
APECS: A Distributed Access Control Framework for Pervasive
Edge Computing Services

Sean Dougherty
Saint Louis University

St. Louis, U.S.
sean.dougherty@slu.edu

Reza Tourani
Saint Louis University

St. Louis, U.S.
reza.tourani@slu.edu

Gaurav Panwar
New Mexico State University

Las Cruces, U.S.
gpanwar@cs.nmsu.edu

Roopa Vishwanathan
New Mexico State University

Las Cruces, U.S.
roopav@nmsu.edu

Satyajayant Misra
New Mexico State University

Las Cruces, U.S.
misra@cs.nmsu.edu

Srikathyayani Srikanteswara
Intel Labs

Portland, U.S.
srikathyayani.srikanteswara@intel.com

ABSTRACT

Edge Computing is a new computing paradigm where applications

operate at the network edge, providing low-latency services with

augmented user and data privacy. A desirable goal for edge comput-

ing is pervasiveness, that is, enabling any capable and authorized

entity at the edge to provide desired edge servicesśpervasive edge

computing (PEC). However, efficient access control of users receiv-

ing services and edge servers handling user data, without sacrificing

performance is a challenge. Current solutions, based on łalways-onž

authentication servers in the cloud, negate the latency benefits of

services at the edge and also do not preserve user and data pri-

vacy. In this paper, we present APECS, an advanced access control

framework for PEC, which allows legitimate users to utilize any

available edge services without need for communication beyond

the network edge. The APECS framework leverages multi-authority

attribute-based encryption to create a federated authority, which

delegates the authentication and authorization tasks to semi-trusted

edge servers, thus eliminating the need for an łalways-onž authen-

tication server in the cloud. Additionally, APECS prevents access

to encrypted content by unauthorized edge servers. We analyze

and prove the security of APECS in the Universal Composability

framework and provide experimental results on the GENI testbed

to demonstrate the scalability and effectiveness of APECS.

CCS CONCEPTS

· Security and privacy→Access control;Distributed systems

security; · Networks→ Security protocols.

KEYWORDS

Distributed access control, authentication, authorization, attribute-

based encryption, edge computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’21, November 15ś19, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484804

ACM Reference Format:

Sean Dougherty, Reza Tourani, Gaurav Panwar, Roopa Vishwanathan, Satya-

jayant Misra, and Srikathyayani Srikanteswara. 2021. APECS: A Distributed

Access Control Framework for Pervasive Edge Computing Services. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS ’21), November 15ś19, 2021, Virtual Event, Republic of

Korea. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3460120.

3484804

1 INTRODUCTION

The number of wireless devices and connections are growing rapidly,

the major drivers being the increasing number of smartphones

and machine to machine communications from smart meters, au-

tonomous vehicles, video cameras, and more [5]. As an example,

real-time video analytics data from Internet of Things (IoT) devices

such as surveillance cameras [4], estimated to be over 1 billion by

the end of 20211, supports several practical, useful applications

such as traffic control, autonomous driving, providing cognitive

assistance to users [25, 31], and more. The video feed data generated

by cameras needs to be processed quickly and in proximity to the

user, which precludes transferring the data to the Cloud for pro-

cessing. This need is particularly accentuated for latency-sensitive

applications such as autonomous driving.

To address this challenge, various edge computing ecosystems

have been proposed, including cloudlets, fog computing, and Multi-

Access Edge Computing [21] with the premise of deploying pow-

erful servers and gateways to serve users in regions with high

computation demand. Recently, the notion of Pervasive Edge Com-

puting (PEC) [23] has emerged, aiming to create an ecosystem in

which the computation capability of every peer device at the edge,

e.g., smartphones, tablets, and vehicles, can be brought to bear to

serve users’ computation needs.

Motivation:Current access control enforcement solutions designed

for cloud computing cannot be trivially ported to the distributed,

multi-stakeholder PEC environment. In a PEC ecosystem, relying

on an always-online cloud service for access control is undesirable

for several reasons, such as high latency due to several rounds of di-

rect client-server communication, the Cloud might become a single

point of failure, and cloud server(s) going rogue and undermining

user privacy and/or user data confidentiality. Furthermore, in the

1https://technology.informa.com/607069/video-surveillance-installed-base-report-
2019

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1405

highly dynamic PEC environment with quick nodes turnover, lack

of mutual authentication between the user and edge servers, and de-

layed revocation of rogue servers (particularly with high turnover

rates) is an added challenge. This necessitates re-envisioning access

control mechanisms without involving the Cloud.

Use Cases: We consider two application use cases to motivate the

need for distributed and fine-grained access control for secure ex-

ecution of edge services. The extensive deployment of security,

traffic, and dash cameras motivated crowdsensing applications,

including a vehicle-tracking AMBER Alert system [30, 31] and a

parking spot locating service for dense urban areas [10]. These

applications collect user generated video feed for low latency pro-

cessing by the authorized edge servers, available in the data sources

locale to identify occupied parking spots or vehicles using their li-

cense plates. Such data sharing applications, however, raise privacy

and security concerns over how user generated data is collected,

processed, and utilized. For instance, in the AMBER Alert example,

parents may accept sharing their children’s information with the

authorities but not the larger public community, or a driver in the

region of interest may be willing to share the video feed of her on-

dash camera only with the police department. In another scenario,

the police department might require the location (or the annotated

image) of the alleged kidnapper’s vehicle to only be shared with

active duty officers in order to mitigate the risk of vigilantes.

The second use case is post disaster rescue, in which first re-

sponders and civilian volunteers spontaneously form rescue teams

to collect information such as the video feed from body cameras

and updates from cameras/sensors on disaster victims devices. The

data will be opportunistically shared with the available and au-

thorized edge servers (e.g., vehicles, drones, or base stations) for

processing and critical decision-makingśoften in this case there

is no centralized cloud available. In this use case, only relevant

information should be shared with each participant. For instance, a

civilian volunteer should not be able to access the private health

information of a victim while a paramedic at the same site should

be able to obtain such information. These use cases elucidate the

demand for distributed and fine-grained access control, enabling

users and the dynamic edge infrastructure to mutually authenti-

cate and authorize each other without relying on an always online

authentication server, which will often be difficult to provision.

UniqueConstraints in the PECEnvironment: The PEC ecosys-

tem is highly dynamic and is composed of mobile devices, e.g., cars,

smartphones, and PEC servers with high turnover. Providing ser-

vices in such a fast-changing, evolving environment is a challenge.

This will be further compounded by the low-latency and high

bandwidth requirements of the next generation services, e.g., au-

tonomous driving and industrial IoT, where significant amounts of

data need to be transferred to a server quickly, processed rapidly,

and delivered back to a customer, sometimes in mere milliseconds.

This necessitates the need for quick authentication and rapid inter-

changes between the consumer and the servers before the connec-

tion is lostśpotentially forever. Further, the personal nature of the

user data, such as images, puts stringent privacy requirements on

it. Providing personal data to an unauthorized or unauthenticated

server for service becomes a high stakes operation and the impact

of data falling in the wrong hands (especially if authentication is

not rigorous) could be significant. The high dynamicity may not

adequately equip the consumers to verify the servers’ access rights

and authenticity in the short time window available for interaction.

These constraints are major motivating challenges.

Overview:We address these motivating challenges by proposing

APECSśa distributed, multi-authority access control framework

for dynamic PEC ecosystems. APECS enables the users and PEC

servers to mutually authenticate and authorize each other via a

federated access control model without relying on a centralized root

of trust. Utilizing multiple trust authorities regulates access to users’

personal data and prevents a malicious authority from breaching

users’ privacy by unilaterally accessing the user’s personal data. To

ensure that users can provide access right proofs and this access can

be verified at the PEC server directly, APECS employs a token-based

authorization scheme (similar to OAuth), which includes a novel

authentication method for verifying token ownershipśa feature

not provided in OAuth. In addition, APECS removes the łalways-

onž authentication server requirement and allows asynchronous

authentication of PEC servers. Thus, in the highly dynamic and

intermittent edge environment, APECS allows the users to securely

submit their data for processing, without edge server discovery and

with implicit authenticity verification; ensuring that only available

and authorized PEC servers can decipher the data for processing.

Contributions: In summary, the contributions of this paper in-

clude: a) Design of APECS, a distributed mutual access control en-

forcement framework that operates at the edge after bootstrapping

by the Cloud. APECS uses multi-authority attribute based encryp-

tion [3], is agnostic of the underlying network architecture, thus is

portable to future internet architectures. b) Design of APECS PKC

(public key cryptosystem), an alternative APECS implementation

using traditional public key cryptosystems. APECS PKC is suitable

for static networks, in which PEC servers’ availability is known to

the users prior to service requests, allowing the users to establish

secure channels to the desired PEC server. c) APECS has an effi-

cient and quick revocation mechanism for edge entities that does

not need immediate communication with the Cloud, and requires

minimal (not system-wide) re-keying of the remaining entities and

data re-encryption in the system. d) Rigorous security analysis of

APECS using the Universal Composability framework and discus-

sion of enhancements using traditional public key cryptosystems.

e) APECS prototype implementation in the GENI testbed [1] and

performance evaluation with the existing set-up and an IP-based

potential design set-up.

The paper is organized as follows. We discuss the related work in

Section 2. Section 3 includes our models and assumptions. Section 4

presents APECS building blocks and overview with detailed design

in Section 5. Section 6 includes the security analysis of APECS.

We discuss the reference implementation of APECS along with its

evaluation in Section 7 and draw our conclusion in Section 8.

2 RELATEDWORK

The majority of access control for services today happens far from

the edge, either on the Cloud or the Content Provider premises.

Recently, a few initiatives have proposed edge computing as a plat-

form for providing security services at the edge [6, 12, 18]. However,

access control enforcement at the network’s edge has received little

attention. Despite some similarities, edge-centric access control

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1406

and service execution. The PEC servers return the result of the

service to the base station, which forwards it to the user (Step (7)).

3.2 Security and Computational Assumptions

We assume that all entities are capable of performing symmetric and

asymmetric key cryptography, and have their clocks loosely syn-

chronized. We assume the existence of a trusted public key infras-

tructure (PKI) by which all entities obtain certificates corresponding

to their cryptographic key pairs from well-known authorities (e.g.,

Verisign). For instance, a provider p obtains its certificate Certp
and a user u obtains their certificateCertu . We further assume that

symmetric and asymmetric key operations and cryptosystems are

secure. We assume the cloud providers and base stations are honest

but curious participants in that they do not deviate from the proto-

cols but try to learn information about the system. It is a common

assumptionwhen considering these entities as part of the infrastruc-

ture. We further assume attackers are Probabilistic Polynomial-time

(PPT) adversaries and are computationally bounded.

Our scheme relies on assumptions based on the decisional Diffie

Hellman (DDH) problem, the decisional Bilinear Diffie Hellman

(BDH) problem, the k-decisional Diffie Hellman (k-DDH) problem,

and the external Diffie Hellman (XDH) problem [3]. Please refer to

Appendix 10 for formal definitions of these assumptions.

