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Abstract—This literature review explores prior research
involving physiological-based mobile educational systems.
Mobile computing is advancing, and implementations of
ubiquitous systems for educational purposes are increasing.
Another growing field is physiological computing, where the
user’s states are retrieved and applied as control inputs in
applications. The integration of physiological signals such as
electroencephalography (EEG), heart rate (ECG/EKG), and
eye-tracking (EOG) to mobile learning (m-learning)
applications can enhance the learning experiences to provide
content tailored to the student’s and educator’s preferences.
This article centers around a selection of core papers that
represent the most relevant contributions to the research that
falls at the intersection of m-learning and physiological
computing. Specifically, this article presents an analysis and
discussion of state-of-the-art mobile educational systems that
leverage physiological technology.

Index Terms—Affective computing, education, mobile learn-
ing, physiological sensing, ubiquitous computing.

I. INTRODUCTION

THE USE of mobile applications for learning has increased

in recent years. Modern technologies allow students to

leverage their mobile phones as a useful resource during their

studies. Many different definitions have been attributed to the

general term that describes the field: mobile learning (m-learn-

ing). Early work from O’Malley [1] defined the term as “Any

sort of learning that happens when the learner is not at a fixed,

predetermined location, or learning that happens when the

learner takes advantage of learning opportunities offered by

mobile technologies.” Moreover, there have been many differ-

ent interpretations of m-learning due to it being an immature

field. Researchers have defined it in many ways to fit their spe-

cific needs, therefore developing categories such as those

explored by Traxler [2], which to name a few include technol-

ogy-driven mobile learning, informal mobile learning, and

remote mobile learning. However, in this work, m-learning is

defined as “the acquisition of knowledge and understanding

through interactions with a mobile application” [3]. These

types of devices provide students with the ability to learn

topics anywhere and anytime. There is limited work

surrounding the specified definition, and many of them use

techniques from areas such as user interface/experience (UI/

UX) design, machine learning (ML), and human-computer

interaction (HCI) to improve the overall experience. More-

over, work is even more limited in m-learning applications

applying physiological signals, which is a potential field that

can improve educational experiences [4]. The field of physio-

logical computing leverages the human physiological data as

a control input, therefore making system interactions depen-

dant on the user’s state [5]. There are many different types of

physiological signals that can be used in physiological-based

applications, they include electroencephalography (EEG),

electrocardiogram (ECG/EKG, also known as heart rate), elec-

trooculography (EOG), and more. Thus, m-learning imple-

mentations involving physiological signals can provide access

to the user’s current state. Furthermore, the collected physio-

logical data can be used to interactively adapt the application

to enhance user experience. Recently, multiple studies featur-

ing the use of physiological data have explored educational

applications. The purpose of this literature review is to provide

insights on research at the intersection of mobile learning and

physiological computing. In particular, this review focuses on

previous work that involve the use of physiological sensors to

improve students’ educational experience. This article

presents a discussion of relevant papers, an analysis of their

contributions, learning contexts, trends, and challenges. This

review is based on four main research questions.

1) In which contexts are physiological m-learning being

applied (e.g., formal, informal, and nonformal learn-

ing)? This article aims to advance knowledge regarding

the settings in which physiological m-learning applica-

tions have been explored. Moreover, pedagogical

approaches need to be explored to understand the state-

of-the-art educational methodologies in the field.

2) What physiological m-learning applications exist and

what are their objectives and contributions? This

article aims to address this question through a criti-

cal discussion of the goals and contributions from

the literature.

3) What system design trends exist in physiological-based

mobile learning applications? The third question targets

specific system implementations and architectures used

in current applications. Information on existing designs

and architectures provide insights that can inform future

physiological-based mobile learning research.

4) What challenges exist for current physiological m-

learning applications and how are these systems
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evaluated? The final question aims to shed light on the

current state of physiological-based mobile learning

applications. Furthermore, this article presents a dis-

cussion of common methods used to evaluate these

applications and the challenges involved during imple-

mentation. Information on the growth of this interdisci-

plinary research is also provided.

The following sections discuss the selection and analysis of

the relevant articles. In particular, previous contributions,

learning contexts, challenges, and future directions are pre-

sented. Section II describes relevant background work and

provides reflections on both m-learning and physiological sig-

nals. Afterward, Section III provides motivational scenarios to

assist readers with envisioning how physiological sensors may

be used in m-learning contexts. Section IV describes the meth-

odology used to select relevant papers. Section V presents a

statistical (publications) and thematic analysis of relevant

articles. Subsequently, a synthesis of highly relevant articles

and topics is provided in Section VI. This section also presents

system design suggestions and revisits this article’s research

questions. This work concludes by suggesting future direc-

tions for physiological-based mobile learning research.

II. BACKGROUND

A. Mobile Learning

1) Definition: Electronic learning (E-Learning) has

advanced to become a very important part of many educa-

tional systems. This type of learning is often augmented with

other factors such as mobile environments. The growing popu-

larity of ubiquitous learning has recently inspired the emer-

gence of the term mobile learning. In this field, research

focuses on the use of mobile devices for educational purposes,

taking advantage of their predominance and capabilities. This

environment could help advance learning methodologies

while being an accessible resource to students.

Many different definitions exist to reference the use of

mobile applications in a learning context. The following sec-

tions will refer to this specific use case as “mobile learning”

(m-learning for short), based on the definition by O’Malley

et al. [1]. Multiple novel features have been integrated into

mobile devices since this early definition. For example, hard-

ware in smartphones currently supports processing of inten-

sive tasks and include various sensors. Furthermore, internet

connectivity on mobile devices has also improved. Prior work

has also improved our understanding of ways to design and

implement effective mobile user interfaces. Mobile computing

has changed in multiple ways and it has the potential to

change aspects of everyday life (as it already has). Therefore,

a different definition is used in this review: “the acquisition of

knowledge and understanding through interactions with a

mobile application” [3].

2) Mobile Learning Systems: There are various existing

m-learning systems. However, most of them involve the use

of mobile devices to transmit information not necessary to

involve interactivity. An example of an m-learning system

developed before smartphones were created is [6], where they

refer to the application as mobile even though it was imple-

mented using a laptop. However, there are systems created in

the correct context such as in [7] where the authors present a

simulation-based application for students to learn about geo-

graphical locations. Moreover, in [8] the authors investigated

m-learning as an alternative to e-learning and concluded that

it should be a compliment instead of a replacement. The previ-

ous examples provide hints regarding how m-learning

research is evolving. In this review, we focus on exploring

work relevant to both m-learning and emerging physiological

sensing technologies.

B. Physiological Computing

1) Definition: Physiological computing makes use of

physiological information from humans to provide feedback

that enhances their ability to complete a specific task. The gen-

eral definition for physiological computing is any system that

uses real-time physiological data to control a system [5]. The

basis of physiological computing is to detect any type of signal

from the user’s central nervous system (CNS), somatic ner-

vous system (SNS), and autonomic nervous system (ANS).

These signals can be processed in many different ways,

depending on their nature and architecture design. The use of

these signals also varies by use case. In this work, there is no

restriction in terms of real-time or postprocessed data. Due to

the overall limitations and quantity of papers available, this

article focuses on systems that retrieve physiological informa-

tion to assist an application with its overall goal.

2) Types of Signals: As mentioned before, there are many

types of physiological signals. This section details examples

of the signals that are most common in previous m-learning

literature. These can be electrical signals from the brain: EEG.

This is a very popular type, due to its potential to capture

covert user states [9]. Another type of signal is the electrocar-

diogram (ECG/EKG), which refers to heart rate. This type of

signal is often leveraged in ubiquitous systems. Moreover,

electrooculography (EOG) is used as a measure to perform

eye-tracking. EOG allows for very specific details on the

user’s eye positions. Each signal needs a specific type of hard-

ware device to capture it and communicate desired informa-

tion about a user’s state. For example, EEG requires

electrodes placed on the human scalp to detect electrical brain

activity. EOG normally requires sensors placed near the user’s

eyes. With the numerous available physiological sensors,

numerous application concepts can have been developed. A

subset of these applications is explored in the following

subsection.

3) Physiological Systems: Multiple current systems take

advantage of physiological signals. Since the origin of this

area, there has been a focus on medical approaches. For exam-

ple, prosthetic devices [10], brain-controlled wheelchairs [11],

and medical education [12]. However, recent advances have

taken the field into exploring more nonmedical applications.

Examples of these include gaming with eye-tracking [13],

drowsiness detection through heart rate (ECG/EKG) [14],

workload estimation with EEG [15], and education with

EEG [16]. The field is beginning to rise in terms of mobility,
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with emerging consumer-grade hardware and compatibility

with more devices. Therefore, mobile computing leveraging

such physiological data becomes an important topic since it

can allow for user-centered experiences in many contexts,

including education as this review discusses.

