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Amplitude stabilization of micromechanical oscillators using engineered nonlinearity
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Micromechanical oscillators provide periodic output signals for clocks and sensors by vibrating in a single me-
chanical mode. The mode is conventionally excited into self-sustained oscillations and stabilized with an external
electronic feedback loop. A paradigm is emerging for sustaining vibrations by coupling the mechanical mode
with internal degrees of freedom, such as photons, electrons, or auxiliary mechanical modes. An open question
in these hybrid vibrational systems is the corresponding internal sources of nonlinearity that can stabilize the
oscillations, and their impact on oscillator performance. Here, we delineate two kinds of amplitude-stabilization
mechanisms in micromechanical oscillators, geometric nonlinear damping and repulsive contact, and show that
these mechanisms can coexist in the same device and their interplay and resonance frequency stability can
be tuned in situ by adjusting the feedback strength. An auxiliary source of viscous dissipation and nonlinear
dissipation accompanies the repulsive contact, which stabilizes the amplitude during sidewall collisions. The
onset of self-sustained oscillations yields distinct spectral-temporal signatures that can be used to identify the

amplitude stabilization nonlinearities.

DOI: 10.1103/PhysRevResearch.3.033268

L. INTRODUCTION

Micro- and nanoelectromechanical (MEM/NEM) res-
onators often serve as the frequency-determining elements
within oscillators for resonant sensors and timing references.
The oscillations are conventionally sustained by monitoring
the vibrations near the resonance frequency and applying
an external phase-shifted feedback force [1]. A host of ef-
fective damping techniques are emerging, which utilize the
interaction between the mechanical mode and photons [2-5],
electrons [6,7], magnons [8,9], or auxiliary mechanical modes
[10-12]. By eliminating the external feedback loop, these
coupling mechanisms could enable MEM/NEM oscillators
with potentially better performance and suitability to differ-
ent operating conditions than conventional oscillators. The
interaction dynamics and effective damping tuning achievable
with these emerging coupling mechanisms have received a
great deal of attention in recent years [13]. Utilizing these
techniques for novel oscillator topologies opens up a par-
allel challenge that has received relatively less attention:
understanding and controlling the nonlinear dynamics of the
mechanical oscillations. There is ongoing work to harness
nonlinearities to improve oscillator performance, including
utilizing zero-dispersion points [14—16] and modal coupling
for frequency stabilization [17,18], and reservoir engineering
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[19,20] for storing energy in auxiliary mechanical modes. For
self-sustained oscillators based on hybrid vibrational systems,
the nonlinearities are integral to performance [21]. Addition-
ally, ongoing efforts to operate MEM/NEM resonators in
their quantum regime [22-27], with ultranarrow linewidths
[28-30], opens up a path to harness nonlinearities to de-
velop quantum bits (qubits) based on mechanical resonators
[31-33].

When pumping any coupling mechanism beyond the self-
oscillation threshold, the effective damping of the mechanical
mode becomes negative and the amplitude grows rapidly un-
til stiffening nonlinearity [21] or nonlinear damping [34,35]
stabilizes the vibrations. Stiffening nonlinearity is readily
available in resonator geometries that experience midplane
stretching of the vibrating element relative to the unde-
formed frame [36], such as doubly clamped beams [37,38]
and membranes [39,40]. Many other important geometries,
such as cantilevers [41,42] and bulk acoustic wave resonators
[43,44], exhibit exceedingly weak stiffening nonlinearity. Ca-
pacitive transduction schemes compound this problem in
MEM/NEM resonators since electrostatics contribute third-
and higher-order softening nonlinearities [45,46], which will
destabilize the oscillations [47]. Positive nonlinear damping
provides another route for stabilizing the oscillation ampli-
tude, and geometric nonlinear dissipation has been observed
in MEM/NEM resonators constructed from doubly clamped
beams [35,48-50] and membranes [51,52]. The origins of
intrinsic positive nonlinear dissipation in MEM/NEM res-
onators are under investigation [53-56], and there is evidence
of negative nonlinear dissipation arising in directly [57-59]
and parametrically [60] driven micromechanical resonators.
A third possible amplitude stabilization mechanism, repul-
sive contact, utilizes the interactions between the vibrating
mechanical element and an adjacent electrode. Squeezing of
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FIG. 1. Characterization of the nonlinear electromechanical resonators. (a) A depiction of amplitude stabilization in a micromechanical
cantilever via nonlinear dissipation in a high-stress connecting element. (b) An analogous depiction to (a) for stabilization via repulsive contact
with an adjacent electrode. (c) A simplified schematic of the micromechanical resonator, showing the vibration modeshape, electrical biasing,
and displacement detection scheme. The device is voltage biased at Vj, and a current over-bias is applied between the two anchors to flow a
direct current (I4.) through the resonator. The motion is read out piezoresistively (V,,), or capacitively. An external harmonic drive (V,.) signal
can be alternately applied to an adjacent electrode to characterize the forced response. [(d),(e)] The amplitude and phase of the forced response
vs frequency detuning Aw = w — wy for a repulsive-contact-stabilized resonator, Device D (L = 50 pum, g = 700 nm). The harmonic drive
voltage varies from V,. = 100 mV to V,. = 370 mV. [(f),(g)] The corresponding theoretical amplitude and phase curves of the device measured

in [(d),(e)], using the nonlinear model for the amplitude and phase in Egs. (4) and (5), respectively.

the gas film in the gap at large amplitudes can contribute
additional dissipation, and the Hertzian-like contact of the
asperities on the contacting surfaces can contribute stiffening
nonlinearity. Repulsive contact is ubiquitous in the context
of atomic force microscopy [61,62], whereby the competing
effects of van der Waals attractive forces and Hertzian repul-
sive forces on the microcantilever tip influence the vibration
dynamics.

Here we investigate the geometric nonlinear dissipation
and repulsive contact mechanisms as a resource for amplitude
stabilization in MEM/NEM oscillators. Geometric nonlinear
dissipation, as depicted in Fig. 1(a), may arise in regions of a
resonator that experience significant stress. Repulsive contact,
as depicted in Fig. 1(b), stems from the nonlinear interac-
tions between the resonator and an adjacent surface. Using a
common device architecture, we isolate independent sources
of dissipation corresponding to each of these two amplitude
stabilization mechanisms and confirm that these differing
sources of dissipative nonlinearity are responsible for the
amplitude stabilization in both cases. Unlike standard micro-
cantilevers vibrating in a diving-board mode, the cantilevered
geometry in this study is designed to concentrate axial stress
in a narrow anchoring beam to near the single-crystal-silicon
fracture limit during oscillations. By adjusting the length of
the supporting beams and the width of the capacitive gaps
on either side of the cantilever, the relative contributions of
the intrinsic nonlinear dissipation in silicon and the external
nonlinearity of the repulsive contact with the sidewalls can be
controlled. We use geometric nonlinear dissipation to stabilize
the oscillation amplitude for over 100 million cycles, observe
slow-time amplitude fluctuations for feedback strengths near
threshold, and identify silicon fatigue as the primary con-

sideration for long-term oscillator operation. For amplitude
stabilization via repulsive contact, we demonstrate stable op-
eration for over 1 billion cycles, and show that significant
improvements in oscillator frequency stability can be attained
by utilizing a feedback strength close to threshold. We show
that repulsive contact is a robust mechanism for stable opera-
tion of oscillators within hybrid vibrational systems based on
electron coupling, and can be readily implemented for other
domains of coupling and for a wide variety of other flexural
and bulk mode resonator geometries.