3.3 Threat Model

We consider the following six threats from the service consumers,

the computing ecosystem (including PEC servers and the cloud

computing providers), and malicious third parties, which may play

the role of an edge server or a service consumer. An outsider may

try to unlawfully use a service (a)without registering and obtaining

a valid token for the service, or (b) by using a forged token (not gen-

erated by the service provider or containing invalid information). A

legitimate user (service consumer) may try to (c) request a service

with an expired token or a token with insufficient authorization

level (similarly reusing a token from one service provider to give

access to services of other providers), or (d) share their token with

an unauthorized user to allow unauthorized service access.

An unauthorized PEC server may try (e) to mount a spoofing

attack by impersonating an authorized server to hijack or obtain a

user’s data. An authorized but malicious PEC server may try to (f)

collude with an unauthorized user to maliciously provide a service.

This includes offering a static service (i.e., content) or the execution

of a dynamic service to an unauthorized user. We do not consider

the situation where a malicious PEC server returns incorrect re-

sults, possibly for avoiding resource intensive computation. For

addressing this, techniques for verifiable computing [32] can be

used in conjunction with APECS.

4 APECS BLOCKS AND OVERVIEW

In this section, we give an overview of APECS and its building

blocks. Table 1 presents the notations used in explaining APECS.

4.1 User Authentication and Authorization

In APECS, a user u ∈ U interested in using a service provider’s

p ∈ P services (e.g., Instagram) has to register herself with p to

obtain a customized and time-bounded token. The token allows

u to authenticate herself to the corresponding PEC server e ∈ E

Table 1: Notations Used

Notation Description

P Set of service providers.

U Set of clients.

C Access Control Cloud.

E Set of PEC servers.

B Set of base stations.

Tpu User u ’s token T from service provider p .

IDx Identifier of entity/service x .

Cer tx Entity x certificate containing verification key VKx .

Lx Authorization level of entity/data x .

Texp Token’s expiry time.

Tc Current time.

Mpk Public key of MABE system for ABE operations.

[Ae] List of MABE decryption keys possessed by e .

RAC Service provider p’s registration request to C.

SKx Signing key of entity x .

VKx Signature verification key of entity x .

σx Signature on data x .

r evocTable List of revoked users’ tokens stored at each e ∈ E.

serverT able List of PEC servers maintained by each AIA.

userT able List of users and tokens maintained by each p ∈ P.

providing service for p, when requesting the service, which can be

either static or dynamic. We note that p has to sign all the issued

tokens for integrity verification. Below, we elaborate on the token’s

structure, its components, and the rationale behind its components.

Definition 4.1. Authentication Token

Token Tpu represents the unique JSONWeb Token (JWT) that service

provider p generates for user u. The JWT format provides greater

functionality than traditional bearer tokens, such as those used in

OAuth. Tpu is a unique token that includes the service provider’s

unique identifier, IDp , the service identifier, IDs , (or a list of service

identifiers), the user’s certificate,Certu , the user’s authorization level,

Lu , (or a list of authorization levels), and its expiry time,Texp : Tpu :=

⟨IDp , [IDs],Certu , [Lu],Texp ⟩.

The service provider’s identifier, IDp , in Tpu enables the access

control enforcers, i.e., PEC servers, to fetch p’s certificate for token

signature verification, thus ensuring token’s integrity and prove-

nance.We note that lack of token integrity and provenance verification

is one of the major shortcomings of OAuth, which we address. The

service identifier, IDs , indicates the name of service(s) that u is

authorized to use. By including IDs in Tpu , the PEC servers prevent

u’s unauthorized access to other services p provides that requires

independent membership per service. For each service (static or

dynamic), Lu indicates u’s authorization level, i.e., Bronze, Silver,

or Gold, to be matched against the required authorization level

of the requested service. Token Tpu also includes u’s certificate,

Certu , which enables the PEC servers to verify the authenticity of

u’s signed request, thus preventing unauthorized users from using

a hijacked token. Finally, Tpu includes an expiry time as a system

parameter. At the conclusion of Texp , u can request to renew her

token, which is granted at the service provider’s discretion.

4.2 Asynchronous Server Authentication

APECS is designed for a dynamic edge computing ecosystem where

edge servers can leave and join at will. In such ecosystems, the tra-

ditional authentication mechanisms, in which the user has to first

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1408

discover the available PEC servers, create a secure connection, and

authenticate the selected server would not scale. Thus, APECS de-

vises an asynchronous PEC server authentication framework using

the MABE scheme proposed in [3]. In APECS’ asynchronous PEC

server authentication framework, users encrypt their data (needed

for service execution) using the MABE scheme, allowing any PEC

server with the requisite set of attributes obtained from multiple

attribute-issuing authorities to decrypt the data and execute the

requested service without the need for server discovery, secure

channel establishment, or synchronous interactions between the

user and PEC servers. To obtain pertinent credentials (e.g., secret

keys and attributes), PEC servers should be associated with the cor-

responding service providers and a base station. Before presenting

the MABE scheme [3], we note that broadcast encryption (BE) is an-

other relevant technique for asynchronous authentication [16, 17].

Despite its simplicity, BE is not suitable for the PEC ecosystem

since it does not work well for several one-to-one (consumer-edge

server) communications [9], and falls short in performing dynamic

revocation. Furthermore, a federated BE approach does not exist in

the literature.

Definition 4.2. Multi-authority Attribute-Based Encryp-

tion (MABE) [3]

A key policy ABE scheme (KPABE) with n attribute-issuing authori-

ties (AIAs) consists of the following four algorithms. All algorithms

except decryption are randomized.

1) (sysparam, (apk1 ,ask1), . . . , (apkn , askn)) ← ABE.Setup(1λ , n):

This algorithm runs once in the beginning to setup the system param-

eters and the AIAs. It takes in a security parameter, λ, and number of

AIAs n, as input, and outputs the system parameters, sysparam, and

each AIA’s public/private key pairs. The sysparam includes bilinear

group information, and the threshold value dk that denotes the min-

imum number of attributes each user needs to possess from an AIA

k ;k ∈ [1 . . .n]. Set public key,Mpk = (sysparam, apk1 . . . apkn).

2) SKk ← ABE.KeyGen(Mpk ,askk , id,Ak): This algorithm is run

by AIA k , and takes as input Mpk , k’s secret key, askk , a userid, id ,

and a set of attributes, Ak , s.t., |Ak | ≥ dk . It outputs the user’s secret

keys SKk .

3) C← ABE.Encrypt(Mpk , (A1, . . . ,An),m): This algorithm takes

inMpk , a subset of at least dk attributes from an AIA k ;k ∈ [1 . . .n],

messagem, and outputs ciphertext C.

4) {m,⊥} ← ABE.Decrypt(Mpk , (SK1, . . . ,SKn),C): This algorithm

takes in the public key Mpk and a set of secret keys from each AIA

sufficient to decrypt the ciphertext C. If successful it outputs the plain-

text message m, else outputs ⊥. Decryption is successful whenever

the overlap between the set of secret keys and the set of attributes

associated with the ciphertext is above a threshold.

4.3 APECS Overview

APECS consists of seven protocols that describe the interactions

between the cloud provider, C, service providers, P, PEC servers,

E, and users, U. APECS consists of two phases: (i) distributed user

authentication and (ii) asynchronous server authentication and

service execution.

In the first phase, PEC servers authenticate and authorize users’

requests by validating the users’ requests and corresponding tokens.

For token verification, PEC servers use service providers’ identifiers

(included in the tokens) to fetch the corresponding certificates and

validate tokens’ signatures; preventing token forgery. For users’

requests verification, PEC servers use the users’ certificates included

in the corresponding tokens to verify requests’ signatures. Finally,

the PEC servers use the other components of the tokens to authorize

users for requested services. Token-based user authentication and

authorization in APECS enables mobile users to utilize edge services

while moving across base stations without the need for obtaining

new tokens or updating cryptographic materials.

In the second phase, upon successful user authentication, PEC

servers should fulfill service requests on a service provider’s behalf.

In order to protect the user’s privacy, the user encrypts the data

needed for her service execution using the set of attributes (from

both AIAs) pertinent to the requested service. Following the MABE

scheme mentioned in Definition 4.2, PEC servers use their attribute

sets for data decryption. A successful MABE decryption process

proves the authenticity of the PEC server for service execution.

APECS enables efficient revocation of users and PEC servers.

For user revocation, service providers share their user revocation

lists (revoked tokens) with the PEC servers. For PEC server revo-

cation, instead of a system-wide re-keying of un-revoked users,

the provider notifies the base station that is associated with the

PEC server to revoke it. This localizes the PEC server revocation to

the base station, which invariably has a much smaller number of

connected PEC servers.

5 APECS DESIGN

This section includes APECS architectural design and details of

protocols for system setup and registration, users service requests,

PEC servers’ service response (including mutual authentication),

and user and PEC server revocation.We also discussAPECS PKCśan

APECS construct using the traditional public key cryptosystem for

scenarios where users and PEC servers can synchronously interact.

5.1 System Setup and Registration

5.1.1 Bootstrapping of AIAs and Provider Registration (Protocol 1).

In APECS, service providers use the Cloud as a conduit for their

interactions with the PEC ecosystem due to the Cloud’s centrality.

Thus, to delegate access control enforcement to PEC servers, the

service provider (p ∈ P) must register with the Cloud (C) as the

hosting environment for running its AIA and bootstrapping the

PEC servers at the edge. Initially, as illustrated in Protocol 1, the

providers and base stations run the system setup for the MABE

protocol as defined in Definition 4.2 (Line 1). Provider registration

begins withp forming and sending a request (RAC) toC, containing

p’s certificate (Certp), followed by a challenge-response commu-

nication to prove the ownership of Certp (Line 2). We note that

Certx contains the verification key of entity x (VKx), which will

be used for signature verification. Upon receipt of RAC from p, C

registers p by generating a profile and a provider identifier IDp
(Line 3), using either the unique subject identifier value stored in

Certp or its digest, and returns it to p (Line 4). This allows p to use

IDp when generating future access tokens and aids in confirming

the validity of the tokens at the PEC servers.

5.1.2 Edge Server Registration (Protocol 2). As shown in Protocol 2,

a PEC server (e ∈ E) initiates its registration process by securely

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1409

Protocol 1 System Setup and Provider Registration

{At AIAs (Provider & Base station)}

1:

(

Mpk = (sysparam,apk1, . . . ,apkn),ask1, . . . ,askn

)

←

ABE.Setup(1λ ,n)

{At Provider}

2: send RAC = {Certp } to C

{At Cloud}

3: IDp ← registerProvider(Certp);

4: return IDp to p;

sending it’s certificate, (Certe), and the list of identifiers, ([IDs]),

of services it would like to provide to two AIAsśboth p’s AIA,

hosted on the Cloud, and the base station that e is connected to

(Line 1). Each AIA executes the MABE key generation algorithm

(following Definition 4.2) to generate a list of secret keys [Ae] for

e , corresponding to the services [IDs] offered by e (Line 3). The

AIA stores the generated keys in a serverTable and securely sends

them to e (Lines 4-5), allowing it to decrypt any requests that it may

receive from users, so long as e’s attributes match the attributes in

the user’s request.