III. MOTIVATION

Physiological data are a potential way of enhancing user

experience during m-learning activities. Current research in

both realms answers questions in different directions, without

exploring the possibilities of a system involving their integra-

tion. In m-Learning, the trends are for applications with very

limited interactivity. This is an unexplored, yet potentially

beneficial component of m-learning applications due to the

nature of such systems. Students can become more engaged

through interactions with the interface instead of over-relying

on the presentation of information through static mediums.

Moreover, engagement can be measured and used through

physiological sensing methods by leveraging EEG, heart rate,

or eye gaze data. This technology can allow for customized

learning experiences, taking into account student reactions

and interactions with the interface to finally adapt to their

preferences.

The idea of physiological-based mobile educational systems

is interesting. However, many questions about this concept

remain. Why can these applications be useful? How can they

be used by students? What do these applications contribute?

Therefore, both main components (educational mobile apps

and physiological data) can be explored individually to gather

information about their possible integration which can provide

interesting results. First, mobile applications for learning are

created to assist students to either study or achieve specific

tasks assigned in class. An example is [17], where an m-learn-

ing application was developed to help students in their com-

puter architecture course. This one incorporates a set of

features such as flashcards, note-taking, and quizzes.

Moreover, the author [18] focus on the use of microlectures

and videos for the students to learn using their phone.

However, these are examples of how these systems could be

much improved through the design of better interfaces and

experiences. M-learning applications started evolving from

static text, imagery, and quizzing to interactive displays. One

example of this type of application is [19], where the objective

is to have an intelligent system to assist students with their

English pronunciation skills. Another example is [20], an appli-

cation that uses gaming and multimedia for the teaching of the

English language. Others used techniques such as user profiling

to understand the preferences for each student and use the data

for better user experiences [21]. This showcases how there is a

need to understand individual student experiences to provide

more effective activities suited to their preferences. Starting

with universal, static information and subsequently creating

adaptive models, there is potential for many methods to be

applied into the m-learning field. The use of physiological sens-

ing for this purpose has not been completely explored, and cur-

rent trends are showing its potential.

Physiological computing has gone through many cycles

during its existence, since its beginnings with medical applica-

tions to today’s world of entertainment, education, and more.

Current research presents many devices and signals that can

be useful for the understanding of human feelings. EEG is

widely used for the classification of cognitive states (anger,

stress, engagement, etc.), and these are useful for a myriad of

applications. In [22], an evaluation is conducted to understand

if passive BCIs (using EEG) could be feasible to implement in

autonomous driving contexts. The authors in [23] study the

control of robots through adaptive interfaces by leveraging

EEG data. But, one of the most relevant studies for this

research field is [24], which implements adaptive agents using

the student’s EEG data to classify their attention levels and act

accordingly. This system implementation represents one of

the possibilities of m-learning applications, the capability of

leveraging student physiological information to adapt to their

needs leading to an improvement of their learning experiences

and outcomes. There is a trend toward the need for learning

personalization and interface adaptation using physiological

data as input, which is an unexplored approach. To acknowl-

edge how these applications can be used by students, and why

it might be useful, a set of scenarios will be presented. These

will be divided into two categories: Scenario 1 and Scenario

2. The first scenario will serve as a comparison point to why

the second scenario is an improvement. There will be two sets

of scenarios, each from a different perspective.

A. Learner Perspective Scenarios

1) Scenario 1: Ally downloaded the mobile application

assigned by the professor for the Biology I course. Ally studies

for the midterm exam, which covers the topics of DNA repli-

cation, translation, and transcription. The mobile application

contains a section to study for these topics, and it includes def-

initions, images, videos, and quizzes. Ally keeps reading and

watching the videos to answer the quizzes correctly, but she

cannot do it for long hours. There is too much to read and the

videos are not too entertaining. The quizzes include theoretical

questions about the material, with minimum variation and

interactivity. Ally is not too engaged in the study process, as

she prefers practice problems and other activities to grasp the

material. The time spent on the application is reduced and she

starts to create her routine for a better learning outcome.

2) Scenario 2: Ally downloaded the mobile application

assigned by the professor for the Biology I course. Ally also

gets her EEG-capturing headset to use during the study session.

She sits down to study for the midterm exam, which covers the

topics of DNA replication, translation, and transcription. The

mobile application contains a section to study for these topics,

and it includes definitions, images, videos, and quizzes. How-

ever, each of the presented media types adapts to Ally’s prefer-

ences. The application has a set of interface templates that

change the way each section is presented as the data are ana-

lyzed and classified with the physiological information. Ally

likes hands-on activities, therefore, based on her reactions to

other interfaces, the app more frequently presents a mini-game

where she can drag and drop nucleotides to their corresponding
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spots. Moreover, the application includes social features with

multiplayer activites and communication systems that allow

for student interactions. Ally is very engaged in the study pro-

cess, as she can visualize and manipulate the topic information

to her advantage. The time spent on the application is increased

and she considers it an effective learning experience.

Both scenarios show how Ally feels during her study ses-

sions using the corresponding m-learning application. The first

scenario showcases more traditional means to display the

information. Ally cannot feel engaged whenever having static

text and imagery, and the videos are not entertaining to watch.

She begins to create alternatives to the application, which is

an example of the need to improve the experience. That is

where the physiological-based m-learning application

becomes useful (Scenario 2), since it provides dynamic inter-

actions to teach the material. Nonetheless, the application also

considers the students’ preferences, which allows for an adap-

tation to other possible interfaces: static text for those who

prefer reading, manipulative objects for those who like inter-

activity, adaptive quizzes for those who are motivated by

rewarding systems, and more. These examples represent the

need for adaptive learning experiences in the mobile environ-

ment, and the potential for physiological sensing to be imple-

mented in these applications. Moreover, these are not the only

scenarios possible, since other individuals are involved in the

creation of physiological-based mobile educational systems:

researchers.

B. Researcher Perspective Scenarios

1) Scenario 1: Juan is a graduate researcher working with

m-learning applications and his advisor proposed the creation

of an application that somehow leveraged user data to adapt

the interface. Juan is reading about many different ways to

achieve this, and finds some possibilities. Some of his findings

include user profiling and physiological sensing. They are

both very different approaches but could be complimented.

Juan designs an application to teach the English language, but

he cannot seem to find many resources for the implementation

of physiological sensing into mobile environments. Similarly,

since the physiological data are streamed and need to be clas-

sified, there are not many libraries or frameworks to support

those activities in native mobile applications. After hard work

getting connectivity resolved, Juan needs to decide the best

techniques to build the application. What system design is

most effective and in what context? Which physiological devi-

ces and/or signals should be used? How is this data used dur-

ing an m-learning activity? How are these applications

evaluated? Juan cannot easily find this information since the

field is in its early stages.

2) Scenario 2: Juan is a graduate researcher working with

m-learning applications and his advisor proposed the creation

of an application that somehow leveraged user data to adapt

the interface. Juan is reading about many different ways to

achieve this, and finds some possibilities. Some of his findings

include user profiling and physiological sensing. They are

both very different approaches but could be complimented.

Juan designs an application to teach the English language, and

he finds libraries that allow him to continue his development.

Some of the contributions include interface templates, physio-

logical sensing libraries for the retrieval of data, and even

datasets for his user profiling tasks. Finally, Juan can easily

design his system based on research articles discussing the

most effective architectures. He can also easily find informa-

tion on m-learning activities using physiological signals and

how to leverage these not only for educational purposes but

also for system evaluations.

These scenarios represent the limited research in this

research area and the difficulty of replicating these applica-

tions without a foundation. In the first scenario, Juan looks to

get data streaming into mobile devices, which he thought

would be a simple step. Moreover, he cannot encounter

articles that have explored system designs, contexts, physio-

logical data usage, or even evaluation methods. Due to the

limited exploration of physiological-based mobile educational

systems, there are no readily available resources to achieve his

goal. However, in the second scenario, Juan can find some of

these resources and research results that are feasible. He finds

libraries to achieve the device connections and also encounters

interface templates. This area has many possible contributions

to the entire community, and the second scenario showcases

examples of how it can provide useful tools for the future.

C. Literature Review Contributions

This article builds on the aforementioned trends, where

there is a clear need for research in physiological-based

mobile educational systems. With limited work done in the

field, but literature supporting the potential of these types of

applications, this literature review looks to provide a baseline

for future work in the field. There are many areas in which

this topic can help advance the scientific community, and its

contributions to the field, along with those provided from this

literature review, can be seen in Fig. 1 as well as listed in

detail below.

1) The enhancement of learning experiences in the mobile

learning realm by leveraging physiological computing.

2) Understanding of user experience and interface adapta-

tion protocols using m-learning applications.