II. DEVICES

We investigate the geometric nonlinear damping and repul-
sive contact amplitude stabilization mechanisms using silicon
piezoresistive microcantilevers, as depicted in Fig. 1(c). The
oscillations are sustained by leveraging the internal coupling
between the mechanics, electrons, and heating known as
thermal-piezoresistive pumping [63,64]. This recently discov-
ered electrothermal feedback scheme is under investigation
for novel mass sensors [65], signal pre-amplifiers for resonant
sensors [66], and nanoscale narrow-band filters [67]. This
internal feedback scheme enables us to tune the feedback
strength beyond threshold by simply adjusting the direct cur-
rent through the resonator, and eliminates the need to apply
any external harmonic signals during self-sustained oscilla-
tions.

The devices are fabricated in a wafer-scale encapsulation
process [68,69], which produces stable microscale resonators
in a hermetic vacuum-sealed environment. The ultraclean
environment, stable material properties, and amenability to
resonator construction makes this fabrication process ideal
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for studying nonlinear nanomechanics in silicon. The base
of the cantilever is split into a wide “spring” beam and a
narrow “‘engine” beam, which is a modification of the early
thermal flexure actuator geometry [70,71]. The spring beam
contributes most of the mechanical stiffness for the flexural
modes of the cantilever, while the engine beam induces the
self-sustained oscillations and contributes geometric nonlin-
ear dissipation at large stresses [47]. The cantilevers have a
thickness of 60 um, and support a proof mass of 400 um
length by 100 um width. The resonators are fabricated from
n-type, moderately antimony doped single-crystal-silicon
(Ng ~ 4 x 10" cm™3), and aligned in the (100)-direction
for maximum longitudinal piezoresistive coefficients. The de-
vices are voltage-biased with respect to an adjacent electrode
to enable capacitive motion detection, and current-biased for
the dual purposes of inducing self-sustained oscillations and
reading out the motion piezoresistively. We utilize a custom
transimpedance amplifier (TTA) to measure the capacitive sig-
nal, and a custom differential four-probe piezoresistive buffer
to measure the piezoresistive signal. The measurement am-
plifiers are optimized to remain in their linear regime during
the large-amplitude oscillations, while contributing as little
noise as possible. The electrode on the engine beam side of
the device, labeled the “transduction electrode” in Fig. 1(c),
is connected to either the capacitive TIA for self-oscillation
measurements or a signal generator for forced vibrations. The
electrode on the spring beam side of the device, labeled the
“stabilization electrode” in Fig. 1(c), is left floating during this
study.

III. THEORY

The displacement x of a driven single vibrational degree
of freedom with linear stiffness, viscous damping, and an
arbitrary nonlinear force can be described by

¥4 yx 4 wfx = feos(ot) + fu(x, 1), (D

where wy = /k/m is the angular resonance frequency, k is
the lumped stiffness, m is the lumped mass, y = wy/Q is
the resonance linewidth, Q is the quality factor, f is the
mass-normalized drive force, and w is the angular drive fre-
quency. We include a contribution to the nonlinear force
fwu from Duffing (Kerr) nonlinearity, a quintic amplitude-
frequency nonlinearity, nonlinear dissipation, and repulsive
contact forces as

Fr,0) = —ax® = Bx° — i + fulx, 2, )

where « is the Duffing parameter, B is the quintic stiffness
parameter, and 7 is the nonlinear damping parameter. « and
are the coefficients of third-order and fifth-order amplitude-
frequency nonlinearities, respectively, because they are the
proportionality factors for forces that scale as x* and x°.
The o and B terms vary the resonator stiffness and the n
term varies the resonator damping with amplitude. These
nonlinear terms are phenomenological, and are often used
to model the dynamics of nonlinear oscillators [21,47,60].
In the devices measured here, wy/27 varies from 300 kHz
to 500 kHz, y varies from 100 rad s~' to 300 rad s—',
o~ —10% rad> m2 s72, B~ —10* rad®> m~* s, and
n 2 10" rad’> m~2 s~! [47]. « and B are negative because of

electrostatic softening from the adjacent electrodes. The tip-
sidewall force can assume a variety of constitutive relations
[61,72,73]. Here we consider a piecewise viscous damping
term, a piecewise nonlinear damping term, and a piecewise
linear stiffness term arising from the repulsive contact:

0, x<g

. . 3
ek — el —gPi— ol —gl, x2g O

Jelx, x) = {

where g is the gap size, y. is the contact viscous damping
parameter, 7, is the contact nonlinear damping parameter,
and @? = k./m is the mass-normalized contact stiffness. The
piecewise stiffness in the contact force f,. can be obtained
from a first-order expansion of the Hertzian contact force
in Derjaguin, Muller, Toporov, and Maugis (DMT-M) theory
(see the Supplemental Material [74]). The attractive electro-
static and van der Waals force contribution is included up to
fifth-order in « and B within Eq. (2). We model the steady-
state vibrations as x = r cos(t), where T = wt + ¢ is the slow
time; 7 tracks the envelope of the vibrations, and is slow
compared to the real time variable 7.

A. Forced vibrations

The amplitude r and phase ¢ curves of the forced
(f >0 N kg™") resonator are given by

D= e r>12f+ 1@, NI @
o352

where
ai(w, 1) = o[l — Iuaa(@, )] — @, (©6)
bi(®, 1) = y© + Oleven(@, 7). @

The nonlinear force is accounted for in the period-averaged
Fourier series components [62] Ieven and Iogq. These terms
depend upon the vibration amplitude, and thus Eq. (4) in
this formulation is defined implicitly in terms of the vibration
amplitude and must be solved numerically. In the limiting case
of linear oscillations, Ieyen and Ioqq g0 to zero and Egs. (4) and
(5) describe a driven simple harmonic oscillator. The Fourier
series terms for the nonlinear force in Eq. (2) are given by

T]rz(l)
leven (@, 1) = 5 + Leven,c1 (@, 1) + Ieven,c2(@, 7), ®)
4wy
3ar? 584
Lai(w, 1) = ——— — —— + L. (@, 1), )
4y 8wy
Yew .
Ieven,c](ws ng) = > [271 - Sln(zfl )]v (10)
27 wyy
ICVCH.CZ(ws 728) = Q:1+Q:z+€3 +€4+€5, (1
w? 2g . sin(27;)
Loaa,c(w, r28) = ——=| 11— —sin(t) + )
Tw; r 2
(12)
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where
e [
¢, = 200 [L +g2], 13)
oy |4
wn.grsin(ty)
¢, = —T‘, (14)
0
oneg sin(2t))
=", (15)
27 3
wn.grsin(3t;)
C=—7F——, (16)
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Teven,c and Iygq - are zero when the vibration amplitude is
smaller than the gap size r < g. For vibrations larger than the
gap size, 1) = acos(g/r) characterizes the fraction of each
vibration cycle that the resonator interacts with the sidewall.
Ieven and I,qq are dimensionless and describe the dissipative
and conservative nonlinear forces, respectively.

