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ABSTRACT
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently
suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods using both the square and
triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (the so-called γ correction). We
use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our
results showcase the drastic improvement of the accuracy by using the trajectory-adjusted γ-corrections, which outperform the widely used
trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically
investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that
have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely
foster the development of new quantum dynamics approaches based on these techniques.
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I. INTRODUCTION

Simulating on-the-fly non-adiabatic quantum dynamics in
molecular systems remains a central challenge in modern theoret-
ical chemistry despite the impressive progress made in the past
several decades.1–28 The two main components for performing an
on-the-fly quantum dynamics simulation are (i) obtaining accu-
rate electronic structure information and (ii) using it to propagate
the coupled motion of nuclear and electronic degrees of freedom
(DOF) in an efficient manner.29 Mixed quantum classical (MQC)
approaches, such as the fewest-switches surface hopping1 (FSSH)
and the mean-field Ehrenfest30 (MFE) approaches, which use the
outputs of electronic structure methods to evolve the electronic sub-
system quantum mechanically and nuclear DOFs classically, have
remained popular for simulating on-the-fly quantum dynamics.
However, the inherent mixed-quantum classical approximation in
these approaches can lead to the break-down of detail balance,31 the
artificial creation of electronic coherence,18 or incorrect chemical
kinetics.18

In response to these deficiencies, a wide range of non-
adiabatic dynamics approaches have been developed in the diabatic

representation, some of which include the partial linearized density
matrix7,32 (PLDM), symmetrical quasi-classical11,12 (SQC) approach,
state-dependent ring polymer molecular dynamics,13,15,23 quantum-
classical path integral (QCPI) approach,33–36 and quantum clas-
sical Liouville equation (QCLE) dynamics.14,37 In particular, the
recently developed γ-SQC has been shown27 to provide impressively
accurate non-adiabatic photo-dissociation quantum dynamics with
coupled Morse potentials through the adjusted zero point energy
parameter of the mapping variables, thus appearing to be a promis-
ing method to simulate on-the-fly quantum dynamics of complex
molecular systems. Testing these approaches with simple model sys-
tems becomes the major workhorse in the quantum dynamics field.
What have been largely missing, on the other hand, are the calcula-
tions that go beyond simple diabatic models. However, reformulat-
ing these approaches from diabatic to adiabatic representation often
requires non-trivial theoretical tasks and introduces new numerical
complications.

In our recent works, we have developed the quasi-diabatic (QD)
propagation scheme38–42 as a general strategy to seamlessly combine
a diabatic quantum dynamics approach with the adiabatic outputs
of an electronic structure method. The QD propagation scheme uses
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the adiabatic states with a reference nuclear geometry (the so-called
“crude adiabatic” states) as the local diabatic states during a short-
time propagation and continuously updates the QD basis at each
consecutive nuclear propagation step. In this propagation scheme,
one does not construct a global diabatic representation but uses a
sequence of local diabatic representations for each short-time seg-
ment to propagate quantum dynamics. Note that the quasi-diabatic
propagation scheme38–42 should not be confused with the approxi-
mate diabatic representation, which is also often referred to as the
QD representation in the literature.43–45

In this work, we use the QD propagation scheme to com-
bine the γ-SQC approach with adiabatic outputs of the complete
active space self-consistent field (CAS-SCF) approach to perform
on-the-fly non-adiabatic quantum dynamics in molecular systems.
We directly simulate photo-excited non-adiabatic dynamics in two
molecular systems, ethylene and fulvene. These molecular systems
have been recently proposed46 to be analog of the Tully curve-
crossing models,1 I and III, respectively. The original Tully mod-
els1 explore nuances in excited state dynamics that are ubiqui-
tous in “real” molecular systems to varying degrees of complexity,
while only involving one degree of freedom, and have been exten-
sively used to benchmark quantum dynamics approaches.6,7,11,47–49

The molecular analogs of the Tully models, on the other hand,
capture the basic physics of the original Tully models while con-
currently showcasing complex dynamical features due to the cou-
pled motion between the electronic and multiple nuclear DOFs.
These molecular systems serve as robust benchmarks offering com-
plex non-adiabatic dynamics beyond one-dimensional, overly sim-
plified model systems and are representative of typical molecular
systems.

Our numerical results demonstrate that the zero-point energy
(ZPE) corrected SQC (γ-SQC) improves the population dynamics
compared to the original SQC approach, benchmarked against the
more accurate ab initio multiple spawning (AIMS) approach. Our
numerical results also show that γ-SQC can outperform the state-of-
the-art decoherence-corrected surface hopping (dTSH) approach,
with a similar numerical cost in terms of the number of trajecto-
ries. Overall, our results demonstrate the accuracy and applicability
of the γ-SQC approach for ab initio on-the-fly simulation enabled
by the QD propagation scheme, opening up future opportunities
for simulating on-the-fly quantum dynamics of complex molecular
systems.