3) Architectural designs of physiological-based mobile

educational systems.

4) User Interface and Experience guidelines for effective

m-learning applications.

5) Reusable software for the development of physiologi-

cal-based applications in mobile environments.

6) Evaluation methods for physiological-based mobile

educational systems.

7) Libraries for machine learning, signal processing, and

interface building in mobile environments.

IV. METHODOLOGY

To answer the research questions, a literature review was

conducted. The approach was semisystematic, with publica-

tion statistical analysis and thematic content discussions. As

discussed in [25] and [26], the first step to the review is paper
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selection, which requires two substeps: a comprehensive

search and an inclusion/exclusion criteria. The second step is

to analyze all the selected papers providing a descriptive sec-

tion of custom topic clusters and a thorough segment of the

content discussion. The purpose of this review is to analyze all

the relevant work in mobile learning using physiological sig-

nals and deliver a knowledge base while retrieving possibili-

ties toward the future of this field.

First, a thorough search was conducted using a set of combi-

nations between different concepts related to the topic. The

overall process can be seen in Fig. 2 There were a total of five

databases included in the process: IEEE Xplore, ACM Digital

Library, Elsevier, Springer, and Taylor & Francis. The search

query was constructed using different combinations of con-

cepts, to find articles related to mobile computing, the follow-

ing keywords were included in the search query: “mobile” OR

“android” OR “iOS.” To find articles that involved education,

the following were included: “education” OR “learning.”

Finally, additional terms were added to include physiological

computing in the results: “physiological” OR “sensors” OR

“EEG” OR “EKG/ECG” OR “EOG” OR “EMG” OR “eye-

tracking” OR “heart rate” OR “GSR” OR “skin conductance.”

Due to the many possibilities of physiological signals, this list

was used to get a better collection of articles. These terms

helped filter papers and journal articles for those that discuss

mobile learning with applied physiological techniques, con-

structing different search queries using the aforementioned

keywords (e.g., mobile learning or m-learning, mobile physio-

logical education, EEG m-learning, and more). In the case of

some databases, there were more specific search filters. Taylor

and Francis required using the Computer Science tag to nar-

row down the results. Elsevier required category selections

review articles and research articles along with the tags Com-

puters & Education, Procedia Computer Science, and Neuro-

computing. The search was made using exact matches for the

concatenation of main concepts and additional terms. More-

over, the date range for all of the articles was from 2014 to the

present (2019).

To better filter the research articles for the current topic,

paper selection criteria were designed. For the literature to be

relevant in this review, it must discuss both mobile computing

and education with physiological signals or one of the main

concepts along with physiological signals. Those that do not

conform to these measures can be considered for background

information during the review. Criteria examples can be seen

in Table I. The criteria are defined as follows.

1) Scope: The article must include all three main concepts:

mobile, education, and physiology. For example, an

article discussing mobile learning techniques using

heart rate sensors as input is considered in-scope and

Fig. 1. Potential outcomes from additional physiological-based mobile educational research.

Fig. 2. Paper selection process for the literature review.
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should be included in the review. However, a paper that

discusses EEG inputs applied to web technologies with

no relevance to education is not in scope.

2) Quality: The article shall provide a thorough under-

standing of the presented topic. For example, a concept

paper that proposes a mobile learning technique using

physiological devices but does not contain any insight

on design and implementation will not be considered in

the review.

3) Plausibility: The article must be from a trustworthy

source, meaning that its authors should be recognized

or should have previous work in the field and their work

is published in a suitable conference for the topic. For

example, an author with previous work in mobile com-

puting involving learning and physiological devices is

an indicator of a knowledgeable source in the field.

However, an author without experience in mobile learn-

ing should have their paper thoroughly analyzed before

any inclusion in the review.

During the selection process each title, abstract, and con-

clusion were read to ensure their compliance with the stand-

ards. All three should have enough information to decide

whether or not they belong in the review. After reading these

sections, the article is analyzed with all three criteria: scope,

quality, and plausibility. Whenever the article was fully com-

pliant with all the standards, it was automatically included in

the review. Nevertheless, those that do not were still consid-

ered for background information or analysis purposes.

Included papers were inserted in a table that kept track of

each title, keywords, author(s), publisher, venue type, venue

name, and year. This would be used later in the analysis sec-

tion for a thorough content examination. Furthermore, papers

with similar topics were also filtered through for better

results, in this case, those with more citations and overall rel-

evance were selected over their duplicate. After the first

search and filter, there was a paper count of fifty-four (54).

Finally, after applying the same procedure for a second time,

a total of thirty (30) relevant papers were selected as the base

for this review.

The following sections discuss the findings from the con-

ducted literature review for physiological-based mobile educa-

tional systems. There is an analysis of the general results from

the review, including details from paper publications over the

years, and the most prominent conferences and journals. There

is also an analysis of their contributions, along with details

from learning contexts, physiological computing, and chal-

lenges. Contributions involve five types defined in this article:

system implementation, architectural design, review, evalua-

tion, and concept. Learning contexts are split into three cate-

gories: formal, informal, and nonformal (all defined in the

previous section). Physiological signals were also found and

there are a total of five categories: EEG, eye-tracking (EOG),

photoplethysmogram (PPG), heart rate (ECG/EKG), and

mixed (multiple signals). Mixed signals involve any of the

other four categories used in the same context. The challenges

section will cover the limitations mentioned in each paper,

these are important since they provide a foundation for future

research to improve the lacking characteristics of current

work. There were two special cases: no challenges provided

and implicit challenges. As for the first one, papers that did

not include any explicit or implicit challenges were classified

separately. The latter required paraphrasing using future work

and results details to classify the challenges. Finally, a list of

such problems in each paper was created and abstracted to a

total of 22 categories, each with a count resembling the times

they were identified as a limitation. The section provides sta-

tistical data on papers and their contents allowing for better

visualizations of the current state of the field.

V. ANALYSIS

A. Publication Overview

The results of this review show that this research field is

currently undeveloped. There is enough work to understand

its significance and potential, however, there is room for

improvement and expansion. After the review, the final selec-

tion of papers was a total of thirty (30) relevant articles pub-

lished between 2014–2019. After analysis, there is a steady

publication increase. Refer to Table II to see an overview of

these results. From 2014 to 2015, there were three times as

TABLE I
INCLUSION/EXCLUSION CRITERIA EXAMPLES

TABLE II
PUBLICATIONS OF SELECTED ARTICLES BY YEAR
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many publications, thirty percent (30%) of papers reviewed

were published that year. Then, 2016 and 2017 showed a

slowdown, but it maintained the count from the first year

(three papers). During 2018, the count went up (seven; 23%)

and it seems to be consistent going into 2019 (two; 6%), tak-

ing into account that the year had not ended and the typical

conference/journal publication time cycles. The publication

numbers from the past five years show a clear increase in

research work in the area.

The papers were also analyzed in terms of their publishers,

publication venues, and publication types. The publishers refer

to the databases used in this review: ACM, IEEE Xplore,

Springer, Elsevier, and Taylor & Francis. Please see Table III

for an overview of papers published in each database. Most of

the published work in this area can be found in the ACM DL

(twelve; 40%). IEEE Xplore had ten (33%) of the reviewed

articles. Furthermore, Springer and Elsevier contained multi-

ple articles between them (five and three, respectively)

whereas Taylor & Francis did not provide any papers compli-

ant with the selection criteria.

In addition, another important detail to explore is the con-

ferences and journals in which the papers were published.

This allows for easy detection of a community for the topic. In

Table IV, an overview of results for conference publications

can be seen. There is a tendency toward publication in ACM

conferences based on human-computer interaction (HCI) such

as the International Conference on Human-Computer Interac-

tions with Mobile Devices and Services (MobileHCI), the

International Conference on Multimodal Interaction (ICMI),

and the Conference on Human Factors in Computing Systems

(CHI). The most prominent of these is ICMI with five papers

(16%) and the second with most publications is MobileHCI

with four (13%). The rest of the venues include at most two

publications, and the most prominent of them is IEEE. Most

of these conferences discuss HCI work, as well as ubiquitous

computing and educational systems. There is also a set of

articles published in journals, a total of five (16% of the total

count) in three venues. Refer to Table V for details on the

papers and the venues. The venue with the most journal publi-

cations in this area is Elsevier in Computers & Education with

three papers. The other two were IEEE and Springer with one

article each.

B. Learning Contexts

This section discusses the trends and findings of physiologi-

cal m-learning applications learning contexts. Formal learn-

ing contexts are defined as systems that allow students to

make use of the technology inside the classroom in a strict

environment [56]. An example of this is [41], where the exer-

games application is created to be used during class. Informal

learning is defined as nonstructured learning not provided by

an educational or training institution, taking place spontane-

ously, and without a mediator [56]. An example of this learn-

ing context is [33]. This system does not need students to be

inside a classroom, nor is it for a specific class either, therefore

the users can utilize the application anytime and anywhere.