B. Self-sustained vibrations

Beyond the self-oscillation threshold, the effective damp-
ing in the vibrational mode becomes negative [13], and the
amplitude grows exponentially until nonlinearities stabilize
the steady-state vibrations. The method of averaging can be
utilized to predict the vibration envelope in the transient
regime and the steady-state regime [47]. Considering Eq. (1),
setting the external drive force f and the contact force f,
to zero, and applying the method of averaging, yields two
averaged equations for the amplitude r and phase ¢:

3
. Vett ! nr
=— -, 18
" 2 8 13
. w — w? 3ar?  5pr*
é = ( () )+ r B ] (19)
2w 8w 16w

where we denote the effective damping parameter by Ves.
The first term on the right-hand side of Eq. (18) governs the
exponential growth (ye <0 rad s™!) or decay (yef >0 rad
s~!) of the vibration amplitude. We note that the effective
damping equals the actual resonator damping, s = y, only
in the absence of feedback or pumping. At the onset of
self-sustained oscillations (yef <O rad s~ 1), the vibrations are
driven by thermal fluctuations, and thus the second term on the
right-hand side of Eq. (18) can be neglected for the values of
nonlinear damping that are characteristic of MEM/NEM res-
onators. The resulting linear first-order differential equation
yields an exponential growth of vibration amplitude with time
t:

t kgT t
M) = roexp(— Veft ) ~ B . exp(— Veft >’ 0)

2 mawy 2

where y.¢ is assumed to be constant and effectively negative
starting att = 0's, kg = 1.3806 x 10~ K~ ! is Boltzmann’s
constant, and 7 is the thermal bath temperature.

After the initial exponential ring-up, the vibration ampli-
tude is stabilized by the nonlinear damping and/or the wall
collisions. The steady-state oscillations corresponds to i =

0 m s~! and yields
Fos = 2 =vere/n, 1< 8 @1
& rzg
In order to stabilize the self-oscillation amplitude without wall
collisions, the geometric nonlinear damping must be positive
and sufficiently large for the feedback strength used.

IV. FORCED VIBRATIONS

We use forced vibrations to identify the relevant non-
linearities in our microcantilevers during repulsive contact.
We disconnect the capacitive readout from the transduction
electrode and use this electrode to apply a harmonic force
near resonance. We read out the motion piezoresistively, with
a direct current I;. = 1 mA, well below the self-oscillation
threshold. We measure a device with a support beam length
L =50 um and a gap size g = 700nm; since the support
beam length is much larger than the gap size, geometric non-
linear dissipation is negligible and repulsive contact controls
the dynamics. Figures 1(d) and 1(e) depicts the measured
forced response on a repulsive-contact-stabilized device, for
increasing drive amplitude. For amplitudes below the gap
size, the electrostatic softening and attractive van der Waals
forces contribute softening nonlinearity. The sidewall colli-
sions are accompanied by a dramatic stiffening nonlinearity,
corresponding to the Hertzian repulsive contact forces exerted
by the asperities on the contacting surfaces.

The solutions to Eqgs. (4) and (5) for the repulsive-contact-
stabilized device are shown in Figs. 1(f) and 1(g). Negative
« and B values are sufficient to describe the nonlinear force
for vibration amplitudes below the gap size; the nonlinear
dissipation in the engine beam is negligible at the low stress
in the L = 50 ;um device, and we thus set n~0 rad> m—2 s~!.
For vibration amplitudes beyond the gap size, the linear
piecewise stiffness is sufficient to capture the slope of the
vibration amplitude vs drive amplitude. The model reveals
that the conservative force alone is not sufficient to describe
the measurements; viscous and nonlinear dissipative forces
play an important role in restricting the frequency upshift
during repulsive contact. We utilize a viscous contact force,
with y,. >0 rad s~!. and a nonlinear dissipative contact force,
with 5.>0 rad> m=2 s~!, to yield agreement between the
model and experiments in this regime.

V. SELF-SUSTAINED VIBRATIONS

‘We next study the impact of the geometric nonlinear damp-
ing and repulsive contact on the self-oscillation dynamics.
Figure 2 presents measurements on three microcantilevers
with varying support beam length and gap size, corresponding
to the negligible repulsive contact, negligible geometric non-
linear damping, and an intermediate-nonlinearity case where
both amplitude stabilization mechanisms are important. We
disconnect the signal generator from the transduction elec-
trode, and connect the capacitive readout to that electrode to
monitor the motion capacitively. We flow a direct current be-
yond threshold to induce self-oscillations, while recording the
voltage output from the piezorestive and capacitive readouts.
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FIG. 2. The self-oscillation dynamics for three regimes of amplitude stabilization nonlinearities. (a) The measured self-oscillation
waveform for the nonlinear-damping-stabilized oscillator, Device A (L = 6 um, g =2 um), vs time after switching on the direct current,
as measured using the piezoresistive readout (x,,). The exponential ring-up envelope from Eq. (20) (solid-black curves) and the steady-state
amplitude from Eq. (21) (dashed-black curves) are overlaid. (b) The same measurement as (a), except measured using the capacitive readout
(Xcap)- (¢) The oscillation waveform at various points along the self-oscillation envelope, as measured using the piezoresistive readout. (d) A
surface plot showing the Fast Fourier transforms near the resonance frequency during self-oscillations, with a 50-ms bin time. The black
line plots the measured centroid frequency with a 5-ms bin time. The feedback strength is characterized by A = Iic/Iresh, Where Iipresn
is the threshold current for self-oscillations. (e) The amplitude spectral density (ASD) of the steady-state oscillations, extracted from the
piezoresistive output for a 1000-ms bin time. The fundamental peak and readout harmonics are labeled. [(f)—(j)] The same measurement as in
[(a)—(e)], except for the intermediate-nonlinearity-stabilized oscillator, Device B (L = 6 um, g = 700 nm). [(k)—(0)] The same measurement
as in [(a)—(e)], except for the repulsive-contact-stabilized oscillator, Device C (L = 20 pum, g = 700 nm). The feedback strength is A = 1.017
for the nonlinear-damping-stabilized oscillator in [(a)—(e)], 2 = 1.221 for the intermediate-nonlinearity-stabilized oscillator in [(f)-(j)], and

A = 1.080 for the repulsive-contact-stabilized oscillator in [(k)—(0)].

The self-sustained oscillations of the nonlinear-damping-
stabilized microcantilever are studied in the first column of
Fig. 2. This device has a support beam length L = 6 um and
a gap size g = 2 um, and thus the engine beam experiences
stress approaching the fracture limit before the device contacts
the sidewalls (see the Supplemental Material [74]) [75,76].
The short engine beam contributes geometric nonlinear damp-
ing at the large amplitudes of self-sustained oscillations
[47]. The self-oscillation amplitude increases smoothly dur-
ing the ring-up, as measured using the piezoresistive readout
in Fig. 2(a) and using the capacitive readout in Fig. 2(b).
The theoretical exponential growth envelope from Eq. (20)

is overlaid in Fig. 2(a) and yields a good agreement with
the measured envelope until the nonlinear damping begins to
stabilize the vibrations, resulting in a smooth transition to the
steady-state amplitude. The output waveform at various points
along the self-oscillation envelope is shown in Fig. 2(c), and
illustrates the anharmonicity in the piezoresistive response
at large amplitudes. Fig. 2(d) presents the spectral dynamics
of the self-oscillations near resonance via the Fast Fourier
transforms (FFTs) of successive time bins of the piezoresistive
response, which shows that the resonance frequency gradually
decreases with time during self-sustained oscillations. The
centroid frequency trace reveals a series of small down-shifts

033268-5



JAMES M. L. MILLER et al.

PHYSICAL REVIEW RESEARCH 3, 033268 (2021)

in the resonance frequency during the self-oscillations, po-
tentially arising from fatigue in the engine beam. Figure 2(e)
presents the spectrum of the steady-state oscillations recorded
with the piezoresistive readout. A set of harmonics accompany
the fundamental vibration peak, corresponding to the anhar-
monic waveform in Fig. 2(c), which could be induced by the
engine beam nonlinearity that accompanies the strain levels
that geometric nonlinear damping is appreciable at.