II. THEORY
The SQC approach11,12 uses symmetrical window functions

to sample electronic DOF at initial time and provides an esti-
mate of the reduced density matrix at later times. It relies on
the Meyer–Miller–Stock–Thoss (MMST) mapping Hamiltonian
approach, which transforms the electronic degrees of freedom onto
an effective set of singly excited and fictitious classical harmonic
oscillators. It has been shown to provide accurate non-adiabatic
dynamics in a wide range of model systems.11,50–52 Recently, the
original SQC method was also combined with the QD propagation
scheme41 for direct quantum dynamics simulation seamlessly using
adiabatic electronic structure outputs.42 Here, we briefly discuss the
essential idea of the mapping Hamiltonian, the γ-SQC approach, and
the QD propagation scheme.

A. Mapping Hamiltonian formalism
The Meyer–Miller–Stock–Thoss (MMST) mapping represen-

tation53–55 transforms the discrete electronic DOFs onto an effec-
tive set of fictitious, singly excited classical harmonic oscillators,
thus mapping the electronic non-adiabatic dynamics onto these
oscillators’ phase space motion.

The total molecular Hamiltonian in the diabatic representation
is expressed as follows:

Ĥ = T̂ +∑
ij

Vij(R̂)∣i⟩⟨j∣, (1)

where Vij(R̂) = ⟨i∣V̂(r̂, R̂)∣ j⟩ are the matrix elements of the
electronic Hamiltonian in the diabatic basis {∣i⟩}. Using the
Meyer–Miller–Stock–Thoss54–56 mapping representation, the dis-
crete electronic states are transformed into continuous phase-space
variables,

∣i⟩⟨j∣ → â†
i âj, (2)

where â†
i = (q̂i − ip̂i)/

√
2 and âj = (q̂j + ip̂j)/

√
2. With this transfor-

mation, the molecular Hamiltonian in Eq. (1) is transformed into the
following MMST mapping Hamiltonian:

Ĥm = T̂ +
1
2∑ij

Vij(R̂)(p̂ip̂j + q̂iq̂j − 2γδij), (3)

where γ = 0.5 is the ZPE for the mapping harmonic oscillators. His-
torically, it is recognized as the Langer correction by Meyer and
Miller56 for the quasi-classical description. Note that, until Eq. (3),
no approximations have been made.

In the SQC approach, instead of evolving all DOF quantum
mechanically, the coupled electronic–nuclear dynamics are propa-
gated using the following classical Hamiltonian:52

Hm =
P2

2M
+

1
2∑ij

Vij(R)(pipj + qiqj − 2γδij), (4)

where γ is viewed as a parameter52 that specifies the ZPE of the
mapping oscillators.57

Classical trajectories are generated based on Hamilton’s equa-
tions of motion,

q̇j = ∂Hm/∂pj, ṗi = −∂Hm/∂qi, (5)

Ṙ = ∂Hm/∂P, Ṗ = −∂Hm/∂R = F, (6)

with the nuclear force expressed as

F = −
1
2∑ij

∇Vij(R)(pipj + qiqj − 2γδij). (7)

Overall, the MMST mapping Hamiltonian provides a consistent
classical footing for both electronic and nuclear DOFs, and the non-
adiabatic transitions between electronic states are captured through
the classical motion of the fictitious harmonic oscillators.
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B. Symmetric quasi-classical (SQC) approach
To sample the electronic initial condition and estimate the pop-

ulation, the SQC approach uses the action-angle variables, {ej, θj},
which are related to the canonical mapping variables {pj, qj} through

ej =
1
2
(p2

j + q2
j ); θj = −tan−1

(
pi

qi
), (8)

and the inverse relations are

qj =
√

2ej cos(θj); pj = −
√

2ej sin(θj), (9)

where ej is a positive-definite action variable introduced by Cotton
and Miller that is directly proportional to the mapping variables’
radius in action-space,27 which allows for conceptual simplifica-
tion (compared to the nj = ej − γ action variable used in previous
works11,41,58), as it is independent of the ZPE parameter γ, which will
be allowed to be state-dependent in all subsequent sections of this
work.

The SQC approach allows for the population of electronic state
∣j⟩ to be evaluated as52

ρjj(t) = TrR[ρ̂R∣i⟩⟨i∣eiĤt/̵h
∣j⟩⟨j∣e−iĤt/̵h

]

≈
1

(2πh̵)N+M ∫ dτρW(P, R)Wi(e(0))Wj(e(t)), (10)

where ρ̂(0) = ∣i⟩⟨i∣ ⊗ ρ̂R is the initial density operator, ρW(P, R) is
the Wigner density of ρ̂R operator that contains N nuclear DOFs,
e = {e1, e2, . . . , eF} is the positive-definite action variable vector for
F electronic states, W i(e) = δ(ei − (1 + γ))∏i≠jδ(ej − γ) are the
Wigner transformed action variables,59 and dτ ≡ dP ⋅ dR ⋅ de ⋅ dθ.