5.1.3 User Registration (Protocol 3). A new service consumer (u ∈

U), interested in p’s service(s), has to register with p to obtain a cus-

tomized token for future service utilization. As shown in Protocol 3,

user registration begins with u sending a request to p containing

her certificate (Certu) and general user data (user_data) that are

often used for creating user accounts, such as credentials, e-mail,

and birth-date (Line 1). The user_data also contains any number

of values necessary for the provider to complete registration of the

user. Additionally, this metadata contains information related to the

requested service, such as service tiers (e.g., bronze, silver, and gold)

or service types (e.g., image annotation, gaming, or streaming).

Provider p verifies u’s request and if the registration request is

valid (Line 2), it retrieves a list of service identifiers ([IDs]) cor-

responding to the user_data. It should be noted that the [IDs]

corresponds to services offered by p. With the user’s information,

p generates a customized access token (Tpu) for u containing p’s

identifier (IDp), list of permitted service identifiers ([IDs]), the

user’s certificate (Certu), u’s authorization levels for the permitted

services ([Lu]), and an expiry time Texp (Line 3). To protect the

token’s integrity and for provenance, p signs the token (Line 4).

The provider further obtainsMpk , the MABE’s master public key

(Line 5), which is needed in the MABE encryption process. Upon

storing u’s information and her token in the userTable, p securely

sends a tuple, including Tpu , its signature (σTpu), and Mpk to u

(Lines 6-7). However, if p doesn’t accept u’s registration request, it

returns a negative acknowledgement to u (Lines 8-9). The presence

Protocol 2 Edge Server Registration

{At Edge Server}

1: send {[IDs],Certe } to AIAs (provider hosted on C and the

corresponding base station)

{At Provider & Base station}

2: [Ae] ← ABE.KeyGen(Mpk ,aske , ide , [IDs])

3: store {e, [Ae]} in serverTable

4: return {e, [Ae]} to e

Protocol 3 User Registration

{At User}

1: send {user_data,Certu } to p

{At Provider}

2: if p accepts u’s registration request then

3: Set Tpu = (IDp , [IDs],Certu , [Lu],Texp)

4: σTpu ← SignSKP
(Tpu)

5: Mpk ← retrieveABECredentials()

6: store {u,Tpu } in userTable

7: return {Tpu ,σTpu ,Mpk } to u

8: else

9: return ⊥

10: end if

of IDp and the σTpu helps to ensure authenticity and integrity of

u’s token and prevents tampering with the token. Also, Certu in

the token indicates u’s ownership of the token. Additionally, the

set of permitted service identifiers, [IDs], is included to enable easy

vetting of requests by PEC servers. Using tokens in APECS, the

PEC server is not required to contact p to verify u’s authorization.

Finally,Texp proves token’s freshness and enables a lazy revocation

process through token expiration.

5.2 Service Request Protocol

Protocol 4 details u’s service request procedure. We note that re-

questing a content is an instance of requesting a static service which

does not require user specific input data. In contrast, offloading a

computation is an instance of a user requesting a dynamic service,

which may require some input data (from the user to perform com-

putation on). These two types of services are different in the sense

that the requesting user’s data should be protected when the user

is requesting a dynamic service, hence the need for data encryption

with MABE. Initially, u has to specify if the desired service (IDs) is

dynamic (e.g., image annotation) or static (e.g., video streaming). For

a static service, u creates two of the request’s components by spec-

ifying the content_name as C1 and a null C2 (Lines 1-2). We note

that the content_name is not required to be encrypted. However,

MABE encryption can be used for encrypting the content_name

to preserve u’s privacy at the cost of additional latency. For a dy-

namic service, u first encrypts symmetric key K using the MABE

scheme with the master public key Mpk and the requisite service

attributes represented by IDs to generateC1 (Line 4). She then uses

a symmetric key cryptosystem such as AES and k to encrypt the

required service data (D) for generating C2 (Line 5). The publicly

visible attributes in the MABE policy for C1 identify the specific

service requested by the user to all PEC servers who receive the

request. Subsequently, u creates her request (Req) as a four-element

Protocol 4 User’s Service Request

1: if IDs is Static Service Request then

2: C1 ← content_name , C2 ← ⊥

3: else if IDs is Dynamic Service Request then

4: C1 ← ABE.Encrypt(Mpk , IDs ,K)

5: C2 = EncK (D)

6: end if

7: set Req = {Tpu , IDs ,C1,C2}, σReq ← SignSKu (Req)

8: send {Req,σReq }

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1410

tuple, including the token Tpu , the requested service with identifier

IDs , C1, and C2.

The user then signs the crafted request using SKu that corre-

sponds to her certificate (Certu), embedded in Tpu (Line 7), and

sends the request and its signature as a payload to the base station

to be forwarded to the edge network (Line 8).

5.3 Service Response Protocol

As detailed in Protocol 5, edge server e receives the request from

the base station (the base station just serves as a relay) and ver-

ifies the signature on the request using VKu extracted from Tpu
(Lines 1-2). If signature verification fails, e returns error and drops

the connection (Lines 33-35). Successful verification indicates that

the request is generated by Tpu ’s owner. If successful, e confirms

the freshness of Tpu by comparing its expiry time (Texp) with the

current time (Tc) (Lines 4-5). Subsequently, e searches for Tpu in its

revocation table (revocTable) to ensure that u has not been added

to access-denied list (Lines 6-8). If any checks fail, e returns an

error and drops the connection. In the event that a valid user has

encountered any of these failures, the user may request a new token

and obtain a valid Tpu using her new certificate and established

user credentials (refer to Protocol 1). Upon token validation, e uses

IDp that is contained within Tpu to lookup Certp in its local cache.

If e does not have the Certp corresponding to IDp , it can obtain

(from the user or the service provider) Certp using IDp (Line 9).

On receiving Certp , e extracts the VKp from Certp and verifies the

signature on Tpu , dropping the connection if invalid (Lines 10-11).

Successful verification validates Tpu ’s integrity and provenance.

Finally, e compares u’s authorization tier (Lu) with the service tier

of the requested data (LD), contained in the data (Lines 13-15). If

authorization fails, e drops the connection; otherwise, it moves to

the next step.

Once e has successfully authenticated and authorized u and can

process the request. Request fulfillment begins with the PEC server

identifying the requested service type based on IDs (Line-17). For a

dynamic service request, e verifies whether it offers the requested

service or not (Line 18). If e is capable, it decrypts C1 using its

decryption keys [Ae] and retrieves the symmetric key K , using

it to decrypt the data (D) needed for service execution (Lines 19-

21). In the event that the server does not possess the capability

to execute the service, it forwards the service request to another

server (Lines 22-23). For a static service request, e looks up the

content_name (in C1) in its cache and returns the data to the user

(Line 26-27). If the data is not available in e’s cache, it forwards the

request to another server or p as defined by the application logic

(Lines 28-29). Using MABE in APECS helps with asynchronous au-

thentication/authorization of the PEC serverśa PEC server without

sufficient attributes cannot access user’s data. Moreover, MABE en-

ables efficient PEC server revocation without global system re-key;

discussed in the following.

5.4 User and PEC server Revocation Protocols

Access right revocation is a commonplace functionality of any

access control system. In APECS, we consider both user access revo-

cation as well as PEC server revocation. Of particular importance

is PEC server revocation, necessary to prevent revoked server’s

access to users’ data. We start with revocation of user u and then

Protocol 5 Edge Server’s Service Response

1: receive {Req,σReq }

2: extract {Tpu , IDs ,C1,C2} ← Req, (IDp , [IDs], Certu , Lu ,

Texp) ← Tpu , VKu ← Certu
3: if true ← VerifyVKu

(Req,σReq) then

4: if Texp < Tc then

5: return error

6: else if Tpu ∈ revocTable then

7: return error

8: end if

9: Certp ← lookupProvider(IDp), VKP ← Certp
10: if f alse ← VerifyVKp

(σTpu ,Tpu) then

11: drop connection

12: end if

13: retrieve LD for content_name

14: if Lu ≤ LD then

15: drop connection and return error

16: end if

17: if IDs is Dynamic Service Request then

18: if true ← checkServerCapability(IDs) then

19: K ← ABE.Decrypt(Mpk , [Ae],C1)

20: D ← DecK (C2)

21: return fulfillService(D)

22: else

23: requestService(Req,σReq)

24: end if

25: else if IDs is Static Service Request then

26: if true ← contentCacheLookup(C1) then

27: return contentCacheRetrieve(C1)

28: else

29: requestService(Req,σReq)

30: end if

31: end if

32: else

33: drop connection and return error

34: end if

PEC server e . As shown in Protocol 6, for revoking u, p removes

Tpu from its userTable and forwards the token to its AIA that is

hosted on the Cloud (Line 1). On receiving the revocation notifi-

cation, C retrieves the list of all PEC servers who could serve u,

and notifies them of the revocation (Lines 2-6). Revocation commu-

nication could be done scalably using distributed ledger [15, 29].

On revocation notification, each e will add Tpu to its revocTable

(Lines 7-8). If a token is expired, the entry can be removed.

In APECS, revocation of e is handled by the AIAs (Provider and

Base stations) who execute the MABE algorithms via a local system

re-key for the non-revoked PEC servers (updating Mpk to M
′

pk
).

While ABE revocation is generally costly, due to system re-keying,

APECS uses the MABE scheme in a way that optimizes PEC server

revocation. When p decides to revoke e , it instructs e’s base station

(the second AIA managing far less number of PEC servers that

p) to revoke e (Lines 1-2 in Protocol 7). The base station updates

its public/private key pair and shares it with other AIAs, enabling

AIAs (including the base stations) to run the MABE system setup

for calculatingM ′
pk

(Line 3). The base station then generates and

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1411

Protocol 6 User Revocation

{At Provider}

1: delete Tpu for u from userTable and notify C.

{At Cloud}

2: receive {Tpu } from p.

3: E ← edgeServersWith([IDs]), E ⊂ E

4: for each e ∈ E do

5: notify e of revoked Tpu
6: end for

{At Edge Server}

7: receive Tpu from C.

8: add Tpu to revocTable .

distributes a new set of secret keys for all of its PEC servers, except

the revoked one (Lines 5-11). Finally, the base station broadcasts

the new public parameters to the users in its vicinity (Line 12). This

revocation localizes the re-keying operation to only the PEC servers

associated with the revoking base station.

The PEC server revocation can be optimized if base stations are

more involved in service orchestration. In such case, on receiving a

service request, the base station acts as a broker and steers requests

away from revoked PEC servers. In addition, the service provider’s

AIA hosted on C can update the base stations’ revocTable with

a set of revoked PEC servers reported by other base stations to

prevent revoked PEC servers from migrating to other base stations.