The self-sustained oscillations of the repulsive-contact-
stabilized microcantilever are studied in the third column of
Fig. 2. This device has a support beam length L =20 um
and a gap size g = 700nm. The self-oscillation envelope,
as measured using the piezoresistive readout in Fig. 2(k),
abruptly plateaus once the device contacts the side electrodes.
The transient amplitude matches the exponential growth from
Eq. (20) up to the onset of wall collisions, at which point the
amplitude is roughly constant and matches Eq. (21). Unlike
the transient response of the nonlinear-damping-stabilized os-
cillator, there is no smooth transition away from exponential
growth resulting from the second term on the right-hand side
of Eq. (18). The corresponding capacitive readout measure-
ment, presented in Fig. 2(1), registers a large motional current
spike at the onset of repulsive contact, and ceases to accurately
measure the vibrations; this corresponds to periodic electri-
cal shorting to the transduction electrode. The piezoresistive
waveform does not exhibit pronounced anharmonicity dur-
ing oscillations stabilized by repulsive contact, as shown in
Fig. 2(m), and there is not the set of harmonics in the self-
oscillation spectrum in Fig. 2(0). These observations provide
additional evidence that nonlinearity in the engine beam is
not responsible for amplitude stabilization in this device. The
measured FFTs in Fig. 2(n) provide clear evidence for the
Hertzian stiffening and corresponding resonance frequency
upshift during the onset of repulsive contact.

The self-sustained oscillations of the intermediate-
nonlinearity-stabilized microcantilever are studied in the
middle column of Fig. 2. This device has a support beam
length L = 6 um and a gap size g = 700nm, and the mea-
surements reveal that both geometric nonlinear damping in
the engine beam and repulsive contact with the sidewalls
influences the dynamics. The measured FFTs in Fig. 2(i)
display signatures of the repulsive contact, such as the large
frequency upshift at the onset of steady-state oscillations, and
also signatures of nonlinearity in the engine beam, such as
the gradual reduction in the resonance frequency combined
with a series of small downward kinks during self-oscillations.
There are additionally harmonics in the piezoresistive readout
self-oscillation spectrum, like for the nonlinear-damping-
stabilized oscillator.

We next investigate the dynamics and stability in the
nonlinear-damping-stabilized oscillator for varying feedback
strength. The first column of Fig. 3 presents measurements at
a large feedback strength, which causes the first few seconds
of steady-state vibrations to be stabilized by wall collisions.
After the initial period of sidewall collisions, the amplitude
decreases and is stabilized by geometric nonlinear damping in
the engine beam. The period of wall collisions is accompanied
by substantial jitter in the amplitude envelope and resonance
frequency, as Figs. 3(a) and 3(b) demonstrate. The amplitude
stability and resonance frequency stability is much better in

the nonlinear-damping-stabilized regime than in the wall col-
lision regime, as the Allan deviation (ADEV) measurements
in Figs. 3(c) and 3(d) show. The second column of Fig. 3
shows the measurements at a moderate feedback strength. The
steady-state vibrations are completely stabilized by nonlin-
ear damping in this regime, and the envelope amplitude is
much smaller than the gap size. The amplitude envelope in
Fig. 3(e) has a slow modulation with a period longer than
1 second. The amplitude stability and frequency stability in
Figs. 3(g) and 3(h), respectively, both get worse relative to the
nonlinear-damping-stabilized oscillations at a large feedback
strength in Figs. 3(c) and 3(d). The third column of Fig. 3
shows the measurements at a feedback strength slightly above
the self-oscillation threshold. The steady-state amplitude de-
creases, consistent with y.r approaching zero in Eq. (21). The
period of the slow modulation in the amplitude envelope in
Fig. 3(i) also decreases to roughly 100 ms, and is accompanied
by an observable modulation in the standard deviation of the
resonance frequency in Fig. 3(j), and a drop in amplitude and
resonance frequency stability at a 100 ms averaging time in
Figs. 3(k) and 3(1). The amplitude and resonance frequency
stability both get worse relative to the nonlinear-damping-
stabilized behavior at moderate and large feedback strength.
In the drift-dominated regime of the Allan deviation (t ~1 s),
the frequency stability improves with decreasing feedback
strength.

We consider the dynamics and stability in the repulsive-
contact-stabilized oscillator for varying feedback strength
in Fig. 4. Reducing the feedback strength in Fig. 4(a)
increases the ring-up time of the transient interval, like
for the nonlinear-damping-stabilized device, but unlike the
nonlinear-damping-stabilized device, the stabilized vibration
amplitude is restricted by the gap size for all feedback
strengths beyond threshold. The agreement between the vi-
bration amplitudes for different direct currents after scaling by
the current indicates that the piezoresistive output is linear for
the repulsive-contact-stabilized devices. Because the geomet-
ric nonlinear damping is negligible for an engine beam length
of 20 um and a gap-restricted vibration amplitude of 700 nm,
ros 2 g K24/ —Vetr /1, sO the impact of feedback strength on
the vibration amplitude envelope is not observable, unlike the
nonlinear-damping-stabilized device. The standard deviation
in resonance frequency of the steady-state vibrations at a
500 us averaging time in Fig. 4(b) is roughly independent of
feedback strength, as the corresponding resonance frequency
stability measurements in Fig. 4(d) also indicate. For averag-
ing times ranging from 1 ms to 10 ms, reducing the feedback
strength worsens the amplitude stability and resonance fre-
quency stability. For averaging times beyond 100 ms, where
long-term drift starts to impact the stability, the stability mea-
sures in Figs. 4(c) and 4(d) improve with decreasing feedback
strength. Fig. 4(e) shows the measured resonance frequency
of the steady-state vibrations over a longer time period than
in Fig. 4(b). The corresponding resonance frequency stability
in Fig. 4(f) improves with decreasing feedback strength, con-
sistent with Fig. 4(c) in the drift-dominated regime (t = 1 s).
The resonance frequency stability at T = 1 s for a given feed-
back strength is better in Fig. 4(f) than in Fig. 4(d) because the
oscillations are given two minutes to stabilize before comput-
ing the resonance frequency Allan deviation in Fig. 4(f).
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FIG. 3. The self-oscillation dynamics and stability for the nonlinear-damping-stabilized oscillator, Device A (L = 6 um, g = 2 um), for
decreasing feedback strength. (a) The measured mean (red curve) and £2 standard deviations (black curves) of the amplitude (r), using a
50-ms bin time and 7 = 500 us averaging time. (b) The corresponding measured mean (red curve) and £2 standard deviations (black curves)
of the resonance frequency (wo/27 ), as measured from the interpolated zero crossings, using a 50-ms bin time and T = 500 s averaging time.
(c) The extracted amplitude Allan deviation (o,), for the lower (red curves) and upper (dashed-green curves) amplitude envelope. The light
curves show the amplitude Allan deviation during the initial wall collision period, corresponding to the light red box in (a). The dark curves
show the amplitude Allan deviation during the subsequent nonlinear-damping-stabilized period, corresponding to the dark red box in (a). The
feedback strength for [(a)—(d)] is A = Iyc/liresh = 1.021, where L is the threshold current for self-oscillations. (d) The extracted resonance
frequency Allan deviation (o). The light curves show the frequency Allan deviation during the initial wall collision period, corresponding
to the light red box in (b). The dark curves show the frequency Allan deviation during the subsequent nonlinear-damping-stabilized period,
corresponding to the dark red box in (b). T corresponds to the integration time. [(e)—(h)] The same measurements as [(a)-(d)], except at a
reduced feedback strength A = 1.011. The Allan deviations are only extracted from one time window, corresponding to the dark red boxes in
[(e)—(D)]. [(1)—(1)] The same measurements as [(e)—(h)], except at a further reduced feedback strength 2 = 1.006.