Finally, nonformal learning occurs in a planned but highly

adaptable manner in institutions, organizations, and situations

outside of classrooms [56]. This type of learning can be seen

in papers dealing with MOOCs, [30], [39], [43]. These are

applications that can be created for specific classes but are not

mediated as strictly as formal learning applications.

1) Formal, Informal, and Nonformal Contexts: A detailed

view of all results can be seen in Table VI and the publication

trends can be visualized in Fig. 3. Papers that presented infor-

mal learning are the most dominant, with well over a third of

the total reviewed items (twelve; 40%). Abdelrahman et al.

[29] presents a concept for a mobile learning application that

uses EEG data to improve educational experiences in muse-

ums and Chen et al. [52] shows a similar system to enhance

learning and engagement of museum visitors using eye-track-

ing. Other general examples include Shimoda et al. [49],

Schiavo et al. [33], and the architectural implementation from

Apostolidis and Stylianidis [27]. Finally, some analysis and

evaluations were focused on informal activities, such as the

EEG-based measurement for learner’s interests by Moldo-

van [46] and the study on student response to neurofeedback

using resting stage EEG by Ero�glu et al. [50]. There seem to

be spikes of informal learning research between the years

2015 and 2018. There were no informal learning contributions

in 2016 and only one in 2017, but 2018 had a total of 6 papers

out of 12 total (50%). Though it is not steady, taking into

account the publishing timelines and pauses, there is a clear

trend of informal learning in the field.

Nonformal learning environments were the second most

prominent (11; 36%). A set of papers comprises the majority

in this learning context due to its focus: Massive Open Online

Courses (MOOCs). These are classified as nonformal since

they do not require a physical presence, an institution, or strict

guidelines. Still, they are structured and the student’s motiva-

tion is completely intrinsic. Out of the total 11 papers that fall

into the nonformal category, eight of them are related to

MOOCs (73%) [39], [40], [43]. These papers include [31],

[40], and [43] . However, other papers also discuss this type of

setting, for example an application for learning physics while

using eye gaze data presented by Chanijani et al. [38]. Also,

systems that explore serious games using eye-tracking tech-

nology [36]. There are publications for this context from 2015

to 2018, with two straight years of constant contributions

TABLE III
REVIEWED PAPERS PUBLISHED PER DATABASE
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(2015 and 2016). These two years seem to be where nonformal

approaches became apparent as an option for physiological m-

learning. The publications started slowing down after 2016,

with only one in 2017 and two in 2018, however, in general

there is a trend for consistent contributions in the nonformal

learning context.

Formal learning was found in almost a fifth of the reviewed

literature (five papers; 16%). This learning context is explored

on a smaller number of papers, a possibility for this is the

medium in which the systems are being developed: mobile.

Due to the nature of such ubiquitous experiences, the surest

thing is that students would like to access information any-

where and anytime. However, this does not mean that formal

learning happens strictly in physical classrooms, but the struc-

ture and academic influences require more specific interac-

tions from the user. Siouli et al. [44] present the evaluation of

an application for an elementary school class and Lindberg

et al. [41] also explore a mobile board game to enhance physi-

cal education exergames. The formal learning context is also

present consistently throughout the years, but with fewer

amounts of publications having contributions from 2014 to

2019, excluding 2018. This shows how much work is being

put into the context, but also demonstrating how hard it

becomes to research such systems due to the need for strict

classroom environments. This can slow down the process, and

the amounts of articles dealing with formal contexts make it

apparent since the only year with more than one contribution

is 2017 (with two). Nonetheless, this is still an important area

TABLE VI
LEARNING CONTEXTS USED IN EACH SYSTEM CONTRIBUTING ARTICLE

TABLE V
REVIEWED ARTICLES PUBLISHED IN JOURNALS

TABLE IV
REVIEWED ARTICLES PUBLISHED IN CONFERENCES

Fig. 3. Learning contexts publications throughout the years.
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of the field, and research could improve the current limitations

involved.

Finally, two reviews discuss all three contexts due to their

extensive studies exploring various implementations. First, a

systematic literature review [55], and second a review for

mobile learning applications and their future [4] (two papers;

7%). This review contains many systems, therefore, it repre-

sents the possibility of applications that target a combination

of all learning contexts in the future. This category only has a

total of two articles in 2014 and 2019.

2) Pedagogical Approaches: The results (Table VII)

showed many different approaches to the learning activities.

In this literature review, pedagogy refers to the teaching

techniques applied to enable the acquisition of knowledge,

skills, attitudes, and more [58]. Moreover, the types of

approaches we present are referring to the methods in which

information is transmitted to the learner, and the goal is to

understand the many techniques applied in the studies. The

most prominent approach is video lectures (nine; 30%),

which correlates with the amount of articles that focus on

MOOCs. The second most applied pedagogical strategy is

game-based learning (seven; 23%), which is very popular in

the educational field in general. These include gamified sys-

tems as well as interactive games. In education, a popular

pedagogical technique is cooperative learning, and in this

literature review there was one article that explicitly states

the integration of both game-based and cooperative learn-

ing [41]. The other popular approaches are adaptive/inter-

vening experiences (five; 17%) and real-world interactive

experiences (four; 13%). The first involves adaptive user

interfaces and interventions during the learning experience.

For example, the authors in [40] detect disengagement and

presents an intervening message. The real-world interactive

experiences involve real objects mixed with the digital

activities. Some examples include [29] and [52]. Finally,

there are traditional skills (two; 7%) which involve reading

and other examination techniques, traditional problem-solv-

ing (one; 3%), and interactive apps (one; 3%).

C. Physiological Computing

This section analyzes all the physiological signal types and

statistically represent their publication trends (see Fig. 4). The

most dominant physiological signals used in mobile environ-

ments are EEG and eye-tracking (six and nine papers; 20%

and 30%, respectively). First, papers that involve the use of

EEG are Abdelrahman et al. [29] where the signals are used to

detect engagement on museum learning activities, Shimoda

et al. [49] where the user’s state is detected to dynamically

change the learning path and Ero�glu et al. [51] where the data

are used to improve the cognitive functions of dyslexic chil-

dren. Most of these are mobile-based in concept, however,

they are missing completely ubiquitous implementations and

they mostly mention it as future work. Second, papers that

involve the use of eye-tracking (also known as EOG) are Cha-

nijani et al. [38] where the signals are used in a physics learn-

ing application to analyze the user’s preferences, Schiavo and

Mana [33] use eye-tracking along with speech synthesis to

adapt to the reader’s pace and Juin et al. [45] provide suitable

parameters for measuring learnability in mobile-game-based

learning activities.

Heart rate signals are the third most used in the set of papers

(nine; 30%). Pham and Wang [35] uses heart rate signals on

unmodified smartphones to predict mind wandering events

during MOOC sessions and follow-up quizzes, Lindberg et al.

[41] use the signals to detect user activity during a mobile

board game in a physical education setting and Xiao et al.

[31] implement the signals to monitor user state during mobile

MOOCs. Moreover, PPGs are also used as a method to capture

heart rate physiological signals, the type was included in the

count for heart rate (nine; 30%). Xiao et al. [43] use these sig-

nals to capture user disengagement in a mobile MOOC sys-

tem, and Pham and Wang [59] combine the PPG signals with

clickstreams and facial expressions to personalize reviews on

mobile MOOCs. Finally, the rest of the papers involve multi-

ple signals such as EEG, EOG, ECG/EKG, and PPGs in a sin-

gle application (six; 20%).

1) Physiological Devices: A key part of these systems is

the physiological sensor, the hardware that captures the

TABLE VII
PEDAGOGICAL APPROACHES IN EACH OF THE CONTRIBUTING ARTICLES

Fig. 4. Visual representation of physiological signal types used in the
reviewed research.
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necessary signals to analyze. Multiple systems in the field use

different types of devices for different types of signals. More-

over, many signals can also share numerous types of sensors.

To understand the state-of-the-art devices and trends for these

in the field, the review explored the sensors used in each of

the system contributing articles (see Table VIII). There are

many factors to consider when selecting a sensor for mobile

learning applications, therefore our analysis explored device

costs, accuracy, software availability, and portability. Sensor

costs for each device were compiled, for some the price was

not publicly available, others did not require additional pur-

chases (e.g., unmodified mobile devices). The accuracy col-

umn provides standard hardware specifications that determine

how accurately the signals can be captured. EEG device accu-

racy can be established based on the sampling rate, electrode

count/placement, and electrode types (wet or dry, both can be

accurate with recent advances but wet usually provide more

reliable data [62]). In this review, we decided to use sampling

rate and electrode types, since electrode count or placement

can vary based on the study and desired classifications. How-

ever, for some of the devices (e.g., mobile devices and custom

hardware) the specifications had to be presented in terms of

the reported results. Software availability is a necessary guide

to understand if each device has supported APIs or SDKs.