For practical reasons, the above delta functions are artifi-
cially broadened using two well-explored distribution functions (i.e.,
square and triangle) that can be used to bin the resulting electronic
action variables in action-space, depicted for any two-state projec-
tion in Figs. 1(a) and 1(b).52 The square distribution for an F-state
system is defined as27

Wj(e) = w1(ej)
F

∏
j′≠j

w0(ej′), (11)

where the function wN(e) is expressed as

wN(e) =
⎧⎪⎪
⎨
⎪⎪⎩

1, 0 < e − N < 2 × 0.366,

0 else,
(12)

and γ =
√

3/2 − 1 ≈ 0.366 is the optimal width parameter of the
square window.11,28

The triangle window27,58 is expressed as

Wj(e) = w1(ej)
F

∏
j′≠j

w0(ej, ej′), (13)

where

w1(e) =
⎧⎪⎪
⎨
⎪⎪⎩

(2 − e)2−F, 1 < e < 2,

0 else
(14)

and

w0(e, e′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, e′ < 2 − e,

0 else,
(15)

and trajectories are assigned to state j at time t if ej ≥ 1 and ej′ < 1
for all j′ ≠ j. The ZPE parameter in the triangle scheme is γ = 1/3.
The triangle window scheme for a two-state system is depicted in
Fig. 1(b).

The time-dependent population at time t is then calculated by
applying the window function estimator to action variables {ej(t)}
for an ensemble of trajectories. Starting from the initial diabatic state
∣i⟩, the time-dependent population of the states ∣ j⟩ is computed using
Eq. (10). However, by using the window function estimator, the total
population is no longer properly normalized due to the fraction
of trajectories that are outside of any window region at any given
time.11 Thus, the total population must be normalized11 with the
following procedure:

ρjj(t)/
N

∑
i=1

ρii(t) → ρjj(t). (16)

This SCQ approach provides a dramatic improvement to Ehrenfest
dynamics, even though they utilize the same equation of motion for
the coupled electronic–nuclear DOFs.52,60 The SQC method allows

FIG. 1. (a) Symmetric quasi-classical (a)
square and (b) triangle window distri-
butions depicted for a two-state projec-
tion involving states 1 (blue) and 2 (red).
The action-space window distributions
are depicted using the positive-definite
action variables {ek}, which are shifted
quantities according to the correspond-
ing zero-point energy parameter γ.
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for the elimination of known issues present in Ehrenfest dynam-
ics, including preserving detailed balance,31,60,61 and this method
has shown to be quite accurate in an assortment of model sys-
tems50,51,58,62 while only needing a few thousand trajectories for con-
vergence.11,51,52 As such, the SQC method is well-suited for use in
on-the-fly non-adiabatic simulations of real molecular systems.

C. The γ-correction approach
It was recently proposed that the mapping zero-point energy

should be chosen in such a way as to constrain the initial force to be
composed purely from the initially occupied state,27 which was not
previously enforced using a fixed γ in Eq. (7). This new scheme has
shown to provide a significant improvement for photo-dissociation
problems with coupled Morse potentials27 and has been combined
with the kinematic momentum approach63 to carry out on-the-fly
simulations of the methaniminium cation.64

The basic logic of this scheme is to choose an appropriate γj
for each state ∣ j⟩ in a given individual trajectory, such that the ini-
tial population is forced to respect the initial electronic excitation
focused onto a single excited state. If the initial electronic state is ∣i⟩,
then

γj = ej − δji, (17)

or equivalently,
δji = ej − γj, (18)

where the {ej} are uniformly sampled, and then the γj are chosen to
satisfy Eq. (18).

These γj will be explicitly used in the equations of motion
(EOMs) in Eqs. (5)–(7), and in particular, the nuclear forces are now

F = −
1
2∑ij

∇Vij(R)(pipj + qiqj − 2γjδji), (19)

ensuring the initial forces (at t = 0) are simply F = −∇V ii(R). Previ-
ously, without any adjustments to γk, the chosen values for γk were
only dependent on the windowing function itself, i.e., γk = 0.366 for
the square windows and γk = 1/3 for the triangle windows. With the
above γ-correction method,27 each individual trajectory will have its
own state-specific γj for state ∣ j⟩ that is completely independent of
the choice of the window function. The choices of the γ parameter
for different SQC approaches are summarized in Table I.

Note that reformulating γ-SQC in the adiabatic representation
[such as the kinematically transformed (KT) SQC63] has been done
recently to perform on-the-fly simulations.64 However, formulating
a quantum dynamics approach in the adiabatic representation intro-
duces additional numerical issues as the molecular Hamiltonian in

TABLE I. Choice of γ for state ∣j⟩ with initial excitation on state ∣i⟩ of each SQC
method employed in this work.