Thus, minimizing the number of system re-keys and eliminating

the need to re-key the local PEC servers per revocation.

5.5 APECS PKC-based Design

We also propose APECS PKC as an alternative APECS design that

utilizes the traditional public key cryptosystem (PKC), which has a

less complex system and security configuration (using transport

layer security and the PKC infrastructure). APECS PKC is suitable

for static scenarios where the user is aware of the PEC servers and

their services (through a service discovery process, which we do not

discuss) and the user(s) and PEC servers can synchronously interact.

Protocol 7 Edge Server Revocation

{at Provider}

1: identify ê ∈ E that should be revoked.

2: notify base station bn ∈ B that ê is associated with.

{at AIAs}

3:

(

M ′
pk
= (sysparam,apk1, . . . ,apk

′
n),ask1, . . . ,ask

′
n

)

←

ABE.Setup(1λ ,n); {updated bn ’s public/private key pair}

{at Base Station}

4: Ebn ⊂ E; {all PEC servers associated with bn }

5: for each e ∈ Ebn do

6: if e , ê then

7: [A′e] ← ABE.KeyGen(M ′
pk
,aske , ide , [IDs])

8: store {e, [A′e]} in serverTable

9: return {e, [A′e]} to e

10: end if

11: end for

12: broadcastM ′
pk

to U

Considering APECS PKC is an obvious choice for static environ-

ments, we will discuss its design and assess its efficacy. APECS PKC

also provides a very good foil to compare APECS more thoroughly.

In this approach, a PEC server has to obtain a customized token

(similar to users’ tokens) from each service provider and the base

station, it is associated with, to prove its affiliation with them to

the user (affiliation is the token pair from the provider and the

base station). This is in contrast with the APECS design where PEC

servers have to obtain MABE credentials. The tokens issued by the

providers and base stations are signed by them for authentication.

To request a service, after selecting a PEC server, the user es-

tablishes a Transport Layer Security (TLS) connection with the

PEC server to securely share her authentication token obtained

from the provider. Upon successful verification of the user’s token

(Lines 2-12 of Protocol 5), the PEC server shares its tokens (from

the service provider and the base station) with the user. This allows

the user to verify the shared tokens’ integrity and provenance (in a

process similar to Lines 2-12 of Protocol 5), and by extension, the

PEC server’s authenticity for the requested service. On success-

ful mutual authentication/authorization, the user securely shares

her data with the PEC server for service execution and the server

responds with the computation results. We note that the TLS chan-

nel should be established using the certificates that are contained

in the tokens (for both the user and the PEC server) to avoid a

challenge-response for mutual authentication.

6 APECS SECURITY ANALYSIS

6.1 Formal Security Analysis

We now provide a formal analysis of APECS in the Universal Com-

posability (UC) Framework [2]. The notion of UC security is cap-

tured by the pair of definitions below:

Definition 6.1. (UC-emulation [2]) Let π and ϕ be probabilistic

polynomial-time (PPT) protocols. We say that π UC-emulates ϕ if for

any PPT adversary A there exists a PPT adversary S such that for

any balanced PPT environmentZ we have

EXECϕ,S,Z ≈ EXECπ ,A,Z

Definition 6.2. (UC-realization [2]) Let F be an ideal function-

ality and let π be a protocol. We say that π UC-realizes F if π UC-

emulates the ideal protocol for F .

We define an ideal functionality, FAPECS, consisting of five inde-

pendent ideal functionalities, Fregister,Fresponse,Frevoke,Fsmt,Fsig.

Fregister models the user and edge servers’ registration processes,

Fresponse models the processing of a user’s service request, and

Frevoke models the revocation functionality.We use two helper func-

tionalities from [2], Fsig and Fsmt, to model ideal functionalities for

digital signatures and secure/authenticated channels, respectively.

We assume that FAPECS maintains internal state that is accessible

at any time to Fregister, Fresponse and Frevoke, specifically three ta-

bles, uTable, sTable and dTable. The parties that interact with the

ideal functionalities are the members of sets of edge servers, EC,

service providers, SP, base stations BS, and a user u. We assume

that each member of the three sets has a unique identifier. The

dTable contains all data provided by different service providers,

uTable contains details about the services a user is registered for,

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1412

Functionality Fregister
(1) When a service provider, SP ∈ SP sends a request,

(register, spid, sname, scat, sdata, stype), Fregister adds td =

(spid, sname, scat, sdata, stype) to the dTable; if td already

exists, Fregister returns td . When an SP sends a request

(update, spid, ·, ·, ·, ·),Fregister updates td . When an SP sends

a request (deregister, spid, sname, scat), Fregister deletes the

corresponding tuple td from dTable.

(2)(a) When a user u sends a registration request,

(register, uid, scat, spid) to Fregister (where uid, spid

are the user’s and service provider’s unique identi-

fiers, scat is the category of the service u wishes to

subscribe to), Fregister checks if there exists a tuple

tu = (uid, scat, spid) in uTable. If yes, Fregister returns tu
to u, and forwards (exists, tu) to S. Else Fregister sends a

message, (register, uid, scat) to SP ∈ SP whose identifier

is spid. If SP responds with an łallowž, Fregister adds

tuple tu = (uid, scat, spid) to uTable, returns łsuccessž to

u, and forwards (newreg, tu) to S. Else Fregister returns

⊥ to u, and forwards (failReg, uid, scat, spid) to S.

(b) Whenu sends a request (update, uid, scat ′, spid),Fregister
retrieves a tuple tu = (uid, ·, spid) in uTable. Fregister
sends a message, (update, uid, scat ′), to SP . If SP

replies with ⊥, Fregister returns ⊥ to u, and forwards

(failUpdate, tu) to S. Else Fregister updates or creates

(if the retrieval of tu returned ⊥) a tuple tu with

(uid, scat ′, spid), and returns łsuccessž tou, and forwards

(successUpdate, tu) to S. In case a new tu was created,

Fregister forwards (newreg, tu) to S.

(c) If a user sends a request (deregister, uid, ·, spid), Fregister
deletes tuple tu = (uid, ·, spid) in uTable and forwards

(deregister, uid, ·, spid) to SP , and S.

(3)(a) When an edge server, EC ∈ EC, identified by ecid sends a

request to Fregister, (register, spid, ecid, bsid), where spid

is the identifier of a service provider SP ∈ SP whose

services EC wants to offer via bsid which denotes the

identifier of a base station BS ∈ BS, Fregister checks if

there exists a tuple in sTable, ts = (spid, ecid, bsid). If yes,

Fregister returns ts to EC , and forwards (exists, ts) to S.

Else Fregister sends a message (register, spid, ecid, bsid)

to SP and BS . If SP and BS both respond with łallowž,

Fregister adds tuple ts = (spid, ecid, bsid) to sTable, col-

lects all tuples td = (spid, ·, ·, ·, ·) from dTable, sends them

to EC , and forwards (newreg, ts , td) to S. If either of

them respond with ⊥, it returns ⊥ to EC , and forwards

(failReg, spid, ecid, bsid) to S.

(b) If EC sends a request (deregister, spid, ecid, bsid),

Fregister deletes tuples ts from sTable, and forwards

(deregister, spid, ecid, bsid) to SP , BS , and S.

Figure 2: Ideal functionality for Service Registration

and sTable contains information about the service providers an

edge server provides services on behalf of. We now briefly describe

the design of our ideal functionalities.

Fregister: The Fregister functionality shown in Figure 2 handles

the system setup and registration/de-registration of a user u and

members of EC. This also handles registration of data associated

with members of SP, as well as service updates. When a service

provider SP wishes to register, it initiates contact with Fregister by

sending a tuple (register, spid, sname, scat, sdata, stype), where spid

denotes the unique identifier of SP , sname denotes the name of the

service SP is offering, scat denotes the service category of sname

(e.g., bronze, gold, silver), and stype indicates if a given sname is

associated with static or dynamic requests. For static requests, e.g.,

movies, sdata contains the relevant data files, for dynamic requests,

e.g., image annotation, sdata contains the algorithms needed to

process the user-supplied input. Fregister creates a new tuple in

dTable containing the data supplied by SP , if one does not exist.

Since each tuple is uniquely identified by (spid, sname, scat), when

SP de-registers, it just needs to send (spid, sname, scat) to Fregister,

who deletes the tuple from dTable.

When a user u, identified by uid, wants to register for a service,

it contacts Fregister with (register, uid, scat, spid). We assume that

a user can register for only one category of service with an spid.

If SP permits u to register, Fregister adds u’s information to uTable,

and forwards the registration information to S. Similarly, when an

already-registeredu wishes to update their service category to scat ′,

Fregister will check with SP and act accordingly. Fregister will also

notify S whether the update request was successful. When u termi-

nates its service and de-registers from an spid, Fregister deletes the

unique tuple (uid, ·, spid) without needing to ask SP ’s permission,

but informs SP and S about u’s de-registration.

An edge server EC will register with both a service provider

SP and a base station BS (with bsid) to model the fact that in the

real world, all entities communicate over networks through their

local base stations. We assume each EC will register with a unique

(SP ,BS) pair, i.e., the tuple (spid, ecid, bsid) is unique. If both SP

and BS approve of EC’s request, Fregister will add EC’s information

to sTable, else it will notify EC and S that the registration request

was denied. At this point, Fregister will also send to EC and S in-

formation about all the services EC is registered for with all SPs.

When an EC wishes to stop providing services on behalf of an SP , it

de-registers itself. Fregister deletes the unique tuple (spid, ecid, bsid)

from sTable, without needing to ask SP ’s or BS’s permission, but

informs them and S about it.

Fresponse: The Fresponse functionality shown in Figure 3 handles

a service request from a user identified by uid. When the uid, that

registered with service provider spid, submits a request to Fresponse
for a service identified by sname, it sends a request containing

(spid, sname, uid, bsid, udata). The bsid and spid in the request help

identify the list of ecids connected to the base station bsid that the

user is connected to, and that can process the user’s request. The

request also includes user data (udata) which would be used by ecid

if sname is a dynamic service that needs to process the user data,

udata would be ⊥ if the request is a static request.

Once Fresponse receives the request from the user, it forwards

(recvReq, spid, sname, uid, bsid, udata) to S and retrieves the tuple

td = (spid, sname, scat, sdata, stype) from dTable containing spid

and sname. If no such tuple exists, then the service requested by

uid is not offered by spid and a ⊥ is returned to the user along with

(failReq, spid, sname, uid, bsid, udata) toS, otherwiseFresponse con-

tinues to the next step. Next, Fresponse checks whether uid is au-

thorized to access service sname from spid. It retrieves tuple tu

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1413

Functionality Fresponse

(1) Upon receipt of a request (spid, sname, uid, bsid, udata)

from a user, Fresponse retrieves the data tuple,

td = (spid, sname, scat, sdata, stype) containing

spid and sname from user’s request and sends

(recvReq, spid, sname, uid, bsid, udata) to S. If

td does not exist return ⊥ to user and send

(failReq, spid, sname, uid, bsid, udata) to S.