Finally, portability allows an understanding of how a device

can be utilized in a ubiquitous environment, when it is classi-

fied as Portable, the device can be used comfortably

anywhere, a Hybrid Portability means that the device could be

integrated in a portable manner (e.g., an eye tracking camera

attached to a custom tablet device), and a Not Portable classi-

fication would deem the device as difficult to carry and use

anywhere.

A notable trend is the use of mobile devices as the primary

physiological devices, with seven out of the sixteen system

contributing articles (44%) employing this technique. This

seems counter-intuitive since the understanding of physiologi-

cal computing is that there is a need for a sensor to capture

such signals. However, it does not only align with the needs of

novel techniques for signal capturing, but it does specifically

fit into mobile environments. Having ubiquitous applications,

users must consider the use of third-party hardware. That is

not only tedious for the user but also expensive. Therefore, the

trend of novel approaches to capture physiological signals

through the mobile device itself is not surprising but rather

expected and important for the future of the field.

Some of the articles that experiment with this type of signal

capturing include work from Pham, Wang, and Xiao in their

MOOC applications using heart rate data (PPG) [35], [39],

[40], [53]. The authors present systems that leverage the

smartphone camera to capture images from the user’s finger

and use blood flow changes through the skin to calculate heart

rate. The technique is based on their LivePulse algorithm [60],

which minimizes noise by skipping the first and last thirty

(30) seconds of captured data. This way the authors can

TABLE VIII
PHYSIOLOGICAL DEVICES USED IN EACH SYSTEM CONTRIBUTING ARTICLE
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extract many dimensions from the features, including average

heart rate, temporal standard deviations of heartbeats, root

mean squares of successive differences, and more [60]. This is

not the only attempt to using mobile device sensors as physio-

logical input methods since articles like [54] have presented

the use of the smartphone front camera to record and recog-

nize eye gaze and face data. This can replace expensive and

inaccessible equipment that is normally required for eye-

tracking technology, such as those used in [49] and [52]. The

rest of the articles explore using different devices for their

respective signals, the Emotiv headset being the second most

prominent behind mobile devices (three papers; 19%), and the

remaining eight devices tied with one article each (6%,

respectively).

2) Physiological Signals: The signals are another impor-

tant part of the process. They are used to analyze the user’s

physiological information, and they must be manipulated in

the correct way to achieve the final goal. Some signals by

themselves might provide more information than others,

whereas in other cases there is a need for multiple data sour-

ces. As seen in Fig. 4 and discussed in the introduction to this

section, the most prominent signals in the field are EOG (eye-

tracking) and ECG/EKG/PPG (heart rate) with nine papers

(30%) each. To understand this trend, this section will explore

multiple articles and their purposes. Articles that implement

eye-tracking technology include [32], [33], [36], [38], [45],

[47], [49], [52], [54]. In [54], the system has the purpose of

detecting and classifying the user’s knowledgeability while

using an m-learning application. The attempt to do so involves

recording eye gaze and facial expressions, therefore using

eye-tracking technology but without third-party hardware.

The authors in [47] present a system that uses eye gaze data to

understand the competence of the user in the current topic.

This is a very similar concept from the previous paper, how-

ever, the authors use additional hardware to achieve their goal

along with a tablet. The rest of the articles have very similar

structures, all leveraging eye gaze data for the understanding

of a user’s interests and eventually their comprehension of

presented topics. The main takeaway from this type of imple-

mentation is that eye gaze data are one of the easiest types of

physiological information to capture without third-party hard-

ware in mobile environments. Through the use of smartphone

cameras, these signals can be acquired seamlessly. Moreover,

the second most prominent, heart rate signals can be obtained

through novel techniques presented by some articles [35],

[39], [40], and [53], using the smartphone camera to analyze

PPG data. The trend is clear to favor those signals easiest to

capture without the need for additional hardware. Not only

that, but they make for a better overall experience.

Other articles explore the use of other signals such as EEG.

In the case of EEG, all of the systems rely on the use of exter-

nal hardware to achieve their goals. Articles that implement

these devices in their research include [28], [29], [44], [46],

[50], [51], with a total of six papers (20%). In [29], the system

presented uses an Emotiv headset to capture EEG signals. The

Emotiv is a popular choice for applications involving this type

of physiological data, because of its reliability and software

support. In the same vein, [46], [51] present systems that use

the same headset for EEG data processing and even classifica-

tion. These signals provide the ability to detect engagement,

boredom, interest, anxiety, and more. These articles all have a

common problem that is natural to EEG signals in general:

noise. Electrical signals from the brain depend on the user’s

entire body activity, and in ubiquitous environments, these

can become noisy. This happens since these signals capture

everything, and if the researcher is interested in engagement

alone it becomes difficult to filter mostly whenever physical

actions are present. This is not a problem with eye-tracking

and PPG through smartphone sensors, even though those have

their downsides: signal quality. Finally, articles also explore

the use of multiple sensors at once, with six papers (20%)

doing so in the literature. This can help increase efficiency

and possibly fix some of the limitations introduced by single

signals. Most of the research involving multiple signals are

reviews, such as [4], [37], [55]. However, others introduce

systems that explore the use of multiple signals [27], [34].

These introduce the use of galvanic skin response (GSR), HR,

and temperature (TEMP) all in one to analyze the user’s state.

In [27], the system wants to try and regulate anxiety levels

during the activities and this can be achieved if the user is

closely monitored. That goal is achieved through the multiple

signals, where all three provide insightful information about

the desired feeling: anxiety. This is a small research area in

the field, with only six papers (three being reviews) that

explore the use of multiple signals.

3) Classification: This section will discuss the different

classifications used in the system contributing articles. This is

due to the nature of these papers, which is that they have

employed the classifications whereas others evaluated or

reviewed them. There are many different types of classifica-

tions based on the physiological signals used. A set of catego-

ries for classifications was compiled from the literature:

affective states, eye gaze data, attention levels, exercise effi-

ciency, and wellness of the brain. Each of these contains many

subcategories that represent specific information from the

user. An example of affective states is boredom, whenever a

user feels bored the physiological data can provide the infor-

mation on that state. These will be detailed along with their

corresponding article(s) as follows.

1) Affective States: A set of possible emotions that the user

could present during the activity.

a) Engagement and disengagement: It is normally

classified using EEG data and a widely known for-

mula presented by [29]. This type of classification

can help detect attention levels. Articles applying

engagement metrics include [29] with no accuracy

results, [52] with detection accuracy of 82.2%,

and [40] with a best engagement predictive accu-

racy of 76.85% using PPG signals outperforming

their EEG-based method.

b) Confusion: This affective state is also classified

through multiple types of signals, in the literature

normally through PPG and EEG. Articles applying

confusion metrics include [30] with confusion
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predictive accuracy of 81.96% and [53] with predic-

tive accuracy of 74.4% overall (78.2% with PPG,

88.5% with FEA, and 84.6% with feature fusion).

c) Boredom: The boredom affective state can be

detected with multiple types of signals, in this liter-

ature review it is apparent that most implementa-

tions use PPG. Articles applying boredom

classification include [30] with the highest predic-

tive accuracy of 78.56%, [40] with a best dis-

engagement/boredom predictive accuracy of

68.33%, and [53] with an overall predictive accu-

racy of 70.5% (78.2% using PPG, 84.6% using

FEA, and 83.3% using feature fusion).

d) Frustration: The frustration affective state would be

detected using PPG in most of the literature. An

article that classifies frustration data is [53] with an

overall predictive accuracy of 78.2% (80.8% using

PPG, 91.0% using FEA, and 91.0% using feature

fusion).

e) Concentration: This affective state can be detected

using EEG, per the literature in this review. Articles

classifying this state include [49] which does not

report accuracy data.

f) Anxiety: The affective state of anxiety can be

detected using a variety of signals such as GSR,

HR, and TEMP; per the literature in this review.

Articles classifying this type of affective state

include [34] with no reported accuracy results.

2) Eye Gaze Data: This represents the use of eye-tracking

technology to detect the user’s eye gaze on the system.

It uses EOG or other details from the eye coordinates to

achieve the data estimation. Articles including this type

of classification include [38] compared novices to

experts during a learning activity and used eye gaze

data to analyze the participant competence while solv-

ing each problem, [49] used the participant looking

away as the state of distracted which became input for

the EEG classifier, [33] utilized eye gaze data as coordi-

nates for the group of words that the TTS would read,

and [52] implements eye data as part of the system to

achieve visual focus point estimations with a view angle

deviation of less than 3.2� and point-of-interest detec-

tion of up to 87.3%.