Method γ-correction γj

◻-SQC False 0.366
Δ-SQC False 1/3
◻-γ-SQC True ej − δji
Δ-γ-SQC True ej − δji

the adiabatic representation involves first and second derivative cou-
pling elements that are typically sharply peaked around avoided
crossings and become singular at a conical intersection (CI). In
our previous work,41 we showed that the kinematically transformed
SQC (KT-SQC), formulated in the adiabatic representation, may
require substantially small time step to converge dynamics due to
the presence of sharply peaked first derivative coupling elements,
even though the second derivative coupling elements are removed
through mathematical transformation in this formalism.63 To this
end, we use the quasi-diabatic propagation scheme to directly inter-
face the diabatic γ-SQC approach with adiabatic electronic structure
information.

D. Quasi-diabatic propagation scheme
In this work, we combine the γ-SQC approach formulated in

the diabatic representation with adiabatic outputs of an electronic
structure approach using the QD propagation scheme.38,41,42 This
scheme has been discussed in our previous work.42 Here, for the sake
of completeness of the current work, we briefly summarize the basic
idea of the QD propagation scheme.

Despite recent theoretical progress,65–69 strict diabatic states
{∣i⟩, ∣j⟩} are neither uniquely defined nor routinely available for
“real” molecular systems. In contrast, it is convenient to obtain
adiabatic states by solving the following eigenequation:

V̂(r̂, R)∣Φα(R)⟩ = Eα(R)∣Φα(R)⟩, (20)

where V̂(r̂; R) is the electronic part of the molecular Hamiltonian at
a nuclear configuration R and ∣Φα(R)⟩ is the adiabatic state, which is
the eigenstate of V̂(r̂; R), with the corresponding eigenvalue Eα(R)

referred to as the adiabatic potential energy.
The central idea behind the QD scheme is realizing that, to

propagate quantum dynamics with diabatic dynamics approaches,
one only needs locally well-defined diabatic states, and these local
diabatic states can simply be adiabatic states with a reference geom-
etry (which are commonly referred to as the crude adiabatic states).
The QD scheme38 directly uses the adiabatic states associated with
a reference geometry as the local diabatic states during a short-time
quantum propagation and dynamically updates the definition of the
QD states along the time-dependent nuclear trajectory. Between two
consecutive nuclear geometries in the time-evolution, R(t0) and
R(t1), one can use the adiabatic states at R(t0) as a quasi-diabatic
basis to propagate the electronic subsystem to the next nuclear
geometry R(t1). In particular, the basis

∣Φα(R0)⟩ ≡ ∣Φα(R(t0))⟩ for t ∈ [t0, t1] (21)

is taken and used to represent the potential energy V̂(r̂, R) at all
electronic time steps between R(t0) and R(t1),

Vαβ(R(t)) = ⟨Φα(R0)∣V̂(R(t))∣Φβ(R0)⟩. (22)

At each electronic time step, an interpolation [between nuclear
geometries R(t0) and R(t1)] of the potential energy operator is
obtained in the basis of R(t0), implying that all interpolated steps
produce an off-diagonal electronic matrix in this basis. Most impor-
tantly, note that in this quasi-diabatic basis, the derivative couplings
vanish by definition.

J. Chem. Phys. 155, 084106 (2021); doi: 10.1063/5.0061934 155, 084106-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The linear interpolation70 between Vαβ(R(t0)) and Vαβ
(R(t1)) is computed as

Vαβ(R(t)) = Vαβ(R0) +
(t − t0)

(t1 − t0)
[Vαβ(R(t1)) − Vαβ(R0)], (23)

where Vαβ(R0) = ⟨Φα(R0)∣V̂(R(t0))∣Φβ(R0)⟩ = Eα(R(t0))δαβ. The
matrix elements Vαβ(R(t1)) are computed as follows:

Vαβ(R(t1)) = ∑
λν

SαλVλν(R(t1))S†
βν, (24)

where

Vλν(R(t1)) = ⟨Φλ(R(t1))∣V̂(R(t1))∣Φν(R(t1))⟩ = Eλ(R(t1))δλν,

and the overlap matrix between two adiabatic electronic states
(at two different nuclear geometries) are Sαλ = ⟨Φα(R0)∣Φλ(R(t1))⟩

and S†
βν = ⟨Φν(R(t1))∣Φβ(R0)⟩. These overlap matrices are com-

puted based on the approach outlined in Ref. 71. The nuclear
gradients ∇Vαβ(R(t1)) ≡ ∂Vαβ(R(t1))/∂R are evaluated as

∇Vαβ(R(t1)) = ∇⟨Φα(R0)∣V̂(R(t1))∣Φβ(R0)⟩

= ⟨Φα(R0)∣∇V̂(R(t1))∣Φβ(R0)⟩

= ∑
λν

Sαλ⟨Φλ(R(t1))∣∇V̂(R(t1))∣Φν(R(t1))⟩S†
βν.