(2) Then Fresponse checks the uTable and retrieves user tu-

ple tu = (uid, scat, spid) where uid in tu is same as that

in user’s request, and spid and scat are same as those

in td . If no such tu exists return ⊥ to user and send

(failReq, spid, sname, uid, bsid, udata) to S.

(3) Fresponse then retrieves all tuples matching ts =

(spid, ·, bsid) in sTable where spid and bsid in ts is the same

as that in the user’s request. If no such tuples exists return

⊥ to user and send (failReq, spid, sname, uid, bsid, udata) to

S.

(4) If all previous verifications pass, then Fresponse forwards

request (uid, sname, udata) to all edge server ecids in the ts
tuples that was retrieved in the previous step and forward

(ReqEC, uid, sname, udata) to S.

(5) Each ecid, on receiving a request from Fresponse, does: 1) If

stype associated with sname is łstaticž, then ecid retrieves

the sdata associated with sname and returnsmsд = sdata

to Fresponse. 2) If stype associated with sname is łdynamicž,

then ecid retrieves the sdata function associated with sname.

It runs sdata(udata) →msд and forwardsmsд to Fresponse.

(6) Fresponse forwards the firstmsд associated with the current

request received from any ecid to uid and S, and discards

all other followingmsдs.

Figure 3: Ideal functionality for Responding to Requests

from uTable containing uid, spid from the request, and scat from

td . If no such tuple exists, then this reflects that the user is not

signed up with the given spid to access services tagged under

scat category and a ⊥ is returned to the user and Fresponse sends

(failReq, spid, sname, uid, bsid, udata) to S. Fresponse then retrieves

all tuples ts = (spid, ·, bsid) to identify all ecids that can process the

user’s request. If no such tuple exists, then this indicates that there

are no ecids connected to bsid that can process the user’s request

and provide services on behalf of spid. Fresponse returns ⊥ to the

user along with (failReq, spid, sname, uid, bsid, udata) to S.

If all the above checks succeed, then Fresponse has a list of all

ecids available to process the user’s request and uid is a verified sub-

scriber to the requested service. Fresponse sends (uid, sname, udata)

to ecids in the tuples ts , retrieved in the previous step and for-

wards (ReqEC, uid, sname, udata) to S. When each ecid receives

the request, if sname is a static request, then ecid retrieves the

data associated with sname and responds to Fresponse with msд

containing sdata. If sname is a dynamic request, then the ecid

retrieves the algorithms, sdata associated with sname, processes

udata, sdata(udata) → msд, and responds to Fresponse with msд

which contains the output. Fresponse on receiving the first msд

from any ecid forwards it to uid and drops all subsequent msдs

from other ecids. Fresponse also forwardsmsд to S.

Functionality Frevoke

(1) Upon receipt of a request (revoke, spid, ecid) from SP (spid),

Frevoke checks the sTable for all tuples ts = (spid, ecid, ·).

If any exist, Frevoke deletes the tuples from sTable and for-

wards (revoke, spid, ecid) to all bsids in the deleted tuples.

Else returns ⊥ to SP.

(2) Upon receipt of a request (revoke, uid, spid) from SP identi-

fied by spid, Frevoke checks the uTable for all tuples of the

form tu = (uid, ·, spid). If any exist, it deletes the tuples

from uTable and returns łsuccessž. Else, it returns ⊥.

Figure 4: Ideal functionality for User/Edge Server Revoke

Frevoke: The Frevoke functionality shown in Figure 4 handles the

revocation of an edge server by service provider SP. The functional-

ity also handles the revocation of a user’s access to services provided

by SP. When Frevoke receives a request (revoke, spid, ecid) from ser-

vice provider spid, it checks the sTable for the existence of all tuples

(spid, ecid, ·) and deletes all such tuples if any exist. This effectively

revokes an EC identified by ecid from providing services on behalf

of SP. When Frevoke receives a request (revoke, uid, scat, spid) from

service provider spid, it checks the uTable for existence of a tuple

(uid, scat, spid) and deletes it if such a tuple exists. This effectively

revokes an user identified by uid from services provided by SP

under scat subscription category.

We further discuss the design of our ideal functionalities and

provide the proof of the following theorem in Appendix 11.

Theorem 6.1. Let FAPECS be an ideal functionality for APECS.

LetA be a probabilistic polynomial-time (PPT) adversary for APECS,

and let S be an ideal-world PPT simulator for FAPECS. APECS UC-

realizes FAPECS for any PPT distinguishing environmentZ.

6.2 Informal Security Analysis

Before elaborating onmalicious PEC servers and service consumers,

we briefly mention the impact of misbehaving cloud providers and

base stations. In APECS, the Cloud is the enabler of the commu-

nication between the PEC servers (hosting the service providers

instances) and the service providers. As such, it does not play any

active operational role and hence, its malicious behavior does not

impact the system’s security. In this paper, we built a federated

authority by considering two AIAs (one at the service provider and

one at the base station connected to the user device) so that the

malicious intent of one does not compromise the security and pri-

vacy of users’ data. Only with both AIAs being malicious, the users’

data can be decrypted illegally. Thus, malicious base stations alone

cannot violate users’ privacy. Note that using two AIAs is only for

illustration purposes. APECS can use multiple AIAs (N), in which

case, the system tolerates N -1 AIAs going rogue. In fact, we use

three AIAs for illustration in our experimental results (Section 7).

6.2.1 Malicious PEC Server. As per Section 3.3, a malicious PEC

server may hijack the communication or impersonate legitimate

PEC servers to obtain users’ data. Moreover, a malicious PEC server

(authorized server that does not follow the protocols) may collude

with an unauthorized user to illegitimately provide a service. In

APECS, the user encrypts the data (if needed) using a symmetric

cipher and encrypts the corresponding symmetric key using MABE.

This allows only the authorized PEC servers (having requisite secret

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1414

keys from all AIAs) to successfully decrypt the symmetric key and

decrypt the user’s data. This prevents the unauthorized servers

from obtaining the user’s data (threat (e) in the threat model).

A colluding PEC server could provide either/both the static and

the dynamic service to an unauthorized user. In the former, an

unauthorized user obtains a content either from the malicious PEC

server or by intercepting the channel. Encryption of the content by

the service provider using a key pre-shared with the users (using

techniques such as ABE or broadcast encryption) can ensure that

unauthorized users cannot decrypt the content (threat (f)) [16, 17].

In the latter case, we argue that there is no incentive for a PEC

server to use its resources for executing a service without being

compensated assuming an accounting/billing framework exists for

tracking legitimate service execution for compensation.

We also note that a malicious service provider may attempt to

orchestrate a denial of service (DoS) attack on the PEC servers

by assigning expired or short-lived tokens to its users. However,

obtaining a fresh token from service providers incurs negligible

cost (it only requires one round trip time per user) and does not im-

pose any overhead on the PEC servers processing. Furthermore, by

orchestrating such a DoS campaign, the service provider sacrifices

its users’ quality of experience, which only damages its reputation.

Thus, we do not consider such DoS attacks a common threat.

6.2.2 Malicious Service Consumer. Following the threat model, con-

sumers’ threats include requesting services without valid tokens

(e.g., forged or expired) and unauthorized use of valid tokens (e.g.,

shared, intercepted, or replayed). In APECS, PEC servers assess

tokens’ validity by verifying the service provider’s signatures on

tokens and the consumers’ signatures on requests (request include

the signed tokens). A provider’s signature on a token can be verified

by its certificate while the service consumer’s signature should be

verified using the certificate embedded in the signed token. This

prevents a malicious consumer from sharing his token with unau-

thorized users (threats (a) and (d)). The only possibility for a mali-

cious service consumer to successfully share his token is to craft a

signed request and share it with the unauthorized user. For this at-

tack to be successful, the malicious consumer has to further modify

the timestamp of the request’s signature or forward it instantly. We

note that such an attack can be thwarted by updating APECS with

a challenge-response interaction between the service consumer

and the corresponding base station ahead of service request. The

base station uses the consumer’s certificate embedded in the token

to validate the identity using the challenge-response process and

subsequently allows the consumer to request the service.

Prior to signature verification, edge servers verify tokens’ fresh-

ness using the embedded expiry time dropping the requests with

stale tokens (threat (c)). Moreover, edge servers compare the re-

quested service provider’s identity with the one contained in the

token to prevent a malicious consumer from using a valid token

for other services (e.g., using face detection token for the image

annotation service). Thus, by virtue of the signature on the token

and its embedded information, edge servers can detect and drop

forged or expired tokens (threat (b)).

7 EXPERIMENTAL RESULTS AND ANALYSIS

7.1 Implementation Scope

The reference implementation of APECS comprises four compo-

nents: the user engine, the PEC server engine, the service provider

engine, and the cloud engine, all implemented in C++. We used

Pairing-Based Cryptography (PBC) library (v.0.5.14) and C Program-

ming Language (v.9.3.0) for the MABE implementation, and C++

libssl-dev library (v.1.1.1) for the symmetric key functionality. The

MABE framework was evaluated using the default łType až curve

provided by the PBC library which uses symmetric pairings for all

the pairing operations. For communication between these engines,

we used the gRPC framework (v.1.20.0). The user engine is in charge

of executing functions on the user’s behalf, including the user’s

data related functions, i.e., generation, storage, and encryption, to-

ken related functions, i.e., obtaining, storing, and consuming, and

data encryption/decryption. For APECS PKC, we extended the user

engine by verifying the PEC servers’ tokens. The user engine is

implemented in 1630 source lines of code (SLoC). The PEC server

engine performs authentication, authorization, and users’ service

execution. We implemented the token verification process in C++

using the jwt-cpp library. Features such as revocTable and content

cache are maintained by calls to a local NO-SQL mongoDB database

(v.4.2.9). All communication uses gRPC framework with TLS 1.2.

The PEC server engine is implemented in 2000 SLoC.

The provider engine operates the service provider’s function-

alities, such as storage of userTable in a local NO-SQL mongoDB

instance, user registration, token renewal, revocation, and content

delivery using gRPC C++ library. It further cooperates in the setup

of the MABE framework through the use of the PBC library. The

provider engine is implemented in 1950 SLoC. The cloud engine

hosts the service providers’ AIAs. As such, it runs a portion of

MABE framework setup, which is implemented using the PBC

library. The cloud engine maintains a local NO-SQL mongoDB in-

stance to store providers’ profiles and revoked tokens. Using gRPC

framework, it maintains standardized API routes for the invocation

of edge servers, provider registration, and access-denied notifica-

tion. The cloud engine is implemented in 600 SLoC.

