edu-
cational component is open to many implementations, using
all of the available components to create a more interactive
and interesting experience for the learners.

D. Challenges

Common challenges discussed in this topic include the
aforementioned capturing and analysis of the physiological
data. Heart rate signals are normally captured through PPG
and EEG (requires external devices). The need for third-party
hardware can become tedious for the learner since they would
need to include extra weight and cost. Furthermore, it can also
be a problem for the developer due to possible problems with
hardware and software compatibility issues, proprietary
licenses, and more. Nonetheless, this has inspired research on
ways to create methods that allow for the capturing of the data
through available devices. An example is the tangible video
control interface from [30], [43], [59], in which users must use
their finger to play/pause videos through the camera lens.
They leverage PPG to capture the signals. In summary, more
methods can be developed to further improve the usability
and experiences of physiological-based mobile educational
systems.

There are other important challenges found in the physio-
logical computing area, including feedback and multimodal
implementations. This review discussed systems that do not
show users their current states, and it has been shown that
such information is important for them to possibly adjust and
understand how the current activity influences them during
learning. One specific paper provides users with a view of the
signals as they are being recorded [48], whereas from
the others there are only two with a visual representation of
the learner’s state (blinking indicator showing important cog-
nitive states). The other important finding is that papers in this
review did not use multiple physiological signals in their sys-
tems. Each application utilized one type of data, either heart
rate [30], [41], [43], or EEG [46], [59], but there is no discus-
sion on the possibility of multimodal implementations. The
use of multiple signals can improve results on the learning
experiences, as well as predictions for those systems that rely
on the data to classify different reactions from the user. This
shows a lack of exploration for multimodal systems that can
leverage many physiological attributes to better adapt to the
learner. Challenges are explored in detail, and they help com-
prehend the current maturity of the systems presented in the
research papers, including their evaluation methods and
implementation limitations. Therefore, such analysis contrib-
utes to the answer to RQ4.

E. Future Directions

Physiological data can and has improved learning experien-
ces and outcomes. As presented in most reviewed articles [30],
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[33], [34], [43], [49], there are various ways to enhance the
learner’s performance. The use of such physiological data can
show the needs or preferences of the user, in the case of [43]
and [46], there is a need for adaptiveness to tackle the detected
divided attention and interest levels. The application can
change the type of activity to become more active (for uninter-
ested learners) or passive (for overly excited learners) in real-
time. There is a lack of exploration of interventions during
these learning activities. The same applies to the use of the
data to provide recommendations on topics to study for self-
improvement [48]. Current implementations of recommenda-
tions use overall information on broad topics, and this can
become better by focusing on the individual and their features.
A common challenge is a generalized approach to teaching
the material, and this can be refined through the adaptiveness
to a user’s preferences. Physiological information along with
context can provide much insight into a learner’s style. How-
ever, personalization is not the only necessary course of
action, since aggregation demonstrated being a powerful piece
of data. A user is influenced by their teacher and peers, there-
fore it is very useful to take into account how other learners
are performing to correctly assess the current student. In sum-
mary, the user should be the centerpiece of such applications,
through individual and general performances the system can
adapt and recommend the user better content as it enhances
their learning outcome.

Finally, physiological-based mobile educational systems
need a deep understanding of the learner for effective knowl-
edge transmission. There is a need for more interactive,
dynamic applications that can provide content through various
means. Evaluations for such applications should become lon-
gitudinal, instead of instant and fast studies where the student
cannot effectively show progress. The physiological signals
used can be expanded to other types, as background literature
reveals possibilities for eye-tracking to be included in the
spectrum. Not only this, but more methods to capture the sig-
nals are becoming available to eliminate third-party hardware.
M-learning applications can provide customizable options for
users to choose their preferred studying methods. Learners
also have different motivations (intrinsic, extrinsic), and pre-
ferred peer interaction modes (cooperation and competition).
Furthermore, the applications in this field must use inputs
from physiological data, user preferences, and their contexts
to fully adapt to their needs. The implementation of these sys-
tems should make the learner their most important component
and, through the aforementioned methods, enhance their learn-
ing experiences for effective transmission of knowledge.

VII. CONCLUSION

This article presents a literature review of physiological-
based mobile educational systems. Multiple research papers
were selected through specified criteria, and then detailed
analysis was provided to understand the current state of the
field. The main discussion is on the state-of-the-art of the field
as of the present day. In this section, the focus is to define cur-
rent solutions, along with information about topics stated as

important during the statement of research questions. These
include contributions, learning contexts, physiological signals,
and challenges from every relevant paper in the field. All of
the aforementioned data leading to a synthesis of the ideas and
topics researched during the review.

There are many important findings to consider whenever dis-
cussing physiological-based mobile education. The field is in
very early stages, which provides an opportunity to contribute in
various ways. It was found that the dominant type of physiologi-
cal m-learning applications was MOOCs. Which, even though
proven effective in learning outcomes, are not known for many
interaction-based activities. Therefore, there is a need for such
adaptive applications that leverage physiological signals for
interactivity. Another finding presents that the capture of the
physiological signals in mobile environments is a prominent
research area due to the difficulties that it entails. Such ubiqui-
tous applications make the use of external devices an uncomfort-
able task. Moreover, these signals are a useful resource to detect
and classify a learner’s state, thus providing possibilities for per-
sonalized systems. The use of this data has not been used to its
full potential, and it can become the main tool for better, adap-
tive learning applications. In general, there is a potential left to
uncover inside physiological data for mobile educational sys-
tems, such as predictions, adaptiveness, multimodal implemen-
tations, aggregate recommendations, and more.

This literature review provides a basis for state-of-the-art
research in this area. Educational applications can become a
useful class resource, thanks to the rising market of smart-
phones. Furthermore, with the help of physiological comput-
ing, m-learning applications can start perceiving the learner’s
preferences to provide accurate information effectively. The
field has the potential to bring students a tailored information
source, which will fulfill their specific needs and improve their
learning outcomes.
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