(25)

Since {∣Φα(R0)⟩} is a diabatic basis, the nuclear gradi-
ent will bypass these terms, and the resolution of identity
∑λ ∣Φλ(R(t1))⟩⟨Φλ(R(t1))∣ = 1 was inserted, which assumes the
completeness of basis at the R(t1) geometry. Note that Eq. (25)
includes all nuclear gradient terms without approximation.

Once the electronic DOFs are propagated to time t1, we adopt
a new basis composed of the adiabatic states at the R(t1) geome-
try, {∣Φα(R(t1))⟩}. At this time, all quantities are transformed from
{∣Φα(R0)⟩} to {∣Φμ(R(t1))⟩} basis using the relation

∣Φμ(R(t1))⟩ = ∑
α
⟨Φα(R(t0))∣Φμ(R(t1))⟩∣Φα(R(t0))⟩. (26)

Since the mapping relation between the physical state and the singly
excited oscillator state is ∣Φμ(R(t1))⟩ = a†

μ∣0⟩ = 1
√

2
(q̂μ + ip̂μ)∣0⟩ and

∣Φα(R(t0))⟩ = a†
α∣0⟩ = 1

√

2
(q̂α + ip̂α)∣0⟩, the relations for the map-

ping variables associated with two bases are

1
√

2
(q̂μ + ip̂μ)∣0⟩ = ∑

α
⟨Φα(R(t0))∣Φμ(R(t1))⟩

1
√

2
(q̂α + ip̂α)∣0⟩.

(27)
For molecular systems, one can always find a suitable choice for the
basis set in order to make ⟨Φα(R(t0))∣Φμ(R(t1))⟩ real, which guar-
antees that the mapping variables are transformed with the same
relations as the bases. Based on this relation in Eq. (27), we transform
the time-dependent mapping variables between the two consecutive
QD bases as follows:

∑
α

qα⟨Φα(R(t0))∣Φμ(R(t1))⟩ → qμ, (28a)

∑
α

pα⟨Φα(R(t0))∣Φμ(R(t1))⟩ → pμ. (28b)

When performing the transformation in Eqs. (26) and (28), the
eigenvectors maintain their mutual orthogonality subject to a very
small error when they are expressed in terms of the previous
basis due to the incompleteness of the basis.8,72 Nevertheless, the
orthogonality remains to be well satisfied among {∣Φα(R(t0))⟩}

or {∣Φλ(R(t1))⟩}. This small numerical error generated from each
step can, however, accumulate over many steps and cause a sig-
nificant error at longer times, leading to non-unitary dynamics.8,72

This potential issue can be easily resolved by using the orthonor-
malization procedure among the vectors of the overlap matrix
⟨Φα(R(t0))∣Φμ(R(t1))⟩, as has been done in our previous work39

for simulating photoinduced charge transfer dynamics. Here, we
perform the Löwdin orthogonalization procedure73 as commonly
used in the local diabatization approach72 to ensure this.

As the nuclear geometry closely follows the reference geometry
throughout the propagation, the QD basis forms a convenient and
compact basis. Note that, in principle, one needs infinite crude adi-
abatic states {∣Φα(R0)⟩} to represent the time-dependent electronic
wavefunction, because the electronic wavefunction could change
rapidly with the motion of the nuclei, and the crude adiabatic basis
is only convenient when the reference geometry R0 is close to the
nuclear geometry R. By dynamically updating the basis in the QD
scheme, the time-dependent electronic wavefunction is expanded
with the “moving crude adiabatic basis”74 that explores the most rel-
evant and important parts of the Hilbert space, thus requiring few
states for quantum dynamics propagation.

Thus, the QD representation provides several unique advan-
tages over the strict diabatic or adiabatic representation for quan-
tum dynamics propagation. On one hand, the QD basis is con-
structed from the crude adiabatic basis, which can be easily obtained
from any commonly used electronic structure calculation. On the
other hand, the diabatic nature of the QD basis makes derivative
couplings explicitly vanish and allows using any diabatic dynam-
ics approaches to perform on-the-fly propagation. Furthermore,
the QD scheme ensures a stable propagation of the quantum
dynamics compared to directly solving it in the adiabatic repre-
sentation. This is due to the fact that directly solving electronic
dynamics in the adiabatic state requires the non-adiabatic coupling
⟨Φβ(R(t))∣ ∂

∂t Φα(R(t))⟩ = dβα(R) ⋅ Ṙ, which might exhibit highly
peaked values and cause large numerical errors20,75 when using a lin-
ear interpolation scheme.76 The QD scheme explicitly alleviates this
difficulty by using the well behaved transformation matrix elements
⟨Φβ(R(t1))∣Φα(R(t2))⟩ instead of ⟨Φβ(R(t))∣ ∂