For comparison, we prototyped an access control enforcement

mechanism that uses trusted centralized Cloud for enforcement of

access policiesśa common approach that is currently adopted by

many providers. In our prototype, users obtain authentication to-

kens (Definition 4.1) from the service providers and share themwith

the Cloud over secure channels (TLS) whenever requesting a ser-

vice. The Cloud follows the APECS PKC token verification process

to authenticate and authorize users. However, due to the common

assumption of Cloud’s trustworthiness, users do not authenticate

the Cloud (a one-way authentication of the users).

7.2 Experiment Setup

The assessment of MABE performance in isolation was performed

on three device classes. The first device class is that of a Compact

Edge device which is represented by a Jetson TX2 with 8 GB of

RAM and a CPU cluster composed of a dual-core NVIDIA Denver2

and a quad-core ARM Cortex-A57, both operating at 2.00 GHz.

The second device class, a handheld device, is represented by an

InstaGENI virtual machine (VM) with 1 GB of RAM and a 2.10 GHz

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1415

Figure 5: Node placement in GENI. User U○ and Edge Server
E○ are hosted at the University of Colorado. Provider P○ and

Cloud C○ are hosted at Cornell and New York Universities.

Intel Xeon CPU E5-2450. Finally, the third device class used for

MABE performance evaluation is a Desktop with 16 GB of RAM

and a 3.60 GHz Intel Xeon W-2123 CPU.

In our experiments, we configure the MABE system with three

AIAs to represent a more complicated scenario for studying scal-

ing (instead of the relatively simpler scenario with two AIAsśone

service provider and one base station). An access policy has max-

imum two attributes per AIA. In realistic operating scenarios of

APECS, we do not expect more than two attributes per AIA, e.g.,

AIA’s identity and service type. For consistency, in APECS PKC each

PEC server uses three tokens per user request. We perform APECS’

reference implementation on a network consisting of four virtual

machines (VMs) hosted on the distributed GENI testbed [1]. We

chose the GENI testbed as it provides a large-scale and geograph-

ically distributed network experiment infrastructureśthe closest

resemblance to real networks. We deployed each VM in different

GENI Aggregates across the United States to resemble a true edge-

cloud network topology. As shown in Figure 5, the instance at New

York University runs the cloud engine, the user and PEC server

engines run on dedicated VMs at University of Colorado, and the

provider engine runs at Cornell University. In assessing the ac-

cess control throughput, we deployed our PEC server engine on

Desktop-class and Handheld-class platforms.

7.3 Results and Analysis

We benchmarked the performance of MABE using the PBC library,

encrypting and decrypting a 512 bit symmetric key on three de-

vices classes mentioned above, namely Compact Edge, Handheld,

and Desktop. The PBC library is built on top of the GNU Multiple

Precision Arithmetic Library (GMP) library. Figure 6 represents

the results averaged over 1000 paired encryption-decryption runs.

For the Compact Edge deviceśthe lowest computation capabilityś

encryption took about 20.6 milliseconds, while decryption took

Figure 6: Benchmark timing of multi-authority attribute-

based encryption [3] across multiple platforms.

Figure 7: Comparison of average runtime for proposed and

contemporary access control approaches.

19.1 milliseconds. Using the handheld device reduced the encryp-

tion latency to 17.4milliseconds and decryption to 14.7milliseconds.

We note that the handheld device is represented by a VM instance

which explains the presence of a larger error range. Finally, for the

desktop device, encryption was completed in 7.9 milliseconds and

decryption was completed in 4.8 milliseconds.

In Figure 7, we present the results comparing the average runtime

of APECS (both MABE and the PKC approaches) with contempo-

rary access control approaches involving the Cloud. We note that

the combined code, which combines the MABE implemented in

C with the networking and PKC in C++ still has room for opti-

mization3. We now discuss the results from the partially optimized

code. We benchmarked the performance of APECS, APECS PKC, and

the cloud-based access control on the GENI testbed. We measured

the end-to-end latency of these schemes for 1000 service requests

while timing the individual components that make up the com-

plete interaction. As shown in Figure 7 APECS was the fastest in

performing mutual access control with around 123 milliseconds,

followed by APECS PKC with 186 milliseconds, and the Cloud ac-

cess control with 262 milliseconds. Note that APECS drastically

reduced the Cloud access control latency, by 50%, despite perform-

ing mutual access control between the users and PEC servers (the

Cloud prototype performs only user authentication and authoriza-

tion). We highlight the simplicity-efficiency trade-off in APECS and

APECS PKC: APECS PKC’s simpler design comes with a higher mu-

tual authentication latency (roughly 50% increased latency), which

is undesirable in many dynamic edge applications.

Table 2: Averaged Latency (msecs) Across Three Approaches

Operations APECS APECS PKC Cloud

Service Discovery Ð 69.5 Ð

Symmetric Encryption 0.7 Ð Ð

ABE Encryption 39.0 Ð Ð

Request Signing 35.6 Ð Ð

Network/System Latency 5.8 79.5 252.0

User Token Verification 4.8 5.8 9.6

Edge Token Verification Ð 31.4 Ð

Request Signature Verification 2.7 Ð Ð

ABE Decryption 33.8 Ð Ð

Symmetric Decryption 0.5 Ð Ð

Total 122.7 186.1 261.6

For APECS PKC, we implemented a rudimentary service discov-

ery process, in which the user securely obtains the list of eligible

3Code is available on https://github.com/nsol-nmsu/APECS.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1416

Table 3: APECS Communication Complexity

Provider Reg. PEC Server Reg. User Reg. Service/Data Request/Response User Revocation PEC Revocation

O (1) O (|P + B |) O (1) O (1) O (|E |) O (|P + E |)

PEC servers (for a given service) from the base station ahead of

service request. Note, as we concentrate on access control, service

discovery is out of the scope for this paper. In APECS PKC, the

end-to-end latency is composed of service discovery and is dom-

inated by the secure communication between the user and PEC

server (both using TLS connection). Finally, in the cloud-based

access control, the secure communication between the user and

the Cloud is the dominant portion of the authentication latency.

Table 2 includes the averaged timing of each individual operation

in APECS, APECS PKC, and Cloud. The missing values correspond

to operations that are not needed in the corresponding approaches.

We note that the network latency in APECS PKC and Cloud encom-

pass the setup and encryption and decryption in the TLS; no ABE

operation has been used in these two approaches.

(a) APECS (b) APECS PKC

Figure 8: Access control enforcement throughput for static

and dynamic service requests on two platforms.

Finally, we benchmark the throughput of APECS and APECS PKC

on a single PEC server. We define the throughput as the number

of authentication and authorization operations that a PEC server

can perform in unit time (Figure 8). To eliminate network and com-

munication latency based variances we eliminate them by running

all four components of APECS on the same machine (the one that

was being tested). In this experiment, the user sent 1000 service

requests to the PEC server. Note that the service request processing

does not include the service execution (e.g., image annotation) to

clearly identify the throughput of the access control process.

For APECS, when performing static service requests, the PEC

server engine running on the Desktop was able to process an av-

erage of 71 requests per second while the PEC server engine on

the Handheld processed an average of 36 requests per second (Fig-

ure 8(a)). In performing dynamic service requests, the Desktop

engine averaged 22 requests processed per second while the Hand-

held engine averaged 14 requests processed per second. This was

expected as dynamic service request processing includes MABE en-

cryption and decryption operations while static request processing

involves less compute-intensive cryptographic operations.

APECS PKC processed an average of 16 and 11 static service

requests per second when running on the Desktop and Handheld

devices, respectively (Figure 8(b)). As for dynamic service requests,

APECS PKC processed an average of 14 and 9 requests per sec-

ond for the Desktop and Handheld devices, respectively. Overall,

APECS outperformed APECS PKC both for static and dynamic ser-

vice requests. For static service requests, this result was expected

since APECS does not use MABE encryption and decryption while

APECS PKC uses TLS channel for communication. For dynamic

service requests, despite APECS using costly MABE operations, it

outperformed APECS PKCśindicating MABE operations in APECS

are more efficient than establishing TLS sessions in APECS PKC.

We also assessed APECS communication complexity (Table 3).

The service provider registration process incurs constant commu-

nication complexity as it requires a round trip communication

between the provider and the Cloud. Registering a PEC server re-

quires a round trip communication between the PEC server and

each of the AIAs, leading to O(|P + B|) communication complexity

per PEC server. As per the construction in [3], each PEC server has

to obtain attributes from all AIAs corresponding to the providers.

We note that, inAPECS, the number of providers and base stations is

constant. A user registration requires a round trip communication

between the user and the service provider, resulting in constant

communication complexity. Similarly, service request and response

incurs constant communication complexity (we discount the po-

tential of multiple packets being needed as determined by payload

size). A user revocation process involves the delivery of the revoked

token from the Cloud to the PEC servers that offer relevant ser-

vices, resulting in O(|E|) communication complexity. Revoking a

PEC server comprises a round trip communication from the service

provider to the base station, interaction among the AIAs for the

distribution of base station’s new key, and the distribution of new

attributes to the PEC servers that are connected to the base station.

Thus, resulting in O(|P + B|) communication complexity.

8 CONCLUSIONS

In this paper, we proposed, APECS, a distributed access control

mechanism for the dynamic PEC ecosystem. In APECS, the authen-

tication/authorization tasks are delegated to the PEC servers.APECS

utilizes capability-based tokens and multi-authority ABE with an

efficient revocation mechanism that does away with system-wide

re-keyingśthe major drawback of ABE schemes. We also proposed

APECS PKC, an alternative design suitable when the consumer

and the PEC server can interact synchronously. Evaluation of our

implementations demonstrated the practicality of our mechanisms.

9 ACKNOWLEDGEMENTS

Research supported in part by Intel Labs, US NSF awards #1800088,

#2028797, #1914635, EPSCoR Cooperative agreement #OIA-1757207,

US DoE SETO grant #DE-EE0008774, and the US Federal Aviation

Administration (FAA). Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the NSF, DoE,

FAA or Intel Corp. We thank Austin Bos for his contribution to

the system implementation. We also thank Dr. Mattijs Jonker for

his helpful shepherding and the anonymous reviewers for their

insightful feedback and suggestions.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1417

REFERENCES
[1] M. Berman, J. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci,

and I. Seskar. 2014. GENI: A federated testbed for innovative network experiments.
Computer Networks 61 (2014), 5ś23.

[2] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS. IEEE, 136ś145.

[3] Melissa Chase and Sherman S. M. Chow. 2009. Improving privacy and security
in multi-authority attribute-based encryption. In Proceedings of the 2009 ACM
Conference on Computer and Communications Security, CCS 2009, Chicago, Illinois,
USA, November 9-13, 2009. ACM, 121ś130.

[4] Cisco. 2017. Cisco Visual Networking Index: Global Mo-
bile Data Traffic Forecast Update, 2016 to 2021 White Paper.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/mobile-white-paper-c11-520862.html.

[5] Cisco. 2017. The Zettabyte Era: Trends and Analysis.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/vni-hyperconnectivity-wp.html.

[6] Michael W Condry and Catherine Blackadar Nelson. 2016. Using smart edge IoT
devices for safer, rapid response with industry IoT control operations. Proc. IEEE
104, 5 (2016), 938ś946.