VI. DISCUSSION stability measures improve with decreasing feedback strength
for both devices; reducing the feedback strength reduces the
drift in amplitude and resonance frequency. This could be
because at lower feedback strengths, the nonlinear-damping-
stabilized oscillator experiences lower peak stress in the
engine beam, and the repulsive-contact-stabilized oscillator
impacts the sidewalls less forcefully; both effects would
reduce the long-term drift in oscillator properties.

The minimum Allan deviation measures move in
opposite directions with decreasing feedback strength
for the nonlinear-damping-stabilized oscillator and the
repulsive-contact-oscillator. Noise in the piezoresistive read-
out has an increasing effect on the stability measures for
the nonlinear-damping-stabilized oscillator with decreasing

Table 1 compares the stability measures for the
nonlinear-damping-stabilized oscillator to the repulsive-
contact-stabilized oscillator via the amplitude ADEV o,
and the resonance frequency ADEV o, for feedback
strengths well above threshold (A>>1) and slightly above
threshold (A= 1). For large feedback strength, both measured
minimum ADEVs between the two devices are comparable:
Grmin 1074, and 0, min~107%. For feedback strength
near threshold, the minimum ADEV measures improve
for the repulsive-contact-stabilized oscillator but become
significantly worse for the nonlinear-damping-stabilized
oscillator. In the drift-dominated regime (r =1 s), both
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FIG. 4. The self-oscillation dynamics and stability for the repulsive-contact-stabilized oscillator, Device C (L = 20 um, g = 700 nm), for
decreasing feedback strength. (a) The measured self-oscillation waveform vs time after switching on the direct current, as measured using the
piezoresistive readout (x,), overlaid for decreasing feedback strength (light to dark red envelopes) beyond threshold. The feedback strength is
characterized by A = Iy /linresh, Where Iy is the threshold current for self-oscillations. The corresponding measured £2 amplitude standard
deviation curves lie on top of the mean amplitude for this plotting range. (b) The corresponding measured mean (red curve) and £2 standard
deviations (gray curves) of the resonance frequency (w,/27), as measured from the interpolated zero crossings, using a 50 ms bin time and
T =500 us averaging time, for feedback strengths A = 1.106, A = 1.025, and A = 1.005 (light- to dark-shade curves). (c) The extracted
amplitude Allan deviation (o), for the lower (red curves) and upper (dashed-green curves) amplitude envelope, for decreasing feedback
strength (light to dark shade curves), extracted from the steady-state vibrations in (a). (d) The extracted resonance frequency Allan deviation
(0u,). for decreasing feedback strength (light- to dark-red curves), extracted from the steady-state vibrations in (a). (¢) The steady-state self-
oscillation frequency (wo/27) for a longer time period after the initial transient interval, for decreasing feedback strength (light- to dark-red
curves), as measured using a frequency counter. (f) The resonance frequency Allan deviation (o, ) corresponding to the time window from 2
to 8 minutes in (e) for decreasing feedback strength (light to dark red curves).

feedback strength, because the steady-state vibration ampli-
tude decreases. Additionally, close to threshold the nonlinear-
damping-stabilized oscillator becomes more sensitive to
fluctuations in resonator properties, such as viscous damp-
ing, thermal-piezoresistive feedback strength, and nonlinear

TABLE 1. A comparison of stability measures between
the nonlinear-damping-stabilized oscillator (Device A) and the
repulsive-contact-stabilized oscillator (Device C).

Parameter Device A Device C
wo/(2m) [kHz] 494 419
0 (x10%) 23 25
Beam length, L [um] 6 20
Gap size, g [nm] 2000 700
Crminas1 (x107%) 1.6 1.7
Trmin a1 [MS] 6.0 17
Gug.mins1 (x1077) 13 12
Ty, min, A3 1 [ms] 15 15
Ormini~t (X107%) 16 1.6
Trmin,a~1 [MS] 0.29 33
Ouwgmin 1 (X 1077) 39 3.4
Twg,min, 1 [MS] 39 69
Oras1(18) (x107) 160 11
0rani(18) (x107%) 110 29
Oupas1(1'8) (x1077) 560 190
Ouwpar1(1'8) (x1077) 270 27

damping. These fluctuations are visible in the modulation
of the steady-state vibration envelope for the nonlinear-
damping-stabilized oscillator near threshold, as Fig. 3(i) and
the corresponding amplitude ADEV in Fig. 3(k) at a 100-ms
averaging time indicate. For the repulsive-contact-stabilized
oscillators, the feedback strength does not influence the mean
steady-state oscillation amplitude since the amplitude is re-
stricted by the the wall collisions, as Fig. 4(a) demonstrates.
The repulsive-contact-stabilized oscillator is thus less sen-
sitive to fluctuations in device properties such as feedback
strength near threshold. The properties of the wall collisions
instead have a large impact on the oscillator performance.
Decreasing the feedback strength results in less forceful wall
collisions, which corresponds to lower oscillator drift, as the
measured resonance frequency in Fig. 4(e) and the ADEV
measurements in Figs. 4(d) and 4(f) suggest. The decreased
drift with reducing feedback strength offsets the worse sta-
bility for averaging times ranging from 1 ms to 10 ms,
resulting in overall lower minimum ADEV values for the
repulsive-contact-stabilized oscillator near threshold than far
above threshold.

The nonlinear-damping-stabilized device measurements
provide several indicators of the large operating stresses in the
engine beam, including intrinsic nonlinear damping, fatigue,
and anharmonic piezoresistive output waveform. The nonlin-
ear damping was previously measured in this geometry using
a parametric-resonance-based technique [47], and clearly lim-
its the vibration amplitude since the nonlinear restoring force
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is softening [21] and there is no electrical shorting to the
capacitive readout during oscillations in Fig. 2(b). The fatigue
in the engine beam manifests itself in the self-sustained oscil-
lator through the gradually decreasing oscillation frequency
and vibration amplitude with time. The anharmonicity in the
piezoresistive readout waveform is clearly more pronounced
for the nonlinear-damping-stabilized device in Fig. 2(c) than
for the intermediate-nonlinearity device in Fig. 2(h) or the
repulsive-contact device in Fig. 2(m). Considering Eq. (21),
variation in the internal feedback strength is probably the
source for the gradual decrease in steady-state amplitude in
Fig. 3(a) and the long-term fluctuating amplitude in Figs. 3(e)
and 3(i). This points to future studies into the dynamics of
the thermal-piezoresistive feedback parameter, which has not
been previously considered.

An auxiliary source of dissipation is responsible for the
amplitude stabilization during repulsive contact. The piece-
wise modeling of the forced response in Fig. 1 reveals this
dissipation pathway, since the predicted frequency upshift
during contact would be much larger than the experimen-
tally measured values in the absence of this dissipation. The
Supplemental Material [74] addresses this point further, by
showing the modeled amplitude and phase curves in the ab-
sence of contact dissipation. One possible origin for the auxil-
iary viscous damping and nonlinear damping is squeeze-film
damping of the residual hydrogen gas molecules in the gap.
The self-oscillation measurements on the repulsive-contact-
stabilized device in Fig. 4 provides additional evidence for the
role of this auxiliary dissipation in stabilizing the amplitude
during the repulsive contact, since increasing the feedback
strength causes the steady-state oscillation frequency to de-
crease. If stiffening nonlinearity associated with the Hertzian
contact of the asperities was the relevant amplitude stabi-
lization nonlinearity, the oscillation frequency would increase
with increasing feedback strength [20].