∂t Φα(R(t))⟩.
Note that the SQC approach has been derived in the adia-

batic representation,63 which contains the derivative of the deriva-
tive coupling ∇dαβ(R) in the equation of motion. With kinematic
momentum transformation, it explicitly eliminates the presence
of the ∇dαβ(R) term in the nuclear force (instead of ignoring
it), and the nuclear EOM of the KM-SQC approach is equiva-
lent to the nuclear forces in QD-SQC.41 On the other hand, the
KM-SQC EOMs still explicitly contain dβα(R) through the presence
of ⟨Φβ(R(t))∣ ∂

∂t Φα(R(t))⟩, which could lead to numerical insta-
bilities when these derivative couplings are highly peaked. This has
been extensively investigated in Ref. 41 using Tully’s avoid crossing
model, which has a very narrow derivative coupling, such that it can
drastically change on a time-scale that is shorter than the nuclear
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time step dt. When using a large dt in the KM-SQC approach, the
nuclear position can encounter drastically different values of the
derivative coupling from one step to another that allow for a dis-
continuous spike at a CI or even completely step over it,17 result-
ing in different long-time populations and oscillatory behavior of
errors. Thus, the approaches that explicitly require derivative cou-
plings (and those that use a simple linear interpolation scheme for
obtaining them, as we have previously implemented for the KM
scheme) either encounter numerical challenges or start to accumu-
late numerical errors.17 The QD scheme, on the other hand, provides
more accurate results even when using a relatively larger time step
dt, simply because the QD scheme only requires the well-behaved
transformation matrix elements ⟨Φ1(R(t0))∣Φ2(R(t1))⟩ instead of
the highly peaked derivative coupling d12(R). That being said, there
may be good alternative approaches to achieve the same attractive
features for dynamics propagation, such as those recently developed
norm-preserving interpolation schemes.17,20 The QD scheme is, per-
haps, still the most straightforward one that allows robust dynamical
propagation and enables a seamless interface between the diabatic
quantum dynamics approach (such as SQC) and adiabatic electronic
structure calculations.

Over the last decade, the QD representation has been used
in many contexts. These schemes have been used primarily in
the surface hopping approach in order to propagate the electronic
coefficients.8,70,72,77,78 Furthermore, it has been also used in Gaus-
sian wavepacket dynamics10,74,79–82 approaches where it was called
the “moving crude adiabatic”74 representation. These approaches

all utilize a locally diabatic basis to overcome issues arising from
non-adiabatic coupling, but our approach concentrates on resolving
the incompatibility between diabatic quantum dynamics approaches
and adiabatic electronic structure calculations.38

E. Computational details
Non-adiabatic molecular dynamics simulations based on the

QD-γ-SQC approach are performed using an in-house modified
version42 of the Surface Hopping including Arbitrary Couplings
(SHARC) non-adiabatic molecular dynamics code, interfaced to the
MOLPRO electronic structure package.83,84 On-the-fly electronic
structure calculations are performed at the level of the complete
active space self-consistent field (CASSCF) approach, with 3SA-
CASSCF(2,2)/6-31G∗ and 2SA-CASSCF(6,6)/6-31G∗ levels of the-
ory for ethylene and fulvene, respectively.46 The CAS self-consistent
calculation is performed over three lowest adiabatic states for ethy-
lene and over two lowest adiabatic states for fulvene, whereas the
quantum dynamics for both molecules are confined in the {S0, S1}

subspace. All of the energies and gradients are computed at this
level of electronic structure theory. The default accuracy for both the
nuclear gradients and non-adiabatic vectors is 10−7 a.u.; when this
criterion is not satisfied, a maximum of 900 additional wavefunc-
tion optimization iterations are used to make sure the convergence
of 10−4 a.u. is reached. All of the electronic structure calculations
performed during our quantum dynamics simulations converge
successfully under the above criteria.

FIG. 2. Adiabatic potentials for (a) Tully’s
model I (a single avoided crossing) and
(b) Tully’s model III (an extended region
of coupling with a reflective barrier). The
molecular structures of the ab initio Tully
models are depicted in the insets. Along
a single QD-γ-SQC trajectory, the popu-
lation of the S1 (blue) state and the ener-
gies of the S0 (black) and S1 (red) states
as functions of time for (c) ethylene and
(d) fulvene are presented.
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The initial Wigner distribution is sampled from the ground
vibrational state ν = 0 on the ground electronic state ∣S0⟩, where
the normal mode frequencies (in the harmonic approximation)
are calculated based on the approach outlined in Refs. 85 and 86,
as implemented in the SHARC package. The normal mode fre-
quencies are computed at the level of MP2/6-31++G∗∗ with the
MOLPRO package, with the optimized structure obtained at the
same level of electronic structure theory for the ground state ∣S0(R)⟩.
In particular, the nuclear density ρW(R̃, P̃) in terms of the molecular
normal-mode frequencies {ω̃k} and phase space variables {R̃, P̃} is
given as87

ρW(R̃, P̃) ∝
N

∏
k=1

exp[− tanh(
βh̵ω̃k

2
)(

mω̃k

h̵
R̃2

k +
1

mkω̃kh̵
P̃2

k)]. (29)