3) Attention Levels: This classification represents the

user’s level of attention to a specific activity. Nor-

mally detected using PPG, EOG, or EEG. Articles

classifying attention levels include [43] which

detected divided attention using PPG signals and

achieved accuracies ranging from 50% (four differ-

ent categories) to 83.3% (two mixed categories, e.g.,

full attention and external divided attention vs. low

internal and high internal divided attention), [35]

detected mind wandering events with a highest accu-

racy of 71.22% using PPG signals and a KNN classi-

fier, and [54] used eye gaze data to predict

knowledgeability and possible correct answers from

a user with a 59.1% accuracy using SVM.

4) Exercise Efficiency: This is not a common type of clas-

sification in the physiological computing field. How-

ever, in the literature, a specific implementation [41]

uses the data to detect student exercise efficiency during

the learning activity in a PE class. This is done through

heart rate sensing and no accuracy results were

reported. The article considered previous studies to use

heart rate as input for exercise efficiency calculations

but they were not able to apply them due to many limi-

tations (student ages, physical activity, etc.).

5) Wellness of the Brain: This is also a rare classification

in the physiological computing field. In the litera-

ture, [51] leverages complexity/entropy, coherence, and

relative Alpha bands from EEG data for the classifica-

tion of wellness of the brain. However, no predictive

accuracy results were reported.

There is a focus on the classification of affective states. The

trend is clear in articles using different signals to perform clas-

sification, some using PPG, others EEG, and a few implement

multiple signals (GSR, HR, TEMP). For articles using affec-

tive states in their applications, out of the 16 system contribut-

ing papers, they are the most prominent (nine; 56%). The

second most common implementation is the eye gaze data

classification (four; 25%). A close third is the classification of

attention levels (three; 19%), fourth is a tie between exercise

efficiency and the wellness of the brain (one each; 6%).

D. Contributions

A visual representation of paper contributions can be seen

in Fig. 5. System implementation refers to those papers that

created an original application as a solution to their stated

problem. Architectural designs are papers that do not neces-

sarily implement a system, but they provide a reproducible

design for the application. A review includes all papers that

gather knowledge from existing publications to discuss and

synthesize the information. Evaluations are papers that focus

on the assessment of systems and designs, they provide

insights on the process from the setup to the results and their

analysis. Finally, concepts are papers that do not provide

insight on implementation or design, their focus is to propose

an idea to tackle a presented problem.

Fig. 5. Contributions types from the relevant papers in the field.
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First of all, articles that present architectural designs (one

paper; 3%). Apostolidis [27] proposed an architecture for the

implementation of biofeedback devices and mobile phones in

learning activities for stress tracking. Second, system imple-

mentations were presented by the majority of the reviewed

papers (sixteen; 53%). Schiavo and Mana [33] present an

application using speech synthesis and eye-tracking to match

the synthesized voice to a user’s reading pace, Ero�glu et al.

[51] proposed a system aimed at improving cognitive func-

tions of dyslexic children, moreover, Pham and Wang [53],

[59], and Xiao et al. [31] present many systems using different

physiological signals [photoplethysmogram (PPG), heart rate]

to implement better experiences in MOOCs by predicting

learning outcomes. Third, a group of review papers was found

(five papers; 16%). Blignaut [36] presents a systematic litera-

ture review on the use of eye-tracking when evaluating serious

games for user learning experiences and Khamis [47]

reviewed eye-tracking feasibility in handheld mobile devices.

Fourth and finally, evaluations and analysis were found to be

the second most dominant set of papers (seven; 23%). In this

case, Siouli et al. [44] evaluate AffectureApp to find whether

or not emotions and academic performances are related and

Moldovan et al. [46] show an analysis on measurements of

EEG devices, learner’s interests, and (QoE) on mobile learn-

ing environments.

1) System Architecture Designs: After a thorough analysis

of each system contribution, many similar core components

were identified. These represent the state-of-the-art for a phys-

iological-based mobile educational system, including variants

of the same architecture depending on the use and compatibil-

ity issues, and we recommend following the core design of

these applications. The main components are physiological

sensor, physiological data, signal processor (mobile or inter-

mediary), classification, and either feedback or analysis. There

are two components that can vary: signal processor (SP) and

the analysis or feedback. The first refers to the device that

receives and manages the raw physiological signals, process-

ing these for later classification. The latter is the final step in

the architecture, where the classification information is either

used in real-time to adapt the experience (feedback) or it is

stored and analyzed for use in future sessions (analysis). See

Table IX for details on each paper with their system’s

components. Only one article, [49] did not provide details for

their intermediary SP or mobile SP and was not included in

the table.

In the reviewed literature, a total of two articles out of the

sixteen system contributing papers (13%) exclusively used

intermediary signal processors. In contrast, there were 11 out

of the 16 (69%) that exclusively implemented mobile signal

processors. Only two applied a hybrid system with both

mobile and intermediary SPs (13%) and one did not provide

details on their signal processor. Out of the 16 system contrib-

uting articles, a total of 10 (56%) applied the analysis compo-

nent, including [49] that was excluded from the table due to

its lack of information on signal processors. Finally, a total of

six papers (38%) implemented the feedback component.

2) Evaluation and Analysis Methods: Another finding in

the literature is the evaluation and analysis methods used in

previous studies. This compliments system designs because

feedback and analysis result in the fundamental understanding

of individual components. Those results allow researchers to

effectively and efficiently measure the performance from their

system and how users respond to their experience. The litera-

ture shows that many studies focus on different methods,

some applying classic techniques and others leveraging the

physiological information to extract useful features. Table X

presents the articles using each of the categorized methodolo-

gies. The identified categories will be listed and defined as

follows.

1) Subjective Feedback: This category refers to the use of

surveys, quizzes, or other classic methods of acquiring

information directly from the user about their experi-

ence and/or knowledge gains.

2) PPG Data, EEG Data, Eye-Tracking Data, Heart Rate

Data, Face Expression Analysis Data: This category

refers to the use of any of the physiological signals

(EEG, PPG, ECG/EKG, EOG, etc.,) to classify and ana-

lyze the user’s experience and/or knowledge gains dur-

ing the learning activity.

3) Subjective Feedback and Physiological Data: The cate-

gory aims at those articles that utilize both classic tech-

niques and the acquired physiological data to

compliment each other and conclude on the user’s expe-

rience and/or knowledge gains.

TABLE IX
ARCHITECTURE COMPONENTS INCLUDED AND EXCLUDED FROM EACH SYSTEM CONTRIBUTING ARTICLE
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4) Eye-tracking Parameters: The category was created

specifically for one article that, instead of evaluating a

system, contributed a set of parameters proven useful

for eye-tracking analysis [45].

5) No Evaluation: The category serves as a way to identify

articles that did not contribute any details or did not

conduct studies directly evaluating a system.

There are trends in the literature showing the usefulness of

subjective feedback by itself. A total of 12 papers (40%)

used the technique during their studies. These papers explore

the user’s perception of the overall experience while also

analyzing the learning gains through every individual’s

responses. Other articles tend to leverage the physiological

information to detect and classify specific features to indicate

user experience during each learning activity. These also

explore the classification of either learning gains or compe-

tence for topics. The articles falling under these categories

(PPG, EEG, eye-tracking, heart rate, and FEA data) represent

a total of 18 papers (60%), with the most prominent data

type being PPG (seven papers out of eighteen; 39%). None-

theless, most of these articles employed both subjective feed-

back and physiological data in their studies, as a mixture of

techniques that seems to be very effective for analysis pur-

poses. Therefore, another category was created to cover these

papers, and there are ten (33%) that leverage both subjective

feedback with different types of physiological information to

evaluate their systems. One article was specifically contribut-

ing parameters that were proven effective for evaluation of

systems using eye-tracking technology, and it is listed under

its own category eye-tracking parameters [45]. There are

multiple data types to detect and classify to understand what

the user is experiencing during these activities, and those

were explored in Section V-C.

E. Challenges

This section will discuss the challenges mentioned in each

paper, these are important since they provide insights for

future physiological-based m-learning research. Challenges

were identified thoroughly, each publication was read and

every mentioned drawback was included. There were two spe-

cial cases: no challenges provided and implicit challenges. As

for the first one, papers that did not include any explicit or

implicit challenges were classified separately. The latter

required paraphrasing using future work and results from the

articles to classify the challenges. Finally, a list of such prob-

lems in each paper was created and abstracted to a total of 22

categories, each with a count resembling the times they were

identified as a limitation.