An interesting observation from these experiments is
that to improve the oscillator frequency stability, the feed-
back strength for the nonlinear-damping-stabilized oscilla-
tor should be as large as possible while avoiding wall
collisions, while the feedback strength for the repulsive-
contact-stabilized oscillator should be as close to threshold
as possible. If the feedback strength substantially exceeds
threshold for the repulsive-contact-stabilized device, the
surface asperities will more directly contact and perturb
the oscillation frequency, as in Fig. 4(e). The repulsive-
contact-stabilized oscillator appears to be less sensitive to
fluctuations in oscillator properties near threshold than the
nonlinear-damping-stabilized oscillator. The drift decreases
with reducing feedback strength for both oscillators, but
this results in a better frequency stability for only the
repulsive-contact-stabilized oscillator because of its lower
sensitivity to fluctuations in oscillator parameters near thresh-
old. Eq. (21) provides one explanation for this difference:
in the nonlinear-damping-stabilized oscillator, the vibration
amplitude directly depends on feedback strength, while the
amplitude in the repulsive-contact-stabilized oscillator is fixed
by the gap size. So fluctuations in the feedback can more
directly translate to fluctuations in the stability measures in the
nonlinear-damping-stabilized oscillator than in the repulsive-
contact-stabilized oscillator.

Measurements of the frequency stability in nonlinear-
damping-stabilized devices for time scales longer than those
considered in Fig. 3 reveal that the resonance frequency
drift accompanying the fatigue completely swamps other
noise sources, and nonlinear-damping-stabilized oscillators
stop functioning after 10 million to 100 million cycles. The
repulsive-contact-stabilized devices, on the other hand, ex-
hibited no apparent performance degradation after 1 billion
cycles, other than wearing down the contacting asperities
and reducing the corresponding frequency upshift during
stabilization. The stability measures in Table I are an order-of-
magnitude better for the repulsive-contact-stabilized oscillator
than the nonlinear-damping-stabilized oscillator for t =1 s.
Because the internal feedback mechanism and the amplitude
limiting mechanism are both localized in the engine beam dur-
ing oscillations of the nonlinear-damping-stabilized oscillator,
this seems to correspond to accelerated device degradation.
For the repulsive-contact-stabilized oscillator, squeeze film
damping in the electrode gaps serves as the amplitude lim-
iting mechanism, so the engine beam is only responsible
for the internal feedback. Spatially delocalizing the ampli-
tude stabilization nonlinearity from the internal feedback in
the device appears to improve long-term nonlinear oscillator
performance.

The best achieved resonance frequency Allan deviation,
0w, = 3.4x 1077 for the repulsive-contact-stabilized oscilla-
tor at an averaging time of 69 ms, is comparable to the state of
the art for thermal-piezoresistive oscillators, o,,, = 7.2x 1078
at an averaging time of 22 ms [77], but is several orders of
magnitude worse than the state of the art for all MEMS-based
oscillators: o,,, = 9x 10710 at an averaging time of 20 s [78].
The piezoresistive readout is not sensitive enough to detect
the thermomechanical vibrations for our devices, so o, can
be improved in the white-noise-dominated regime (7 < 10 ms)
by reducing the cross-sectional area of the piezoresistive el-
ement to increase the piezoresistive sensitivity [63,79,80].
Improving o, in the drift-dominated regime (7 >10 ms)
would require further engineering of the amplitude limiting
mechanism to eliminate the associated gradual degradation
in oscillator properties, for either geometric nonlinear damp-
ing or repulsive contact. If the inherent drift in oscillator
properties that accompanies thermal-piezoresistive pumping
and the amplitude stabilization is minimized, then the drift due
to temperature effects can be minimized with compensation
[81]. Alternately, the drift in oscillator properties that ac-
companies thermal-piezoresistive pumping can potentially be
bypassed by using a different internal feedback mechanism,
such as optical pumping [2], to sustain oscillations.

The nonlinearities that we explore in this work are
generalizable to oscillators sustained via photon-cavity [3],
magnon-cavity [8], or phonon-cavity [10] mechanics, as well
as external feedback oscillators [1,21]. Our measurements and
simulations reveal the interesting dynamics that can occur
in MEM/NEM oscillators that are stabilized by geometric
nonlinear damping and repulsive contact, and considers the
associated implications for nonlinear oscillator performance.
In order to improve the utility of geometric nonlinear damping
within MEM/NEM oscillators; further work is required to
engineer the nonlinear damping in the high stress regions of
the resonator to stabilize the amplitude without the signatures
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of fatigue that we observe here. Because of the larger vibration
amplitude, oscillators stabilized with internal nonlinearity,
such as the amplitude stabilization mechanisms that we delin-
eate, offer an inherent thermomechanical resonance frequency
stability advantage over linear oscillators, which translates
to overall stability improvements if the displacement read-
out is thermomechanical-noise-limited [82], accompanying
amplitude-frequency noise conversion is mitigated [16], and
auxiliary frequency fluctuations are not present [79]. Because
nonlinear damping is essential for the amplitude stabilization
in nonlinear oscillators, the frequency fluctuations that are
predicted to accompany the nonlinear damping should also be
identified and minimized [55].

VII. CONCLUSION AND OUTLOOK

We delineate two kinds of amplitude stabilization mecha-
nisms in hybrid vibrational systems sustained via the coupling
between electrons and mechanical vibrations: geometric
nonlinear damping and repulsive contact. These two non-
linearities are generalizable to micromechanical oscillators
sustained by coupling to a wide variety of internal degrees
of freedom, such as photons, magnons, or auxiliary mechan-
ical modes. These amplitude stabilization mechanisms can
coexist in the same device and their interplay and correspond-
ing frequency stability can be tuned in-situ by adjusting the
feedback strength. An auxiliary source of viscous dissipation
and nonlinear dissipation accompanies the repulsive contact,
potentially arising from squeeze film damping. We anticipate
that significant improvements to frequency stability beyond
what we report here can be achieved by further engineering
the geometric nonlinear damping and the repulsive contact
amplitude stabilization mechanisms.
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APPENDIX A: MEASUREMENTS

The piezoresistive readout measures the vibrations via a
change in electrical resistance in the engine beam during os-
cillations. Our differential piezoresistive buffer eliminates any
common-mode noise between the voltage output from the two
anchors. A four-probe resistive setup is employed, whereby
the direct current flows through the resonator via a pair of
electrical contacts through the encapsulation to the anchors

in the device layer, and a second pair of electrical contacts
to the anchors are used to read out the voltages induced by
the changing electrical resistance. This bypasses the signifi-
cant parasitic resistance in the electrical contacts during the
resistive measurement and improves the piezoresistive signal.

The capacitive readout measures the vibrations via the
changing capacitive gap width between the resonator and
the transduction electrode in the presence of a static voltage
difference between the two conductors. The transimpedance
amplifier is designed to measure the induced motional current
in the transduction electrode at the self-oscillation amplitudes,
without distortion.

The output responsivities, in units of V/m, are obtained
for the piezoresistive and capacitive readouts directly from
the self-sustained oscillations during contact with the stabi-
lization electrode and the a priori gap size. This calibration
is simpler and more accurate at large amplitudes than the
thermomechanical-noise-based calibration procedure [82],
because of the significant capacitive nonlinearity for vibra-
tions comparable to the gap size and piezoresistive readout
inaccuracy when extrapolating to the large self-oscillation
currents. The Supplemental Material [74] compares the dis-
placement calibration results based on the contact calibration
and the thermomechanical noise calibration for the devices
presented in the manuscript.