[7] Hui Cui, Xun Yi, and Surya Nepal. 2018. Achieving scalable access control over
encrypted data for edge computing networks. IEEE Access 6 (2018), 30049ś30059.

[8] Kai Fan, Qiang Pan, Junxiong Wang, Tingting Liu, Hui Li, and Yintang Yang.
2018. Cross-domain based data sharing scheme in cooperative edge computing.
In 2018 IEEE International Conference on Edge Computing (EDGE). IEEE, 87ś92.

[9] C. Freitag, J. Katz, and N. Klein. 2017. Symmetric-key broadcast encryption: The
multi-sender case. In International Conference on Cyber Security Cryptography
and Machine Learning. Springer, 200ś214.

[10] Giulio Grassi, Kyle Jamieson, Paramvir Bahl, and Giovanni Pau. 2017. Parkmaster:
An in-vehicle, edge-based video analytics service for detecting open parking
spaces in urban environments. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing. IEEE/ACM, 1ś14.

[11] Dick Hardt et al. 2012. The OAuth 2.0 authorization framework. Technical Report.
RFC 6749, October.

[12] Ruei-Hau Hsu, Jemin Lee, Tony QS Quek, and Jyh-Cheng Chen. 2018. Reconfig-
urable security: Edge-computing-based framework for IoT. IEEE Network 32, 5
(2018), 92ś99.

[13] Kaiqing Huang. 2019. Multi-Authority Attribute-Based Encryption for Resource-
Constrained Users in Edge Computing. In 2019 International Conference on Infor-
mation Technology and Computer Application (ITCA). IEEE, 323ś326.

[14] Mingxin Ma, Guozhen Shi, and Fenghua Li. 2019. Privacy-oriented blockchain-
based distributed key management architecture for hierarchical access control in
the IoT scenario. IEEE Access 7 (2019), 34045ś34059.

[15] Zhuo Ma, Junwei Zhang, Yongzhen Guo, Yang Liu, Ximeng Liu, and Wei He.
2020. An efficient decentralized key management mechanism for VANET with
blockchain. IEEE Transactions on Vehicular Technology 69, 6 (2020), 5836ś5849.

[16] Satyajayant Misra, Reza Tourani, and Nahid Ebrahimi Majd. 2013. Secure content
delivery in information-centric networks: Design, implementation, and analy-
ses. In Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking. ACM, 73ś78.

[17] Satyajayant Misra, Reza Tourani, Frank Natividad, Travis Mick, Nahid Ebrahimi
Majd, and Hong Huang. 2017. AccConF: An access control framework for lever-
aging in-network cached data in the ICN-enabled wireless edge. IEEE transactions
on dependable and secure computing 16, 1 (2017), 5ś17.

[18] Muhammad Baqer Mollah, Md Abul Kalam Azad, and Athanasios Vasilakos. 2017.
Secure data sharing and searching at the edge of cloud-assisted internet of things.
IEEE Cloud Computing 4, 1 (2017), 34ś42.

[19] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. 2017. To-
wards a novel privacy-preserving access control model based on blockchain
technology in IoT. In Europe and MENA Cooperation Advances in Information and
Communication Technologies. Springer, 523ś533.

[20] Yuwen Pu, Chunqiang Hu, Shaojiang Deng, and Arwa Alrawais. 2020. RPEDS: A
Recoverable and Revocable Privacy-Preserving Edge Data Sharing Scheme. IEEE
Internet of Things Journal 7, 9 (2020), 8077ś8089.

[21] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and
Dario Sabella. 2017. On multi-access edge computing: A survey of the emerging
5G network edge cloud architecture and orchestration. IEEE Communications
Surveys & Tutorials 19, 3 (2017), 1657ś1681.

[22] Reza Tourani, Satyajayant Misra, Travis Mick, and Gaurav Panwar. 2017. Security,
Privacy, and Access Control in Information-Centric Networking: A Survey. IEEE
Communications Surveys & Tutorials (2017).

[23] Reza Tourani, Srikathyayani Srikanteswara, Satyajayant Misra, Richard Chow,
Lily Yang, Xiruo Liu, and Yi Zhang. 2020. Democratizing the Edge: A Pervasive
Edge Computing Framework. arXiv preprint arXiv:2007.00641 1, 1 (2020), 1ś7.

[24] Reza Tourani, Ray Stubbs, and Satyajayant Misra. 2018. TACTIC: Tag-based
access control framework for the information-centric wireless edge networks. In

International Conference on Distributed Computing Systems. IEEE, 456ś466.
[25] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Padmanabhan Pillai,

and Mahadev Satyanarayanan. 2019. Towards scalable edge-native applications.
In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. IEEE/ACM,
152ś165.

[26] Kaiping Xue, Weikeng Chen, Wei Li, Jianan Hong, and Peilin Hong. 2018. Com-
bining data owner-side and cloud-side access control for encrypted cloud storage.
IEEE Transactions on Information Forensics and Security 13, 8 (2018), 2062ś2074.

[27] Kaiping Xue, Peixuan He, Xiang Zhang, Qiudong Xia, David SL Wei, Hao Yue,
and Feng Wu. 2019. A Secure, Efficient, and Accountable Edge-Based Access
Control Framework for Information Centric Networks. IEEE/ACM Transactions
on Networking 27, 3 (2019), 1220ś1233.

[28] K. Xue, X. Zhang, Q. Xia, D.Wei, H. Yue, and F.Wu. 2018. SEAF: A secure, efficient
and accountable access control framework for information centric networking.
In Conference on Computer Communications. IEEE, 2213ś2221.

[29] Kan Yang, Jobin J Sunny, and Lan Wang. 2018. Blockchain-based decentral-
ized public key management for named data networking. In The international
conference on computer communications and networks (ICCCN 2018). IEEE.

[30] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. 2017. Lavea: Latency-
aware video analytics on edge computing platform. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. IEEE/ACM, 1ś13.

[31] Qingyang Zhang, Quan Zhang, Weisong Shi, and Hong Zhong. 2018. Distributed
collaborative execution on the edges and its application to amber alerts. IEEE
Internet of Things Journal 5, 5 (2018), 3580ś3593.

[32] M. Zhao, C. Hu, X. Song, and C. Zhao. 2019. Towards dependable and trustworthy
outsourced computing: A comprehensive survey and tutorial. Journal of Network
and Computer Applications 131 (2019), 55ś65.

[33] Qian Zhou, Mohammed Elbadry, Fan Ye, and Yuanyuan Yang. 2018. Heracles:
Scalable, Fine-Grained Access Control for Internet-of-Things in Enterprise Envi-
ronments. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 1772ś1780.

10 COMPUTATIONAL ASSUMPTIONS

Let G1 and G2 be two cyclic multiplicative groups of prime order q

generated by д1 and д2 respectively, ê : G1×G2 → GT be a bilinear

map such that∀x ∈ G1,y ∈ G2, anda,b ∈ Zq , ê(x
a
,yb) = ê(x ,y)ab ,

and ê(д1,д2) , 1.

Definition 10.1. The Decisional Diffie-Hellman (DDH) problem

in prime order group G =<д> is defined as follows: on input д, дa ,

дb , дc ∈ G, decide if c = ab or c is a random element of Zq .

Definition 10.2. Let algorithm BDH_Gen(1λ) output the pa-

rameters (ê(·, ·),q,д1,д2,G1,G2,GT) where there is an efficiently

computable isomorphismψ from G2 to G1. The Decisional Bilinear

Diffie-Hellman (DBDH) problem is defined as follows: given д1 ∈ G1,

д2,д
a
2
,дb

2
,дc

2
∈ G2 and Z ∈ GT as input, decide if Z = ê(д1,д2)

abc

or ê(д1,д2)
R for R ∈ Zq .

Definition 10.3. The k-Decisional Diffie-Hellman Inversion (k-

DDHI) problem in prime order groupG =<д> is defined as follows: on

input a (k+2)-tuple д,дs ,дs
2

, . . . ,дs
k
,дu ∈ Gk+2, decide if u = 1/s

or u is a random element of Zq .

Definition 10.4. Let BDH_Gen(1λ) output the parameters for a

bilinear mapping (ê) : G1 × G2 → GT . The eXternal Diffie-Hellman

(XDH) assumption states that, for all probabilistic polynomial time

adversariesA, the DDH problem is hard inG1. This implies that there

does not exist an efficiently computable isomorphismψ ′ : G1 → G2.

11 UC SECURITY ANALYSIS

11.1 Discussion

The security properties APECS aims to provide are preventing unau-

thorized users from availing services, and preventingmalicious edge

servers from offering services they are not authorized to provide,

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1418

and accessing users’ input and personal data. The design of our

ideal functionalities must reflect these properties.

Fregister enforces that users can register for availing an SP ’s

services only if the SP allows them to. When a user wants to up-

grade/downgrade their service category, Fregister forwards the re-

quest to SP , and allows the change only if SP permits it. An SP could,

of course refuse a user’s registration or service category update re-

quest, but we do not consider this as malicious behavior on the part

of the SP , since an SP can decide whom it wants to provide services

to. All details are stored in an internal table, uTable of FAPECS, and

cannot be modified by users and/or service providers. When a user

is revoked by an SP , Frevoke promptly deletes the corresponding

entry from uTable. When a user tries to request services of SP in a

category it has not registered for, e.g., a bronze member requesting

gold member services, Fresponse will check the uTable and return ⊥

to the user. This is also true when the user tries to access services

from non-existent edge servers. Hence a user will never be able to

improperly request services it has not signed up for.

When an edge server, EC , wants to provide services on behalf of

an SP , it needs to register with SP and a base station, BS . We assume

that when an EC registers with an SP and BS , it can provide all

services offered by SP on SP ’s behalf in all categories. This can be

easily modified to account for various combinations of sname/scat

offered by different ECs, but we do not depict them here for presen-

tational clarity. An EC , based on stype, can distinguish whether an

incoming user’s service request is static or dynamic. In the static

case, it returns the data (e.g., movie), and in the dynamic case, it

runs the algorithms stored in the sdata field of the corresponding

sname on the user’s input, udata, and returns the result to Fresponse,

which forwards it to the user. Thus, there is no way a malicious

EC can provide unauthorized services to a user on behalf of an SP ,

either in collusion with the user or otherwise. Also, Fresponse will

not forward any request containing udata to EC , unless it verifies

that EC is indeed authorized to service that user’s request, so EC

cannot get unauthorized access to user data/inputs.

11.2 Proof

We now prove Theorem 6.1.

Proof : We give a series of games, each of which is indistinguishable

from its predecessor by a PPTZ.

Game 0: This is the same as the real-world APECS.Z interacts

directly with APECS and A.

Game 1: S internally runs A and simulates the secure and au-

thenticated channels functionality Fsmt.

Lemma 11.1. For all PPT adversariesA and PPT environmentsZ,

there exists a simulator S such that

ExecGame0,Z ≈ ExecGame1,Z

The two games are trivially indistinguishable since S just exe-

cutes the simulator for Fsmt.