The initial distribution {R, P} is then obtained by transforming
{R̃, P̃} from the normal mode representation to the primitive coor-
dinates using the unitary transformation that diagonalizes the Hes-
sian matrix. The coordinates and momenta for ethylene were sam-
pled from the above Wigner distribution of these normal modes. For
fulvene, only the coordinates were sampled and the momenta were
set to zero, such that the molecule encounters only a slanted conical
intersection.46

A total number of 500 trajectories are used in the QD-γ-SQC
simulations to achieve converged population dynamics. A rough
convergence of the population dynamics can be already achieved

within 50–100 trajectories for both molecules. The nuclear time
step used in the QD-γ-SQC is dt = 0.1 fs, with 200 electronic time
steps for the mapping variables’ integration during each nuclear time
step. The electronic structure calculations are performed only at the
nuclear time step. Additional analysis, including the fraction of the
trajectories outside the windows, as well as the energy conservation
analysis, is provided in the supplementary material.

The overlap matrix of CAS wavefunctions between two suc-
cessive nuclear time steps is calculated by using the approach out-
lined in Ref. 71, as implemented in the program wfoverlap. The
random phases generated from electronic structure calculations for
the eigenfunctions are carefully calculated and accumulated. To
ensure the orthonormalization among the vectors of the overlap
matrix ⟨Φα(R(t0))∣Φμ(R(t1))⟩, we perform the Löwdin orthogo-
nalization.72 All of the above routines were used as implemented in
the SHARC program.88,89

In this work, we chose two molecular systems, (i) ethylene and
(ii) fulvene, that were previously investigated as the ab initio analo-
gies to Tully’s curve crossing models,46 as illustrated in Figs. 2(a)
and 2(b). In panel (c), the time-dependent adiabatic potential
energies of the ethylene molecule along a single nuclear trajectory
for S0 and S1 states are presented. In the top sub-panel, the excited
state population (blue) computed with the QD-γ-SQC approach is
plotted, which shows an oscillation of the population in the avoided
crossing region that eventually relaxes down to the ground state.
In panel (d), the time-dependent adiabatic potential energies of the

FIG. 3. Population dynamics of the S1
state in ethylene, using the square [(a)
and (b)] and triangle [(c) and (d)] win-
dowing schemes. Panels (a) and (c) uti-
lize the original SQC method with fixed
zero-point energy (ZPE) parameter γ,
while (b) and (c) are computed using
the trajectory-adjusted ZPE parameter γ.
Note that the AIMS and dTSH data are
adapted directly from Ref. 46.
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fulvene molecule are shown and they exhibit many instances of
potential energy barriers within regions of near degeneracy between
states, leading to reflection given a sufficiently low momentum,
similar to the Tully’s model III (which is described canonically by
a single spatial coordinate).1 The previously encountered avoided
crossing is then visited again where the population transfers back
into the excited state. This occurs twice (within the allotted time-
frame) in the single trajectory presented in panel (d), which gives
rise to the important features found in the population dynamics
discussed in more detail later. These two molecules provide rich
physics of two vastly different levels of dynamical complexity. It is
important to note that the features that the Tully models present
are with respect to a single nuclear coordinate, but in the ab initio
molecular models, the analogy is represented through the
time-dependent adiabatic potential energies, demonstrated in
Figs. 2(c) and 2(d).

III. RESULTS AND DISCUSSION
Figure 3 presents the adiabatic population dynamics of

ethylene upon photo-excitation to the S1 state, obtained from
various SQC approaches (black solid lines), compared to the
ab initio multiple spawning (AIMS) (thick green lines), an approx-
imate Gaussian wavepacket-based non-adiabatic method, which is
used as the benchmark result. The decoherence-corrected trajectory
surface hopping (dTSH) approach (blue lines) is also presented for

comparison, which is obtained with 660 trajectories.46 Both AIMS
and dTSH results were directly adapted from Ref. 46.

Figure 3(a) presents the results obtained from the origi-
nal11,12 SQC approach using the square window scheme, where
the mapping ZPE γ = 0.366 is kept as a constant for all states
and trajectories. Figure 3(b) presents the results obtained from the
SQC approach using the triangle window scheme58 with a fixed
γ = 1/3. Both approaches provide reasonably accurate non-adiabatic
dynamics compared to the AIMS results, as well as to the dTSH
simulations. In particular, the ◻-SQC method seems to show an
increased relaxation time compared to AIMS, whereas the tri-
angle window scheme presented in panel (b) is more accurate
for simulating the ethylene non-adiabatic dynamics, compared to
the square window scheme presented in panel (a). This trend
is in agreement with the empirical results of the recent numer-
ical tests of both window schemes with a wide range of dia-
batic models,58,90 especially for models with weak non-adiabatic
coupling.58