The forced responses presented in Fig. 1 are obtained
using a Zurich Instruments (ZI) lock-in amplifier. The ZI
output waveform generator is connected to the transduction
electrode, and the output from the piezoresistive readout
is connected to the ZI input for demodulation. During
the phase-locked loop measurements, the ZI establishes
a proportional-integral-derivative (PID) loop on the phase
difference between the output drive voltage and input piezore-
sistive signal at the same frequency. Near resonance, the
phase difference between the ZI drive output and the output
from the piezoresistive readout depends sensitively on the
ZI drive frequency. By sweeping the phase set-point from
0° to —180° in 100 mHz steps, the entire nonlinear res-
onator response including the stable and unstable branches
can be measured. Open-loop operation in the nonlinear regime
measures multi-valued frequency-amplitude and frequency-
phase curves, which include stable and unstable branches,
and is unable to access the unstable branches of the re-
sponse. Closed-loop operation, as is used to obtain the forced
responses in Fig. 1, measures the phase-amplitude and phase-
frequency curves, which are always single-valued [83]. The
PID loop parameters were determined using the ZI phase-
locked loop advisor by inputting the resonance frequency and
quality factor of the mode. See Sec. III of the Supplemental
Material [74] for more information about the tested device in
Fig. 1 and the comparison between the measured and modeled
forced response.

For the self-oscillation measurements presented in Figs. 2—
4, the output voltages from the piezoresistive and capacitive
readouts are measured with a dual-channel Alazar ATS9360-
4G digital acquisition board, at a 10 MHz sampling rate. The
single-period resonance frequencies are extracted from the
time series of the self-oscillation measurements, by calculat-
ing each period 7' from the interpolated zero-crossings and
employing the relation wy = 27 /T. The positive and negative
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FIG. 5. Measuring the contact dissipation during repulsive contact. [(a),(b)] The measured amplitude and phase curves (gray circles) with
the overlaid simulations (blue curves), including neither contact viscous damping nor contact nonlinear damping. [(c),(d)] The measured
amplitude and phase curves with the overlaid simulations, including contact viscous damping but not including contact nonlinear damping.
[(e),(f)] The measured amplitude and phase curves with the overlaid simulations, including both contact viscous damping and contact nonlinear

damping.

values of the amplitude envelope in each vibration cycle are
extracted from the maximum and minimum measured points
between zero-crossings, respectively. To plot the statistics of
the amplitude and resonance frequency in Figs. 3(a), 3(b),
3(e), 3(f), 3(i), 3(j), and 4(b), the values from each period
are first averaged into 7 =500 ps bins, and then 100 of
these bins are used to compute the mean and standard devi-
ation in 50 ms time intervals. The self-oscillation frequency
during the long-time measurements in Fig. 4(e) is recorded
with an Agilent 53132A universal counter at a sampling rate
of roughly w,/27 = 1 Hz immediately following the initial
ring-up measurements shown in Fig. 4(a).

For N total measurements of resonance frequency, the res-
onance frequency Allan deviation is calculated for a given
averaging time t as [79]

~_]

1 @o,i41 — @0\
2(ﬂ—1)z( @ ) (AD

m i=1

an(r) =

where m = tw, /27 is the number of samples in each aver-
aged resonance frequency wy ; /27 and wq /27 is the reference
(e.g., initial) resonance frequency. For short averaging times,
there are fewer samples averaged into each wy ; than when the
averaging times are longer.

The amplitude Allan deviation is similarly computed as

wl oo N2
_ 1 Fitl —Ti
o, (t) = E) E ( " ) ) (A2)

i=1

where 7; is the averaged amplitude in the ith time bin and r
is the reference amplitude, corresponding to the initial steady-
state amplitude following the transient ring-up.

For the Allan deviations corresponding to the zero-crossing
resonance frequency and envelope amplitude in Figs. 3(c),

3(d), 3(g), 3(h), 3(k), 3(1), 4(c), and 4(d), the sampling rate
is roughly equal to the resonance frequency: w; = wy. For
the resonance frequency Allan deviation curves shown in
Fig. 4(f), the sampling rate corresponds to the frequency
counter measurement rate, and is roughly 1 Hz.

APPENDIX B: MEASURING THE CONTACT
VISCOUS/NONLINEAR DISSIPATION

Figures 5(a) and 5(b) show the experimentally mea-
sured forced oscillation curves for the long support beam
(L = 50 pm) narrow gap (g = 700 nm) device, with the cor-
responding nonlinear model in the absence of the contact
viscous damping and piecewise nonlinear damping. The mea-
surements are the same as in Figs. 1(d) and 1(e). The bias
voltage is set to V;, = 10 V, and a piezoresistive sensing cur-
rent Ij. = 1 mA is used. The drive amplitude parameter is
chosen for each simulated curve so that the discontinuity in
the phase slope for the experiment and simulation near —75°
occurs at the same phase. The contact stiffness parameter
is chosen so that the slope of the amplitude increase to in-
creasing drive strength agrees between the experiments and
simulations. The simulated phase curves join together at a
much larger frequency offset from resonance than the ex-
perimental value, which suggests that conservative stiffening
nonlinearity alone is not solely responsible for the amplitude
stabilization during repulsive contact.

Figures 5(c) and 5(d) show the experimental curves with
overlaid simulations, which includes the contribution from
contact viscous damping but not contact nonlinear damping.
The inclusion of the piecewise viscous damping enables the
simulated curves to agree with the experimental curves during
contact at low amplitudes, but overestimates the frequency
offset that the phase curves join together at for larger drive
amplitudes; piecewise viscous damping alone is not sufficient
to describe the dissipative contact forces.
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FIG. 6. A close-up view of the measured amplitude-frequency
curves (gray circles) and the overlaid simulations (blue curves), with
contact viscous damping and contact nonlinear damping.

Figures 5(e) and 5(f) show the experimental curves with
overlaid simulations, which includes the contribution from
both contact viscous damping and contact nonlinear damp-
ing. The simulated curves are identical to those presented
in Figs. 1(f) and 1(g). The inclusion of the piecewise
nonlinear damping significantly improves the agreement
between the simulations and experiments for the largest vi-
bration amplitudes. The corresponding close-up view of the
amplitude-frequency curves with the overlaid model is shown
in Fig. 6.

Comparing the lumped nonlinear model to the measure-
ments indicates that piecewise linear stiffness, piecewise
viscous damping, and piecewise nonlinear damping capture
the essential dynamics of the device during repulsive contact,
including the slope of the amplitude-frequency curves and the
frequencies that the stable and unstable amplitude branches
join together at. The values of the nonlinear parameters used
for this model are summarized in Table II. The nonlinear
model does not completely capture the nonlinear forces during
the repulsive contact: the model underestimates the frequency
offset at which the the phase slope experiences a second dis-
continuity in Fig. 5(f), near —120°, as well as the phase slope
near that discontinuity. Additionally, the amplitude model in
Fig. 6 underestimates the width of the resonance peak in the
stiffening region at amplitudes slightly below and above side-
wall contact. The error between the experimental and modeled
amplitude curves in the repulsive contact region are within
1-2 nm. A deeper study of the resonator-sidewall interaction
forces may enable an additional level of refinement to our
nonlinear model. However, the model that we present here
is sufficient for revealing the additional viscous damping and
nonlinear damping that are at play during repulsive contact.