Game 2: S communicates with the honest parties and A, and

simulates the protocols of APECS with the help of FAPECS. A can

corrupt any user or EC at any point in time by sending a message

łcorruptž to them. Once an entity is corrupted, all their informa-

tion is sent to A and all further communication to and from the

corrupted party is routed through A. We now state and prove the

following lemma:

Lemma 11.2. For all PPT adversariesA and PPT environmentsZ,

there exists a simulator S such that

ExecGame1,Z ≈ ExecGame2,Z

SP ,EC,BS create their respective key-pairs, SP sets up the ser-

vices it offers and service categories. All public keys are published

as part of Mpk . S gets SP ’s public key, certificate, Certp , creates

spid, IDp , constructs the tuple td = (register, spid, sname, scat, ·, ·)

and passes it on to Fregister in the ideal-world who adds td to its

dTable. In the real-world, S returns IDp to SP . S receives a registra-

tion request from EC , ([IDs],Certe), upon which it creates an ecid

associated with EC , constructs tuple ts = (register, spid, ecid, bsid)

and forwards ts to Fregister in the ideal-world who adds ts to its

sTable. S then forwards ([IDs],Certe) to SP ,BS who will complete

the registration in the real-world and return (e, [Ae]) to S who for-

wards it to EC . S also queries the key generation function of Fsig,

and simulates the key generation procedure for Ssig where Ssig is

the simulation of the specific digital signature scheme being used.

When an EC needs to get revoked, SP will forward to S the ecid (ê

in the real world).S will pass long ê to the appropriate BS in the real

world, and in the ideal-world, S will create and forward to Frevoke
a tuple (revoke, spid, ecid). Frevoke will delete the corresponding

tuple from dTable, and forward the successfully-processed revoca-

tion request to bsid via S. In the real-world, SP and BS will update

their respective parts of Mpk toM ′
pk

and makeM ′
pk

public. SP ,BS

will also re-key the non-revoked ECs, and pass on their new keys

to them via S.

User u sends a registration request, (user_data,Certu) to S.

user_data contains information about the services [IDs] u is re-

questing, service provider IDp , the service categories [Lu], and ex-

piry time of the user’s subscription,Texp .S forwards (user_data,Certu)

to SP . SP creates a token Tpu = (IDp , [IDs],Certu , [Lu],Texp), and

simulates a signature onTpu viaSsig.S then returns (Tpu ,σTpu ,Mpk)

to u. In the ideal world, S constructs tuple tu = (register, uid =

H (Tpu), scat, spid) and sends to Fregister, where H is a collision-

resistant hash function.Fregister will add (uid, scat, spid) to its uTable.

If Fregister returns a ⊥, S returns ⊥ to u. When a user u needs to

get revoked, SP will notify all ECs through S and S will forward

Tpu to the ECs in the real-world. In the ideal-world, S will create

and forward (revoke, uid = H (Tpu), scat, spid) to Frevoke. Frevoke
will delete the corresponding entry from its uTable.

Any user u can send a service request to S. There are three

cases to consider: a revoked user sending a service request, an un-

revoked user sending a service request and a revoked EC trying to

process the request (and thus gain access to that user’s private input

data supplied with the request), and an un-revoked user sending

a service request which is processed by an un-revoked EC . We

discuss them below:

(1) Case 1: Revoked u sending a service request: u creates and

sends a service request ((Req = (Tpu , [ID]s ,C1,C2)),σTpu).

S needs to forward C1,C2 to the appropriate EC(s), since it

cannot decrypt them itself. S first does uid ← H (Tpu) and

sends (Req,σTpu) to the bsid and ecids associated with spid.

S finds the appropriate spid by calling the Verify interface

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1419

of Ssig to verify the signature on σTpu with the appropriate

VKspid . Honest ECs will return łerrorž, if the user is revoked,

or if the timestamp, Texp is past its expiry date, while mali-

cious ECs may still process the revoked user’s request. In the

ideal-world, S creates a tuple (spid, sname, uid, bsid, udata)

and forwards to Fresponse. Since u was revoked before send-

ing the request, Fresponse will return ⊥ (the check in Step 2

of Fresponse will fail). S then returns łerrorž to u. S will dis-

regard any responses it receives from malicious ECs possibly

colluding with the revoked user.

(2) Case 2: Revoked EC trying to process u’s request: User u

creates and sends a service request toS similar to Case 1, and

S forwards the request to bsid and ecids. In the real-world,

each BS will revoke ECs on the request of the appropriate SP

with whom EC is registered. When an EC gets revoked, BS

will run Protocol 7, Steps 3-12, to re-issue new keys to the

un-revoked ECs who possessed the same attributes as the

EC getting revoked. This ensures that BS will not forward

(Req,σTpu) to revoked ECs, nor will S accept any responses

from them. In the ideal-world, when an ecid needs to get re-

voked, the corresponding spid with whom ecid is registered

will send a (revoke, spid, ecid) message to Frevoke. Upon re-

ceipt of this, Frevoke will promptly delete that ecid’s tuple

from sTable, and send the tuple to S who will not forward

(Req,σTpu) to the revoked ECs. Nevertheless, if it still re-

ceives responses from revoked EC , S will ignore them. The

rest of the simulation proceeds similar to Case 1.

(3) Case 3: Un-revoked user sending a service request processed

by an un-revoked EC: User u creates and sends a service re-

quest ((Req = (Tpu , [ID]s ,C1,C2)),σTpu) as in the previous

two cases. S sends (Req,σTpu) to the bsid and ecids associ-

ated with spid. The ecids response is forwarded back to S.

If the request is for a service (dynamic request), i.e., C2 , ⊥,

S will forward the request to bsid, and all ecids. S will ac-

cept the first response it receives from an ecid. Since S for-

wards the request to all ECs, some might respond saying

they cannot provide the requested service; S ignores such

responses. Eventually, at least one EC will send a response

of the form fulfillService(·) → msд, which S forwards to

u. If the request is for data (static request), i.e., C2 = ⊥, S

will forward the request to bsid and all ecids and accept the

first response it receives. It will receive a response of the

form contentCacheLookup→msд, which S forwards to u.

In either case, if all ecids respond with a ⊥, S returns ⊥ to u.

Game 3: In this game, S needs to simulate the honest parties’

outputs to A; S does not have access to honest parties’ outputs

as it did in Game 2. S needs to reflect the outputs and protocol

outcomes of the ideal-world in the simulation of the real-world

protocol and any attempt by A to cheat in the real-world has to

result in the protocol aborting in the ideal-world. We now state and

prove the following lemma:

Lemma 11.3. For all PPT adversariesA and PPT environmentsZ,

there exists a simulator S such that

ExecGame2,Z ≈ ExecGame3,Z

S sets up the public parameters,
(

Mpk = (sysparam, apk1, . . . ,

apkn),ask1, . . . ,askn

)

← ABE.Setup(1λ ,n) and simulates SP by

creating an IDp in the real-world. Although this is done for every

SP , for simplicity, we have represented only one SP . In the ideal-

world, S creates spid, which is passed on to Fregister to register SP

as (register, spid, ·, ·, ·, ·).

For every ecid in the real-world that A wants to control, A

sends toS a tuple ([IDs],Certe). In responseS simulates and sends

(e, [Ae]) to A, where each [Ae] ← ABE.KeyGen(Mpk , aske , ide ,

[IDs]). S also creates (e, [Ae]) for simulating honest ECs with ser-

vice attributes not signed up for by the A in the previous step. S

stores (e, [Ae]) for honest ECs locally. In the ideal-world, S sends

(spid, ecid, ·) to Fregister. IfA signals an EC be revoked,S generates

the newM ′
pk

. For the un-revoked ECs, S sends their new [Ae]
′ to

A. In the ideal-world, S sends (revoke, spid, ecid) to Frevoke who

will delete all tuples of the form (spid, ecid, ·) from its sTable. If A

tries to revoke a non-existent EC , S will forward (revoke, spid, ·),

who will return ⊥, which S returns to A.

A sends registration requests on behalf of corrupted users to

S. For each user u’s registration, S creates a token Tpu = (spid,

sname, ·, scat, ·), and creates σTpu by simulating Ssig. It returns

(Tpu ,σTpu ,Mpk) to A. If A sends a message for a user to get re-

voked (alongwith the corresponding bsid),S sends (revoke, uid, spid)

to Frevoke. If Frevoke returns ⊥, i.e., A has tried to revoke a non-

existent or an already-revoked user, S returns ⊥ to A. Else, S

notifies A of the successful revocation.

S receives a service request fromA of the form (Req = (Tpu , [ID]s
,C1,C2), σTpu). S checks if the service request can be satisfied by

one of the adversary controlled ECs; the request is handled locally

by A and need not be simulated. However, if the request cannot

be satisfied by an adversary controlled EC , S will utilize Fresponse
functionality to respond to the user request.

In static requests, C1 is plaintext, so that tells S what the sname

is. S then calls Ssig to verify the signature on σTpu with the appro-

priate VKspid . This tells S what the spid is. Also, H (Tpu) → uid

which tells S what the uid is. When A sent Tpu , it will tell S

which bsid the request is intended for. So, S has all the information

it needs to construct a tuple Fresponse (spid, sname, uid, bsid,C2)

and sends to Fresponse. If the EC is not corrupted, i.e., S simulates

the output of a honest EC by forwarding the output, {msд,⊥}, of

Fresponse toA. Note that if Fresponse returned a ⊥ then that means

A queried on behalf of a revoked user and/or a revoked EC . When

C2 , ⊥ (dynamic requests), S looks at the set of attributes IDs

for the key-policy ABE that were used in the generation of C1.

This will tell it the snames that A is requesting. S uses the locally

stored keys ([Ae]) to decrypt C1 to get symmetric key K , and uses

K to decrypt C2 to retrieve udata. S can then construct a tuple

(spid, sname, uid, bsid, udata) to send to Fresponse. The rest of the

simulation proceeds as in the static case.

□

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1420

	Abstract
	1 Introduction
	2 Related Work
	3 Models and Assumptions
	3.1 System Model
	3.2 Security and Computational Assumptions
	3.3 Threat Model

	4 APECS Blocks and Overview
	4.1 User Authentication and Authorization
	4.2 Asynchronous Server Authentication
	4.3 APECS Overview

	5 APECS Design
	5.1 System Setup and Registration
	5.2 Service Request Protocol
	5.3 Service Response Protocol
	5.4 User and PEC server Revocation Protocols
	5.5 APECS PKC-based Design

	6 APECS Security Analysis
	6.1 Formal Security Analysis
	6.2 Informal Security Analysis

	7 Experimental Results and Analysis
	7.1 Implementation Scope
	7.2 Experiment Setup
	7.3 Results and Analysis

	8 Conclusions
	9 Acknowledgements
	References
	10 Computational Assumptions
	11 UC Security Analysis
	11.1 Discussion
	11.2 Proof