Figures 3(c) and 3(d) present the ZPE-corrected QD-γ-SQC
dynamics, obtained with the square window [panel (c)] and the
triangle window [panel (d)]. For the square window scheme, we
find that the γ-SQC approach [panel (c)] provides much better
agreement with the AIMS benchmark compared to the original
SQC method [panel (a)]. For the triangle window scheme, we find
very similar short-time relaxation curves for the Δ-SQC [panel (b)]
method compared to Δ-γ-SQC [panel (d)]. For the particular case of

FIG. 4. S1 Population dynamics for ful-
vene using the square [(a) and (b)] and
triangle [(c) and (d)] windowing schemes.
Panels (a) and (c) utilize the origi-
nal SQC method with fixed zero-point
energy (ZPE) parameter γ, while (b) and
(c) are computed using the trajectory-
adjusted ZPE parameter γ. Note that
the AIMS and dTSH data are adapted
directly from Ref. 46.
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the ethylene photo-dissociation dynamics, the ZPE correction does
not further improve the results when the triangle window is used,
similar to the recent work that utilized the kinematic momentum
formulation of SQC.64 With both Δ-SQC [panel (b)] and Δ-γ-SQC
[panel (d)], we see a near quantitative agreement with AIMS, even
slightly out-performing the commonly used dTSH (blue), which is
obtained with 180 trajectories.46

Figure 4 presents the non-adiabatic photo-relaxation dynamics
of fulvene, which has recently been proposed as a molecular exam-
ple of Tully’s model III.46 In fulvene, there exists a so-called slanted
CI, whereby the wavepacket becomes reflected and re-interacts with
this CI at nearly periodic times later (∼20-fs intervals), leading to
the breakdown of the mixed quantum-classical methodologies due
to wavepacket bifurcation as well as the added effects of encir-
cling the CI. These non-adiabatic methods assume a single Gaussian
wavepacket basis for describing the nuclear motion – higher-order
modes or multiple Gaussian wavepackets are needed to fundamen-
tally capture these effects. For the single SQC trajectory presented
in Fig. 2(d), one can see that the population (blue solid line) resides
in the ground state while traversing the CI but jumps back to the
excited state after the interaction. Eventually, the CI will lead to the
permanent relaxation to the ground state.

Figure 4(a) presents the results obtained from ◻-SQC, and
Fig. 4(b) presents the results from Δ-SQC. Both are providing accu-
rate dynamics at the short time compared to AIMS, including the
small shoulder in S1 population at t ∼ 10 fs as well as the subse-
quent plateaus in S1 population. dTSH results (blue) also provide
a reasonable description for the short-time dynamics. However, at a
longer time for t > 10 fs, both SQC and dTSH deviate from the AIMS
results, although the SQC approach (both the square and the trian-
gle windows) outperform dTSH. Even using different decoherence
schemes in dTSH seems unable to provide further improvement, as
shown in Ref. 91.

Figures 4(c) and 4(d) present the SQC dynamics with the γ cor-
rection. Contrary to the ethylene case, the SQC dynamics is signifi-
cantly improved upon the γ-correction for both window schemes.
In particular, the ◻-γ-SQC method [panel (c)] provides the most
quantitative accuracy among all of the SQC-related methods, cap-
turing both the initial inversion of population as well as the pop-
ulation plateau around 20 fs and finally the tail plateau around
40 fs, slightly outperforming the Δ-γ-SQC method [panel (d)]. Both
γ-SQC methods greatly outperform the dTSH simulation, as there
is a severe underestimation of the population transfer in the dTSH
method.46

IV. CONCLUSIONS
In this work, we use the quasi-diabatic propagation scheme

to directly interface the diabatic symmetric quasi-classical (SQC)
approach with the electronic zero-point energy correction (the γ
correction)27 and the CASSCF on-the-fly electronic structure cal-
culations to propagate ab initio non-adiabatic dynamics. We have
performed simulations for two recently suggested molecular mod-
els, ethylene and fulvene, that are closely related to the well-
known simple curve crossing models of Tully. We have shown
that the γ-SQC method based on the trajectory-adjusted electronic
zero-point energy in classical Meyer–Miller vibronic dynamics
provides very accurate non-adiabatic population dynamics when

compared to ab initio multiple spawning (AIMS) and even outper-
forms the widely used adiabatic decoherence-adjusted surface hop-
ping (dTSH) method. Specifically, for the fulvene molecule (which
is a molecular analog of Tully’s model III), we found that the
γ-correction significantly improved the accuracy of the original SQC
approach for both the square and triangle window schemes. These
calculations provide useful and non-trivial tests to systematically
investigate the numerical performance of various diabatic quantum
dynamics approaches, going beyond the simple diabatic model sys-
tems that have historically been the major workhorse in the quantum
dynamics field. At the same time, these available benchmark studies
will also likely foster the development of new quantum dynamics
approaches.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional analysis of the
SQC trajectories and analysis of the energy conservation.
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