To discuss the retrieved list of challenges, the top ten

were: no issues specified (eleven), environment (six), per-

sonal and aggregated learning events (four), physiological

data management and visualizations (four), equipment

(four), nonreal-time feedback (three), security/privacy

(three), varying engagement (two), mobile implementation

(two) and lack of adaptiveness (two). For an overview of

such results, please refer to Table XI. As seen in the list, 11

papers (34%) did not explicitly or implicitly provide chal-

lenges to their research work. However, six papers (19%)

mentioned the environment as their main issue. This is due

to the nature of such implementations, where ubiquitous

devices allow users to use the applications anytime and any-

where. It is also difficult to simulate environments for studies

since there are many different possibilities for students to use

the apps. Moreover, the set of challenges including personal

and aggregated learning events, physiological data manage-

ment and visualizations, and equipment were all mentioned

in four papers (13%). Personal learning events can provide

better learning outcomes since students are heavily influ-

enced by their experiences, this data can be difficult to cap-

ture but would prove more than helpful in studies like these.

Also, physiological data are invisible to the user and this

could cause confusion during the use of an application. The

management and visualization of such data provide impor-

tant feedback that users can use to perform accordingly dur-

ing the learning experience. Equipment is a big concern in

the mobile setting since wearable devices are expensive,

could be uncomfortable if not carefully considered and it

brings possible technical faults to the process.

Also, nonreal-time feedback and security/privacy were

mentioned in three papers (9%). Most applications in this liter-

ature review had an issue with real-time feedback. This is

expected due to the processing time and nature of some physi-

ological signals (e.g., EEG) that require an amount of time to

provide clear patterns. Other systems encountered users that

were particular about their privacy and security. This was a

problem mostly with eye-tracking applications, that would

need to use the camera to see a person’s face and classify dif-

ferent states. Finally, the top ten concludes with varying

engagement, mobile implementation, and lack of adap-

tiveness; all mentioned in two papers (6%). The problem with

TABLE X
EVALUATION AND ANALYSIS METHODS USED IN EACH REVIEWED ARTICLE
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varying engagement measures is being replicated in the

mobile learning setting. Moreover, another issue is the imple-

mentation process on mobile devices using such physiological

devices. This implies new hardware and possible compatibil-

ity issues between devices that could become a major limita-

tion in most designs. Last, the lack of adaptiveness is a

drawback for some papers. A possible relation with the real-

time feedback limitation, adaptiveness is important since users

expect instant replies from the system to improve as they go

instead of waiting until they are finished to get an assessment

on their performance.

Finally, the remaining 12 challenges are as follows: state

classification (2), user-independent classification (2), UI/Sys-

tem functionality (2), lack of interactivity (1), fatigue (1),

competitiveness versus cooperativeness (1), long-term versus

short-term evaluations (1), small population (1), multiple

inputs for effectiveness improvements (1), pre and postdata

comparisons (1), engagement self-reporting (1), and data anal-

ysis for student anxiety (1). Most of these target the topic of

finding more data and better managing it to perform better at

specific implementations. Others focus on the evaluations for

these systems, such as long-term versus short-term and pre

and postdata comparisons. However, challenges such as user-

independent classification, lack of interactivity, and state clas-

sification provide interesting takes on possible future work in

the mobile learning realm that can drastically change current

designs.

VI. DISCUSSION

This literature review presents a total of 30 papers that

discuss the topic of physiological-based mobile educational

systems. This section will explore the information provided

by the reviewed articles, answering the proposed research

questions (RQs) through the synthesis of all the papers.

Most of the reviewed system designs use smartphones as

their main device [30], [41], [43], [46], [59], but there are

cases where the researchers also include a tablet to evaluate

the difference between both mobile environments [46]. The

interfaces created for most applications are simple, there is

mostly static content (text, images, and videos) and

straightforward interactivity. For example, in [30], [43],

and [59], the type of interactivity involves users going

through lectures and possibly answering short quizzes. Nev-

ertheless, in [41], a mobile game incorporates students

playing the game both on their phones and in-person.

Therefore, interactivity is much higher compared to the

other applications which only require linear actions. As

defined earlier in this review, the goal of m-learning is to

enhance learning through interactions with mobile applica-

tions [3], and after this analysis, it is clear that more

dynamic environments improve the value of such systems.

This analysis provides an understanding of the types of sys-

tems and their contributions to the field, answering RQ2

and RQ3.

TABLE XI
CHALLENGES PRESENTED BY THE AUTHORS IN THE REVIEWED PAPERS
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A. M-Learning Systems

The most dominant type of physiological-based m-learning

applications is MOOCs. Dr. Jingtao Wang leads a laboratory

on mobile educational systems, with extensive work on

MOOCs, which represent 8 (27%) out of the 30 articles in this

review. Existing literature shows mostly positive reactions to

the usability of these applications [30]. The interaction is

straightforward, the content is adequately shown, and users

showed learning improvements [30], [43], [59]. Still, these

implementations exhibit the same problem mentioned earlier:

lack of interactivity. MOOCs are effective and useful in most

cases, but they could integrate dynamic activities to enhance

student learning experiences. This analysis allows for an

understanding of the current state-of-the-art systems, contrib-

uting to the overall answer to RQ2 and RQ3.

In the current literature, there is minimal discussion on ped-

agogical approaches. Some articles implicitly employ specific

techniques such as [41] with collaboration and [27] with

game-based learning. However, the lack of discussion of peda-

gogical approaches is a current limitation in the field. There-

fore, this review focused on the learning contexts of each

article, which, due to the abundance of MOOCs, lean toward

nonformal environments. There are few formal learning con-

texts, with informal and nonformal showing dominance

throughout the years. This helps answer RQ1, providing an

understanding of the current learning context trends. The anal-

ysis presents the abundant use of subjective feedback as an

evaluation method, but many papers implement physiological

data into their results to either strictly determine the student’s

performance or to contrast with the provided feedback. There

are different approaches to evaluate these systems, current

research leans toward the use of both surveys (for subjective

information) and the captured physiological data to understand

the learning experience from the user. This information con-

tributes to the answer of RQ4, identifying the trends of current

evaluation techniques in the research area. Furthermore, these

applications introduce an important component: physiological

computing.

B. Physiological Computing in M-Learning Systems

There are various types of physiological signals and many

ways to collect the data. In a ubiquitous setting, many chal-

lenges could arise while integrating these features. First of all,

the most common signal used was heart rate [30], [41], [43],

[59]. Tied with eye-tracking, which was also used in most of

the reviewed articles [33], [38], [45], [54]. They are both

widely used in mobile because of the many ways to capture

the signals. Nowadays smartphones, and wearables (smart-

watches) include sensors that detect heart rate; therefore it is

not necessary to add any external devices. These signals are

captured through PPG, which is not as effective as ECG/EKG

but it is still very useful. Moreover, if the smartphone does not

have such sensors and there are no wearable available, the

research presents methodologies using the camera to retrieve

the heart rate signals [30], [43], [59]. Similarly, the eye-track-

ing glasses are some of the most comfortable hardware to

interact in a ubiquitous environment. In general, it is very con-

venient to detect those signals in a mobile environment, and

methods are being developed for easier, nonintrusive ways of

doing so in the future.

There is also the use of EEG signals [46], and the trend is to

analyze the data after the learning activities. However, this

data could contribute more if it was utilized during the activi-

ties (real-time). An example would be to have adaptive user

interfaces [35] or interventions [40], but the current literature

explores these approaches in a limited manner. Most studies

are exploring early technology, therefore their goal is to col-

lect high quality data and perform predictive classifications

with high accuracy. However, others explore the use of inter-

ventions during the educational experience [40], detecting

user disengagement and presenting a feed-forward reminder

catching the learner’s attention. Another example is [59]

where the application intervenes to present a topic review

based on the user data during the video lectures. Moreover,

there is a need for external devices to retrieve the EEG signals

and most can be portable and accurate [46], but expensive. As

consumer-grade EEG devices become more accurate (e.g.,

Muse headset), these implementations will become feasible.

Using physiological signals also requires monitoring possible

data perishability due to external factors such as caffeine

intake and stress. During this review, only one article consid-

ered this as a variable during their study [42]. More studies

need to include these stimulants to understand their effects

during the learning experience since most students are in

uncontrollable environments. This analysis helps answer RQ2

and RQ3 due to contributions made in terms of physiological

computing and system architectures, which need to take into

account the signals as an input to the application.