APPENDIX C: NUMERICAL SOLUTION OF
THE GOVERNING EQUATIONS

To plot the amplitude-frequency and phase-frequency
curves from the nonlinear piecewise model in Figs. 1, 5, and
6, we numerically solve Egs. (4) and (5). We define a root-
finding function by subtracting r from both sides of Eq. (4).
The zeros of this function correspond to the physical ampli-
tude solutions at a given drive amplitude and frequency. For
each drive force, we first compute the entire linear response
over the frequency range around resonance by setting leyen, and
Io4a to zero within Eq. (4). The amplitude at resonance is used
to choose the upper bound for a coarse open search on the
root-finding function [84]. The coarse zero crossings in the
open search are subsequently refined using the false-position
method, which ultimately outputs one or more r, Lye,, and
Ioqa values (corresponding to each branch of the nonlinear
response) at a given w and f. The corresponding phase values
for each branch are computed using the outputted Ieyven and
Ioqa values from the root finder. Each branch of the amplitude
and phase response at a given drive amplitude is stored into its
own vector. All of the stored branches are shown in Figs. 1(f)
and 1(g).

APPENDIX D: DERIVATION OF
THE NONLINEAR MODEL

1. Nonlinearities arising from the electrostatics

The bias voltage difference between the microcantilever
and the adjacent transduction electrode stores electrostatic
energy U, in the parallel-plate capacitance of the gap:

E()A
Uex) = —5——, (D1)
2(g—x)
where €y = 8.854x 1072 F m~! is the vacuum permittiv-
ity, A is the electrode area, g is the capacitive gap size in
static equilibrium, and x is the resonator displacement away
from equilibrium. The displacement-dependence of the elec-
trostatic energy gives rise to a mass-normalized attractive
force:
o) = = (D2)
xX) = ,
‘ (g —x)?
where the lumped-mass-normalized electrostatic constant is
given by

€ ()Ath

o (D3)

e =

Performing a Taylor series expansion on Eq. (D2) up to
fifth-order and discarding the nonresonant forcing terms,

TABLE II. A delineation of the nonlinear lumped element model values for the device measured and simulated in Figs. 1, 5, and 6. w, is
the angular resonance frequency, Q is the quality factor, y is the linewidth, g is the gap size, 7 is the nonlinear damping parameter, w, is the
contact linear stiffness parameter, y, is the contact viscous damping parameter, and 7, is the contact nonlinear damping parameter. 7 is set to

zero in the model for this device.

wy /27 (kHz) ) y rads™)) g(mm) o (rad’> m2s7?)

B (rad> m* s72)

? (rad®>s?)  y.(rads™")  p. (rad m~2s7")

278.395 5200 336.4 700 —1.48x10*

—8.11x10% 2.08x 10" 5.93x10* 2.91x10%
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we obtain

fo(x) = 2c.gx + 4e,g0x + 6c.g7 X0, (DD

The corresponding Duffing (Kerr) parameter and fifth-order
nonlinear parameter, arising from electrostatics, are, respec-
tively,

2€0AV?
e =~ (D5)
mg
3€pAV?
=t (D6)
mg

Using a bias voltage V, = 10 V, an electrode area of A =
1.44x107% m?, a gap size g = 700nm, and a lumped mass
m = 4.809 x 10~ kg as for the device in the forced vibration
experiments, we compute @, = —3.16x 10> rad m~2 s2 and
Be = —9.66x 10°* rad m™ s72. These estimated values are
reasonably close to measured parameter values in Table II.

2. Nonlinearities arising from the van der Waals force

The attractive van der Waals force between an asperity on
the resonator or electrode sidewall and the opposing surface,
normalized by the resonator lumped mass, is given by

CU
fo=—"23,

(g—x)?
where the lumped-mass-normalized van der Waals constant is
given by

(D7)

ApR
Cl) =
6m
where Ay is the Hamaker constant and R is the asperity radius.
The van der Waals force in Eq. (D7) has the same functional
form as the electrostatic force in Eq. (D2), and thus the power
series expansion has the same form:

(D8)

folx) = 2c,,g’3x + él'cvg’s)c3 + 6cvg’7x5. (DY)

The corresponding Duffing (Kerr) parameter and fifth-order
nonlinear parameter, arising from the van der Waals force, are
respectively,

2AyR

@y = - (D10)
3mg®
AgR

Bo=—— (D11)
mg

Using a Hamaker constant Ay = 2x 1073 J and an asperity
radius R = 10 nm, reasonable for scanning probe microscopy
experiments [62], we estimate o, = —1.65x 102 rad m~2 s~2
and B, = —5.05x 10** rad m~* s72. It is clear that the van
der Waals contribution to the nonlinear model is negligible
compared to the electrostatic contribution for the electrically
biased device.

3. Expansion of the Hertzian contact force

The attractive and repulsive forces between an asperity and
an adjacent surface can be described by the Derjaguin, Muller,
Toporov, and Maugis (DMT-M) theory. This corresponds to a
piecewise nonlinear tip-sidewall force, which includes both an

attractive van der Waals force and a repulsive Hertzian contact
force [62]:

—c(x — 972, x<g
f;fs = {

D12
—cy(x — )2 + cplx — 9)¥?, (b12)

x2g,
where ¢, is the van der Waals force constant defined in the
previous section. We define the Hertzian force constant as

_4EVR

oy = , (D13)

3m

where E is the elastic modulus of the asperity and the sidewall.
The Hertzian contact force can be expanded in a power series
about x = g by assuming that the resonator first contacts an
asperity at x = g — R, and discarding the contact force for
x < g. This approximation yields

0, x < g,
N T Uy N IS V- P S
seHR = (x — g) — ecnR™77(x — g, x =g
(D14)
The corresponding linear contact parameter is thus:
, 2ER
W, = —. (D15)
m

Using a silicon elastic modulus E = 130 GPa and an asperity
radius of R = 10 nm, we compute a)(z_ =5.41x 10" rad? s72
for the linear contact parameter. The actual linear contact pa-
rameter is expected to be larger than this approximate value if
multiple asperities come into contact at x & g, as the measured
value for w? in Table II confirms.

4. Computing the Fourier coefficients

The Fourier components Ioyen, and Iogq in Egs. (8) and (9)
are evaluated by pre-multiplying the nonlinear force by the
appropriate sinusoid and integrating the function over a single
vibration period:

1 2
leven(@, 1) = —>— Ao, 1, T)sin(r)dT,  (D16)
Twir
2
loa(w, r) = —= L(w, 1, T)cos(t)dT, (D17)
TWir

where fyi is the mass-normalized nonlinear force, w is the an-
gular drive frequency, w is the angular resonance frequency,
r is the vibration amplitude, and T = wt + ¢ is the slow time.
The contribution of the nonlinear forces to the response is
captured in the following Fourier coefficient integrals:

1
Ievenx‘(wv r)= . / fc(w, r, T)sin(t)dt
Tyt Jo

27
5 / fe(w, r, t)sin(r)dz, (D18)
TWGr Jom—r,
1 o
loaa,c(w, 1) = — / felw, r, T)cos(r)dt
71'0.)07' 0
1 2
+ 5 / fe(w, r,t)cos(t)dr, (D19)
ﬂwor 2mr—1,

where f. is the mass-normalized contact force and g is the gap
size. T} = acos(g/r) characterizes the fraction of the oscilla-
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tion period spent in contact with the sidewall. These integrals
assume that the resonator contacts a single surface at x = g
during oscillations. We make this assumption since the direct
current through the engine beam causes a static shift in the
resonator proof mass towards the stabilization electrode. If

the resonator simultaneously contacts both adjacent electrodes
during self-oscillations, at x = £g, then Eqgs. (10), (11), and
(12) will be premultiplied by 2, and the corresponding nonlin-
ear contact parameters will assume half the value presented in
Table II.
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