C. System Design Recommendations

This generic architecture serves as a guide to create systems

adapting to specific needs and compatibility. Fig. 6 illustrates

a design diagram including all of the components and their

variations. However, they all have the same underlying com-

ponents and purpose. Some systems might want to use devices

that can require changes in their overall structure due to the

lack of compatibility between the hardware and mobile

Fig. 6. Generic architecture design for physiological-based mobile educa-
tional systems.
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devices. Therefore, such implementations would want to use

an intermediary signal processor, either a computer or cloud

service, to connect with the mobile device. In the case of [33],

the system uses a tablet with a custom-mounted eye-tracking

device called EyeTribe.1 This device can directly transmit the

necessary information to the device, it sends x and y coordi-

nates of the user’s eyesight on the screen. Since the applica-

tion only needs that data to synthesize speech during reading

activities, the architecture works well without an intermediary

signal processor. However, other applications like [46] have

presented the need for an external device as their signal pro-

cessor. Here, the authors use a laptop to receive and analyze

the data from the user instead of feeding it directly to the

smartphone. They present the use of an Emotiv SDK2 to pro-

cess and classify affective states through their proprietary

algorithms. This situation occurs in a few of the reviewed sys-

tems (five; 17%), but it can still become a concern with spe-

cific hardware.

The other variable component in the generic architecture is

the analysis or feedback process. The application will continue

to process its signals and classify the desired features, but the

final step needs to determine what to do with the acquired

information. The purpose of such applications is to improve

the user experience during learning, and the reviewed litera-

ture shows two possibilities: analysis with future enhance-

ments or feedback with real-time adaptiveness. The first refers

to capturing the results and analyzing the data to improve the

system and help the learners with their experience in future

activities. The second is the real-time use of information to

adapt the application while the user is learning. In [54], the

application captures face and eye data to classify the user’s

reactions to the information and later classifying their knowl-

edgeability. This information can be used to better adapt

future implementations of the application depending on their

physiological data. Therefore, this represents an architecture

with the final step being an analysis. On the other hand, the

authors in [39] contribute a system that detects, analyzes, and

classifies the PPG signals of users learning in mobile MOOC

courses to automatically provide them with reviews of the

most difficult topic. This leverages the physiological data to

instantly give users a better experience during their learning

activity. This is an example of the architecture with a final

step of feedback.

The final component in a physiological-based mobile learn-

ing application is the educational activity. The literature

showed a myriad of pedagogical approaches. Research shows

that video lectures are an effective, and easy to implement

technique for mobile environments. However, the ubiquitous

nature of these applications allows for opportunities to

increase interactivity. For example, game-based learning is a

big area in the field and some studies explored the use of real-

world objects to increase the students’ interests. Moreover,

they can include other learners and integrate cooperation or

competitiveness. Nonetheless, this generic system design

allows for the exploration of more educational activities since

there are no physical limitations. The addition of physiological

data is useful to adapt or suggest content. Additionally, more

intervention techniques can be explored to help students either

maintain or increase their attention levels. Therefore, the edu-

cational component is open to many implementations, using

all of the available components to create a more interactive

and interesting experience for the learners.

D. Challenges

Common challenges discussed in this topic include the

aforementioned capturing and analysis of the physiological

data. Heart rate signals are normally captured through PPG

and EEG (requires external devices). The need for third-party

hardware can become tedious for the learner since they would

need to include extra weight and cost. Furthermore, it can also

be a problem for the developer due to possible problems with

hardware and software compatibility issues, proprietary

licenses, and more. Nonetheless, this has inspired research on

ways to create methods that allow for the capturing of the data

through available devices. An example is the tangible video

control interface from [30], [43], [59], in which users must use

their finger to play/pause videos through the camera lens.

They leverage PPG to capture the signals. In summary, more

methods can be developed to further improve the usability

and experiences of physiological-based mobile educational

systems.

There are other important challenges found in the physio-

logical computing area, including feedback and multimodal

implementations. This review discussed systems that do not

show users their current states, and it has been shown that

such information is important for them to possibly adjust and

understand how the current activity influences them during

learning. One specific paper provides users with a view of the

signals as they are being recorded [48], whereas from

the others there are only two with a visual representation of

the learner’s state (blinking indicator showing important cog-

nitive states). The other important finding is that papers in this

review did not use multiple physiological signals in their sys-

tems. Each application utilized one type of data, either heart

rate [30], [41], [43], or EEG [46], [59], but there is no discus-

sion on the possibility of multimodal implementations. The

use of multiple signals can improve results on the learning

experiences, as well as predictions for those systems that rely

on the data to classify different reactions from the user. This

shows a lack of exploration for multimodal systems that can

leverage many physiological attributes to better adapt to the

learner. Challenges are explored in detail, and they help com-

prehend the current maturity of the systems presented in the

research papers, including their evaluation methods and

implementation limitations. Therefore, such analysis contrib-

utes to the answer to RQ4.

E. Future Directions

Physiological data can and has improved learning experien-

ces and outcomes. As presented in most reviewed articles [30],

1 [Online]. Available: https://theeyetribe.com
2 [Online]. Available: https://www.emotiv.com/

288 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 14, NO. 3, JUNE 2021

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on November 20,2021 at 14:03:40 UTC from IEEE Xplore.  Restrictions apply. 



[33], [34], [43], [49], there are various ways to enhance the

learner’s performance. The use of such physiological data can

show the needs or preferences of the user, in the case of [43]

and [46], there is a need for adaptiveness to tackle the detected

divided attention and interest levels. The application can

change the type of activity to become more active (for uninter-

ested learners) or passive (for overly excited learners) in real-

time. There is a lack of exploration of interventions during

these learning activities. The same applies to the use of the

data to provide recommendations on topics to study for self-

improvement [48]. Current implementations of recommenda-

tions use overall information on broad topics, and this can

become better by focusing on the individual and their features.

A common challenge is a generalized approach to teaching

the material, and this can be refined through the adaptiveness

to a user’s preferences. Physiological information along with

context can provide much insight into a learner’s style. How-

ever, personalization is not the only necessary course of

action, since aggregation demonstrated being a powerful piece

of data. A user is influenced by their teacher and peers, there-

fore it is very useful to take into account how other learners

are performing to correctly assess the current student. In sum-

mary, the user should be the centerpiece of such applications,

through individual and general performances the system can

adapt and recommend the user better content as it enhances

their learning outcome.

Finally, physiological-based mobile educational systems

need a deep understanding of the learner for effective knowl-

edge transmission. There is a need for more interactive,

dynamic applications that can provide content through various

means. Evaluations for such applications should become lon-

gitudinal, instead of instant and fast studies where the student

cannot effectively show progress. The physiological signals

used can be expanded to other types, as background literature

reveals possibilities for eye-tracking to be included in the

spectrum. Not only this, but more methods to capture the sig-

nals are becoming available to eliminate third-party hardware.

M-learning applications can provide customizable options for

users to choose their preferred studying methods. Learners

also have different motivations (intrinsic, extrinsic), and pre-

ferred peer interaction modes (cooperation and competition).

Furthermore, the applications in this field must use inputs

from physiological data, user preferences, and their contexts

to fully adapt to their needs. The implementation of these sys-

tems should make the learner their most important component

and, through the aforementioned methods, enhance their learn-

ing experiences for effective transmission of knowledge.

VII. CONCLUSION

This article presents a literature review of physiological-

based mobile educational systems. Multiple research papers

were selected through specified criteria, and then detailed

analysis was provided to understand the current state of the

field. The main discussion is on the state-of-the-art of the field

as of the present day. In this section, the focus is to define cur-

rent solutions, along with information about topics stated as

important during the statement of research questions. These

include contributions, learning contexts, physiological signals,

and challenges from every relevant paper in the field. All of

the aforementioned data leading to a synthesis of the ideas and

topics researched during the review.

There are many important findings to consider whenever dis-

cussing physiological-based mobile education. The field is in

very early stages, which provides an opportunity to contribute in

various ways. It was found that the dominant type of physiologi-

cal m-learning applications was MOOCs. Which, even though

proven effective in learning outcomes, are not known for many

interaction-based activities. Therefore, there is a need for such

adaptive applications that leverage physiological signals for

interactivity. Another finding presents that the capture of the

physiological signals in mobile environments is a prominent

research area due to the difficulties that it entails. Such ubiqui-

tous applicationsmake the use of external devices an uncomfort-

able task. Moreover, these signals are a useful resource to detect

and classify a learner’s state, thus providing possibilities for per-

sonalized systems. The use of this data has not been used to its

full potential, and it can become the main tool for better, adap-

tive learning applications. In general, there is a potential left to

uncover inside physiological data for mobile educational sys-

tems, such as predictions, adaptiveness, multimodal implemen-

tations, aggregate recommendations, and more.

This literature review provides a basis for state-of-the-art

research in this area. Educational applications can become a

useful class resource, thanks to the rising market of smart-

phones. Furthermore, with the help of physiological comput-

ing, m-learning applications can start perceiving the learner’s

preferences to provide accurate information effectively. The

field has the potential to bring students a tailored information

source, which will fulfill their specific needs and improve their

learning outcomes.
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